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Abstract 

We propose a new method for organizing the numerous collocates into semantic thesaurus 
categories. The approach introduces a thesaurus-based semantic classification model 
automatically learning semantic relations for classifying adjective-noun (A-N) and verb-noun 
(V-N) collocations into different categories. Our model uses a random walk over weighted graph 
derived from WordNet semantic relation. We compute a semantic label stationary distribution 
via an iterative graphical algorithm. The performance for semantic cluster similarity and the 
conformity of semantic labels are both evaluated. The resulting semantic classification 
establishes as close consistency as human judgments. Moreover, our experimental results 
indicate that the thesaurus structure is successfully imposed to facilitate grasping concepts of 
collocations. It might improve the performance of the state-of-art collocation reference tools. 
 
Keywords: Collocations, Semantic classification, Semantic relations, Random walk algorithm, 

Meaning access index. 

1. Introduction 

Submitting queries (e.g., a search keyword “beach” for a set of adjective collocates) to 
collocation reference tools typically return many collocates (e.g., collocate adjectives with a 
pivot word “beach”: “rocky”, “golden”, “beautiful”, “pebbly”, “splendid”, “crowded”, “superb”, 
etc.) extracted from a English corpus. Applications of automatic extraction of collocations such 
as TANGO (Jian, Chang & Chang, 2004) have been created to answer queries of collocation 
usage. 

Unfortunately, existing collocation reference tools sometimes present too much information 
in a batch for a single screen. With web corpus sizes rapidly growing, it is not uncommon to find 
thousands collocates for a query word. An effective reference tool might strike a balance between 
quantity and accessibility of information. To satisfy the need for presenting a digestible amount 
of information, a promising approach is to automatically partition words into various categories 
to support meaning access to search results and thus give a thesaurus index. 

Instead of generating a long list of collocates, a good, better presentation could be 
composed of clusters of collocates inserted into distinct semantic categories. We present a robust 
thesaurus-based classification model that automatically group collocates of a given pivot word 
focusing on: (1) the adjectives in adjective-noun pairs (A-N); (2) the verbs in verb-noun pairs 
(V-N); and (3) the nouns in verb-noun pairs (V-N) into semantically related classes. 

Our model has determined collocation pairs that learn the semantic labels automatically 
during random walk algorithm by applying an iterative graphical approach and partitions 
collocates for each collocation types (A-N, V-N and V-N mentioned above). At runtime, we start 
with collocates in question with a pivot word, which is to be assigned under a set of semantically 



related labels for the semantic classification. An automatic classification model is developed for 
collocates from a set of A-N and V-N collocations. A random walk algorithm is proposed to 
disambiguate word senses, assign semantic labels and partition collocates into meaningful 
groups. 

As part of our evaluation, two metrics are designed. We assess the performance of 
collocation clusters classified by a robust evaluation metric and evaluate the conformity of 
semantic labels by a three-point rubric test over collocation pairs chosen randomly from the 
results. Our results indicate that the thesaurus structure is successfully imposed to facilitate 
grasping concepts of collocations and to improve the functionality of the state-of-art collocation 
reference tools. 

2. Related Work 

2.1 Collocations 
The past decade has seen an increasing interest in the studies on collocations. This has been 

evident not only from a collection of papers introducing different definitions of the term 
“collocation” (Firth, 1957; Benson, 1985; Lewis, 1997), but also from a number of research on 
collocation teaching/acquisition associating to language learning (Lewis, 2000; Nation, 2001). 
When analyzing Taiwanese EFL writing, Chen (2002) and Liu (2002) investigated that the 
common lexical collocational error patterns include verb-noun (V-N) and adjective-noun (A-N). 
Furthermore, with the technique progress of NLP, Word Sketch (Kilgarriff & Tugwell, 2001) or 
TANGO (Jian, Chang & Chang, 2004) became the novel applications as collocation reference 
tools. 

2.2 Meaning Access Indexing 
Some attention has been paid to the investigation of the dictionary needs and reference 

skills of language learners (Scholfield, 1982; Béjoint 1994), especially the structure for easy 
comprehending. According to Tono (1992 & 1997), menus that summarize or subdivide 
definitions into groups ahead of entries in dictionaries would help users with limited reference 
skills. The System “Signposts” of the Longman Dictionary of Contemporary English, 3rd edition, 
the index “Guide Word” of the Cambridge International Dictionary of English, as well as the 
“Menus” of the Macmillan English Dictionary for Advanced Learners all value the principle. 

2.3 Similarity of Semantic Relations 
The construction of practical, general word sense classification has been acknowledged to 

be one of the most ambitious and frustrating tasks in NLP (Nirenburg & Raskin, 1987), even 
WordNet with more significant contribution of a wide range of lexical-semantic resources 
(Fellbaum, 1998). Lin (1997) presented an algorithm for word similarity measure by its 
distributional similarity. Unlike most corpus-based word sense disambiguation (WSD) 
algorithms where different classifiers are trained for separate words, Lin used the same local 
context database as the knowledge sources for measuring all word similarities. Distributional 
similarity allows pair wise word similarity measure to deal with infrequent words or unknown 
proper nouns. However, compared to distributional similarity measure, our model by random 
walk algorithm has remarkable feature to deal with any kind of constraints, thus, not limited to 
pair-wise word similarities, and can be improved by adding any algorithm constraints available.  

More specifically, the problem is focused on classifying semantic relations. Approaches 
presented to solve problems on recognizing synonyms in application have been studied (Lesk, 
1986; Landauer and Dumais, 1997). However, measures of recognizing collocate similarity are 
not as well developed as measures of word similarity, the potential applications of semantic 
classification are not as well known. Nastase and Szpakowicz (2003) presented how to 



automatically classify a noun-modifier pair, such as “laser printer”, according to the semantic 
relation between the head noun (printer) and the modifier (laser). Turney (2006) proposed the 
semantic relations in noun pairs for automatically classifying. As for VerbOcean, a 
semi-automatic method was used to extract fine-grained semantic relations between verbs 
(Chklovski & Pantel, 2004). Hatzivassiloglou and McKeown (1993) presented a method towards 
the automatic identification of adjectival scales. More recently, Wanner et al. (2006) has sought 
to semi-automatically classify the collocation from corpora by using the lexical functions in 
dictionary as the semantic typology of collocation elements. Nevertheless, there is still a lack of 
fine-grained semantically-oriented organization for collocation. 

3. Methodology 

We focus on the preparation step of partitioning collocations into categories: providing each 
word with a semantic label and thus presenting collocates under thesaurus categories. The 
collocations with the same semantic attributes by the batch size are then returned as the output. 
Thus, it is crucial that the collocation categories be fairly assigned for users’ easy-access. 
Therefore, our goal is to provide a semantic-based collocation thesaurus that automatically 
adopts characterizing semantic attributes. Figure 1 shows a comprehensive framework for our 
unified approach. 

 

 
Figure 1.A comprehensive framework for our classification model. 

3.1 Problem Statement 
We are given (1) a set of collocates Col = {C1, C2, …, Cn} (e.g., sandy, beautiful, superb, 

rocky, etc.) denoted with a set of part-of-speech tags P, {P ∈ Pos | P = adjective Padj, verb Pv, or 
noun Pn} for a pivot word X (e.g., beach) extracted from a corpus of English texts (e.g., British 
National Corpus); (2) a combination of thesaurus categories (e.g., Roget’s Thesaurus), TC = {(W, 
P, L) | W ∈ Voc, P ∈ Pos, L ∈ Cat}, where Voc is the thesaurus vocabulary words W, ordered by 
general-purpose topics hereinafter called the semantic labels (e.g., feelings, materials, art, food, 
time, etc.), Cat = {L1, L2, …, Lm}, with conceptual-semantic attributes as the basis for 
organization; and (3) a lexical database (e.g., WordNet) as our word sense inventory SI for 
semantic relation population. SI is equipped with a measure of semantic relatedness of W, REL(S, 
S’) encoding semantic relations REL ∈ SR holding between word sense S and S’.  

Our goal is to partition Col into subsets Sub of similar collocates, Sub ⊆ Col, by means of 
an integrated semantic knowledge crafted from the mapping of TC and SI that is likely to express 
closely related meanings of Col in the same context of X mentioned herein beach. For this, we 
use a graph-based algorithm to give collocations a thesaurus index by giving each collocate in 
Col a semantic label L. 

Extension 

A Thesaurus 
 

Word Sense Inventory  
(e.g., WordNet) 

Random Walk on Word 
Sense Assignment 

Integrated Semantic Knowledge (ISK) Enriched ISK 

Random Walk on Semantic 
Label Assignment 

Uncategorized 
Collocates 

A 

Collocation 

Thesaurus 



3.2 Learning to Build a Semantic Knowledge by Iterative Graphical Algorithms 
Recall that we attempt to provide each word with a semantic label and partition collocations 

into thesaurus categories. In order to partition a large-scale collocation input and reduce the 
out-of-vocabulary (OOV) words occurred, automating the task of building an integrated semantic 
knowledge base is a necessary step, but also imposes a huge effort on the side of knowledge 
integration and validation. An integrated semantic knowledge (ISK) is defined to interpret a word 
in triples (W, L, S), i.e., the given word, a semantic label representing one of thesaurus categories, 
and its corresponding word sense, as cognitive reference knowledge. At this first stage, 
interconnection is still between words and labels from the given thesaurus category TC and not 
between word senses and semantic labels. For interpreting words in triples (W, L, S) as an ISK 
and corresponding to the fact that there’s a limited, almost scarcely found, resource that is 
intended for such semantic knowledge, we proceeded as follows to establish one comprehensive 
ISK allowing concentrating on our task of populating it with new semantic relations between 
words and labels, overcoming the problem of constructing a resource from scratch.  

3.2.1 Word Sense Assignment for Integrated Semantic Knowledge 
In the first stage of the learning process, we used a graph-based sense linking algorithm 

which automatically assigns senses to all words under a thesaurus category by exploiting 
semantic relations identified among word senses. It creates a graph of vertices representing a set 
of words and their admissible word senses in the context of a semantically consistent list. The 
pseudo code for the algorithm is shown as Figure 2.  

By adding synonymous words through semantic relations, it can broaden the word coverage 
of TC, which may reduce significantly the number of OOV words in TC and cope with the 
problem of collocates that form a group by itself. This strategy relies on a set of general-purpose 
topics as semantic labels L in a thesaurus category TC and a word sense inventory SI encoding 
semantic relations. TC and SI are derived from separate lexicographical resources, such as 
Longman Lexicon of Contemporary English and WordNet. 

The algorithm assumes the availability of a word sense inventory SI encoding a set of 
semantic relations as a measure of semantic relatedness. Given a set of words with corresponding 
admissible senses in SI, we build a weighted graph G = (V, E) for SI such that there is a vertex V 
for each admissible sense, and a directed edge E for each semantic relation between a pair of 
senses (vertices). 
 The input to this stage is a word sense inventory SI encoding a set of semantic relations SR 
attributing the senses of SI, and a set of words W = {w1, w2, …, wn} listed under Li in a set of 
semantic labels Cat used in a thesaurus TC. The semantic relations SR comprise REL(S, S’) 
where S and S’ are admissible senses in SI, and REL is a semantic relation (e.g., synonyms, 
hypernyms, and hyponyms holding between senses) existing between S and S’ and explicitly 
encoded in SI. Notice that semantic relations typically hold between word senses but not 
necessarily between words. We apply semantic relations to identify the intended senses for each 
word in the list. Accordingly these intended senses will form a semantically consistent set with 
maximal interconnecting relations 

We use random walk on the weighted graph G encoding admissible senses as vertices V and 
semantic relations SR as edges E with a view to discovering the most probable sense S* for W. 
The edges will be stepped through by imaginary walkers during the random walk in a 
probabilistic fashion. Through the random walk on G, the probability of intended senses will 
converge to a higher than usual level because of the influx via incoming edges representing 
semantic relations. All vertices in the weighted graph G start with a uniform probability 
distribution. The probability is reinforced by edges that participate in a SR until the 
reinforcement of probability converges for the given sense consistency, leading to a stationary 



distribution over sense probability Ps, represented as scores Qs attached to vertices in the graph. 
In all, the weights on G indicating the sense strength converge to arrive at the consistency of 
senses, which become the output of this learning stage. The procedure is repeated for all word 
lists in TC. Recall that these most probable senses are useful for extending the limited coverage 
of TC and reducing the number of OOV words effectively. 

 

Algorithm 1.  Graph-based Word Sense Assignment 

Input: A word W from a set annotated with a semantic label L under a category Cat from a thesaurus TC;
A word sense inventory SI with a measure of semantic relatedness of W, REL (S, S’) encoding semantic 
relations REL ∈ SR holding between word meanings S and S’. 
S is one of the admissible senses of W listed in SI, and so as S’ of W’. 

Output: A list of linked word sense pairs (W, S* )  
Notation: Graph G = {V, E} is defined for admissible word senses and their semantic relations, where a 
vertex v ∈ V is used to represent each sense S whereas an edge in E represents a semantic relation in SR 
between S and S’. Word sense inventory SI is organized by semantic relations SR, where REL (S, S’), REL 
∈ SR is used to represent one of the SR holding between word sense S of W and S’ of W’. 

PROCEDURE AssignWordSense(L,SI) 

Build weighted graph G of word senses and semantic relations 
(1) INITIALIZE V and E as two empty sets 

FOR each word W in L 
FOR each of n admissible word sense S of W in SI, n = n(W) 

ADD node S to V 
FOR each node pair (S,S’) in V × V 

IF (S  REL S’) ∈ SR and S ≠ S’ THEN ADD edge E(S,S’) to E 
FOR each word W AND each of its word senses S in V 

(2)      INITIALIZE Ps = 1/n(W) as the initial probability 
(2a)      ASSIGN weight (1-d) to matrix element MS,S 
(2b)      COMPUTE e(S) as the number of edges leaving S 

FOR each other word W’≠ W in L AND each of W’ senses S’ 
(3)           IF E(S,S’) ∈ E THEN ASSIGN Weight d/e(S) to MS,S’ 

OTHERWISE ASSIGN 0 to MS,S’   

Score vertices in G 
REPEAT 

FOR each word W AND each of its word senses S in V 
(4)           INTIALIZE QS to PS * MS,S 

FOR each other word W’≠W in L AND each of W’ senses S’ 
(4a)           INCREMENT QS by PS’ * MS’,S  

FOR each word W AND  
     Sum QS over n(W) senses as Nw 

FOR each sense S of W 
(4b)           Replace PS by QS/Nw  so as normalize to sum to 1  

UNTIL probability PS converges 

Assign word sense 
(5) INITIALIZE List as NULL 

FOR each word W  
(6)      APPEND (W,S*) to List where S* maximizes Ps 
(7) OUTPUT List 

Figure 2.Algorithm for graph-based word sense assignment. 
  



 The algorithm (referring to Figure 2) for the best sense assignment S* for W consists of 
three main steps: (1) construction of a word sense graph; (2) sense scoring using graph-based 
probability ranking algorithm; and (3) word sense assignment.  

In Step 1, the weighted graph G = (V, E) is built by populating candidate n(W) admissible 
senses S of each given word W as vertices from SI, such that for each word W and its sense S, 
there is a vertex V for every intended sense S. In addition, the edge E(S, S’) in E, a subset of V × 
V, is built up by adding a link from vertex S to vertex S’ for which a semantic relation REL(S, S’) 
between the two vertices is derived, where S is one of the admissible senses of W and S’ of W’. 
 In Step 2, we initialize the probability Ps to a uniform distribution over each vertex S. And 
we set the weight of self-loop edge as (1-d) (Step 2a), and the weights of other outbound edges as 

d/e(S), calculated as '
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In our ranking algorithm for the weighted graph, the decision on what edge to follow during 
a random walk considers the weights of outbound edges. One with a higher probability follows 
an edge that has a larger weight. The ranking algorithm is particularly useful for sense 
assignment, since the semantic relations between pairs of senses (vertices) are intrinsically 
modeled through weights indicating their strength, rather than a decision on binary 0/1 values. 

As described in Step 3, the weights are represented as a matrix M for which the weights of 
all outbound edges from S are normalized to sum to 1. Our random walk algorithm holds that an 
imaginary walker who is randomly stepping over edges will eventually stop walking. The 
probability, at any step, that the walker will continue is a damping factor, a parameter usually 
denoted by d. The d factor is defined as the vertex ratio of the outgoing edges and the self-loop 
edge as the result of dividing the vertex weight of the damping constant. The damping factor is 
subtracted from 1. The value for (1-d) introduced is the principal eigenvector for the matrix M. 
The value of the eigenvector is fast to approximate (a few iterations are needed) and in practice it 
yields fairly optimal results. In the original definition of a damping factor introduced by 
PageRank (Brin and Page, 1998), a link analysis algorithm, various studies have tested different 
damping factors, but it is generally assumed that the damping factor will be set around 0.85 
whereas we use variant value for d in our implementation. 

In Step 4 of vertex scoring, we compute the probabilistic values of each vertex at every 
iteration. The set of probabilities Qs of each sense S for the next iteration is computed by 
multiplying the current probability Ps with the matrix Ms,s. For instance (Step 4a), suppose a 
walker is to start at one vertex of the graph. The probability of Qs is the probability of a walker 
stands at a vertex of S forming a self-loop plus the sum of the influx of Ps’ weighted by Ms’,s. In 
Step 4b, we normalize Qs for the probability of all admissible senses with each word to sum to 1 
and replace Ps by Qs. 
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Subsequently, in Step 5, we calculate the ranking score of maximum probability Ps that 
integrates the scores of its start node. And thus the resulting stationary distribution of 
probabilities can be used to decide on the most probable set of admissible senses for the given 
word. For instance, for the graph drawn in Figure 3, the vertex on the vertical axis represented as 
the sense #3 of “fine” will be selected as the best sense for “fine” under the thesaurus category 
“Goodness” with other entry words, such as, “lovely”, “superb”, “beautiful”, and “splendid”. The 
output of this stage is a set of linked word sense pairs (W, S*) that can be used to extend the 
limited thesaurus coverage. The overall goal of ranking admissible senses is to weight highly the 
senses that tend to arrive at the consistency of word senses. 



 

 
Figure 3.Highest scoring word sense under category “Goodness” assigned automatically by 

random walk. 
Recall that our goal is to select the word senses for each specific collocate, categorized by 

the corresponding semantic label, for example, sandy, rocky, pebbly beach with label Materials; 
beautiful, lovely, fine, splendid, superb beach with Goodness. In order for the word coverage 
under thesaurus category to be comprehensive and useful, we need to expand the words listed 
under a label. This output dataset of the learning process is created by selecting the optimal 
linked word sense pairs (W, S*) from each semantic relation in our word sense inventory where 
the specific semantic relation is explicitly defined. 
 Although alternative approaches can be used to identify word senses of given words, our 
iterative graphical approach has two distinctive advantages. First, it enables a principled 
combination of integrated similarity measure by modeling through a multiple types of semantic 
relations (edges). Secondly, it transitively merits local aggregated similarity statistics across the 
entire graph. To perform sense propagation, a weighted graph was constructed. On the graph, 
interconnection of edges is aggregated on a semantic relatedness level by random walk. The 
sense edge voltage is transitively propagated to the matching sense vertex. The effect depends on 
the reinforcement of the semantic relations (edges) and magnitude of the sense relations 
(vertices), creating a flexible amplitude-preserving playground like no other optional way of 
modeling a transcended graph propagation of senses. By doing so, our model is carved out to be 
a robust, more flexible solution with possible alternatives of combining additional resources or 
more sophisticated semantic knowledge. This approach is relatively computationally inexpensive 
for unsupervised approach to the WSD problem, targeting the annotation of all open-class words 
in lexical database using information derived exclusively from categories in a thesaurus. The 
approach also explicitly defines semantic relations between word senses, which are iteratively 
determined in our algorithm. 

3.2.2 Extending the Coverage of Thesaurus 
Automating the task of building a large-scale semantic knowledge base for semantic 

classification imposes a huge effort on the side of knowledge integration and validation. Starting 
from a widespread computational lexical database such as WordNet overcomes the difficulties of 
constructing a knowledge base from scratch. In the second stage of the learning process, we 
attempt to broaden the limited thesaurus coverage as the basis of our applied semantic 
knowledge that may induce to unknown words in collocation label assignment in Section 3.3. 
The sense-annotated word lists generated as a result of the previous step are useful for extending 
the thesaurus and reducing OOV words that may render words that form a group by itself. 

In the previous learning process, “fine” with other adjective entries “beautiful, lovely, 



splendid, superb” under semantic label “Goodness” can be identified as belonging to the word 
sense fine#3 “characterized by elegance or refinement or accomplishment” rather than other 
admissible senses (as shown in Table 1). Consider the task of adding similar word to the set of 
“fine#3” in the thesaurus category “Goodness”. We apply semantic relation operators for novel 
word extension for “fine#3”. Some semantic relations and semantic operators available in the 
word sense inventory are shown in Table 2. 

In this case, “similar_to”, the semantic relation operator of “fine#3” can be applied to derive 
similar word “elegant#1” as the extended word for “fine#3” identified with the sense definition 
“characterized by elegance or refinement”. 

 
Table 1.Admissible senses for adjective “fine.” 

 
Table 2.Some semantic operators in word sense inventory. 

SR Operators Description Relations Hold 
for 

syn operator synonym sets for every word that are interchangeable in some 
context all words 

sim operator adjective synsets contained in adjective clusters adjectives 

3.3 Giving Thesaurus Structure to Collocation by Iterative Graphical Algorithms 
The stage takes full advantage of the foundation built in the prior learning process, 

established an extended semantic knowledge to build a thesaurus structure for online collocation 
reference tools. We aim to partition collocations in groups according to semantic relatedness by 
exploiting semantic labels in a thesaurus and assign each collocate to a thesaurus category.  

In this stage of the process, we apply the previously stated random walk algorithm and 
automatically assign semantic labels to all collocations by exploiting semantic relatedness 
identified among collocates. By doing so, our approach for collocation label assignment can 
cluster collocations together in groups, which is helpful for dictionary look-up and learners to 
find their desired collocation or collocations under a semantic label.  

We use a set of corresponding admissible semantic labels L to assign labels under thesaurus 
category L ∈ Cat to each collocate C ∈ Col, such that the collocates annotated with L can be 
partitioned into a subset corresponding to a thesaurus category, Sub = { (C, L) | C ∈ Col, L ∈ Cat 
∈ TC }, which facilitate meaning-based access to the collocation reference for learners. We 
define a label graph G = (V, E) such that there is a vertex v ∈ V for every admissible label L of a 
given collocate C, and there is an edge e ∈ E between two vertices where the two vertices have 
the same label. Edge reinforcement of the label (vertex) similarity distance between pairs of 
labels is represented as directed edges e ∈ E, defined over the set of vertex pairs V × V. Such 
semantic label information typically lists in a thesaurus.  
 Given such a label graph G associated with a set of collocates Col, the probability of each 

Sense 
Number Definition Example Synsets of 

Synonym 

fine #1 (being satisfactory or in 
satisfactory condition) 

“an all-right movie”; “everything’s fine”; 
“the passengers were shaken up but are all 
right”; “things are okay” 

all ight#1, 
o.k.#1,ok#1, 

okay#1 

fine #3 
(characterized by 

elegance or refinement or 
accomplishment) 

“fine wine” ; “a fine gentleman”;  
“fine china and crystal”; “a fine violinist” elegant#1 

fine #4 (thin in thickness or 
diameter) 

“a fine film of oil”; “fine hairs”; 
“read the fine print” thin#1 



label PL can be iteratively determined using a graph-based ranking algorithm, which runs over the 
graph of labels and identifies the likelihood of each label (vertex) in the graph. The iterative 
algorithm is modeled as a random walk, leading to a stationary distribution over label 
probabilities PL, represented as scores QL attached to vertices in the graph. These scores QL are 
then used to identify the most probable semantic label L* for each collocate C, resulting in a list 
of annotations (C, L*) for all collocates in the input set. The algorithm is quite similar to the one 
for graph-based word sense assignment shown in Figure 2. But note that the overall goal of 
ranking admissible labels is to weight highly the semantic labels that help arrange collocations in 
a thesaurus category and provide learners with a thesaurus index. 

In other word, our goal is to assign corresponding semantic labels to each specific collocate, 
for example, “sandy, rocky, pebbly beach with label Materials.” In order for the semantic 
structure to be comprehensive and useful, we try to cover as much OOV words as possible by 
applying semantic relation operators (e.g., derivational relations). We propose the replacement of 
OOV words for their derivational words such as the replacement of “rocky” for “rock” and 
“dietary” for “diet”. For a few number of derivationally substitutable OOV words occurred, such 
as pebbly beach, we apply the built-in vocabulary of words, i.e., pebble, as a substitution for 
pebbly by exploiting the derivational relations from the obtainable sense inventory as we will 
discuss in more detail in the section of experimental set-up. 

The output of this stage is a list of linked label-annotated collocate pairs (C, L*) that can be 
used to classify collocations in categories. 

4. Experimental Settings 

4.1 Experimental Data 
In our experiments, we applied random walk algorithm to partitioning collocations into 

existing thesaurus categories, thus imposing a semantic structure on the raw data. In analysis of 
learners’ collocation error patterns, the types of verb-noun (V-N) and adjective-noun (A-N) 
collocations were found to be the most frequent error patterns (Liu, 2002; Chen, 2002). Hence, 
for our experiments and evaluation, we focused our attention particularly on V-N and A-N 
collocations. 
 Recall that our classification model starts with a thesaurus consisting of lists of semantic 
related words extended by a word sense inventory via random walk Algorithm. Then, the 
extended semantic knowledge provides collocates with topic labels for semantic classification of 
interest. Preparing the semantic knowledge base in our experiment consists of two main steps: (1) 
Integration, and (2) Extension. Two kinds of resources are applied as the input data of this 
learning process of semantic knowledge integration described below. 

4.1.1 Input Data 1: A Thesaurus for Semantic Knowledge Integration 
We selected the set of thesaurus categories from the dictionary of Longman Lexicon of 

Contemporary English (LLOCE). LLOCE contains 15,000 distinct entries for all open-class 
words, providing semantic fields of a pragmatic, everyday common sense index for easy 
reference. The words in LLOCE are organized into approximately 2,500 semantic word sets. 
These sets are divided into 129 semantic categories and further organized as 14 semantic fields. 
Thus the semantic field, category, and semantic set in LLOCE constitute a three-level hierarchy, 
in which each semantic field contains 7 to 12 categories and each category contains 10 to 50 sets 
of semantic related words. The LLOCE is based on coarse, topical semantic classes, making them 
more appropriate for WSD than other finer-grained lexicon. 

4.1.2 Input Data 2: A Word Sense Inventory for Semantic Knowledge Extension 
For our experiments, we need comprehensive coverage of word senses. Word senses can be 



easily obtained from any definitive records of the English language (e.g. an English dictionary, 
encyclopedia or thesaurus). In this case, we applied WordNet to broaden our word coverage from 
15,000 to 39,000. WordNet is a broad-coverage machine-readable lexical database, publicly 
available in parsed form (Fellbaum, 1998). WordNet 3.0 lists 212,557 sense entries for open-class 
words, including nouns, verbs, adjectives, and adverbs. In order to extend the sense coverage, we 
applied random walk Algorithm to match a significant and manageable portion of the WordNet 
sense inventory to the LLOCE thesaurus. 

WordNet can be considered a graph over synsets where the word senses are populated as 
vertices and the semantic relations edges. WordNet is organized by the sets of synsets; a synset is 
best thought of as a concept represented by a small set of synonymous senses: the adjective 
{excellent, first-class, fantabulous, splendid}, the noun {enemy, foe, foeman, opposition}, and 
the verb {fight, contend, struggle} form a synset. 

4.2 Experimental Configurations 
We acquired all materials of the input data (1) and (2) to train and run the proposed model, 

using the procedure and a number of parameters as follows: 

4.2.1 Step 1: Integrating Semantic Knowledge 
To facilitate the development of integrated semantic knowledge, we organize synsets of 

entries in the first input data, LLOCE, into several thesaurus categories, based on semantic 
coherence and semantic relations created by lexicographers from WordNet. The integrated 
semantic knowledge can help interpret a word by providing information on its word sense and its 
corresponding semantic label, (i.e., “fine” tagged with “Materials”). 
 Recall that our model for integrating word senses and semantic labels is based on random 
walk algorithm on a weighted directed graph whose vertices (word senses) and edges (semantic 
relations) are extracted from LLOCE and WordNet 3.0. All edges are drawn as semantic 
relatedness among words and senses, derived using the semantic relation operators (Table 3). 
 
Table 3.The semantic relation operators used to link the lexical connection between word senses. 

Relation 
Operators Semantic Relations for Word Meanings Relations 

Hold for

Syn operator 
synonym sets for every word that are interchangeable in some context 
without changing the truth value of the preposition in which they are 
embedded 

all words

hyp operator 
hypernym/hyponym (superordinate/subordinate) relations between 
synonym sets 

nouns 
verbs 

vgp operator verb synsets that are similar in meaning and should be grouped 
together when displayed in response to a grouped synset search. verbs 

Sim operator adjective synsets contained in adjective clusters adjectives
der operator words that have the same root form and are semantically related all words

 
In particular for all semantic relation operators, we construct a maximum allowable edge 

distance MaxED, informing a constraint over the edge path between words for which the word 
sense likelihood is sought. For our experiments, the MaxED is set to 4. 

4.2.2 Step 2: Extending Semantic Knowledge 
Once we have mapped the sense-label from the stationary distribution in the random walk 

graph, another step is taken to take advantage of the mapped semantic knowledge by adding 



more novel words to the thesaurus categories. The word coverage in question is extended by 
more than twice as many LLOCE thesaurus entries. For the extension of our semantic knowledge, 
we need information on joint word sense and semantic label pairs, and semantic relation among 
words from the previous step. Various kinds of the above-mentioned semantic relation operators 
can be derived, depending on the type of semantic operators available for the word class at hand. 
In experiments, we focus on the synset operation provided in WordNet. 

4.3 Test Data 
We used a collection of 859 V-N and A-N collocation pairs for testing, obtained from the 

website, JustTheWord (http://193.133.140.102/JustTheWord/). JustTheWord clusters collocates 
into sets without understandable label. As a result, we will compare the performance of our 
model with JustTheWord in Section 5 
 We evaluated semantic classification of three types of collocation pairs, focusing on A-N, 
V-N and V-N. We selected five pivot words for each type of collocation pairs for their varying 
level of abstractness and extracted a subset of their respective collocates from the JustTheWord. 
Among 859 testing pairs, 307 collocates were extracted for A-N, 184 for V-N, and 368 for V-N. 

To make the most appropriate selection from testing data in JustTheWord, we have been 
guided here by research into language learners’ and dictionary users’ needs and skills for second 
language learning, taking account especially of the meanings of complex words with many 
collocates (Tono, 1992; Rundell, 2002). The pivot words we selected for testing are words that 
have many respective collocations and are shown in boxes around each entry in Macmillan 
English Dictionary for Advance Learners. 

5. Results and Discussions 

Two pertinent sides were addressed for the evaluation of our results. The first was whether 
such a model for a thesaurus-based semantic classification could generate collocation clusters 
based on human-like word meaning similarities to a significant extent. Second, supposing it did, 
would its success of semantic label assignment also strongly excel in language learner 
collocation production? We propose innovative evaluation metrics to examine our results 
respectively in these two respects and assess whether our classification model can reliably cluster 
collocates and assign a helpful label in terms of language learning. In the first subsection, first 
we explain why we propose a new evaluation metrics in order to explore how the method results 
in simple, robust designs yet influences each facet of the question for lexicographic and 
pedagogical purposes. In the following subsections, the evaluation metrics are presented 
individually in two regards, for assessing the performance of collocation clusters, and for the 
conformity of assigned semantic labels. 

5.1 Performance Evaluation for Semantic Cluster Similarity 
The collection of the traditional evaluation (Salton, 1989) of clustering works best for 

certain type of clustering method but might not be well suited to evaluate our classification 
model, where we aim to facilitate collocation referencing and help learners improve their 
collocation production. In that case, for assessing collocation clusters, we propose a robust 
evaluation method by setting up the items to be evaluated as a test for semantic similarity to 
judge the performance of clustering results. For semantic labeling results, we developed a 
grading rubric with performance descriptions for the conformity of labels as a reference guide. 
Two human judges were asked to give performance assessment by scoring each item. The 
evaluation methodology is aimed at fostering the development of innovative evaluation designs 
as well as encouraging discussion regarding language learning by means of the proposed method. 

Landauer and Dumais (1997) were first proposed using the synonym test items of the Test 



of English as a Foreign Language (TOEFL) as an evaluation method for semantic similarity. 
Fewer fully automatic methods of a knowledge acquisition evaluation, one that does not depend 
on knowledge being entered by a human, have been capable of performing well on a full scale 
test used for measuring semantic similarity. An example provided by Landauer (1997) is shown 
below where “crossroads” is the real synonym for “intersection”. 

You will find the office at the main intersection. 

(a) place  (b) crossroads  (c) roundabout  (d) building 

For this experiment, we conducted the task of evaluating the semantic relatedness among 
collocation clusters according to the above-mentioned TOEFL benchmark to measure semantic 
similarity and set up target items out of our test data as sheet of clustering performance test. Our 
human judges performed a decision task similar to TOEFL test takers: They had to decide which 
one of the four alternatives was synonymous with the target word. A sample question is shown 
below where grouping “sandy” and “rocky” together with the target word “beach” because they 
belong to the same category of concept as the collocation is more appropriate than clustering 
“sandy” and any of others together. 

sandy beach        

(a) long  (b) rocky  (c)super  (4)narrow 

There are 150 multiple choice questions randomly constructed to test the cluster validation, 
50 questions for each 3 testing collocation types and therein 10 for each of A-N, V-N, and V-N 
testing collocation pairs. In order to judge how much degree our model ultimately has achieved 
in producing good clusters, two judges were asked to primarily choose the one most nearly 
correct answer. If the judges find one of the distracters to be also the plausible answer, giving 
collective answer options is allowed for our evaluation in order to test the cluster validation 
thoroughly from grey area among options given inadvertently. If the judges think no single 
correct answer is plausible enough, 0 point can be given for no satisfactory option considered. 
Table 4 shows the performance figures of collocation clusters generated by the two systems. As 
is evidence from the table, our model showed significant improvements on the precision and 
recall in comparison with JustTheWord. 

 
Table 4.Precision and recall of our classification model and those of JustTheWord 

Judge 1 Judge 2  

Precision Recall Precision Recall 

Inter-Judge 

Agreement 

Ours .79 .71 .73 .67 

JustTheWord .57 .58 .57 .59 
.82 

 
Without doubt, subjectivity of human judgments interferes with the performance evaluation 

of collocation clusters, for inter-judge agreement is just above 80 %. The closer our precision 
(79% and 73%) is to the discrimination ratio, the more effectively that an automatic method 
distinguishes subjects in accordance with human judgment. 

5.2 Conformity of Semantic Labels 
The second evaluation task here focuses on whether the semantic labels facilitate users to 

Results

System 



scan the entry quickly and find the desired concept of the collocations. From the experiments, we 
show that the present online collocation learning tools may not be an appropriate place to seek 
guidance on fine discrimination between near synonyms. This problem could be alleviated if the 
alphabetical frequency ordering of the learning tool could be supplemented by thematic 
treatment in our thesaurus-based semantic classification model. Our evaluation result will 
indicate the extent to which semantic labels are useful, to what degree of reliability. Only to the 
extent that evaluation scores are reliable and the test items are solidly grounded in its practical 
viewpoint can they be useful and fair to the assessment. 
 Two human informants were asked to grade collocation with label, half of them randomly 
selected from our output results. The assessment was obtainable through different judges that 
participated in evaluating all of the collocation clusters as described above. One native American 
graduate and a non-native PhD researcher specializing in English collocation reference tools for 
language learners were requested to help with the evaluation. We set up a three-point rubric score 
to evaluate the conformity of semantic labels. When earning two points on a three-point rubric, a 
label has performed well in terms of guiding a user finding a desired collocation in a collocation 
reference tool. If the assigned label is somewhat helpful in collocation look-up, a score of one is 
shown that labels are achieving at an acceptable level. To assign judgments fairly and to 
calculate a fair reflection of the conformity of the labels, a zero score can be given if the labels 
can be considerably misleading to what is more indicative of the concepts. We set up an 
evaluation guide to present judges with the description for each rubric point, and allow the 
judges to grade each question as “0”, “0.5” or “1” for the item. 
 Table 5 shows that 77% of the semantic labels assigned as a reference guide has been 
judged as adequate in terms of guiding a user finding a desired collocation in a collocation 
learning tool, and that our classification model provably yields productive performance of 
semantic labeling of collocates to be used to assist language learners. The results justify the 
move towards semantic classification of collocations is of probative value. 

Table 5.Performance evaluation for assigning semantic labels as a reference guide 

 Judge 1 Judge 2 

Ours .79 .75 

JustTheWord Not available Not available 

6. Conclusion 
The research sought to create a thesaurus-based semantic classifier within a collocation 

reference tool limited to the collocates occurring without meaning access indexes. We describe a 
thesaurus-based semantic classification for a semantic grouping of collocates with a pivot word 
and the construction of a collocation thesaurus that is used by learners to enhance collocation 
production. The thesaurus-based semantic classification classifies objects into semantically 
related groups that can participate in the same semantic relation with a given word. Rather than 
relying on a distributional analysis, our model is resourced from an integrated semantic 
knowledge, which is then generalized to combat sparsity. The evaluation shows that this robustly 
designed classification model facilitates the existing computational collocation reference tools 
and provides users with the collocations they desire to make semantically valid choices. The 
thesaurus structure is successfully imposed to facilitate grasping concepts of collocations. 

Given that there is very little precedent review for us to follow, this research offers insights 
into how such a collocation thesaurus could be structured and useful. The semantic labeling 
described here improves collocation reference tools and has given us a tool for studies of 
collocation acquisition. The final results convincingly motivate the move towards semantic 



classification of collocations.  
Many avenues exist for future research and improvement of our classification model. 

Another possibility would be to train more set of variables, each of which may take one among 
several different semantic relations for each collocation types. There is also a set of constraints 
which state compatibility or incompatibility of a combination of variable semantic relations.  
 To top it all off, existing methods for extracting the best collocation pairs from a corpus of 
text could be implemented. Domain knowledge, heuristics, and WSD techniques could be used 
to improve the identification of semantic label types. Semantic relations could be routed to 
classification model that performs best for more types of collocation pair (such as 
adverb-adjective pairs).  
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