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Abstract 

There has been considerable interest recently in the processing of affect in spoken 
interactions. This paper presents an analysis of some conversational speech corpus 
data showing that the four prosodic characteristics, duration, pitch, power, and 
voicing all vary significantly according to both interlocutor differences and 
differences in familiarity over a fixed period of time with the same interlocutor. 

Keywords: Conversational Speech Corpus, Expression of Affect, Prosodic 
Characteristics, Voice Quality Analysis. 

1. Introduction 

Human spoken interactions convey a variety of different types of information. In addition to 
the linguistic content of speech, there are also paralinguistic and extralinguistic elements that 
convey discourse-level and interpersonal levels of information related to the speaker, to the 
speaker’s relationship(s) with the listener, and to the intended and actual progress of the 
discourse [Lindblom 1990; Stenström 1994; Hirschberg 1992, 1995]. 

Affect is conveyed in speech communication in a multitude of ways [Cahn 1989], 
including facial expression, gesture, body posture, speaking-style, tone-of-voice, lexical 
choice, syntactic construction, etc. It is perhaps impossible for a human to speak without 
revealing information about his or her affective states [Campbell 2005]. 

This paper examines how such affective information might be carried in the voice, 
particularly in the prosody of the speech, and shows from an examination of some corpus data 
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that evidence can be found for changes in affective state according to the nature of the 
interocutor and the history of their discoursal relationship. 

2. The JST/CREST ESP Corpus 

Speech research nowadays is predominantly corpus-based. One learns about the 
characteristics of speech and the expressivity of speech utterances from the analysis of a very 
large number of samples collected under a variety of speaking conditions [Campbell et al. 
2006; Cowie et al. 2005]. For a period of five years, in order to aid the development of a 
technology capable of Expressive Speech Processing (ESP), the Japan Science and 
Technology Agency funded the collection of a large corpus of expressive speech that was 
coordinated by ATR in Kyoto, Japan. 

As part of this corpus, over a period of three months during 2002, a group of ten 
volunteers were employed to talk with each other over the telephone for half-an-hour each 
time and to record their conversations to DAT using high-quality head-mounted condenser 
microphones. These conversations and their manually-produced transcriptions now form 
subset ESP_C of the JST/CREST ESP Corpus. 

Of the ten volunteers, two were native speakers of Chinese, both fluent in Japanese, one 
male and one female, and two were native speakers of English, both fluent in Japanese, one 
male and one female. The remaining six were Japanese native speakers, three men and three 
women, living in the Kansai area of central Japan. They did not know each other initially but 
became familiar over the period of their telephone conversations. To our direct knowledge 
they never met face-to-face during this period. 

This paper focuses on the speech characteristics of one male speaker from this corpus, 
JMA, who spoke with six partners over the three month period. In all, their conversations 
include 49,377 utterances from speaker JMA, where an utterance is approximately defined as 
the shortest meaningful unit of speech produced under a single intonation contour. The actual 
boundaries were determined on a case-by-case basis by the transcribers according to a set of 
rules published elsewhere [Campbell 2006]. 

The paper examines the acoustic characteristics of these utterances according to 
differences in interlocutor and stage of the interaction, showing that speaking style and voice 
phonation characteristics vary according to the interlocutor, in accordance with changes in 
familiarity and other speaker-listener relationships. 
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3. Materials for the Study 

In previous work [Campbell 2005, 2006] affect-bearing utterances were distinguished from 
those that serve primarily to portray propositional or ‘linguistic’ content. The former, often 
called ‘grunts’ or ‘affect bursts’ are not usually found registered as words in a language 
dictionary, but are found very frequently in colloquial speech. For this study, a subset of 100 
of those that occurred more than 50 times each in the conversations of one speaker (JMA) was 
selected, yielding 11,750 short conversational utterances for subsequent acoustic analysis. 
These were taken from five conversations each with each of the Chinese and English 
native-speakers, and from ten conversations with the Japanese native-speaker partners. Table 
1 shows the number of utterances produced with each interlocutor. Table 2 lists the romanised 
orthographic transcriptions and counts of some of the more common examples. 

Table 1. Utterance counts for the series of conversations with each interlocutor. 

The initial letters J,C,E in the interlocutor identifiers stand for Japanese, 

Chinese, and English respectively, the middle letters F and M stand for 

female and male respectively, and the third letter is an identifier. 

CFA CMA EFA EMA JFA JMB 

1832 1632 1490 1773 2957 2066 

Table 2. Counts of some of the more common utterance types that were studied for 

this paper, which occurred at least 50 times in the speech of JMA; the ten 

most common more than 1000 times. A sharp intake of breath was 

transcribed as ‘@S’, a sniff as ‘zu’, and a laugh as ‘@W’. The letter ‘n’ 
indicates a syllabic nasal (umm). A minus sign represents moraic 

lengthening, which is known to be distinctive in Japanese, possibly 

triggering the percept of a different word. A dot represents a morphological 

boundary. 
a 

296 
a- 

368 
a– 

693 
a— 
608 

a.a- 
390 

a-.hai 
386 

a.hai 
577 

a-.n 
368 

ano 
337 

ano- 
494 

a!! 
927 

demo 
272 

e- 
665 

e– 
254 

ee 
2679 

fun 
642 

fu-n 
625 

fu–n 
273 

ha.ai 
978 

hai 
7295 

ha-i 
1657 

hai.hai.hai 
378 

n(umm) 
265 

n- 
456 

n– 
410 

nanka 
273 

ne- 
367 

nee 
284 

@S 
3382 

sou 
810 

su- 
429 

su– 
296 

un 
3717 

u-n 
2401 

u–n 
1243 

u—n 
333 

un.un 
351 

@W 
3041 

zu- 
1348 

zu– 
467   
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The speech files corresponding to these utterances were analysed for their acoustic 
characteristics and a table of statistics for each utterance was produced. Specifically, the 
duration, pitch, power, and spectral characteristics of each utterance were recorded. 

Duration was expressed both as absolute (log) duration of the measured utterance and as 
‘speaking rate’ by dividing the absolute duration of the utterance by the number of phonemes 
in its transcription. This is a crude measure which does not take into consideration the 
inherent differences in different phone durations, but which serves to provide a simple 
approximation of speaking rate which will suffice for the present analysis. 

Pitch (or more precisely, a measure of the fundamental frequency of the voice) was 
extracted using the ESPS ‘get_f0’ method that is incorporated in the ‘Snack’ signal processing 
library. The maximum and minimum pitch values for each file were recorded and stored along 
with an estimate of the range and average values for each utterance. The pitch contour was 
characterised by noting the average values measured over each third of the utterance, and 
stored these along with the percentage position of the pitch peak and the lowest pitch value. 

Power values (i.e, measures of rms waveform amplitude) were calculated similarly, using 
the Snack command “power”, and stored as maximum, minimum, average, and range for each 
utterance. 

Spectral characteristics were calculated using the Snack command “dBPower” with 
options “-fftlen 128 -windowlength 128 -analysistype LPC -lpcorder 20 ”. This produced an 
LPC-based 64-point vector representing the long-term average spectrum for the entire 
utterance (average length 0.54 seconds) from which values from points 2, 3, 4, 5, 7, and 9 
were selected to represent the average power up to 1.5 kHz, points 12,15,19,23,28 to represent 
the average power between 1.5kHz and 4kHz, and points 34, 41, 49, 56, and 63 were selected 
to represent the average power between 4kHz and 8kHz. The average spectral energy 
measured in each of these three frequency bands was stored as a 3-valued vector for 
subsequent ‘spectral’ analysis. Since our main objective here is to examine spectral tilt, as 
evidence of differential phonation styles, the relative differences between the three bands (mid, 
high, and low on a mel-scale) were determined to suffice as a measure. 

4. Analysis of the Data 

After confirming independence of the variables under examination, a weak but insignificnt 
correlation of 0 32r = .  was found between variations in pitch range and power range, and 
one of 0 37r = .  between the averaged values of pitch and power across the 11,750 short 
utterances selected from the 49,377 utterances in the conversational corpus. There was a 
similar weak correlation between the measures of duration and power ( 0 34r = . ) but none 
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between duration and pitch ( 0 19r = . ). The correlation between spectral energy (power in the 
lowest band) and raw signal amplitude (signal power) was 0 08. . One can thus be satisfied 
that the measures are sufficiently independent to carry meaningful information in their 
differences. 

There was a clear corrrelation of 0 81r = .  observed between energy in the first spectral 
band (frequencies up to 1500 Hz) and in the second (frequencies between 1.5kHz and 4kHZ), 
but no such correlation between frequencies in the second and third bands ( i.e., between 
frequencies below and above 4kHz) which showed a correlation of 0 2r = . . It is the 
difference between these latter two bands that is of interest here, since the lack of energy in 
the upper frequency bands is an indicator of a less tense, more breathy, speaking style which 
has been shown in previous studies ([Gauffin and Sundberg 1989; Sluijter and van Heuven 
1994; Campbell and Mokhtari 2003]) to correlate with intimacy and a more careful manner of 
speaking. 

4.1 Fundamental Frequency and Power  

Figure 1 shows the values of f0 measured from the speech data of the male speaker JMA 
plotted separately for each interlocutor. The left plot shows average f0, the middle plot 
maximuim f0, and the right-hand plot minimum values of f0 measured in the conversations 
with each interlocutor respectively. The box-plots show median and interquartile values, with 
whiskers extending to 1.5 times the interquartile range. The boxes are drawn with widths 
proportional to the square-roots of the number of observations in the groups. A notch is drawn 
in each side of the boxes. If the notches of two plots do not overlap this is ‘strong evidence’ 
that the two medians differ at the 5% level of confidence. 

Figure 1 shows that there is more variation in the voice fundamental frequency of 
speaker JMA when talking to the non-native partners, while the average values of f0 for the 
Japanese partners JFA and JMB are higher and less dispersed. The maximum f0 is highest 
when speaking with the English female, and lowest when talking with the Chinese male 
partner. When speaking with the Japanese native speakers, the maximum f0 shows the same 
median values as when talking with the English female partner, but there is overall more 
variety in f0 when speaking with the non-native parters. 

Figure 2 plots the average, maximum and minimum power values for conversations with 
each of the six interlocutors. It shows that more energy is used when speaking with the 
Japanese partners, and more variation when speaking with the non-native interlocutors. 
Interestingly, the minimum power appears to be higher among conversations with the Chinese 
male partner than among conversations with the other interlocutors, but significantly lower for 
conversations with the Japanese female partner. 
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      mean f0, log-scale max f0, log-scale min f0, log-scale 

 
Figure 1. Plots of mean, maximum and minimum f0 values observed in the data of 

each of the interlocutors. The box-plots show median and interquartile 

values, with whiskers extending to 1.5 times the interquartile range. All 

F0 measurements are converted to their log values for ease of 

comparison. 

powAve powMax powMin 

Figure 2. Plots of mean, maximum and minimum rms amplitude (speech signal 

power) values for each of the interlocutors. 

Figure 3 plots f0 range for comparison with power range across the same set of partners. 
It shows a slightly higher range of f0 activity when this subject is talking with the English 
female than with the Chinese male partner. Both plots are log-scaled and show an average of 
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55Hz ( (4)exp ) median pitch range with a 30dB average power range when conversing with 
these different interlocutors. Power is noticeably higher when talking with Japanese 
native-speaker interlocutors, and lowest when talking with the female Chinese native-speaker. 
Needless to say, microphone distances (head-mounted) and record-level settings remained 
unchanged across all recordings. 

f0 range                                 power range 

 
Figure 3. Ranges of fundamental frequency and power measurements for the 

affective utterances, plotted by interlocutor. As above, C, E, J stand for 

Chinese, English, Japanese respectively, and F, M represent female and 

male interlocutors. Both f0 and power are plotted as log values. 

4.2 Duration and Speaking Rate  

Figure 4 shows details of ‘speaking rate’ changes across the series of conversations with the 
two Japanese partners. This measure was calculated for each utterance by dividing the 
observed duration of its speech waveform (measured in milliseconds) by the number of 
characters in its transcription (see Table 2 for examples) and is therefore only an 
approximation of the true speaking rate, but it serves as a basis for comparison and provides a 
simple form of normalisation for the inherent differences in utterance type. Speaker JMA took 
part in nine conversations with female JFA, and eleven with male JMB. We note an average 
of 174.2 milliseconds per phone for interlocutor JFA, and an average of 169.65 for 
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interlocutor JMB. The speaking rate with the male partner appears to slow down throughout 
the series of conversations, while after reaching a peak in conversation J04 with JFA it 
appears to revert to a higher rate with the progression of time. Median values for JFA are 143, 
162, 180, 183, 170, 166, 157, 171, and 158, while those for JMB are 144.5, 150.5, 183.0, 
171.0, 149.5, 165.5, 170.5, 181.0, 167.5, 190.0, and 182.0. 

 
Figure 4. Speaking rate changes over weekly sessions 

These values may seem unexpectedly long to an observant reader familiar with 
segmental durations, but it should be noted that they are sounds in afective grunts, not phones 
in lexical words. For example, the quantile durations (in seconds) for the word “hai” 
(=”yes”/”I’m listening”/”I agree”) are as follows: minimum: 0.152, 25th percentile: 0.382, 
median 0.43, 75th percentile: 0.49, and max: 1.59 seconds (n=7295). Those for the word “ee” 
(n=2679) are 0.268, 0.344, 0.42, 0.479, and 0.539. The durations observed for laughs in this 
context (n=3041) ranged from 119 milliseconds to four seconds, with a median duration of 0.9 
seconds. Note that many of these utterances bear lengthening diacritics (e.g., ‘a’, ‘a-’, ‘a–’, 
‘a—’, etc) and the transcribers who were all native speakers of Japanese were instructed to use 
one minus-sign to mark each mora-worth of lengthening perceived on the segment. It is 
customary to use such lengthening marks in standard Japanese Kana orthography, and mora 
durations are typically strictly observed in Japanese, where a moraic difference in timing 
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sructure can (unlike English) cue a different lexical item 1. 

4.3 Spectral Slope 

Spectral energy provides a simple cue to phonation style; the less energy in the higher part of 
the spectrum, the breathier the voice, and vice-versa. In pressed voice, the glottis closes faster 
as a proportion of the fundamental period, and the rapid closing is a sign of increased vocal 
effort and/or laryngeal muscular tension [Klasmeyer and Sendlmeier 1997; Fant 1993; 
Johnstone and Scherer 2000]. In conversational speech considerable use is made of voice 
phonation settings, especially for the display of affect [Campbell 2005; Campbell and 
Mokhtari 2003]. 

Figure 5 shows three measures of averaged spectral energy for the 11,750 affective 
utterances under examination. The low-frequency part of the spectrum is shown measured in 
decibels, as is customary in plots of spectral sections, but the middle and right-hand plots 
show differences between the low-frequency energy and the higher bands. Differences are 
also measured in decibels, and here ‘low-band minus mid-band energy’ is plotted in the centre 
plot, and ‘mid-band minus high-band energy’ is plotted in the right-hand plot. By plotting the 
differences rather than the absolute values, it is easier to visualise the spectral slope 
differences across these utterances. 

The figure, averaged over all conversations, shows higher low-band energy for the 
Japanese female and the two Chinese interlocutors, with increased spectral slope for the 
Japanese female in the mid-band, and steeper spectral slope for the Japanese female and the 
two Chinese interlocutors at the top-end of the spectrum. The spectrum is therefore flatter 
overall for the English native-speaking partners and for the Japanese male partner. A flatter 
spectrum has been shown to reflect more tension in the voice. 

Quantiles for the three spectral bands (measured over all data for speaker JMA) are given 
in Table 3, which shows median values to be -42, 14, and 9 decibels respectively. The 
difference of 14 decibels indicates that the average value for energy measured in the 
frequency range between 1.5kHz and 4kHz is -56 decibels, while the energy between 4kHz 
and 8kHz is typically at the -65 decibel level. 

 

 

                                                 
1 For example, in Japanese, ‘ie’ means “house” while ‘iie’ with a longer first vowel means “no”. Similarly, 
‘ka’ is an interrogative particle, while ‘ka-’ with a lengthened vowel means “car”. Such length-based   
lexical distinctions are common. 
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Table 3. Quantiles of the energy measured in three spectral bands. The top row 

shows absolute energy but the bottom two rows show energy differences 

measured in decibels. 

 0% 25% 50% 75% 100% 

low-band -72 -48 -46 -44 -21 

mid-band -11 12 14 16 38 

high-band -18 7 9 11 37 

s1 s2 s3 

Figure 5. Three measures of spectral energy provide an indication of spectral slope. 

The left-hand plot shows average energy measured between 0-1.5kHz, the 

middle plot the difference between that and average energy measured 

between 1.5kHz and 4kHz, and the right-hand plot shows the difference 

between the averaged mid-band energy and the averaged energy between 

4kHz and 8kHz at the top end of the spectrum. Measures are plotted 

separately by interlocutor. 

Figure 6 shows differences in these values over time. The upper three plots show 
low-band, mid-band, and high-band energy measures for conversations with Japanese male 
partner JMB. The lower part of the figure shows only the high-band energy differences 
(spectral slope measures) for the four non-native partners. 

In each case there is a general trend towards decrease in steepness of the spectral slope 
with time. From the top plots (of the series of conversations with partner JMB), the second, 
third and penultimate conversation exhibited high low-frequency spectral energy (from the 
left-hand plot), steep falloff in mid-band energy (from the central plot), and, at least for the 
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 Figure 6. Spectral slope differences across time by interlocutor. The top part 

shows all three spectral bands for partner JMB, and the bottom part 

shows the difference between mid-band and high-band energy for each 

of the non-native partners. 
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second and third conversations, considerable variability in the high-frequency dropoff. This 
would be consistent with a higher degree of tension and varying politeness in the speech of the 
initial and penultimate conversations. For conversations in the interim period, from J04 to J10, 
a gradual decrease of steepness is found in the high-end spectral tilt that would be consistent 
with an increase in familiarity as reflected by more frankness and less polite softening of the 
voice. Then for the final conversations, as the recordings (and the three-month relationship) 
come to an end, there is an increase again, as would be consistent with a rise in formality of 
the conversational speech between the partners. 

In the lower plots, with the non-native speaker partners, there is a similar steeepness in 
high-frequency dropoff (consistent with increased politeness in the voice and speaking style) 
in the initial and final recordings, and a gradual relaxation of spectral tilt in conversations of 
the interim period. Steeper spectral slope is found in the conversations with the female 
partners, with the Chinese female being highest and the English male being lowest in this 
respect. 

5. Discussion 

In this analysis of the prosodic characteristics of the conversational speech of one Japanese 
male over a period of three months, considerable variation was found in all of the parameters 
measured. By factoring the analysis according to differences in interlocutor as well as by 
differences in time, or sequence of the conversations, we were able to show that the changes 
are not a result of time-related changes, such as tiredness or ill-health, but that they correlate 
more with differences in interlocutor and with development of the individual relationships. 

It is probable that not all interlocutors were related to in an equal way. One can imagine 
more sharing of common interests between native speakers of the same language, and 
different forms of bonding in the relationships that developed between the male and the 
female partners respectively. Similarly, the culturally closer, Asian but foreign, Chinese 
partners and the possibly exotic, and maybe more foreign, English speakers would have 
brought different contributions and cultural assumptions to the conversations. Their necessary 
lack of fluency in the use of Japanese, particularly over the telephone where the visual support 
for communication is impaired, would have introduced idiosyncracies into the style of the 
different conversations. 

Without a complementary analysis of the texts of the conversations, one can only draw 
speculative conclusions to explain the differences in the prosodic characteristics, but from the 
spectra of speech with partner JMB in Figure 6 it can be assumed that the initial relatively low 
spectral energy and high spectral tilt of conversation J01 represent the ‘baseline’ settings for 
speaker JMA who had no expectations at that time about his partners. One might then 
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speculate that the apparent increase in politeness (as indicated by a more breathy speaking 
style) in conversations II and III could be due to having to maintain a conversation for a long 
30-minutes over the telephone with a partner who is still relatively unknown to the speaker, 
and that the decrease thereafter occurred as they found more interests in common to talk about. 
From a brief examination of the transcriptions, they certainly appear to have become friends 
over the three month period. If so, then perhaps one can also speculate that the increase of 
breathiness in their speech towards the end is indeed due to the approaching termination of 
their telephone relationship. 

6. Conclusion 

In light of the recent considerable interest in the processing of affect in spoken interactions, an 
analysis was performed of some corpus data of conversational speech, showing that the four 
prosodic characteristics, duration, pitch, power, and voicing all vary significantly according to 
interlocutor differences and to differences in familiarity and politeness over a fixed period of 
time with the same interlocutor. 

The results showed significant differences in the prosodic characteristics of speech with 
others sharing the same native language as compared with those of non-native speakers of 
Japanese. The results also showed that speaking rate, pitch range, and spectral tilt varied 
significantly according to partner and position of the conversation in the three-month series. 
Because different settings were used with different partners at the same time, the possibility 
can be discounted that these differences were due to unrelated external considerations such as 
variation in the health of the speaker. 

The findings reported earlier for similar changes in phonation settings for a female 
speaker from a separate section of the corpus (see [Campbell 2005; Campbell and Mokhtari 
2003]) under more varied conversational settings have been replicated here with data from a 
different speaker in a more controlled recording environment. 

It is perhaps still too early to make use of these findings in speech technology, and 
considerable further work is required before strong claims can be made about the causes and 
relationships, but it is of interest that these differences exist at all. Listeners certainly make 
use of small but consistent speaking-style and phonation-setting changes to make inferences 
about the affective states of the speaker. Perhaps these variations will provide the foundation 
for both speech synthesis and speech recognition modules that begin to incorporate affect as 
one of the strands of meaning in speech. Such technology would be of great use in providing a 
softer interface between machines and humans in society. 
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The Breath Segment in Expressive Speech 

Chu Yuan*, and Aijun Li* 

Abstract 

This paper, based on a selected one hour of expressive speech, is a pilot study on 
how to use breath segments to get more natural and expressive speech. It mainly 
deals with the status of when the breath segments occur and how the acoustic 
features are affected by the speaker ’s emotional states in terms of valence and 
activation. Statistical analysis is made to investigate the relationship between the 
length and intensity of the breath segments and the two state parameters. Finally, a 
perceptual experiment is conducted by employing the analysis results to 
synthesized speech, the results of which demonstrate that breath segment insertion 
can help improve the expressiveness and naturalness of the synthesized speech.  

Keywords: Breath Segment, Expressive Speech, Emotion, Valence, Activation  

1. Introduction 

In the current speech synthesis and recognition systems, some characteristics of spontaneous 
speech are treated as noise, such as disfluent utterances, repeated sounds, filled pauses, salient 
breaths and coughs. In corpus collection for speech synthesis and recognition systems, the 
speaking style of the speakers is always strictly controlled and the speaker is usually required 
to give a “canonical pronunciation” to decrease the speaking noise as much as possible. 
However, in recent study, researchers have begun to pay more attention to the non-verbal 
information in natural speech, especially the paralinguistic and physiological information. 
They have focused on how to use these types of information to improve the naturalness and 
expressiveness of emotion and attitude in synthesized speech, so that the speaker ’s intention 
can be better understood during verbal communication. 

In 1989, Cahn compiled a simple feeling editor based on the phonetic characteristics of 
emotion [Cahn 1990]. Vroomen, Collier and Mozziconacci examined the duration and 
intonation of emotional speech and proposed that emotions can be expressed accurately by 
manipulating pitch and duration based on rules. This conclusion showed that, in emotional 
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speech, duration and intonation can be employed to observe the speakers ’ attitude [Vroomen 
et al. 1993]. In 1998, Campbell found that if one compares the same content in different forms, 
for example, a news item in its read form, its formal spoken or broadcast form, and its 
informal conversational form, differences are obvious not only in lexis, word-order, chunking, 
and prominence relations, but also in the mood of the speaker and in the tone of the voice 
[Campbell 1998]. 

In 2000, the International Workshop on Speech and Emotion of ISCA (held in Ireland) 
invited, for the first time, researchers who were devoted to the study of emotion and speech. 
Before this conference, many researchers had begun to investigate the voice quality, prosodic 
features, and acoustic features of emotional speech. Alku and Vilkman designed an 
experiment to illustrate that the phonation types could be separated from each other effectively 
when the quantification was based on the parameters extracted from the instant of the maximal 
glottal opening and the minimal peak of the flow derivative [Alku et al. 1996]. Heuft, Portele, 
and Rauth carried out a more sophisticated test in order to determine the influence of the 
prosodic parameters in the perception of a speaker's emotional state in three different testing 
procedures. Their studies proved that the recognition rates were lower than those in the 
preliminary test, although the differences between the recognition rates of natural vs. synthetic 
speech were comparable in both tests. The outcome of the saw tooth test showed that the 
amount of information about the speaker's emotional state transported by F0, energy, and 
overall duration was rather small. However, the relations between the acoustic, prosodic 
parameters, and the emotional content of speech could be determined [Heuft et al. 1996]. Iida 
recorded a corpus of one speaker which included three kinds of emotion: anger, happiness and 
sadness. When synthesizing emotional speech, they picked up the corresponding emotional 
segments from the emotion corpus. The emotion speech, synthesized in this way, achieved a 
correct recognition rate 50% ~80% higher than through previous means [Iida et al. 2000]. 
Campbell focused on how to express a modal word in spontaneous speech with various 
emotions and attitudes [Campbell 2004]. 

Some researchers have also studied the non-verbal information in emotional speech. 
Trouvain attempted to analyze the terminological variety from a phonetic perspective. He 
proposed that the overview of various types of laughter indicated that further concepts of 
description were needed. In a pilot study on a small corpus of spontaneous laughter, the 
usefulness of the concepts and terms in practice was examined [Trouvain 2003]. 

In the light of the above overview of emotion speech research, this paper mainly 
discusses the function of the non-verbal information in natural speech, specifically the 
common non-verbal information which includes breath, laugh, filled pause, long silence, and 
cry. The breath segment is taken as an example to observe how the acoustic characteristics are 
related to prosodic structure, expressive valence, and activation through statistic analysis of 
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reading and spontaneous speech. The concluded rules are then applied to a perceptual 
experiment to see how it works. 

2. Materials 

2.1 Breath Segments 

This paper studies breath segments which appear in both read and spontaneous speech, as 
shown in Figures 1 and 2, annotated between two dotted lines in the read and spontaneous 
speech, respectively. 

  
Figure 1. Breath segment in reading 

speech 
Figure 2. Breath segment in 

spontaneous speech 

The breath shown here is not the normal unconscious physiological exhalation or 
inspiration process but the deliberate breath for expressing a kind of emotion. Therefore, the 
following breath segment carries the emotional or attitudinal information of the utterance. 
Moreover, the acoustic features, such as the length and intensity of the breath segment, may be 
correlated to the emotional state in terms of valence and activation. Further, the small blanks 
preceding and following the breath segment which are caused by the physiological need of a 
breath segment may be inserted when the synthesis of emotional speech is conducted. 

The breath has two functions: fulfilling the physiological requirement of the intake of air 
and the expression of emotion or attitude. The authors determine the activation and valence 
degrees for each recitation of each phrase and use the information to label the breath segment 
before this phrase. 

2.2 The Corpus and Annotation 

The corpus used in this paper is called CASS-EXP which includes read and spontaneous 
speech. The first part contains some stories read by actors and actresses in emotional and 
neutral states while the second part includes TV and radio programs along with spontaneous 
speech: monologues and dialogues. 
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SAMPA-C [Li 2002] and C-ToBI [Chen et al. 2000] are adopted to label segmental and 
prosodic information. Furthermore, the starting and ending points of breath segments in terms 
of valence and activation degrees are labeled as well. 

The authors labeled the emotion characteristics of the breath segments based on two 
factors: valence and activation. The theoretical foundation of valence is the concept of a 
separation of positive or negative emotion. The function of activation is the enabled degree of 
energy which is in contact with the emotion condition. The activation and valence of one 
breath segment here refer to the activation and valence of the following intonational phrase. 

 Emotional valence is categorized into three levels: positive (1), neutral (0) and negative 
(-1). The activation has three categories as well: excited (1), steady (0) and low (0). When 
both the emotional valence and activation of a certain breath segment are marked as 0, the 
breath segment is considered to be a neutral physiological segment without carrying any 
expressive information.  

Three boundary levels (break index) 1, 2, 3 are annotated which stand for prosodic word, 
minor prosodic phrase, and major prosodic phrase (intonational phrase), respectively. The 
authors intend to examine whether the breath segment occurs in a normal stop or in an 
unexpected position. The normal stop refers to the breath at a prosodic phrase boundary, and 
the unexpected or abnormal position is the breath at a prosodic word boundary or within a 
prosodic word. 

3. Breath Segments in Read Speech 

From CASS-EXP, the authors select fifteen fragments from a read story which have different 
emotional states and attitudes. The valence and activity of nine fragments were labeled. 

3.1 Occurring Number and Position of the Breath Segments 

Based on what has been labeled, the number of breath segments is calculated for neutral and 
expressive speech. It was found that the number of breath segments in expressive speech is 
50% higher than in that of neutral read speech in the same text. In these nine fragments, the 
number of breath segments in expressive speech is 334, and only one of them appears in an 
abnormal stop; the number in neutral speech is 225, of which all appear in normal boundaries, 
as shown in figure 3. 
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Figure 3. Number of breath segments in expressive and neutral read speech. 

In fragments of read form, most of the breath segments occur at boundary 3 (intonational 
phrase boundary). The number of the breath segments at boundary 1 (prosodic word boundary) 
is the smallest, as shown in Figure 4. Table 1 demonstrates that the boundary distribution of 
breath segments appearing in expressive speech and neutral speech exhibits no difference. In 
expressive and neutral speech, the number of breath segments at boundary 1 is the smallest, 
and the number of breath segments at boundary 3 is the largest. 

 
Figure 4. The number of breath segments at the different boundaries. 

Table 1. Number and percent of breath segments of emotion and neutral 
read speech at the different boundaries. 

Boundary 
Number of breath 

segments in expressive 
speech 

Percent 
Number of breath 

segments in neutral  
speech 

Percent 

3 284 85.2% 210 93.3% 
2 43 12.8% 13 5.8% 
1 7 2% 2 0.9% 
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In general, breath segments in read speech, either expressive or neutral, usually appear 
between two prosodic phrases, especially between two intonational phrases. From the 
perspective of syntactic analysis, most of the breath segments appear between two intonational 
phrases or two intonational phrase groups. 

We measured the duration of the silence which was between the breath segment and the 
prosodic phrase following this breath segment. The mean duration of the silence in different 
valence and activity is shown in Table 2. 

Table 2 .The mean duration of the silence in different valence and activity 
Valence Activity  

-1 0 1 -1 0 1 
Emotional 64ms 54ms 40ms 78ms 52ms 28ms 

Neutral  48ms   49ms  

From this table we can know that in neutral speech the duration of the silence which was 
between the breath segment simply and the prosodic phrase following this breath segment is 
about 50ms. In emotional speech the durations are different because of the different valence 
and activity. 

3.2 Duration of Breath Segments in Read Speech 

In these nine fragments whose valence and activity have been labeled, the number of breath 
segments in expressive speech is 200, and only one of them appears in an abnormal stop; the 
number in neutral speech is 133, of which all appear in normal boundaries. 

  

Figure 5. Breath segment mean 
duration and activation 

Figure 6. Breath segment mean 
duration and valence 



 

 

                    The Breath Segment in Expressive Speech                   23 

The durations of breath segments are measured and put into a multi-variance analysis 
using SPSS. Breath segment means are shown in figure 5 and figure 6. In the analysis of the 
relationship between the valence degree and the duration of the breath segment, it was found 
that there is no significant correlation between the three categories of emotion valence and the 
duration of the breath segment (P=0.063>0.05). 

However, activation has significant influence on the breath duration (P=0.000<0.05). The 
result of the analysis indicates that when the activation is 0 or 1, the discriminative degree of 
duration is not very high; when the activation is -1, the degree is different from that in other 
two activation states. 

Table 3. Tests of between-subjects: valence and activation  
effects to the duration and intensity of breath segment. 

Source Dependent Variable F Sig. 

valence intensity .544 .581 
 duration 2.801 .063 

activation intensity 10.313 .000 
 duration 9.344 .000 

valence* activation intensity .371 .829 
 duration 2.092 .083 

 Table 3 displays the effect triggered by valence and activation on intensity and duration. 
The valence has no effect on the breath duration and there is no interactive effect of valence 
and activation on intensity and little on duration (P=0.083). This result proves that, although 
the speakers express a certain kind of emotion, the physiological response does not differ from 
that of neutral speech. Nevertheless, because we do not know that the compute method in 
SPSS is the same as the person’s mental perception mechanism or not. In this kind of case, we 
think that the effect triggered by valence and activation has influence of breath segments. 

In addition to the duration of breath segments, the authors computed the intervals 
between two breath segments and their distribution. Among the 319 intervals there were 304 
intervals shorter than 10 seconds. The other 15 intervals which include error reading were 
longer than 10 seconds. So this confirms that, when a text is read at normal speed, the time 
between two breath segments is shorter than 10 seconds. 

3.3 Intensity of Breath Segments 

Another important characteristic is the intensity of the breath segments. Tables 4 and 5 are the 
statistical results on intensity grouped by valence and activation. 
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Table 4. Breath segment intensity grouped by valence 
Subset 

Valence N 
1 2 

0 155 37.8143  
1 29  41.9793 
-1 16  43.8315 

Sig.  1.000 .202 

Table 5. Breath segment intensity grouped by activation 
Subset 

Activation N 
1 2 3 

0 120 36.5159   
-1 21  39.5437  
1 59   43.5185 

Sig.  1.000 1.000 1.000 

Afterwards, the authors observed the relationship between the intensity of every breath 
segment and the intensity of the following intonational phrase. Through the examination of the 
data obtained from SPSS analysis which be shown in table 6, it was found that activation has a 
significant effect on the intensity ratio of the following intonational phrase in the breath 
segment; in addition, the effect of valence and the interactive effect of valence and activation 
are significant as well. 

Table 6. Tests of between-subjects effects which is valence and  
activation effects to the IR 

Source Sig. 
Activation .022 
Valence .913 
Activation * Valence .609 

 Table 7 provides the means and ranges of intensity ratios of the following intonational 
phrase to the present breath segment (IR) in three categories of activations. The intensity ratio 
is the lowest when the activation is 0. 

Table 7. The means and ranges of intensity ratios in three categories of activation 
95% Confidence Interval 

Activation Mean 
Upper Bound Lower Bound 

-1.00 0.634 0.682 0.592 
0.00 0.558 0.573 0.544 
1.00 0.646 0.674 0.619 
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3.4 Rules of Inserting Breath Segments to Read Speech 

One can obtain rules of breath segment insertion based on the previous analysis of synthesized 
speech. The breath segment corpus can be set up first for the selected speaker. When the 
speech is being synthesized, the fitted breath segments can be selected and inserted into the 
expected positions. The insertion rules are summarized as follows: 

A. At every major prosodic phrase boundary, a breath segment can be inserted or 
produced. The durations of these breath segments are about 0.5 second or longer. 

B. Intervals between two breath segments are no longer than 10 seconds, i.e. one sentence 
group length in text is shorter than 10 seconds. 

C. Within one intonational group, the number of the breath segments is uncertain, 
generally, there are one or two breath segments before longer intonational phrase and 
the breath duration ranges from 0.1 to 0.3 second. 

D. When the activation of breath segment is not 0, the intensity of this breath segment is 
set to 0.6 -0.7 times of the intensity of following prosodic phrase. When the activation 
of breath segment is 0, the intensity of this breath segment is 0.5 times of the intensity 
of the following prosodic phrase. 

E.  Between every breath segment and the prosodic phrase following this breath segment 
there is a silence. 

F.  The duration range of different kind of valence and activation is induced from the read 
speech. The breath segment in the synthesized speech is selected random in the range 
of corresponding kind. 

Although the breath segment is not the only way to express emotion or attitude in read 
speech, breath segments inserted in the synthetic speech can prompt the naturalness and 
expressiveness. Also, the synthesis speech with breathy segment insertion is more acceptable 
to the subjects. 

4. Breath Segments in Spontaneous Speech 

The authors select nine dialogs from the CASS-EXP corpus. Each dialog is a conversation 
between an audience and a radio host through a hotline telephone. It is assumed that the radio 
hostess’s emotion is the performed emotion while the audience ’s is natural. In this part, 
boundary 4 is used to label the turn taking boundary. 

4.1 Positions of Breath Segments in Spontaneous Speech 

In these nine dialogs, 55 breath segments produced by the radio hostess and 17 breath 
segments are at abnormal positions, i.e. unexpected prosodic boundaries, which account for 
about 32% of the total breath segments. The audiences make, altogether, 54 noticeable breaths 
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at normal boundaries and 19 at abnormal ones which occupy about 35.2% of the total. 

The radio hostess produces 11 physiological breath segments while the audience 
produces only 6. These 17 segments all appear at major prosodic phrase boundaries. In general, 
the physiological breaths that appear in spontaneous speech are similar with those in read 
speech but the frequency of appearance declines greatly. 

From Table 8, one can see that the distribution of the physiological breath segments 
produced by the radio hostess is well-proportioned. The physiological breath segments 
produced by the audiences appear at boundaries 3 (prosodic phrase) or 4 (turn taking). Thus, 
the data help prove that when the expressiveness is a performed one, the breath distribution is 
the same as that in neutral speech. However, for spontaneous speech with natural expression 
(in Table 9), the breath also appears at boundaries 1 and 2. So, one can confirm that, in natural 
emotion speech, most of boundaries 1 and 2 are made intentionally. If one synthesizes this 
kind of speech material, one can consider breaking the original prosodic structures by adding 
breath segments. 

Table 8. The breath segment distribution at prosodic boundaries by the radio hostess 
Boundary Total Abnormal position Normal position Physiological breath 

1 6 6 0 2 
2 23 10 13 4 
3 16 1 15 3 
4 10 2 8 2 

Table 9. The breath segment distribution at prosodic boundaries by the audiences 
Boundary Total Abnormal position Normal position Physiological breath 

1 9 6 3 0 
2 9 8 1 0 
3 14 2 12 2 
4 22 3 19 4 

4.2 Duration of Breath Segments in Spontaneous Speech 

Figures 7 and 8 show the duration distribution of the breath segments made by the radio 
hostess according to valence and activation. The bottom and top value are 25% and 75% 
accumulative frequency, respectively, standing for duration variation range. (Note that in 
Figure 7, when activation is -1, the token number is relative small). 
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Figure 7. The duration distribution of 
the breath segments by radio 
hostess in different activations 

Figure 8. The duration distribution of 
the breath segments by radio 
hostess in different valences 

Figures 9 and 10 indicate that the duration range of the breath segments produced by the 
audience is affected by the valence and activation. 

From these four figures, one can get the duration of breath segments when valence and 
activation are 1,-1 or 0 in spontaneous speech, whose results can be used in the following 
perceptual experiment. 

  

Figure 9. The duration distribution of the 
breath segments by audience in 
different activation 

Figure 10. The duration distribution of 
the breath segments by 
audience in different valence  

4.3 Rules for Inserting Breath Segments in Spontaneous Speech 

The insertion rule in spontaneous speech is more complicated than that in read speech. In 
spontaneous speech, the breath segments will be divided into two types according to their 
functions: the physiological activity and the expression of emotion or attitude. The following 
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rules can be used in breath insertion for synthesizing spontaneous speech. 

A. Physiological breath insertion without emotion is the same as that in read speech as 
described above. However, in dialogs there is some turn-taking. Sometimes, the breath 
appearing at the turn taking may overlap with the words spoken by the interlocutor or 
appear close to the boundary of the turn taking. 

B. When the activation is -1, the duration of breath segment is set randomly from 0.2 to 
0.6 second. When the activation is 1, the duration of breath segment is set randomly 
ranging from 0.1 to 0.4 second. When the activation is 0, the duration of breath 
segment is set randomly from 0.2 to 0.5 second. 

C. When the valence is -1, the duration of breath segment is set randomly from 0.1 to 0.4 
second. When the valence is 1, the duration of breath segment is set randomly from 0.2 
to 0.5 second. When the valence is 0, the duration of breath segment is set randomly 
from 0.2 to 0.6 second. 

D. Between every breath segment and the prosodic phrase following this breath segment 
there is a silence. 

5. Perceptual Experiments 

5.1 Stimuli 

A pilot perceptual experiment is conducted to test the obtained results. The texts are selected 
from a read story and spontaneous dialogs. The original synthesized speech is produced by 
using the synthesizer provided by iFLYTEK. After that, breath segments are inserted into the 
synthetic speech, based on the previous rules. 

Twenty subjects recruited to join the perceptual experiment are asked to judge the 
differences between the speech materials with and without breath for both the original and the 
synthesized speech. The perceptual process consists of two steps: first, the subjects are asked 
to compare the speech from the read story. Then, these subjects are required to perceive the 
breath effect in the synthesized dialogs. 

Speech fragments from a read story (Little Red Hat) are numbered as X-1 (the original 
speech), X-2 (the original speech minus the breath segments), X-3 (the synthetic speech) and 
X-4 (the synthetic speech inserted with breath segments). For speech based on the 
spontaneous speech scripts, the two stimuli are numbered as Y-1 and Y-2, which are 
synthesized speech and inserted with breath segments. 
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5.2 Results 

In the first experiment, the whole speech or segmented clips are compared. Five clips are 
segmented for each X. Totally, 20 clips are attained for X1, X2, X3 and X4 by segmenting at 
the same text boundaries. Subjects are asked to listen to and compare all counterparts with and 
without breath segments to judge if they are different or not and which is more natural. The 
subjects are only allowed to listen to the stimuli a maximum of 3 times. 

 The results are listed in Table 10, in which 1 stands for the counterparts (with and 
without breath segments) which are different, 0 means there is no difference between the 
perceived counterparts. 70% subjects fail to distinguish between X1 and X2. Carefully 
comparing X3 with X4, subjects can perceive their differences, and feel that X-4 is more 
natural. When smaller fragments are compared, only 38% (38 out of 100 times) can be 
perceived with discrepancy. The results on X3 and X4 are slightly higher, reaching 92% (92 
out of 100 times). This experiment reveals that when one changes the parameters of breath 
segments, such as their duration, intensity and position, most of the subjects are able to 
perceive the differences between the original and the breath insertion speech. 

Table 10. The perceptual results of the first experiment based on reading story 

Subjects X-1 and X-2 
(in five clips) 

X-3 and X-4 
(in five clips) 

1 2/5 5/5 
2 5/5 5/5 
3 5/5 5/5 
4 2/5 5/5 
5 1/5 4/5 
6 1/5 5/5 
7 0/5 4/5 
8 1/5 4/5 
9 2/5 5/5 
10 2/5 4/5 
11 2/5 4/5 
12 1/5 5/5 
13 2/5 5/5 
14 3/5 4/5 
15 2/5 5/5 
16 2/5 4/5 
17 1/5 5/5 
18 1/5 4/5 
19 2/5 5/5 
20 1/5 5/5 

Total 38/100 92/100 
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Table 11. The result on spontaneous dialogues Y1 and Y2 
Y-1 Y-2 

Subjects 
breath naturalness expressiveness breath naturalness expressiveness 

1 1 1 0 1 1 1 
2 0 0 0 1 1 0 
3 1 1 0 0 0 0 
4 0 0 0 1 0 0 
5 0 0 0 0 0 0 
6 1 0 1 1 0 0 
7 0 0 0 1 1 0 
8 1 0 0 0 0 0 
9 0 0 0 0 0 0 
10 1 1 1 1 1 1 

total 5/10 3/10 2/10 6/10 4/10 2/10 

The second experiment is rather simple, compared to the first one. The subjects are asked 
to judge which group of the two dialogs Y1 and Y2 has breath segments. If the subjects can 
tell the difference, they have to judge whether or not the breath segments insertion can 
increase the naturalness and the expressiveness. The result is shown in Table 11. The rates of 
breath insertion recognition are 50% and 60% for Y1 and Y2 respectively, but only 20% for 
expressiveness and 30% to 40% for naturalness. 

6. Conclusion 

This paper, with a statistical analysis made on breath segments in read and spontaneous speech, 
proposes some preliminary principles for inserting breath segments in synthesized speech. 
These principles or rules can help one better understand the physiological and expressive 
features in speech synthesis. Though the authors got relatively limited results in the perceptual 
experiments, it proves that non-verbal information is not just a simple physiological breath; 
instead, it is an essential element in transmitting expressiveness or attitude. In this regard, 
future studies should focus on other frequently encountered paralinguistic and nonlinguistic 
information, so that further steps may be achieved in understanding breath segments by 
classifying valence into more categories.  
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Affective Intonation-Modeling for 

Mandarin Based on PCA 

Zhuangluan Su , and Zengfu Wang  

Abstract 

The speech fundamental frequency (henceforth F0) contour plays an important role 
in expressing the affective information of an utterance. The most popular F0 
modeling approaches mainly use the concept of separating the F0 contour into a 
global trend and local variation. For Mandarin, the global trend of the F0 contour is 
caused by the speaker’s mood and emotion. In this paper, the authors address the 
problem of affective intonation. For modeling affective intonation, an affective 
corpus has been designed and established, and all intonations are extracted with an 
iterative algorithm. Then, the concept of eigen-intonation is proposed based on the 
technique of Principal Component Analysis on the affective corpus and all the 
intonations are transformed to the lower-dimensional eigen sub-space spanned by 
eigen-intonations. A model of affective intonations is established in the sub-space. 
As a result, the corresponding emotion (maybe a mixed emotion) can be expressed 
by speech whose intonation is modified according to the above model. The 
experiments are performed with the affective Mandarin corpus, and the 
experimental results show that the intonation modeling approach proposed in this 
paper is efficient for both intonation representation and speech synthesis. 

Keywords: Eigen-Intonation, Affective Speech, Mixed Emotion, F0 Contour, 
Speech Synthesis 

1. Introduction 

Speech can convey not only literal meanings, but also the mood and emotion of a speaker. 
Some researchers have proven that the contour of the speech fundamental frequency 
(henceforth F0 contour) plays an important role in expressing the affective information of an 
utterance. It is concluded that some statistical characteristics of F0 play the most important 
roles in emotion perception [Tao and Kang 2005]. Especially, F0 contours differ from each 
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other because of the speaker’s different emotion in Mandarin [Yuan et al. 2002]. Due to 
significance of F0, the F0 contour modeling is one of the key issues that should be addressed. 

The most popular F0 modeling approaches mainly use the concept of separating the F0 
contour into a global trend and local variation [Abe and Sato 1992; Bellegarda et al, 2001]. 
Mandarin is a tonal language including four basic tone types and a so-called ‘light’ tone. The 
F0 contour is composed of three elements [Zhao 1980]: the tone of the syllable, the variety of 
tone in continuous utterance, and the movement influenced by mood. How to extract tones and 
intonations from speech is a difficult problem. Tian and Nurminen have proposed a 
data-driven tone modeling approach to describe the tonal element [Tian and Nurminen 2004]. 
In previous work [Su and Wang 2005], the authors of this paper also proposed an 
affective-tone modeling approach for Mandarin to separate F0 contour into two elements: 
variational tones based on syllables and intonations for prosody phrases. 

In this paper, the authors propose a data-driven intonation modeling approach based on 
Principal Component Analysis (henceforth, PCA [Fukunaga 2000]). For modeling affective 
intonations, an affective corpus of Mandarin has been designed and the corresponding 
intonations are extracted with an iterative algorithm from the original speech. The 
eigen-intonation concept is proposed based on the principal components of the above 
intonations obtained from the affective corpus, and all the intonations are then transformed 
into the sub-space spanned by the eigen-intonations. The distribution of affective intonations 
corresponding to an emotion in the above sub-space is a help to establish the corresponding 
affective intonation model. As a result, speech whose intonation is modified according to the 
model can express the corresponding emotion, even mixed emotions. In addition, the authors 
will also show emotion perception results using the proposed modeling approach. 

The remainder of the paper is organized as follows. The speech corpus and some statistic 
results of F0 based on the database are described first. Then, the algorithm of eigen-intonation 
extraction is described, and some of the basic properties of the eigen-intonation representation 
are concluded. Next, how to model the affective intonation is discussed. Last, the performance 
of the proposed modeling approach is given by experimental results. 

2. Speech Corpus and Statistic Results of F0 

Carrying on the affective speech research, a reasonable classification of the emotion is needed 
first, and then the speech features with different emotions can be analyzed effectively. In 
emotional psychology, Robert Plutchik proposed a four pair emotional ring constructed of eight 
pure emotions, including anger, joy, acceptance, surprise, fear, sadness, hatred and expectation. 
In the affective speech research for Mandarin, four emotions are generally selected, either 
including anger, joy, fear, sadness [Yuan et al. 2002; Tao and Kang 2005], or including anger, joy, 
surprise and sadness [Zhao et al. 2004]. In contrast, five emotions are selected for this paper, and 



 

 

             Affective Intonation-Modeling for Mandarin Based on PCA            ˆˈ 

they are anger, joy, surprise, fear and sadness. 

What is discussed in this paper is the global variety of the F0 contour, so a reasonable 
duration of the target needs to be considered. Due to the multi-level structure of prosody 
[Abney 1995; Li et al. 2000], a complicated sentence with many syllables can be divided into 
several simple prosody units with fewer syllables at prosody boundaries. So, studying 
intonation based on prosody units can transform this complicated problem into several simple 
ones. Moreover, it is known that prosodic phrases can keep a relatively stable intonation 
pattern. Therefore, the authors model intonation based on prosodic phrases in the paper. 

It is known that F0 contour is influenced by several factors, including syntax, stress, 
speaker’s emotion and his or her individual character. This paper focuses on the movement of 
intonation caused by emotion, and the influence of other factors such as syntax, stress, and the 
individual characters will not be considered. Currently, there are no effective methods that can 
eliminate the influence of these factors from the original speech signals directly, so the corpus 
used in the paper are obtained in such a way as to avoid these interferential factors’ influence. 

To avoid unwanted factors’ influence and to simplify the following processing, the 
corpus is designed with some limitations. The authors have designed 40 sentences with 
different literal contents for the following test, and each sentence only consists of three 
components: subject, verb, and object. Furthermore, the subject, verb, and the object are all 
designed to be disyllabic words. So, each sentence only has 6 syllables in this case, and all of 
these sentences have the same syntax. As the length of a prosodic phrase is approximately six 
syllables [Zhao et al. 2002], each sentence consists of only one prosodic phrase. An example 
of such a sentence is given by “״ࠇק䬞䩹劑”. This design can be advantageous to the 
following experiments, and the model will be established directly based on one sentence. Each 
sentence is then performed by a female actor with all six emotions, including fear, sadness, 
neutral, anger, joy and surprise. In the end, the corpus used for analysis contains 240 total 
sentences, consisting of 1,440 syllables from a single speaker, with same syntax and the same 
individual characters. The speech signals are digitized at 16 kHz with 16-bit precision. 

To evaluate the representational ability of the corpus, some experiments about the 
distributions of F0 are performed. Here, the F0 of a speech is extracted by using a modified 
autocorrelation algorithm. The results are demonstrated in Figure 1. 

Figure 1 shows that “surprise”, “happy” and “angry” make a very high F0, while “sad” 
generates lower value than the neutral state. It can also be found that the varying range of 
“sad” is smaller than the others. F0 parameters of “fear” make quite similar behaviors as “sad”. 
“Angry”, “happy”, and “surprise” also behave similarly. All of the results accord with the 
conclusions given by other researches [Yuan et al. 2002; Zhao et al. 2004; Tao and Kang 
2005]. So the speech corpus is representational and effective for the following analysis. 
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3. Concept of Eigen-Intonation 

The affective intonation will be modeled with a concept called “eigen-intonation”. The concept 
of eigen-intonation is derived through the use of the PCA technique. PCA [Fukunaga 2000] is a 
multivariate analysis method that carries out a compact description of a data set. In a PCA 
process, a set of correlated variables is transformed into a set of uncorrelated variables that are 
ordered by reducing variability, and these new uncorrelated variables are linear combinations of 
the original variables. It can be concluded that the first new variable contains the greatest 
amount of variation; the second contains the next greatest residual variance and orthogonal to 
the first, and so on. Thus, the last of these variables can be removed with a minimal loss of real 
data. 

With the affective corpus in the paper, the speech intonations for sentences should be 
very similar in all configurations, and they should be able to be described by some “basic 
intonations”. From the previous description, one knows that one of the main functions of PCA 
is that it can be used to extract new uncorrelated features from original data. According to 
these ideas, one can find the “basic intonations” that best account for distribution of speech 
intonations within the entire intonation space using the principal components analysis. The 
“basic intonations” are called “eigen-intonations”. 

With eigen-intonation, original intonations can be transformed to corresponding 
representations with lower dimensions. Some rules can also be possibly given out in the 
low-dimensional space. Moreover, the resultant rules with low dimensions have simpler 
expression, and it is advantageous to control the rules for the goal of this study. 

 

Figure 1. Statistic results for F0 with different emotional states 
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4. Analysis for Eigen-Intonation 

The concept of eigen-intonation is proposed based on PCA technique. Mathematically, the 
principal component analysis involves an eigen analysis on a covariance matrix. A good 
low-dimensional representation in the space of possible speech intonations can be achieved by 
considering only a few principal components or eigenvectors, corresponding to the first largest 
eigenvalues. 

4.1 Extraction of Intonation 
In order to obtain the intonation of a speech, the F0 contour of the speech should be extracted 
first. After that, the F0 contour will be separated into a global variety, which is regarded as 
intonation, and rapidly-varying components corresponding to local changes based on syllables. 
The details of intonation extraction are described in the following. 

The entire intonation extracting algorithm can be divided into five main steps: 

1) Estimating initial F0 values based the modified normalized autocorrelation from voiced 
regions of the original speech. 

2) Cubic Hermite interpolating for unvoiced regions and obtaining a continuous F0 curve. 

3) Filtering the continuous F0 contour with two serial modified smoothing processes. 

4) Applying piecewise three-order polynomial iterative fitting to the entire F0 contour, the 
n-th iterative processing step is as: 

(a) Fitting the entire F0 contour with n pieces of cubic polynomial. 

(b) Calculating the fitting error En. 

(c) If En < Et, ending the iterative algorithm and taking n pieces of cubic polynomial 
fitting as final resultant F0 contour. Else, n = n + 1, go to (a). Where Et is a given 
threshold of maximal fitting error. 

5) The ln(F0) contour is passed through a high-pass filter with a stop frequency at 0.5Hz, 
and the residual low frequency contour after filtering is denoted as LF contour. 

From the authors’ previous work [Su and Wang 2005], The LF contour can be regarded 
as the F0 global variety of a speech. As all sentences have the same syntax and each sentence 
consists of only one prosodic phrase in this corpus, the model can be established directly 
based on one sentence. It is to say that the resultant LF contour of the algorithm for each 
sentence in the corpus is the modeling target, intonation based prosodic phrase (henceforth 
intonation). Finally, each intonation is normalized into an N-dimensional vector (N = 100 in 
the paper). 
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4.2 PCA for Intonation 
Let the data set of intonations be I1, I2, … IM, where Ii is an N-dimensional intonation sample, 
and M is the number of intonations (M = 240 in the paper). Then the intonation covariance 
matrix CN N is computed by (1). 
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Where, m is the average intonation calculated by (2).  
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M
 (2) 

The differential intonations matrix A is defined as (3). 
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Then, C = AAT is an N N covariance matrix. The eigen analysis on the covariance 
matrix CN N yields a set of positive eigenvalues { 1, 2, …, N} in descending order and the 
corresponding eigenvectors, {V1, V2, …, VN). The first L (L < N) eigenvectors, denoted as U = 
{Vi, i = 1, 2,…, L}, are selected as principal components, and the intonations corresponding to 
these L vectors are so-called eigen-intonations, denoted as Uo. 

The eigen sub-space spanned by the principal components U is called sub-space of 
intonation, denoted as P, and the original space of intonation is denoted as O. All intonations 
in O can be projected to be the corresponding representations in P. It is known that the 
dimension of P is lower than that of O, and one can establish the rules of intonation in P and 
then restore the resultant intonations in O. Obviously, rules with lower dimension are easily 
controlled. Next, restoration of intonation will be discussed. 

4.3 Restoration Based on PCA 
According to the principal component analysis, the original intonations in O are projected into 
the sub-space P as (4). 

( ), 1, 2, ...,T
k kU I m k M    (4) 

Where, k is coordinate vector of the k-th intonation. With , the intonation samples are 
restored as (5), and the final approximation of the original intonations I is given out as (6), 
denoted as J. 

B U  (5) 

1, 2, ...,k kJ B m k M  (6) 
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Especially, let B = U in (6), intonations corresponding to U can be given out, and that are 
eigen-intonations Uo. It can be concluded that although Uo is higher than U, the configuration 
of Uo is same as U. So the authors do not distinguish them when their configurations are 
discussed. 

To evaluate the ability of restoration, the restoring rate for k-th intonation is defined as 
(7). 

1 , 1, 2, ...,k k
k

k

I J
R k M

I
 (7)

The final restoring rate of the entire algorithm is defined as (8). 

1
/ 100%

M
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5. Affective Intonation 

5.1 About Affective Intonation 
Affective intonation is the concept that a speech with a certain affective intonation can express 
a corresponding emotion. Some works of speech prosody have proposed much qualitative 
analysis for affective intonations, and this paper will try to give quantitative affective 
intonation rules. At last, speech whose intonation is modified according to a certain affective 
intonation obtained in the paper can express the corresponding emotion. 

In order to research affective problems, emotion can be classified. Robert Plutchik 
[Plutchik 1960] considered that the emotions felt in normal human life were complicated and 
mixed, and considered some intensity of the eight pure emotions constructing a mixed 
emotion. So, in a similar way to him, all the mixed-emotional intonations are supposed to be 
defined by some vectors in the form of linear combination of the coefficients in the paper, 
where the vectors are the principal components U and the coefficient is the coordinate vector 

k in (4). Based on this assumption, one can easily change the coefficient corresponding to a 
certain eigen-intonation to control some configuration of final affective intonation for the goal. 
How to perform the assumption is discussed in the following. 

5.2 Modeling Affective Intonation 
Let the set of emotions be a, a = 1, 2,…,6 representing anger, joy, surprise, fear, sadness and 
neutral emotional state. Intonations extracted from the speeches with emotion a are denoted as 
N-dimensional vector I a in original space O. Let I = I a in (4), and I a be projected into the 
sub-space P, denoted as  a.  a is distributed in different regions in P for the different 
emotions a, and the mass kernel vectors  are computed as (9). 
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1
/ , 1, 2, ..., 6
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Where, k  is the projecting representation vector (henceforth projecting vector) in P 
of the k-th intonation with emotion a. Ka is the total number of all intonation samples with 
emotion a. 

{ , a = 1, 2, …, 6} are the resultant affective intonations with low dimension basing 
eigen-intonation. They are restored in the original intonation space O as (10). 

, 1, 2, ..., 6T U m  (10) 

Where Ta are the final affective rule-intonations (henceforth rule-intonations) and they 
can be applied directly to modify the target intonation for synthesizing affective speech, which 
will be performed in the following experiments. 

6. Experimental Results and Discussion 

6.1 Analysis on Eigen-Intonation 

 
 
To demonstrate the eigen-intonations, a PCA experiment using the affective speech corpus 
was performed. The first six principal components U are shown in Figure 2 and the authors do 
not distinguish the principal components selected and eigen-intonations here. It can be seen 
that the varying range of the first component is the smallest, and it is also the highest. So the 

Figure 2. Eigen-intonation of the affective speech 



 

 

             Affective Intonation-Modeling for Mandarin Based on PCA            ˇ˄ 

first eigen-intonation represents the flat and positive pitch. The second eigen-intonation 
contributes a big rising component, and the third matches a falling intonation with a little 
rising at the end. The fourth can be viewed as adding a falling part to the end of the third. The 
varying ranges are same between the fifth and the sixth, and their global trends are flat with 
big rising and falling varying. These two can be viewed as adding a rising or a falling part to 
the end of the previous component. It will be known that the sixth component contains a very 
small contribution of energy or variance to the intonation contour in the following analysis. 

Based on the previous resultant eigen-intonations, the authors carry out the restoring 
experiment using L components selected, respectively considering L be 3, 4, 5 and 6. The 
results are shown in Table 1. 

Table 1. The restoring rate r with L components selected 
L – component number 3 4 5 6 
r – restoring rate 81.61% 95.71% 99.46% 99.89% 

From Table 1, it can be concluded that selecting five components is acceptable, but with 
six principal components, the restoring rate is 99.89% and the approximation error is almost 
equal to zero. The approximating examples are shown in Figure 3. That means a good 
six-dimensional representation for the space of all speech intonations is achieved, and these 
eigen-intonations are very efficient for intonation representation. 

 

 

6.2 Modeling Affective Intonation 
The emotional state expressed by intonation of each affective speech in the corpus is known, 
and there are six categories of emotions, including the neutral state. And there are 40 speeches 
within each emotional state. According to Section 5.2, all affective intonations labeled with 

Figure 3. Illustration for restoring with eigen-intonations 
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different emotions are projected into six-dimensional sub-space P spanned by 
eigen-intonations. The distribution of first three weights of the projecting vector  a is shown 
as Figure 4, and the mass kernel of each emotional state is indicated by red color in the figure. 

 

 
From Figure 4, one can see that the kernel of surprise, job and anger is far from that of 

neutral, where the “surprise” is farthest and then “angry” is next. However, the “fear” almost 
distributes in the same region with “sad”, and they can be distinguished from the neutral 
emotional region. In addition, it can be known from analysis on eigen-intonations that the last 
several weights corresponding to these three weights in the figure contain a very small 
contribution of energy or variance, so the difference of their distribution is not as clear as in 
Figure 4. 

Now the projecting vectors  a in P of original intonations labeled with emotion are 
given out as well as the corresponding kernel vector  for each emotional state. By 
restoring with eigen-intonations, the kernel vectors are transformed as (10) into the original 
space, there they are regarded as rule-intonations. The rule-intonations representing emotion 
states are illustrated in Figure 5. From the figure, one can see that the intonations of anger, job 
and surprise are high, where the variety of surprise is greatest. However, the “fear” is flat and 
low, similar to that of the “sad”. All these qualitative results are in line with the previous 
works of other researchers. So the resultant rule-intonations are efficient for expressing 
emotions in theory.  

Figure 4. Distribution of first 3 weights of affective intonations in eigen sub-space 
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6.3 The Mixed-Emotional Intonation 
When the affective rule-intonation was modeled with eigen-intonation in the previous 
sub-section, the emotion labeled in the corpus and expressed by resultant intonation was 
supposed to be pure. It is known that the emotions of humans felt in normal life are not always 
so simple, and they are usually mixed with several so-called pure emotions, whose intensities 
differ corresponding to constructing the different emotions. The experiment is performed as 
the following to explain that the modeling approach proposed with eigen-intonation is also 
effective for representing the mixed-emotional intonation. 

All affective intonations labeled with emotions have been projected into sub-space P and 
the distribution of first three weights of the projecting vector  a in P has been shown in 
Figure 4. Now only the mass kernel of each emotional state, which is corresponding to the 
resultant rule-intonation, is represented in Figure 6. 

Nine equal space points in line between the neutral kernel and the surprise kernel are 
selected and indicated in the figure. If the kernel explains pure emotions, then what the points 
selected explain are the mixed emotions. Along the arrow in Figure 6, points at the starting 
vertex explain more neutral and those at the ending vertex explain more surprise. So the 
emotions expressed by the intonations correspond to these points transfer from neutral to 
surprise along the arrow and they are mixed. The mixed-emotional intonations corresponding 
to the selected-points are restored in original space and shown in the left of Figure 7. It can be 
concluded from the figure that, along the arrow, the first rule-intonations can express more 
neutral and the last ones express more surprise and all of them express the mixed emotions. 

Figure 5. Affective rule-intonations T  
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Another nine equal space points between the happy kernel and the surprise kernel are also 
selected and the same experiment is performed. The illustrations of the experiment are shown 
in Figure 6 and the right of Figure 7. 

 

 

 
Note:  

The arrows in the figure indicate the gradual varying direction corresponding to that in 
sub-space showed in Figure 6 and each gradual changing curve is corresponding to one point 
selected in Figure 6. 

Figure 7. Intonations transferring corresponding to that in sub-space 

Figure 6. Transferring illustration of affective intonation in sub-space 
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Figure 6 and Figure 7 show that the mixed-emotional intonation can be represented with 
eigen-intonation, so one can control the relative position of intonation-representation in the 
sub-space to explain the certain mixed-emotion felt in the usual human life. To sum up, the 
modeling approach proposed with eigen-intonation is effective for representing not only the 
simple emotional intonation but also the mixed-emotional intonation. 

6.4 Synthesis with Affective Intonation 
Based on the linear predictive coding technology [Quatieri 2004], the authors analyzed neutral 
speeches, modified their intonations with the six rule-intonations, respectively, and 
re-synthesized them. For example, the intonation of a neutral speech is modified to the 
surprise intonation, and the demonstration is shown as Figure 8. In the figure, the top is the 
waveform of the neutral speech, and the bottom includes the original F0 contour, the original 
intonation, the modified intonation, and the resultant F0 contour of the neutral speech. 
Moreover, the intonation of an original surprise speech is also plotted in the bottom figure for 
contrast. Figure 8 shows that the modified intonation is similar to the original intonation of the 
surprise speech, and the resultant F0 contour is higher than expressing surprise. 

 

 

 Figure 8. Illustration for modifying intonation with surprise rule-intonation 
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In the perception experiment, the listener was asked to judge the emotional state of the 
speech sound. The results show that, though it is difficult to distinguish anger from happy, and 
also can not point out whether the speech sounded closer to fear or sadness, it is easy to tell 
the emotional states such as joy, surprise, and fear of one speech. So one can conclude that the 
rule-intonations are almost corresponding to the emotional state and the eigen-intonation 
modeling method is efficient. 

7. Conclusion 

The F0 contour plays an important role in expressing the affective information of an utterance, 
and the most popular F0 modeling approaches are mainly using the concept of separating the 
F0 contour into a global trend and local variation. Mandarin is a tonal language, and the global 
trend of F0 contour is caused by speaker’s mood and emotion, which is focused on in this 
paper, and that is called affective intonation. Affective intonation is the concept that a speech 
with a certain affective intonation can express a corresponding emotion. Some works of 
speech prosody have proposed much qualitative analysis for affective intonations, and the 
paper has given out quantitative rule-intonation. 

In order to establish the model of affective intonation, an affective corpus of Mandarin 
was obtained with some limitation for affective research goal and all intonations were 
extracted from the original speeches. Then the eigen-intonation concept was proposed basing 
PCA on the affective corpus and all the intonations were transformed to lower-dimensional 
representations in the eigen sub-space spanned by eigen-intonations. A model of affective 
intonations was established in the sub-space and then was restored in the original space of 
intonation to form the rule-intonations. As a result, speech whose intonation is modified 
according to a certain rule-intonation can express the corresponding emotion, even the mixed 
emotion. 

The authors have performed experiments with the affective Mandarin corpus. And the 
experimental results are in line with the theoretical analysis and the intonation modeling 
approach proposed is proved to be efficient for representing the simple emotional and 
mixed-emotional intonation. Future work will focus on how to accurately give out the 
boundaries of the pure emotional regions in sub-space with eigen-intonation. 
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Manifolds Based Emotion Recognition in Speech 

Mingyu You*, Chun Chen*, Jiajun Bu*, Jia Liu*, and Jianhua Tao+ 

Abstract 

The paper presents an emotional speech recognition system with the analysis of 
manifolds of speech. Working with large volumes of high-dimensional acoustic 
features, the researchers confront the problem of dimensionality reduction. Unlike 
classical techniques, such as Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA), a new approach, named Enhanced Lipschitz 
Embedding (ELE) is proposed in the paper to discover the nonlinear degrees of 
freedom that underlie the emotional speech corpus. ELE adopts geodesic distance 
to preserve the intrinsic geometry at all scales of speech corpus. Based on geodesic 
distance estimation, ELE embeds the 64-dimensional acoustic features into a 
six-dimensional space in which speech data with the same emotional state are 
generally clustered around one plane and the data distribution feature is beneficial 
to emotion classification. The compressed testing data is classified into six 
emotional states (neutral, anger, fear, happiness, sadness and surprise) by a trained 
linear Support Vector Machine (SVM) system. Considering the perception 
constancy of humans, ELE is also investigated in terms of its ability to detect the 
intrinsic geometry of emotional speech corrupted by noise. The performance of the 
new approach is compared with the methods of feature selection by Sequential 
Forward Selection (SFS), PCA, LDA, Isomap and Locally Linear Embedding 
(LLE). Experimental results demonstrate that, compared with other methods, the 
proposed system gives 9%-26% relative improvement in speaker-independent 
emotion recognition and 5%-20% improvement in speaker-dependent recognition. 
Meanwhile, the proposed system shows robustness and an improvement of 
approximately 10% in emotion recognition accuracy when speech is corrupted by 
increasing noise. 
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1. Introduction 

Human-machine interaction technology has been investigated for several decades. Recent 
research has put more emphasis on enabling computers to recognize human emotions. As the 
most effective method in human-human and human-machine communication, speech conveys 
vast emotional information. Accurate emotion recognition from speech signals will benefit the 
human-machine interaction and will be applied to areas of entertainment, learning, social 
development, preventive medicine, consumer relations, etc. [Picard 1997]. 

 The general process of emotion recognition from speech signals can be formulated as 
below: extracting acoustic features such as Mel-Frequency Cepstral Coefficient (MFCC), 
Linear Predictive Cepstral Coefficient (LPCC) or low-level features [Ververidis et al. 2004], 
reducing feature dimensionality to an appropriate range for less computational complexity and 
recognizing emotions with trained SVM, Hidden Markov Model (HMM), Neural Network 
(NN) or other classifiers. 

 Dimensionality reduction methods can be grouped into two categories: Feature Selection 
(FS) and Feature Extraction (FE). An FS method chooses a subset from the original features, 
preserving most characteristics of the raw data. Ververidis [Ververidis et al. 2004] used the 
Sequential Forward Selection (SFS) method to select the five best features for the 
classification of five emotional states. However, feature selection needs complex computation 
to evaluate all the features. How to acquire the best feature set is another tough task. An FE 
method projects the original features to a completely new space with lower dimensionality 
through linear or nonlinear affine transformation. PCA, LDA and Multidimensional Scaling 
(MDS) are popular feature extraction techniques. PCA finds a set of the most representative 
projection vectors such that the projected samples retain the most information about the 
original samples. Lee [Lee et al. 2002] used PCA to analyze the feature set in classifying two 
emotions in spoken dialogs. Chuang [Chuang et al. 2004] adopted PCA to select 14 principle 
components from 33 acoustic features in the analysis of emotional speech. LDA uses the class 
information and finds a set of vectors that maximize the between-class scatter while 
minimizing the within-class scatter. MDS computes the low dimensional representation of a 
high dimensional data set that most faithfully preserves the inner products between different 
input patterns. LDA and MDS have also been employed to reduce the feature dimensionality 
for emotion recognition [Go et al. 2003]. Though widely used for their simplicity, PCA, LDA 
and MDS are limited by their underlying assumption that data lies in a linear subspace. For 
nonlinear structures, these methods fail to detect the true freedom degrees of the data. 
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 Recently, a number of research efforts have shown that the speech points possibly reside 
on a nonlinear submanifold [Jain et al. 2004; Togneri et al. 1992]. The classical ways of 
projecting speech into low dimensional space by linear methods are not suitable. Some 
nonlinear techniques have been proposed to discover the nonlinear structure of the manifold, 
e.g. Isomap [Tenenbaum et al. 2000] and LLE [Roweis et al. 2000]. Isomap is based on 
computing the low dimensional representation of a high dimensional data set that most 
faithfully preserves the pairwise distances between input patterns as measured along the 
submanifold from which they are sampled. The LLE method captures the local geometry of 
complex embedding manifold by a set of linear coefficients that best approximate each data 
point from its neighbors in the input space. These nonlinear methods do yield impressive 
results in some statistical pattern recognition applications [Jain et al. 2004]. However, they 
yield maps that are defined only on the training data points, so how to evaluate the maps on 
novel testing data points remains unclear. Lipschitz embedding [Bourgain 1985; Johnson et al. 
1984] is another nonlinear dimensionality reduction method which works well when there are 
multiple clusters in the input data [Chang et al. 2004]. It is suitable for emotion classification 
whose input data can be grouped into several emotions. 

 Most previous work on detecting emotional states investigated speech data recorded in a 
quiet environment [Song et al. 2004; Zeng et al. 2005], but humans are able to perceive 
emotions even in a noisy background. The nonlinear manifold learning algorithms mentioned 
above [Tenenbaum et al. 2000; Roweis et al. 2000; Bourgain 1985] try to discover the 
underlying reason of how humans perceive constancy even though the raw sensory inputs are 
in flux. Facial images with different poses and lighting directions were also observed to make 
a smooth manifold [Tenenbaum et al. 2000]. Similarly, speech with different emotions, even 
corrupted by noise, could also be embedded into a low dimensional nonlinear manifold, 
although none of the previous work has paid attention to this area. 

 In this paper, an enhanced Lipschitz embedding system is developed to analyze the 
intrinsic manifold of both emotional speech recorded in quiet environment and those corrupted 
by noise. Geodesic distance is expected to reflect the true geometry of the emotional speech 
manifold. With geodesic distance estimation, ELE is developed to embed the extracted 
acoustic features into a low dimensional space. Then, a linear SVM is trained to recognize the 
emotional states of the embedded results. In addition, other dimensionality reduction methods 
such as PCA, LDA, feature selection by SFS with SVM, Isomap, and LLE are implemented 
for comparison. 

The rest of the paper is organized as follows. Section 2 gives a brief description of the 
emotional speech recognition system. Section 3 presents the ELE algorithm. Experimental 
results are provided and discussed in Section 4. Section 5 concludes the paper and discusses 
future work. 
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2. System Overview 

 
     Figure 1. The Framework of Emotion Recognition from Speech 

Figure 1 displays the overall structure of this system. Clean speech from the database and 
speech corrupted by generated noise are both investigated in the system. The emotional speech 
analysis is done in two phases in this system: training and testing. In the training phase, 
64-dimensional acoustic features for each training utterance are obtained after feature 
extraction. Using ELE, a six-dimensional submanifold is then gained to embody the intrinsic 
geometry of the emotional training data. Finally, a linear SVM is trained by the embedded 
training data. In the testing phase, the feature extraction method also extracts 64-dimensional 
acoustic features for the testing data. The high-dimensional features are then projected into the 
six-dimensional manifold obtained in the training phase. The emotional state of the testing 
data is recognized by the trained SVM system. There are two feature spaces mentioned in the 
workflow: the original acoustic feature space, which is a high-dimensional space found before 
feature embedding and the embedded space, which is a low-dimensional space found after 
feature projection. 

3. Enhanced Lipschitz Embedding (ELE) 

A Lipschitz embedding is defined in terms of a set 1 2( { , , , })kR R A A A= L , where iA SÃ  
and 1

k
i iA S= =U . The subset iA  is termed the reference set of the embedding. Let ( , )d o A  

be an extension of the distance function d  from object o  to a subset A SÃ , such that 
( , ) min ( , )x Ad o A d o xŒ= . An embedding with respect to R  is defined as a mapping F such 

that 1 2( ) ( ( , ), ( , ), , ( , ))kF o d o A d o A d o A= L . In other words, Lipschitz embedding defines a 
coordinate space where each axis corresponds to a subset iA SÃ  and the coordinate values 
of object o  are the distances from o  to the closest element in each iA . 
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The distance function d  in Lipschitz embedding reflects the essential structure of data 
set. Due to the nonlinear geometry of the speech manifold, Euclidean distance fails to find the 
real freedom degrees of the manifold. Tenenbaum et al. [Tenenbaum et al. 2000] tried to 
preserve the intrinsic geometry of the data by capturing the geodesic distances between all 
pairs of data points, which is followed by the algorithm found in this research. 

In this new approach, the speech corpus is divided into six subsets 1 2 6{ , , , }A A AL  
according to six emotional states (neutral, anger, fear, happiness, sadness and surprise). Object 
o  of speech corpus is embedded into a six-dimensional space where the coordinate values of 
o  are obtained from the process below. 

(1) Construct a graph G connecting neighbor data points. The edge length is determined by 
the Euclidean distance between neighbor points. The detailed operation can be formulated 
as Equation (1). 

Initiate element ijm  in matrix M: 

264
1( ) : ,

:{ x y i j KNN
ij C elsem ∂= ∂ ∂- " ŒÂ=                                    (1) 

 Here, ijm  stands for the geodesic distance from point i  to j . ,i j KNNŒ  means that 
j  is among the k nearest neighbors of i . Specifically, k  is set to 10 in this method, 

which will be discussed further in the following section. i  and j  are data points in the 
64-dimensional feature space, 1 2 64[ , , , ]i x x x= L and 1 2 64[ , , , ]j y y y= L . C is a very 
large constant which guarantees that i  and j  are unconnected in the graph G consisting 
of speech data points. Matrix M actually corresponds to the neighborhood graph G whose 
edge only connects neighbor data points. 

(2) Reconstruct matrix M. Replace element ijm with the length of the shortest path between 
data point i  and j  in graph G. The shortest path between i  and j  can be found by 
tracing through the edges in graph G. 

min{ , }ij ij ik kjm m m m= +                            (2) 

 Matrix M contains the shortest path distances between all pairs of points in graph G 
constructed in Equation (1). 

(3) Get the coordinate values of }),,,({ 621 oooo L  from matrix M. The coordinate 
value of object o  to axis iA  is the distance from o  to the closest element in iA . 

min
r

r o
A

o m µ
µŒ

=                          (3) 

 



 

 

54                                                          Mingyu You et al. 

where om µ  is an element of matrix M. In this work, object o  is projected into a space 
with six axes 1 2 6{ , , , }A A AL  in accordance with the six emotional states. 

 

Figure 2. Training data in the embedded space. Different colors correspond to 
different emotions. 

 Figure 2 shows the six-dimensional embeddings of 64-dimensional training speech 
corpus in the six emotional states. Figure 2(a) reveals the first three dimensions of the 
embedded space and (b) displays the other three dimensions. Emotions neutral, anger and fear, 
denoted by points in red, green and blue, are easy to be separated in the first three dimensions. 
Happiness, sadness and surprise, denoted by light blue, yellow and pink are separable in the 
last three dimensions, though they are mixed in Figure 2(a). Actually, points of the same 
emotional state are highly clustered around one plane in the embedded space. The distribution 
property of data points in the six-dimensional space indicates that they can be easily classified 
into six clusters. 

In the proposed ELE technique, the distance matrix M is constructed on training data. 
The training data projection easily depends on the minimal distance to each emotional speech 
class. Similar to Isomap and LLE, how to evaluate new testing data is still unclear. It is 
impossible to reconstruct matrix M combining the testing data because it is time consuming. 
Based on the constructed matrix M, the authors propose an approach to compute the 
coordinate values of testing data t in the embedded space. 

   (1) Based on Euclidean distance, the k nearest neighbors 1 2({ , , , })kn n nL , with distances 

1 2{ , , , }kd d dL , of testing data t are found in the training data set. 
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(2) Get the coordinate values 1 2 6
1({ , , , } )k

n n n nv v v =L  of the k neighbors from matrix M. 
The k nearest neighbors come from the training data, so their coordinates can be 
found with the processes mentioned in the training phase. 

  (3) Compute the coordinate values of testing data t 1 2 6({ , , , })t t tL . In this approach, the 
testing data t makes the shortest paths to subsets through its neighbors. Therefore, the 
geodesic distances of t to subsets can be approximated by averaging the sum of “short 
hops” to its neighboring points and the geodesic distances of its neighbors. 

          
1

1 * ( )
k i

it d v
k ∂ ∂

∂=
= +Â                            (4) 

   where k is set to 10 in the proposed system. Instead of using the minimum value, 
average approximation defined in Equation (4) is adopted to be the distance 
measurement of t for a robust performance. 

4. Experiments 

4.1 Speech Corpus 

The speech database used in the experiment is from National Laboratory of Pattern 
Recognition, Institute of Automation, Chinese Academy of Sciences. The corpus is collected 
from four Chinese native speakers including two men and two women. Everyone reads 300 
sentences in six emotions involving neutral, angry, fear, happy, sad and surprise. The total 
amount of sentences is thus 300*6*4 = 7200. The speech corpus is sampled at 16 kHz 
frequency and 16-bit resolution with monophonic Windows PCM format. 

 The clean speech data were also suppressed by generated noise signal. Gaussian white 
noise and sinusoid noise generated by LabVIEW were both added to the speech database at 
various signal-to-noise ratios (SNR) as determined by Equation (5). Gaussian white noise and 
sinusoid noise appear frequently in both real and research environments. 

       
2

1

2
1

1 ( )
10lg

1 ( )

n
ii

n
ij

x
n

y
n

h
=

=

=
Â

Â
                           (5) 

Where ix  is a sample from the speech signal and iy  is a sample from the noise. Due 
to the variations of speech signals’ energy in different emotions, average SNR was measured 
among an individual’s utterances in all emotions. The SNRs of tested noisy speech were 
approximately 21dB, 18dB, 15dB, 11dB, and 7dB. Noisy speech with lower SNR was 
excluded, due to difficulty in extracting pitch from them. 
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4.2 Acoustic Features 

In this work, 48 prosodic and 16 formant frequency features were extracted, which were 
shown to be the most important factors in affect classification [Song et al. 2004; Zeng et al. 
2005]. The extracted prosodic features include: max, min, mean, median of Pitch (Energy); 
mean, median of Pitch (Energy) rising/ falling slopes; max, mean, median duration of Pitch 
(Energy) rising/ falling slopes; mean, median value of Pitch (Energy) plateau at maxima/ 
minima; max, mean, median duration of Pitch (Energy) plateau at maxima/ minima. 

 

 If | ( ) ' 0 |P x e- <  && ( ) '' 0P x > , then xŒ a plateau at minima 

 Else if | ( ) ' 0 |P x e- <  && ( ) '' 0P x < , then xŒ a plateau at maxima 

 

Where ( )P x  is the Pitch (Energy) value of point x , ( )'P x  is the first derivative and ( )''P x  
is the second. 

 Statistical properties of formant frequency including max, min, mean, median of the first, 
second, third, and fourth formant were extracted [Ververidis et al. 2004]. The acoustic feature 
analysis tool Praat is used to extract the Pitch, Energy and Formant of speech data. All 
features are based on a speech sentence. 

 In the experiment for clean speech, speaker-independent and speaker-dependent emotion 
recognitions were both investigated within the same gender. On the other hand, in the 
experiment for noisy speech, speaker-dependent emotion recognition was investigated. 10-fold 
cross-validation method was adopted considering the confidence of recognition results. 90% 
speech data were used for training and 10% for validation. 64-dimensional vectors of all 
speech data were projected into the six-dimensional space using the ELE method mentioned 
above. 

4.3 Emotion Recognition in Speech 

SVM, a powerful tool for classification, was introduced to classify the six emotions in this 
experiment. It had originally been proposed for two-class classification. In this system, 15 
one-to-one SVMs were combined into an MSVM (Multi-SVM), in which each SVM was used 
to distinguish one emotion from another. Final classification result was determined by all the 
SVMs with the majority rule. After the heavy tests of polynomial, radial basis function and 
linear kernels with different parameters, linear SVM (C=0.1) was selected for its acceptable 
performance and simplicity. 

In the experiment mentioned above, k=10 nearest neighbors were searched in 
constructing the distance matrix M and embedding the testing data. The impact of different k 
on the system performance was also investigated. Distribution of recognition accuracy from 
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clean speech on different k is shown in Figure 3. From the curve, influences made by k on 
male model are similar to that of female model. In both models, k =10 makes an acceptable 
performance with relatively low computational cost. 

 

Figure 3. Distribution of recognition accuracy on different k 

 In order to evaluate the classification results of ELE, linear dimensionality reduction 
methods such as PCA, LDA and feature selection by SFS with an SVM classifier were also 
included for comparison. 64-dimensional features were projected into the six-dimensional 
space in every method. Figure 4 demonstrates the comparative performance of the four 
methods in speaker-independent emotion recognition. Speaker-dependent implementation 
results of the four methods are shown in Figure 5. 

Due to acoustic variations that exist between different people, the average accuracy of 
the speaker-dependent emotion recognition (Figure 5) is about 10% higher than that of the 
speaker-independent (Figure 4). The classification rate of the male speaker is a little higher 
than the female, which probably indicates that women ’s facial expressions or body gestures 
convey more emotional information. In speaker-independent and speaker-dependent processes, 
the method based on ELE comes up with the best performance in almost all of the emotional 
situations. The relative improvement of the proposed method is 9%-26% in the 
speaker-independent system and 5%-20% when the system is speaker-dependent. While the 
classification rate of happiness is lower than other emotions in the speaker-independent 
system, the accuracy of happiness is comparable with the others in the speaker-dependent. 
What one can deduce from the results is that people express happiness in greatly varying 
manners. 

 



 

 

58                                                          Mingyu You et al. 

  
(a) Male                                    (b) Female 

Figure 4. Speaker-independent performance comparison among the four methods. 

  

(a) Male                                    (b) Female 

Figure 5. Speaker-dependent performance comparison among the four methods. 
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Considering the nonlinear submanifold that the ELE method involves, popular nonlinear 
dimensionality reduction approaches, such as Isomap and LLE, are implemented in this 
emotional speech recognition system for comparison. As mentioned before, Isomap and LLE 
only decide how to project the training data into a low dimensional manifold and leave the 
projection problem of novel testing data unsettled. However, in the emotion recognition 
system, all the training data and testing data should be embedded into low dimensional space. 
In the implementation of Isomap and LLE, the authors reconstruct the distance matrix M when 
facing the novel test data. Although it costs a lot of computation time, it will help attain 
Isomap and LLE’s best performance. Comparison with those results gives one a solid 
evaluation of the proposed method. 

Figure 6 and Figure 7 display the recognition accuracy of the six emotions in a 
speaker-independent and a speaker-dependent environment, respectively. From both figures, 
the method based on ELE still yields the best results in almost all of the emotional situations. 
In a speaker-independent environment, the proposed method outperforms the other two in the 
emotions angry and fear, especially. For the emotional speech recognition application, Isomap 
is more suitable than LLE. From Figure 6 and Figure 7, one can see that the recognition 
accuracy of Isomap is higher than LLE in most of the emotion states. Isomap is based on 
geodesic distance estimation and captures the global data structure when finding the low 
embeddings, while LLE focuses on preserving the local geometry of data points. ELE is 
somewhat similar to Isomap, which may explain why Lipschitz embedding and Isomap both 
outperform LLE in the experimental results. However, Isomap consumes more computation 
time than ELE. They both need the time-consuming operation of constructing the 
neighborhood graph, but the embedding step of Isomap is more complex. LLE conducts 
unbalanced performance when dealing with different basic emotions. For example, in Figure 
6(b), LLE only attains 10% accuracy with the emotion fear, while it achieves about 65% with 
sad. The unbalanced recognition rate will greatly reduce the system ’s robustness. LLE gets a 
poor recognition rate for the female speaker in the speaker-dependent environment shown in 
Figure 7(b). Isomap and LLE behave differently between the male and the female in the 
speaker-dependent environment, but the performance of ELE seems stable. Comparing the 
results of Figure 6 and Figure 7 with those of Figures 4 and 5, nonlinear methods ’ 
performance may not be better than the linear methods ’, although they require more 
complicated computation. It is shown that the method of preserving the geometry of the data 
set is crucial in nonlinear manifold reduction approaches. 
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(a) Male                                    (b) Female 

Figure 6. Speaker-independent performance comparison between three nonlinear 
methods. 

  
(a) Male                                    (b) Female 

Figure 7. Speaker-dependent performance comparison between three nonlinear 
methods. 
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In order to test the perception constancy of the proposed approach, the classification 
performance of ELE on noisy speech is also investigated. Classical methods like PCA, LDA 
and feature selection by SFS with SVM were included for performance comparison. Nonlinear 
methods, Isomap and LLE, were also implemented. 64-dimensional features were projected 
into the six-dimensional space in every method. In many other applications, researchers 
tended to conduct noise reduction first for the noisy speech data. However, traditional noise 
reduction methods still face several challenges: the method using microphone array cannot 
avoid the problem of increasing the number of microphones; in the case of the spectral 
subtraction (SS) method, the musical tones arise from residual noise and processing delays 
also occur. With these considerations, the authors investigated emotion recognition from noisy 
speech directly, instead of conducting noise reduction. Since facial images with different 
poses and lighting directions were observed to make a smooth manifold, speech corrupted by 
noise may also be embedded into a low dimensional nonlinear manifold. 

 Figure 8 demonstrates the six methods’ emotion recognition accuracy for clean speech 
and speech suppressed by Gaussian white noise. Performances with clean speech and speech 
corrupted by sinusoid noise are shown in Figure 9. Accuracies in both figures are the average 
recognition ratio of six emotions. From both figures, this system, based on Lipschitz 
embedding, shows outstanding performance with every SNR test data. Compared with the 
other methods, the accuracy of this method on Lipschitz embedding is stable both with speech 
corrupted by Gaussian white noise and with speech corrupted by sinusoid noise. Although 
there are differences among individuals, ELE is good at discovering the intrinsic geometry of 
the emotional speech manifold. The accuracy of LDA on clean speech is high, but drops 
quickly when noise increases. On the other hand, the accuracy of PCA can hardly be corrupted 
by louder noise, although its overall performance is poor. The Isomap Method also achieves 
acceptable accuracy in different experimental environments, except for the male speaker in 
speech corrupted by sinusoid noise. The performance of LLE is still disappointing. Keeping 
the local geometry by reconstructing from neighbors seems not to be appropriate for emotional 
speech recognition applications. From these figures, one can see an interesting phenomenon 
where the recognition accuracy of noisy speech is sometimes higher than that of clean speech. 
Features used to distinguish the different emotion states are strengthened by mild noise. 
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(a) Male 

 
(b) Female 

Figure 8. Performance comparison between linear and nonlinear methods on speech 
corrupted by Gaussian white noise.   in the x-axis represents clean speech signal.  

 
(a) Male 

 
(b) Female 

Figure 9. Performance comparison between linear and nonlinear methods on speech 
corrupted by sinusoid noise.   in the x-axis represents clean speech signal. 
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5. Conclusion and Future Work 

In this paper, the authors proposed an emotional speech recognition system based on a 
nonlinear manifold. Method ELE was presented to discover the intrinsic geometry of 
emotional speech including clean and noisy utterances. Compared with traditional approaches, 
including linear and nonlinear dimensionality reduction methods, this method came up with 
the best performance when dealing with almost all of the basic emotions in both 
speaker-independent and speaker-dependent processes. Even in a noisy environment, the 
performance of ELE was outstanding compared with the other methods and robust when 
different kinds of noise increase. Although LDA and Isomap also achieved plausible 
recognition results in the experiments, the proposed method balanced the classification rate in 
each emotion, which both of them lacked. The time consumption of Isomap was also higher 
than the proposed method. As another nonlinear method, LLE showed poor performance, 
meaning that preserving the intrinsic geometry of data corpus was vital. The key idea of the 
proposed method is to take the multiple classes of input patterns into consideration. 
Experimental results show that this idea is successful in emotional speech recognition 
applications. 

With the method based on Lipschitz embedding, the average recognition accuracy of the 
female speaker is 5% lower than that of the male. The underlying reason should be 
investigated in detail and a robust algorithm is expected. Besides, the essential reason 
explaining the phenomenon that the accuracy of noisy speech exceeds clean speech should be 
investigated. In order to achieve better performance, improvement will be made to the 
proposed method and multi-modal emotion recognition will be included in future work. 
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Emotion Recognition from Speech Using IG-Based 

Feature Compensation 

Chung-Hsien Wu , and Ze-Jing Chuang  

Abstract 

This paper presents an approach to feature compensation for emotion recognition 
from speech signals. In this approach, the intonation groups (IGs) of the input 
speech signals are extracted first. The speech features in each selected intonation 
group are then extracted. With the assumption of linear mapping between feature 
spaces in different emotional states, a feature compensation approach is proposed 
to characterize feature space with better discriminability among emotional states. 
The compensation vector with respect to each emotional state is estimated using 
the Minimum Classification Error (MCE) algorithm. For the final emotional state 
decision, the compensated IG-based feature vectors are used to train the Gaussian 
Mixture Models (GMMs) and Continuous Support Vector Machine (CSVMs) for 
each emotional state. For GMMs, the emotional state with the GMM having the 
maximal likelihood ratio is determined as the final output. For CSVMs, the 
emotional state is determined according to the probability outputs from the CSVMs. 
The kernel function in CSVM is experimentally decided as a Radial basis function. 
A comparison in the experiments shows that the proposed IG-based feature 
compensation can obtain encouraging performance for emotion recognition. 

Keywords: Emotional Speech, Emotion Recognition, Intonation Group, Feature 
Compensation 

1. Introduction 

Human-machine interface technology has been investigated for several decades. Recent 
research has put more emphasis on the recognition of nonverbal information, especially on the 
topic of emotion reaction. Scientists have found that emotional skills can be an important 
component of intelligence, especially for human-human communication. Although 
human-computer interaction is different from human-human communication, some theories 
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have shown that human-computer interaction essentially follows the basics of human-human 
interaction [Reeves et al. 1996; Picard 1997; Cowie et al. 2001]. Scientists have found that 
emotion technology can be an important component in artificial intelligence, especially for 
human-human communication [Salovey et al. 1990]. Although the human-computer 
interaction is different from human-human communication, some theories show that 
human-computer interaction basically follows the fundamental forms of human-human 
interaction [Reeves et al. 1996]. In this study, an emotion recognition approach from speech 
signals is proposed. This method consists of the definition and extraction of intonation groups 
(IGs), IG-based feature extraction, and feature compensation. 

 In past years, many researchers have paid attention to emotion recognition via speech 
signals. Several important recognition models have been applied to the emotion recognition 
task, such as Neural Network (NN) [Bhatti et al. 2004], Hidden Markov Model (HMM) 
[Inanoglu et al. 2005], Support Vector Machine (SVM) [Kwon et al. 2003; Chuang et al. 
2004], and others [Subasic et al. 2001; Wu et al. 2006; Silva et al. 2000]. Besides the 
generally used prosodic and acoustic features, some special features are also applied for this 
task, such as TEO-based features [Rahurkar et al. 2003]. Although lots of features and 
recognition models have been tested in these works, large overlaps between the feature spaces 
for different emotional states is rarely considered. Besides, the pre-trained emotion 
recognition model is highly speaker-dependent [Chuang et al. 2004; Wu et al. 2004]. 

To solve the above questions, this paper proposes an approach to emotion recognition 
based on feature compensation. The block diagram of the approach is shown in Figure 1. The 
feature extraction process is shared by the training and testing phase and is divided into two 
steps: intonation group (IG) identification and IG-based feature extraction. In order to identify 
the most significant segment, the intonation groups (IGs) of the input speech signals are first 
extracted. Following the feature extraction process [Deng et al. 2003], the prosodic feature 
sets are estimated for the IG segments. Then, in training phase, the extracted feature vectors 
are applied for compensation vector estimation. All the feature vectors compensated by 
compensation vectors are modeled by a Gaussian Mixture Model (GMM). Finally, the 
minimum classification error (MCE) training method [Wu et al. 2002] iteratively estimates all 
the model parameters. As a comparison, the compensated vectors are also used to train the 
Continuous Support Vector Machine (CSVM) model. In the testing phase, the extracted 
feature vectors are directly compensated using the compensation vectors. Then, the final 
emotional state is decided using the CSVM model. 

The rest of the paper is organized as follows. Section 2 describes the definition of 
Intonation Group and the extraction of the prosodic features. Then the feature compensation 
technique and MCE training is provided in Section 3. The model description of CSVM is 
shown in Section 4. Finally, experimental results and conclusions are drawn in Section 5 and 6, 
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respectively. 

Figure 1. Block diagram of the proposed emotion recognition approach 

2. IG-Based Feature Extraction 

2.1 Intonation Group Extraction 
The intonation group, also known as breath-groups, tone-groups, or intonation phrases, is 
usually defined as the segment of an utterance between two pauses. 

• Type 2
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Time
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Figure 2. An illustration of the definition and extraction of Intonation Groups. 
Four IGs are extracted from the smoothed pitch contour (the gray-thick 
line), but only three IGs (the first, second, and forth IGs) are selected for 
feature extraction
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As shown in Figure 2, the intonation group is identified by analyzing the smoothed pitch 
contour (the gray-thick line in Figure 2). Three types of smoothed pitch contour patterns are 
defined as the intonation group: 

 Type 1: a complete pitch segment that starts from the point of a pitch rise to the point of the 
next pitch rise, 

 Type 2: a monotonically decreasing pitch segment, 

 Type 3: a monotonically increasing pitch segment. 

For all identified IG segments, only those IGs that match the following criterion are selected 
for feature extraction: 

 the complete IGs with the largest pitch range or duration, 

 the monotonically decreasing or increasing IGs with the largest pitch range or duration, 

 the monotonically decreasing or increasing IGs at the start or end of a sentence. 

In Figure 2, the numbers before the slash symbol indicate the type of IG, and the symbol S and 
NS indicate “Selected” and “Not-Selected” IGs, respectively. Although there are four IGs 
extracted, only three IGs are selected for feature extraction. 

2.2 IG-Based Feature Extraction 
Emotional state can be characterized by many speech features, such as pitch, energy, or 
duration [Ververidis et al. 2005]. In this paper, the authors use the following 64 prosodic 
features as the input features for emotion recognition: 

 Speaking rate and relative duration (2 values). The relative duration is normalized with 
respect to the length of the input sentence. 

 Pause number and relative pause duration (2 values). The relative duration is normalized 
with respect to the length of intonation group. The same definition of relative position and 
relative duration are made in the following features. 

 Mean and standard deviation of pitch, energy, zero-crossing-rate, and F1 values (8 values). 

 Mean and standard deviation of jitter (for pitch) and shimmer (for energy) (4 values). 

 Maximum and minimum of pitch, energy, zero-crossing-rate, and F1 values (8 values). 

 Relative positions at which the maximal pitch, energy, zero-crossing-rate, and F1 value 
occur (4 values). 

 Relative positions at which the minimal pitch, energy, zero-crossing-rate, and F1 value 
occur (4 values). 

 Fourth-order Legendre parameters of pitch, energy, zero-crossing-rate, and F1 contours of 
the whole sentence (16 values). 
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 Fourth-order Legendre parameters of pitch, energy, zero-crossing-rate, and F1 contours 
inside the “significant segment,” which is the segment during the positions of maximum 
and minimum values (16 values). 

The definitions of jitter and shimmer are given in [Levity et al. 2001]. Jitter is a variation of 
individual cycle lengths in pitch-period measurement, while shimmer is the measure for 
energy values. The calculation of the jitter contour is shown as: 
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where variable if  indicates the i-th pitch value. The mean and standard deviation of jitter are 
calculated by equations 2 and 3, respectively. 
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where variable J  is a threshold of jitter used to avoid the outlier noise. 

3. Compensation Vector Estimation Using MCE 

The goal of feature compensation is to move the feature space of an emotional state to a 
feature space more discriminative to other emotional states. Given a sequence of training data 

1

Ne e
n n

xX , where 
e
nx  indicates the n-th feature vector that belongs to emotional state 

Ee. The feature vector extracted for each intonation group contains the prosodic features 
mentioned above. With the assumption of linear mapping between feature spaces in different 
emotional states, the vector compensation function is defined as: 

e f e e
n n e n e fx x p E x r ,                                          (3) 

where re f is a compensation vector of emotional state Ee with respect to the reference 
emotional state Ef. The conditional probability of the emotional state Ee given the input feature 
vector 

e
nx  is estimated as: 
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Minimum classification error (MCE) training based on the generalized probabilistic descent 
(GPD) method is applied in this study. The authors assume that the probability of a mapped 
feature vector e f

nx  given an emotional state Ec follows the distribution of a mixture of 
Gaussian density function: 

; ,e f c e f c c
c n m n m m

m
g x w N x ,                                   (5) 

where   ; ,c c
m mN  denotes the normal distribution with mean c

m , and diagonal 
covariance matrix c

m , and 
c
mw  is the mixture weight. To estimate the mapping coefficients 

and GMM parameters jointly by MCE training, the misclassification measure is defined as: 

1 1( ) ( ) log exp ( )
1e e e e c e

c e
D D g gX X X

C ,            (6) 

where Xe  denotes  a  set  of  data  compensated  from  the  emotional  state  Ee, 

 
e f

e n f e
xX , C is the number of emotional state, and  is a penalty factor.  The 

function c eg X  is the average likelihood estimated by the GMM of the emotional state Ec 
given Xe. Based on the GPD iterative theory, the parameters will approximate the global 
optimization using the iterative equation: 

1t t l ,                                                       (7) 

The loss function is defined as a sigmoid function of misclassification measure. And the 
gradient of loss function l  is the partial differential to the updated parameter. Using chain 
rule, the gradient of loss function can be divided into three components. The first component 
can be derived to a closed form 1e ea l l , and the second component is assumed as: 

1 ,
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Since there are four different parameters needing to be updated, the last component of the 
gradient with respect to each parameter is obtained as: 
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Given an input feature vector y, the recognized emotional state *
eE  is determined according 

to the following equation: 
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i e
e

e j j j e
j e

g y p E y r
E

g y p E y r
.                              (13) 

4. Emotion recognition using CSVM models 

Figure 3. An illustration of SVM. The vectors on the margins are the so-called 
“Support Vectors” 
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The SVM has been widely applied in many research areas, such as data mining, pattern 
recognition, linear regression, and data clustering. Given a set of data belonging to two classes, 
the basic idea of SVM is to find a hyperplane that can completely distinguish two different 
classes. The illustration of SVM model is shown in Figure 3. The hyperplane is decided by the 
maximal margin of two classes, and the samples that lie in the margin are called “support 
vectors.” The equation of the hyperplane is described as: 

0
1

N
i i

i
D x y k x x w ,                                            (14) 

where ik x x  is kernel function. Traditional SVMs can construct a hard decision 
boundary with no probability output. In this study, SVMs with continuous probability output 
are proposed. Given the test sample x�’, the probability that x�’ belongs to class c is P(classc|x�’). 
This value is estimated based on the following factors: 

 the distance between the test input and the hyperplane, 

1
D x w

R D x
w

 ;                                               (15) 

 the distance from the class centroid to the hyperplane, 

D xRR
D x D x

 ;                                                   (16) 

where x  is the centroid of the training data in a class; 

 the classification confidence of the class Pc, which is defined as the ratio of correctly 
recognized sentences number to the total sentence number. 

Finally, the output probability is defined as follows, in accordance with the above factors: 

1 exp 1
1 exp 1

c c
c

P P
P class x

R D x
D x

 .                          (17) 

The CSVM model with the highest probability determines the emotion output. 

5. Experimental Results 

In this experiment four kinds of emotional states: Neutral, Happy, Angry, and Sad were 
adopted. The emotional speech corpus was collected in an 8 KHz sampling rate and a 16-bit 
resolution. 40 sentences for each emotional state were recorded by 8 volunteers. 
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 In addition to the proposed prosodic features, the researchers also evaluated the 
recognition rate for Mel-Frequency Cepstrum Coefficient (MFCC) features, which are 
generally used in a speech recognition task. Both GMMs and CSVMs are applied in the 
experiments to compare with the baseline system, which is a GMM emotion recognition 
system without any preprocessing before feature extraction. 

5.1 Mixture Number Determination of GMM 
The number of mixtures in the GMM is first determined for each emotional state. Assuming 
that the number of mixtures is greater than 3, the average likelihood of all training data given 
the GMM with different mixture number is calculated. Figure 4 shows the plot of GMM 
likelihoods using both prosodic and MFCC features. Accordingly, the numbers of mixtures 
using prosodic features is set to 6, 5, 12, and 9 for neutral, angry, happy, and sad emotion, 
respectively. To evaluate MFCC features, the number of mixtures was also evaluated using the 
same method. The contours of the likelihood using MFCC features is shown in the lower part 
of Figure 4, and the mixture numbers for neutral, angry, happy, and sad emotions are set to 13, 
11, 18, and 20, respectively. 

 

Figure 4. Likelihood contours of GMMs with increasing mixture number. The 
upper part is the plot using prosodic features, and the lower part is the 
plot using MFCC features 



 

 

ˊˇ                                          Chung-Hsien Wu and Ze-Jing Chuang 

5.2 Experiments on SVM Kernel Function 
The kernel function defined in CSVM model is used to transfer a vector in original vector 
space to a new space with higher dimension. There are several popularly used kernel 
functions: 

 Simple dot 

,k x y x y                                                (18) 

 Vovk's polynomial 

, 1 pk x y x y                                            (19) 

 Radial basis function 

2 2, exp 2k x y x y                                      (20) 

 Sigmoid kernel 

, tanh ,k x y k x y                                        (21) 

In order to select the most appropriate kernel function, a primary test of emotion 
recognition using CSVM model with different kernel functions was applied. The primary test 
used both prosodic and MFCC features with feature compensation and intonation group. The 
result of emotion recognition is shown in Table 1. It is obvious that the Radial basis function 
is the most suitable kernel function for this test. 

Table 1. The primary test for different kernel functions. 
 Prosodic Feature MFCC 

Simple dot 59.00% 63.48% 
Vovk's polynomial 60.83% 90.12% 
Radial basis function 80.72% 95.12% 
Sigmoid kernel 73.50% 81.46% 

5.3 Experiments on Emotion Recognition using GMM 
Table 2 shows the results for emotion recognition using GMM, including the proposed 
approach and the baseline system. In the first column, the abbreviations FC, In, OO, and OC 
indicate the methods using feature compensation, the results from Inside, Outside-Open, and 
Outside-Closed tests, respectively. The first row in Table 2 shows four kinds of speech 
features from left to right: frame-based prosodic feature, frame-based MFCC feature, IG-based 
prosodic feature, and IG-based MFCC feature. 
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Table 2. Emotion recognition results using GMMs. The abbreviation FC indicates 
the method using Feature Compensation. The abbreviation In, OO, and OC 
indicate the results from Inside, Outside-Open, and Outside-Closed tests, 
respectively 

 Prosodic Feature MFCC Prosodic Feature+IG MFCC+IG 
Without FC (In) 74.33% 99.96% 76.32% 99.24% 
Without FC (OO) 49.78% 35.15% 51.07% 35.01% 
Without FC (OC) 55.95% 37.22% 59.90% 42.13% 
With FC (In) 80.72% 95.12% 83.94% 91.32% 
With FC (OO) 55.19% 41.27% 60.13% 49.10% 
With FC (OC) 61.03% 41.03% 67.52% 52.86% 

Although MFCC feature outperformed prosodic features in the inside test, prosodic 
features achieved better performance in both outside-open and outside-closed tests. The reason 
for this result is that the MFCC features contain a considerable amount of information from 
the speech content and the speaker. Emotional state modeling using MFCC features is highly 
related to speech content and speaker. Therefore, the GMM model can better classify the 
emotional states of the trained MFCC features, but cannot well characterize the unseen 
features in the outside test. In the proposed approach, MFCC features retain their higher 
recognition rate in the inside test, and the prosodic features obtain the best overall 
performance. From the above experiments, an increase in recognition rate for the approaches 
with IG-based feature extraction is about 5% to 10% compared to those without IG-based 
feature extraction. Furthermore, an improvement of 10% in recognition rate for the approaches 
with feature compensation is obtained compared to those without feature compensation. 

5.4 Experiments on Emotion Recognition using CSVM 
Table 3. Emotion recognition results using CSVMs. 

 Prosodic Feature MFCC Prosodic Feature+IG MFCC+IG 
Without FC (In) 78.23% 98.12% 81.19% 99.15% 
Without FC (OO) 50.83% 32.76% 53.79% 34.91% 
Without FC (OC) 58.10% 38.48% 60.94% 40.33% 
With FC (In) 83.10% 92.71% 86.08% 91.73% 
With FC (OO) 57.36% 40.08% 62.12% 47.60% 
With FC (OC) 62.55% 41.98% 68.00% 53.25% 

Table 3 shows the results for emotion recognition using CSVM. General speaking, the results 
of emotion recognition using CSVM are similar to the results using GMM. The proposed 
feature extraction method, IG-based prosodic feature with feature compensation, obtains the 
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best overall performance. As seen in the result shown in Table 2, the MFCC feature attains a 
better recognition rate than the prosodic feature in the inside test, but worse in the outside test. 
The difference between using CSVM and GMM is the suitability of CSVM in a data sparse 
situation. Since CSVM constructs the classification hyperplane using only few support vectors, 
it attains better classification results than other classification methods when the training 
corpus is insufficient. In the proposed method, the MFCC feature is extracted frame by frame, 
while the prosodic feature is extracted by a single sentence or IG segment. It is obvious that, 
under the same number of training corpora, the number of MFCC features is larger than the 
number of prosodic features. Accordingly, with the prosodic features, most results using 
CSVM are better than that using GMM. 

6. Conclusion 

In this paper, an approach to emotion recognition from speech signals is proposed. In order to 
obtain crucial features, the IG-based feature extraction method is used. After feature extraction, 
the feature vector compensation approach and MCE training method are applied to increase 
the discriminability among emotional states. The experiments show that it is useful to 
integrate IG-based feature extraction and feature compensation to emotion recognition. The 
result of emotion recognition using the proposed approaches with GMM is 83.94% for an 
inside test and 60.13% for an outside-open test, and the result with CSVM is 86.08% for an 
inside and 62.12% for an outside-open test. This result shows that the CSVM classification 
model is more suitable than GMM when performing the emotion recognition task. The authors 
also demonstrate that the prosodic feature is more suitable for emotion recognition than the 
acoustic MFCC features in speaker-independent task. 

The future work of this research is to improve the recognition accuracy for outside data. 
Though the feature compensation is useful for emotion recognition, the compensation vector is 
still speaker-dependent. An adaptation method will be useful to adapt compensation vectors 
for emotional speech with different speaking styles. 
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Emotional Recognition Using a  

Compensation Transformation in Speech Signal 

Cairong Zou* , Yan Zhao+, Li Zhao +, Wenming Zhen+, and  

Yongqiang Bao+ 

Abstract 

An effective method based on GMM is proposed in this paper for speech emotional 
recognition; a compensation transformation is introduced in the recognition stage 
to reduce the influence of variations in speech characteristics and noise. The 
extraction of emotional features includes the globe feature, time series structure 
feature, LPCC, MFCC and PLP. Five human emotions (happiness, angry, surprise, 
sadness and neutral) are investigated. The result shows that it can increase the 
recognition ratio more than normal GMM; the method in this paper is effective and 
robust. 

Key words: Speech Emotional Recognition (SER), GMM, Emotion Recognition, 
Compensation Transformation  

1. Introduction 

One of the natural goals for research on speech signals is recognizing emotions of humans  

[Chen 1987; Oppenheim 1976; Cowie 2001]; it has gained growing amounts of interest over 
the last 20 years. A study conducted by Shirasawa et al. showed that SER could be made by 
ICA and attain an 87% average recognition ratio [Shirasawa 1997; Shirasawa 1999] Many 
studies have been conducted to investigate neural networks for SER. Chang-Hyun Park tried 
to recognize sequentially inputted data using DRNN in 2003[Park et al. 2003], Muhammad, W. 
B. obtained about 79% recognition rate using GRNN [Bhatti et al. 2004]. Aishah Abdul Razak 
achieved an average recognition rate of 62.35% using combination MLP  [Razak et al. 2005]. 
Fuzzy rules are also introduced into SER such that an 84% rate has been achieved in 
recognizing anger and sadness [Austermann et al. 2005]. A number of studies in SER have 

                                                 
* Foshan University, Foshan, 528000, Guangdong, China 
+ Research Center of Learning Science, Southeast University, Nanjing, 210096, China 
 E-mail: zhaoli@seu.edu.cn 



 

 

80                                                          Cairong Zou et al. 

also been done with the development of GMM/HMM  [Rabiner 1989; Jiang et al. 2004; Lin et 

al. 2005]. However, in SER, the variations in speech characteristics, noise and individual 
differences always influence the recognition results. In addition, the methods above have 
always handled such problems in the preprocessing stage and have not been able to eliminate 
the influence effectively. Therefore, a valid solution has still not been proposed. In this paper 
a compensation transformation is introduced into an algorithm for GMM which operates in the 
recognition module. The experiments with five emotions (happiness, angry, neutral, surprise 
and sadness) show that the method in this paper is effective in emotional recognition. 

2. Descriptions of Emotion and Selection of Emotion Speech Materials 

Usually, emotions are classified into two main categories: basic emotions and derived 
emotions. Basic emotions, generally, can be found in all mammals. Derived emotions mean 
derivations from basic emotions. One viewpoint is that the basic emotions are composed by 
the basic mood. Due to different research backgrounds, different researchers have expressed 
different definitions of basic emotions. Some of the major definitions [Ortony et al. 1990] of 
the basic emotions are shown in Table 1. 

Table 1. Researches about basic emotions definition 
Researchers definitions 

Plutchik Acceptance, joy, anger, anticipation, 
disgust, fear, sadness, surprise  

Ekman/Friesen/ 
Ellsworth 

Anger, disgust, fear, joy, sadness, 
surprise 

James Fear, grief, love, rage 

Izard Anger, contempt, disgust, distress, fear, 
guilt, interest, joy, shame, surprise 

Oatley/Johnson 
-Laird 

Anger, disgust, anxiety, happiness, 
sadness 

Panksepp Expectancy, fear, rage, panic 
Weiner/Graham Happiness, sadness 

The common emotion classification which was proposed by Plutchik is shown in Figure 1e. In 
this paper, the authors only recognize five kinds of emotion. 

Anger 

Disgust 

Acceptance 

Fear 

Joy 

Anticipation 

Surprise 

Sadness 

Neutral 

Figure 1. Emotion wheel 
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This is a relatively conservative view of what emotion is so special attention has been paid to 
emotional dimension space theory. Three major dimensions (valence, arousal, and control) 
[Cowie 2001] are used to describe emotions. 

a. Valence: The clearest common element of emotional states is that the person is 
materially influenced by feelings that are valenced, i.e., they are centrally concerned 
with positive or negative evaluations of people or things or events. 

b. Arousal: It has been proven that emotional states involve dispositions to act in certain 
ways. A basic way of reflecting that theme turns out to be surprisingly useful. States are 
simply rated in terms of the associated activation level, i.e., the strength of the person’s 
disposition to take some action rather than none. 

c. Control: Embodying in the initiative and the degree of control. For instance, contempt 
and fear are in different ends of the control dimension. 

In this paper, two aspects have to be taken into consideration in the selection of 
emotional materials: 1. the sentence materials can ’t have any emotional tendency; 2. the 
materials should relate to five kinds of emotions (happiness, angry, surprise, sadness, and 
neutral). All recordings were carried out in a large, soundproof room with no echo interference 
using a high quality microphone, a SONY DAT recorder and a PC164 audio card at a 
sampling rate of l2KHZ with 16-bit resolution. Six speakers (three male and three female) 
who are good at acting spoke the sentences with happiness, anger, surprise and sadness, 
expressing each emotion three times. At the same time, the researchers made the speakers 
speak each sentence three times in a neutral way. In this way, 2430 sentences for experiments 
were compiled. 

3. Feature Extraction 

The emotional features of speech signals are always represented as the change of speech 
rhythm [Shigenaga 1999; Muraka 1998]. For example, when a man is in a rage, his speech rate, 
volume and tone will all get higher. Some characteristics of phonemes can also reflect the 
change of emotions such as formant and the cross section of the vocal tract  [Muraka 1998; 
Zhao et al. 2001]. As the emotional information of speech signals is more or less related to the 
meaning of the sentences, the distributing rules and construction characteristics should be 
attained by analyzing the relationship between emotional speech and neutral speech to avoid 
the effect caused by the meaning of the sentences. 

The global features used in this paper are duration, mean pitch, maximum pitch, average 
different rate of pitch, average amplitude power, amplitude power dynamic range, average 
frequency of formant, average different rate of formant, mean slope of the regression line of 
the peak value of the formant and the average peak value of formant [Zhao et al. 2001; Zhao 
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et al. 2000; Zhao et al. 2000]. The duration is the continuous time from start to end in each 
emotional sentence. It includes the silence, because these parts contribute to the emotion. 
Duration ratio of emotional speech and neutral speech was used as the characteristic 
parameters for recognition. The frequency of pitch was obtained by calculating cepstrum. 
Then the pitch-track was gained, and maximum pitch ( max0F ), average fundamental 
frequency ( 0F ), average different rate of pitch ( 0rateF ) of the envelopes of different 
emotional speech signals can all be extracted from it. 0rateF  mentioned here, refers to the 
mean absolute value of the difference between each frame of speech signal ’s fundamental 
frequencies. The authors used the differences in value of the mean pitch, the maximum pitch 
and the ratio of 0rateF  between the emotional and neutral speech as the characteristic 
parameters. In this paper, the average amplitude power ( A ) and the dynamic range ( rangeA ) 
are to be taken into account. To avoid the influence of the silent and noisy parts of the speech, 
the authors only took the mean absolute value of the amplitude into account and all the 
absolute values must above a threshold. The difference of average amplitude power and the 
dynamic range between the emotional and neutral speech was used for parameters of 
recognition. Formant is an important parameter that reflects the characteristics of vocal track. 
Formant was attained as follows [Zhao et al. 2001]. At first, LPC method was applied to 
calculate 14-order coefficients of linear prediction. Then, the coefficients were used to 
estimate the track’s frequency of the formant by analyzing the frequency average ( 1F ), 
frequency-changing rate ( 1rateF ) of the first formant, the average and the average slope of 
recursive lines of the first four formants. The authors use the difference of 1F , the last two 
parameters and the ratio of 1rateF  between the emotional and neutral speech as the 
characters in each frame. 

The structural features of time series for the emotional sentences used in this paper is 
maximum value of the pitch in each vowel segment, amplitude power of the corresponding 
frame, maximum value of the amplitude energy in each vowel segment, pitch of the 
corresponding frame, duration of each vowel segment and mean value and rate of change of 
the first three formants. For these parameters, the ratio between the emotional and neutral 
speech was used as the recognition characters. 

In addition to the above features, LPCC, PLP, MFCC are also taken into consideration 
for precise decision. Figure 2 is the module for feature extraction. 
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Figure. 2 the module for feature extraction 

4. Speech Emotion Recognition based on GMM 

GMM can be described as follow: 
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The GMM probability function of a speech signal with T frames 1 2( , , , )TX x x x= v v vL  can be 
denoted as: 
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1
( | ) log ( | ) log ( | )

T

t

t
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According to the statistical characteristic of likelihood probability (LP) output by 
Gaussian Mixture Model, the likelihood probability with the best model is generally bigger 
than that of the other GMM, but due to the existence of variations in speech characteristics 
and noise, some frames’ LP shows a best model that is smaller than that of the others, so the 
decision may be incorrect. In order to reduce this error recognition rate, some transformation 
should be introduced to compensate for the likelihood probability, that is, raise the probability 
with the best model and reduce the probability with the other models. Therefore, a nonlinear 
compensation transformation is proposed in this paper to solve this problem. 

5. Compensation Transformation for GMM 

The transformation must satisfy three conditions as follow: 

1. The difference of the output probability in different time should be reduced, i.e. 
increase 1SD  ; 
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2. The difference of the output probability in the same time with different emotion should 
be increased, i.e. increase 2SD ; 
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3. The relative value of the output probability should not be changed. 

Assuming that x
r

 is a feature vector, 0l  is the best model corresponded to x
r

, and 1l  
is the other model that is mismatched. If the transformation is linear: 

[ ( | )]t if p x lv = ( | )t iap x bl +v  

0 1[ ( | )] [ ( | )]f p x f p xl l-v v
0 1[ ( | ) ( | )]t ta p x p xl l= -v v ,                       (6) 

where ,a b const= . Here set 0a > : 

0 1( | ) ( | )p x p xl l≥ €v v
0 1[ ( | )] [ ( | )]f p x f p xl l≥v v ,                           (7) 

0 1( | ) ( | )p x p xl l£ €v v
0 1[ ( | )] [ ( | )]f p x f p xl l£v v .                           (8) 

From (7) ~ (8), it is obvious that the linear transformation cannot increase or reduce the 
LP of the output. The compensation could not be linear transformation, so a nonlinear 
compensation transformation is proposed; the detailed steps are described as follow: 
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1. Compute the probability of the t-th feature vector, where N is the number of the emotions, 
and T is the number of the frames. 

( | )t ip x lv ( 1, 2,... )i N= , ( 1, 2,... )t T=  

2. Normalize ( | )t ip x lv . 
( | )

( | )
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3. Compute the output LP. 
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where 2 ~ 5n = , 1b >  and b  is always set close to 1. 

4. Introduce the compensation: compute the average probability with K former frames. 
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In general, K  also has an influence on output probability, here set 2 ~ 5K = . 
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6. Calculate the joint probability for each model. 
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7. Make the decision of which emotion X  belongs to. If ( , ) max ( , )j i
i

S X S Xl l= , then 
X belongs to jl . 

Assuming two emotions: 0l , 1l  and two vectors: 21, xx
rr

.Set 2T = . The output 
probability without transformation: 
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When 0 1( , ) ( , )S x S xl l>v v , 
i

x
r

(i=1, 2) belongs to 0l , otherwise belongs to 1l . The output 
probability with transformation: 
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1 1( , )S x lv
and 2 1( , )S x lv  are similar to (17)~(18). The decision rule is the same as the one 

without transformation. 
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1. 10 20 1p p= = , (16) and (19) can be changed into (20) ~ (21): 
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where a  is small enough to ignore the influence of the second and the third item in (22). 
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Compared to (20), it can be seen that the LP with transformation is increased. 

2. 10 21 1p p= = , (16) and (19) can be changed into 
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The first and the second item in (26) 
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Compared to (24), (27) has little effect in increasing or reducing probability, except according 
to the convention: If 1 0 2 0( | ) ( | )P x P xl l>v v , then 1 1 2 1( | ) ( | )P x P xl l<v v . So 20 211, 1d d= = - , 
the first and third items in (26) are positive, the second item is far smaller than the first one. 
Even if the second and the fourth items were negative, the output probability with the best 
modal would still be bigger than the one with other modals. 10S  is always bigger than 01S , 
and a  is small enough to ignore the fourth item. When the LP of 1x

r
 with 0l  and LP of 

2x
r

 with 1l is big, the compensation transformation can enlarge the distance between these 
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two probabilities. 

3. 11 20 1p p= = , the analysis is similar to Derivation 2. 

6. Experiment Results 

In this paper, six people (three male and three female) have taken part in a recording test. 
They read 27 sentences using five kinds of emotion (happiness, angry, neutral, surprise and 
sadness), every sentence was read three times, and 2430 sentences were taken as the 
experiment materials. 

GMM with compensation and GMM without compensation are compared first. In the 
first experiment, globe features and structural features of the time series were utilized. The 
result is shown in Table 2. In the second experiment, 12 LPCC, 12 MFCC, 16 PLP were 
utilized. The result is listed in Table 3. Set 3,K n= = 0.01iia const∫ =  

Table 2. the result of the experiments between compensated and uncompensated 
emotion recognition (globe features and structural features %) 

Emotion Uncompensated GMM Compensated GMM 
Anger 77.6 86.2 
Sadness 84.5 99.8 
Happiness 73.4 80.0 
Surprise 75.8 79.3 
Neutral 71.6 77.1 

Table 3. the result of the experiments between compensated and uncompensated 
emotion recognition (LPCC, MFCC, PLP %) 

Emotion Uncompensated GMM Compensated GMM 
Anger 76.3 84.2 
Sadness 82.1 97.8 
Happiness 79.6 88.3 
Surprise 77.8 82.1 
Neutral 80.4 87.0 

 The experiments indicate that the compensation transformation can improve the 
recognition rate effectively. Angry recognition rate increased 8.2%, sadness recognition rate 
increased 15.5%, and happiness recognition rate increased 8.5%, surprise recognition rate 
increased 4%, and neutral recognition rate increased 6%. The selection of , , tiK n a  also can 
improve recognition rate. Here, the authors only selected a set of parameters to explain the 
effectiveness and robustness of the method. Due to the compensation for GMM, the 
probability of the output has been stabilized and 2SD has been increased. 

Table 4 shows another experiment which compared three methods:  KNN, NN  [7] and 
compensated GMM (CGMM). 
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Table 4. KNN, NN, Compensated GMM (%) 
Emotion KNN NN CGMM 
Anger 76.0 82.3 86.2 
Sadness 82.3 86.0 99.8 
Happiness 70.5 71.4 80.0 
Surprise 72.2 64.0 79.3 
Neutral 78.9 70.6 77.1 

Compared to KNN, the recognition rate of anger using CGMM increased 10.2%, sadness 
increased 17.5%, happiness increased 7.5%, and surprise increased 7.1%, while neutral 
decreased 1.7%. This decrease doesn ’t effect the improvement of the whole recognition rate. 
Compared to NN, the average recognition rate also has been increased about 9.7% using 
CGMM. The results indicate that CGMM also can improve some other methods to a certain 
degree. 

7. Conclusion and Future Works 

In this paper, a method based on GMM with compensation transformation is proposed. In 
speech emotion recognition, the variations in speech characteristics and noise always 
influence the recognition results. The common method to solve this problem is conventional 
preprocessing. As the method in this paper deals with this problem in the recognition stage, 
the likelihood probability of the output with different models has been increased or decreased 
to reduce these influences. According to a simple analysis, this compensation transformation 
can reduce this impact effectively, and the examination results also proved it has better 
emotion recognition rates. However, the recognition rate of happiness and surprise is still not 
ideal, and the test materials are too few to further experiments. In further research, the authors 
will extend the experiment sentences first, then do some studies, such as adding more types of 
noise and the consideration of gender. 
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The Influence of Reading Styles on  

Accent Assignment in Mandarin1 

Mingzhen Bao*, Min Chu+, and Yunjia Wang# 

Abstract 

This paper investigates the influences of three different reading styles ( Lyric, 
Critical and Explanatory) to the distribution tendency of sentential accents 
(classified as rhythmic accent and semantic accent). The comparison among 
multiple styles is performed in three research domains: high-level constructions, 
low-level phrases and disyllabic prosodic words. One finds that the assignment of 
semantic accents shows some differences across reading styles, while the 
assignment of rhythmic accents does not. Furthermore, the larger the speech unit 
studied, the stronger the influence is observed, i.e. most differences in the 
assignment of semantic accents are shown in high-level constructions, some are 
shown in low-level phrases, and none are shown in prosodic words across the three 
reading styles. 

Compared with previous studies, the allocation scheme of semantic accents in 
the Explanatory style is close to that in the neutral style, i.e. in high-level 
constructions, it has a final-accented tendency in theme + rheme (TR), predicate + 
object(PO) and subject + predicate(SP) constructions, and uniform distribution in 
adjunct + head constructions. In low-level phrases, the Explanatory style exhibits 
an initial-accented tendency in adjunct + head phrases, but a final-accented 
tendency in subject + predicate (SP) phrases and predicate + object (PO) phrase. 
The Critical style is adopted to make comments, where semantic focal points are 
normally on the core subjects and their actions. As a result, more accents are 
allocated to the subject part in the AS constructions and to the predicate part in the 
PO constructions. Accordingly, in low-level phrases, more accents go to the heads 
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in AN phrases and the predicates in SP phrases. The Lyric style helps to express 
personal emotions in a rhythmic way [Wang 2000]. Such poetry-like rhythm 
weakens the effect of syntactic constrains, and in many cases, leads to an even 
distribution of semantic accents in high-level constructions and dense distribution 
near prosodic boundaries. 

Keywords: Reading Style, Sentential Accent, Distribution Tendency, Mandarin  

1. Introduction 

Stress has been defined as “the degree of force” in terms of speech production [Jones 1976] or 
as “the degree of loudness” from the viewpoint of speech perception [Trager and Smith 1951]. 
It has been ranked into different levels of hierarchy, on the top of which is the most salient one, 
the sentential accent [Zhong and Yang 1999]. In natural speech, sentential accent is distributed 
to a part of a sentence which is perceived to be more salient than the rest of the sentence. 
Within the salient part, the sentential accent is assigned to smaller units, first to phrases and 
words and then to specific syllables. In stress languages, such as English, each word has a 
primary stress. When the sentence accent is assigned to a polysyllabic word, it is usually 
obtained by the syllable that holds the primary stress. In tonal languages, such as Mandarin, 
word stress is usually said to be less salient. According to Chinese phonologists, syllables with 
four normal tones are all stressed, compared to neutralized syllables. However, from the 
viewpoint of phonetics, the prominent degree of the “phonologically stressed” syllables varies 
in polysyllabic words, phrases or sentences. Chao [1979] argued that, in a prosodic unit (a 
word or a phrase) followed by a pause, the final syllable was primarily accented, the initial 
one was secondly accented and others in between were weaker than these two. Lin et al.’s 
[1984] experimental study indicated that in most isolated disyllabic words, the final syllables 
were stressed more heavily than the initial ones. 

Sentence accent has been described differently in previous works due to the definition 
used in the given work. All of these definitions can be classified into two groups if the 
function of the accent in delivering messages is considered the main factor. Generally 
speaking, normal accent defined by Newman [1946] and Zhao [1933], or grammar accent 
defined by Bolinger [1972] and Chomsky [1968], reflecting syntactic or prosodic structures, is 
predictable with grammatical [Ye 2001] or phonological rules [Luo and Wang 1981]. 
Contrastive accent, emphatic accent [Lehiste 1970] and logical accent, expressing speaker ’s 
special intentions, are hard to be predicted without a deep understanding of the context. 

Recently, Chu, Wang, and He studied the accent assignment in Mandarin experimentally. 
First, they proposed to classify the accents in Mandarin into rhythmic accent (RA) and 
semantic accent (SA) [Chu et al. 2003]. The former serves the function of illustrating the 
rhythmic structure of an utterance and the later of making the speaker ’s opinion or intention 



 

 

The Influence of Reading Styles on Accent Assignment in Mandarin         93 

 

prominent. In their works, two experiments were conducted in a speech corpus that contained 
300 isolated sentences. In the first experiment, three experts went through the 300 sentences 
together to identify all accented syllables in the corpus and tagged them as either semantically 
or rhythmically accented. In order to validate such a classification, they conducted a second 
experiment. Sixty Mandarin native speakers participated in the experiment. In the results, a 
relative prominent-level was obtained for each syllable in each sentence. When the results 
from the two experiments were compared, they found that the syllables tagged as the 
semantically accented had significantly higher prominent-level than those tagged as 
rhythmically accented. Both types of accented syllables had much higher prominent-level than 
the unaccented syllables. Furthermore, some syllables judged as to have both the semantic and 
the rhythmic accents in the first experiment achieved the highest prominent-level in the 
second experiment. All these results supported the separation of semantic accent from 
rhythmic accent. In the follow-up studies [Wang et al. 2003a, b], they found that the rhythmic 
accent tended to be assigned to the final syllable within a prosodic word and a prosodic 
phrase , while no patterns were found for the distribution of semantic accent. Later, in a study 
of semantic accents alone, Wang et al. [2003c] found that the distribution tendency of 
semantic accent changed with the speech unit studied. For example, in a low-level phrase or a 
prosodic word, semantic accent was often found in the modifiers when it had a modifier-head 
structure. However, such a tendency did not show up in high-level constructions. 

Conclusions in [Chu et al. 2003; Wang et al. 2003a, b, c] were drawn from the 
observation of independent sentences read with a neutral intonation. In this paper, the authors 
extend the study into affective speech. The accent assignment tendency is compared among 
three reading styles to find out whether reading styles have any influence on accent 
assignment in the research domains of prosodic words, low-level phrases and high-level 
constructions. 

2. Data Preparing and Processing 

2.1 The Speech Corpus 

Seven articles were selected for this study, in which, two were lyric essays by famous Chinese 
writers, two were remarks on a newly-published novel and a newly-drawn policy, and three 
were objective illustrations about the weather, the stock market and a new law, respectively. 
These articles were read by the same voice talent who also read the independent sentences 
studied in Wang, Chu, and He’s works. Unlike previous recording sessions where the voice 
talent was asked to read sentences with a neutral intonation, this time, she was requested to 
choose a proper reading style for each type of article according to her understanding of these 
articles. According to the voice talent, she used different reading styles for the three groups of 



 

 

94                                                        Mingzhen Bao et al. 

 

articles. These styles could be discriminated by listeners in an informal listening test though 
they could not give a clear linguistic term for each type. In this paper, the authors name the 
three reading styles as Lyric, Critical and Explanatory, respectively. The difference in speech 
rate shown in Table 1 is an acoustic support for the division of the reading styles [Fackrell et 
al. 2000]. The Lyric style was presented the slowest, the Critical style the fastest, and the 
Explanatory style in the middle. 

Table 1. Comparison of the speech rates of the three reading styles. 
Reading Style Lyric Criti. Exp. 

Total num. of syllables 897 697 1450 
Speech Rate (char per minute) 210 250 230 

2.2 Annotation of Accents 

The locations and types of accents within the seven articles were annotated by two graduate 
students majoring in linguistics, who were interested in phonetics. After listening to the 
recordings, they were asked to identify all accents in the speech corpus and assign a type 
(rhythmic, semantic or both) to each with the same guidelines (listed in Table 2) that were 
used in Wang, Chu, and He’s studies on accent assignment in neutral sentences [Chu et al. 
2003; Wang et al. 2003a, b, c]. 

Table 2. Guidelines for identifying accents and their types 
1. Annotators can listen to a sentence as many times as they want; 

2. At least one accent should be labeled in each sentence, and it can be 
semantically accented, rhythmically accented or both; 

3. Multiple accents are allowed in one utterance and there is no hard threshold 
for the maximum number per utterance. 

Before the formal annotation, the two annotators were trained with a subset of materials 
annotated in previous studies [Chu et al. 2003; Wang et al. 2003a, b, c]. The training took two 
steps, annotation and discussion to improve the across-person agreement. First, they annotated 
accents independently according to the definitions and guidelines given in [Chu et al. 2003]. 
The initial agreement-ratio on both the location and the type of accents was only 56.4%. Then, 
they discussed all of the differences and got access to the annotation obtained in the previous 
works. After the discussion, they achieved agreement on most of the different cases. Finally, 
they labeled another subset of the isolated sentences independently. This time, the 
agreement-ratio increased to 67.6%. Such a training cycle was repeated three times. The first 
training session brought about an 11% increase in agreement. However, the second and the 
third sessions did not bring much improvement. The highest agreement-ratio achieved was 
about 70%. Since the agreement-ratio was not as high as expected, the authors will keep the 
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discussion part for the annotation of the new corpus. The two annotators labeled accents in the 
seven articles independently first and discussed cases where different opinions appeared. For a 
few cases where they could not agree with each other, a third person was invited to make the 
final decision. As a result, each syllable in the seven articles obtained one of the four accent 
labels, UA — unaccented, SA — semantic accented, RA — rhythmic accented, SRA — 
semantic and rhythmic accented. 

2.3 Annotation of Syntactic Structure 

In Chinese, many syntactic structures in the sentences level can be used recursively to 
construct phrases and words. In previous works, it was found that the accent assignment has 
different tendencies in different levels of constituents in the neutral reading style. In this work, 
the accent assignment under different reading styles is studied in the same three levels, 
including the high-level construction, the low-level phrase and the prosodic word. The anchors 
for the three constituents are the top chunks, the prosodic words, and the syllables in a 
sentence. 

2.3.1 High Level Construction 

The largest speech unit the authors are interested in is the high-level construction, and the 
anchor for identifying a high-level phrase is the top chunk of the sentence. First, a sentence is 
chunked into several linearly succeeding components, including   sentence adjunct 
!subject adjunct; " subject; #predicate adjunct; $predicate;  object adjunct; and 
%object. Then, immediate constructions that are formed by these chunks are identified and 
labeled as one of the following structures: !TR — theme + rheme; "PO — predicate + 
object; #SP — subject + predicate; $AO — adjunct + object; %AS — adjunct + subject; 
 AP — adjunct + predicate. The authors will discuss which parts of certain types of 
construction tend to be accented in different reading styles. An example of the top chunk level 
annotation is shown in Figure 1 (a). 

2.3.2 Low Level Phrase 

The second speech unit investigated was the low-level phrase, the anchor of which is prosodic 
words in a sentence. The authors wanted to find out whether the rules for accent assignments 
in low-level phrases are the same as those used in high-level constructions, and whether 
speaking styles exert the same effect on them. First, the authors scanned each prosodic word in 
a sentence from left to right and identified the immediate carrying phrase of the target word. 
Then, the structure of this phrase was analyzed, and the target word was labeled with its role 
in the carrying phrase. Seven types of structures were annotated for the low-level phrases, 
which are  SP — subject + predicate !AN — attribute + noun head; " PC — predicate + 
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complement; #AV — adverbial + verb head; $PO — predicate + object; &CO — 
coordinative construction; % PP — preposition phrase. The role of each word in its immediate 
carrying phrase was labeled as the “attribute in AN” or the “verb in AV”, etc. An example is 
given in Figure 1 (b) where the prosodic word “!"” is an “attribute in AN” in its carrying 
phrase “!"#$%&'” and the prosodic word “#$%” is the “attribute in AN” in its 
carrying phrase “#$%&'”. By comparing the frequency of how often the “attribute in 
AN” receives accents with that of the “head in AN”, one can figure out the accent assignment 
tendency in AN phrases. 

(a) High level construction 

(b) Low level phrases 

 

 

 

 

 

 

 

 

 

(c) Disyllabic prosodic words 

 

!"#$%    /  &'  /  ()  /  *+%,-%/  ./ 

Subject Adjunct / Subject  / Predicate/ Object Adjunct  / Object 

AS                                  AO 

PO 

TR 

attri.     attri.     head    pred.      attri.    attri.       head 
in AN   in AN    in AN   in PO      in AN   in AN      in AN 

 

   

 
 
              AN 

 

!"   #$%     &'   ()     *+%   ,-%     ./                    

AN 

AN 

AN 

PO 

!    " /#$%/ &    '  / (    )/*+%/  ,-%/ .    / 

  AN   /   -   /  AN      /    PC  /   -   /    -   /   AN   / 

Figure 1. An example of structural labeling in the sentence “ !"#$%&'
()*$+,$-.”/“Tufty shrubs in the upland cast spotted 
irregular shadows.”01 
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2.3.3 Prosodic Word 

The third level of speech unit studied was the prosodic word. In this paper, the authors only 
focus on disyllabic words since they are the most common Chinese words. The same seven 
types of syntactic structure used in Section 2.3.2 are annotated for words and an example is 
shown in Figure 1 (c). 

In the next section, the authors compare accent assignment tendency in the three level 
units among the three reading styles respectively. 

2.4 Indicators for Accent Assignment 

Since no limitation has been put on the total number of accents per sentence, it is possible that 
more than one word in a top chunk is accented. Therefore, the comparison between the 
numbers of accented words in the two immediate chunks of a high-level construction does not 
tell the accent tendency directly ( i.e. which part of the construction tends to receive accents). 
Similarly, in low-level phrases, the total number of words in one type of constituents is often 
different from that of the other type of constituents. For example, in Figure 1(b), there are 4 
“attri. in AN” while only two “head in AN” in low level phrases. Thus, the ratio of the number 
of accented words in “attri. in AN” class to that in the “head in AN” class does not directly 
reflect the accent tendency either ( e.g., the ratio is 2:1, if accents are distributed normally 
among all words). 

To describe the accent tendency in a better way, an accent indicator (AI) is defined as the 
ratio of the number of obtained accents to the expected number of accents in a certain class of 
words as in (1). It shows the possibility for a class of chunks or words to obtain sentential 
accents. 

AI=Nr / Np                                                             (1) 

Nr is the number of accents obtained by a class of words and Np is the expected number of 
accents for the class under the assumption that all accents are distributed normally among all 
syllables in the corpus. Np is calculated by (2) and (3). 

Np = Nw  P                                                             (2) 

P= Ns / Na (3) 

Na is the number of syllables in the corpus, while Ns is the number of accented syllables in it. 
P indicates the possibility of a syllable to obtain a sentential accent under the assumption of 
normal distribution. Nw is the number of syllables in a class studied. 

 AI>1 means that the possibility for the corresponding class to obtain accents is above the 
average, i.e. it tends to obtain more sentential accents. AI < 1 means the opposite and AI = 1 
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means it has the average possibility of being accented. 

 To illustrate the accent tendency within a certain construction, i.e. to answer the 
question of which part between the two immediate constituents of a construction is more often 
to be accented, an accent indicator ratio (AIR) is defined as the ratio of the AI of the initial 
component to that of the final. AIR>1 describes an initial-accented tendency, while AIR<1 
argues for a final-accent tendency. AIR=1 means the two components within the construction 
have equal chance to be accented. 

 Since the initial parts of disyllabic words always share the same number of syllables as 
the final parts, AI is not needed in studying disyllabic words. AIR is defined as the ratio of the 
number of accented syllables in the two parts for a given word category. 

3. Results and Analyses 

The AI and AIR described in subsection 2.4 are calculated for the three prosodic units and the 
results for the three reading styles are compared in subsection 3.1, 3.2 and 3.3, respectively. 

3.1 Accent Assignment in High Level Constructions 

AIs of semantic accents (SA) in the six types of sentence constructions are calculated for the 
three reading styles in Table 3(a). The corresponding AIRs in each type of construction are 
given in Table 3(b). From the two tables, a weak final-accented tendency ( AIR<1) is observed 
in TR, PO and SP constructions in most reading styles, i.e., when semantic accents are 
assigned to these constructions, it often goes to the rhemes, objects, or predicates. This 
observation tallies with the previous findings in neutral speech. Some exceptions lie in the TR, 
SP constructions under the Lyric style and the PO construction under the Critical style, where 
semantic accents are uniformly distributed. 

When looking into the constructions with adjunct + head structures (AO, AS and AP), 
one finds that semantic accents have different tendencies under different reading styles. For 
example, adjuncts in noun-head phrases (AO and AS) tend to be accented in the Critical style, 
while, in the Lyric style, all heads tend to be accented. The Explanatory style shows no strong 
tendency in both AO and AP phrases and has initial-accented tendency in AS phrases. 
Compared with the results in the previous study of neutral speech, The Explanatory style 
shows most similarity tendency to the neutral style. 

AIs and AIRs of rhythmic accents (RA) in the six constructions are calculated for the 
three reading styles in Table 3(c) and (d). This shows that the distribution tendencies of 
rhythmic accents are quite similar across the three reading styles in most construction types, 
i.e. they are evenly distributed in TR and SP constructions and final-accented in AO, AS and 
AP constructions. It is worth noticing that most AIRs in AO and AS constructions are smaller 
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than those in AP, which indicates chunks within AO and AS constructions are more likely to 
be tightened up into one prosodic unit than those of AP. This conclusion is consistent with the 
one drawn in [Chu et al. 2003]. The main exceptions in rhythmic accent assignment are in PO 
constructions. There is a tendency towards final-accented constructions appearing in the Lyric 
and the Critical styles, yet a tendency towards initial-accented constructions in the 
Explanatory style. 

Table 3. Accent indicators in six types of constructions under three reading styles 
(a) Accent indicators for semantic accents 

Reading styles 
Construction type Chunk property 

Lyric Criti. Exp. 

Theme 1.00 0.80 0.90 
TR 

Rheme 1.00 1.10 1.10 

Predicate 0.50 1.00 0.60 
PO 

Object 1.30 1.10 1.20 

Subject 1.10 0.70 0.80 
SP 

Predicate 1.20 1.00 1.10 

Adjunct 1.05 1.20 1.23 
AO 

Object 1.35 1.06 1.17 

Adjunct 0.81 1.13 0.69 
AS 

Subject 1.07 0.47 0.97 

Adjunct 0.65 1.07 1.00 
AP 

Predicate 0.64 0.92 0.99 

(b) Accent indicator ratios for semantic accents 

Reading styles 
Construction type 

Lyric Criti. Exp. 

TR 1.00 0.73 0.82 

PO 0.38 0.92 0.50 

SP 0.92 0.70 0.73 

AO 0.78 1.12 1.04 

AS 0.75 2.41 0.72 

AP 1.02 1.16 1.01 
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(c) Accent indicators for rhythmic accents 

Reading styles 
Construction type Chunk property 

Lyric Criti. Exp. 

Theme 1.00  1.00 1.00 
TR 

Rheme 1.00  1.00 1.00 

Predicate 0.70 0.70 1.20 
PO 

Object 1.20 1.30 1.00 

Subject 1.20 0.60 0.70 
SP 

Predicate 1.10 0.70 0.70 

Adjunct 0.35 0.79 0.33 
AO 

Object 1.41 1.91 1.50 

Adjunct 0.00  0.32 0.42 
AS 

Subject 1.33 1.61 1.18 

Adjunct 0.47 0.67 0.28 
AP 

Predicate 0.82 0.75 1.22 

(d) Accent indicator ratios for rhythmic accents 

Reading styles 
Construction type 

Lyric Criti. Exp. 

TR 1.00 1.00 1.00 

PO 0.58 0.54 1.20 

SP 1.10 0.86 1.00 

AO 0.25 0.41 0.22 

AS 0.00 0.20 0.36 

AP 0.57 0.90 0.23 

3.2 Accent Assignment in Low Level Phrases 

Since CO, PP and PC phrases appeared only a few times in each reading style, only four types 
of phrases, i.e. AN, AV, PO and SP, are studied in this paper. AI and AIR in the four 
categories are calculated separately under the three reading styles. The results are listed in 
Table 4, in which, (a) and (b) are AI and AIR for semantic accent, and (c) and (d) are for 
rhythmic accent. 
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Table 4. Accent indicators in four types of low level phrases under three reading 
styles 

(a) Accent indicators for semantic accents 

Reading styles 
Phrase type Word property 

Lyric Criti. Exp. 

Attribute 1.22 1.50 1.39 
AN 

Head 1.52 0.95 0.98 

Adverbial 0.81 1.05 1.17 
AV 

Head 1.05 1.09 0.93 

Predicate 0.65 0.34 0.44 
PO 

Object 1.61 1.54 0.57 

Subject 0.74 0.33 0.63 
SP 

Predicate 0.78 1.96 2.04 

 (b) Accent indicator ratios for semantic accents 

Reading styles 
Phrase type 

Lyric Criti. Exp. 

AN 0.81 1.58 1.42 

AV 0.76 0.96 1.26 

PO 0.40 0.22 0.77 

SP 0.95 0.17 0.31 

 (c) Accent indicators for rhythmic accents 

Reading styles 
Phrase type Word property 

Lyric Criti. Exp. 

Attribute 0.27  0.18  0.10  
AN 

Head 2.24  2.35  2.10  

Adverbial 0.42  0.25  0.19  
AV 

Head 1.66  1.29  1.57  

Predicate 0.22  0.11  0.42  
PO 

Object 2.02  2.84  2.42  

Subject 0.94  1.71  0.95  
SP 

Predicate 2.34  3.85  2.42  
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                (d) Accent indicator ratios for rhythmic accents 

Reading styles 
Phrase type 

Lyric Criti. Exp. 

AN 0.12 0.08 0.05 

AV 0.25 0.18 0.12 

PO 0.11 0.04 0.17 

SP 0.40 0.44 0.39 

From Table 4(a)-(b), the results among reading styles show more diversity. 

(a) In AN phrases, all AIRs except that under the Lyric style, are larger than 1. This shows the 
semantic accent tends to be assigned to the adjunct under the Critical and the Explanatory 
styles and to the head under the Lyric style. 

(b) In AV phrases, AIRs in the Explanatory style show a tendency toward being initial-accented, 
while the Lyric style has a tendency toward being final-accented. The chances of being 
accented for both components under the Critical style are almost the same. 

(c) In PO phrases, all AIRs are smaller than 1, i.e., PO phrases have final-accented tendency. 
Among the three reading styles, the final-accented tendency is weakest under the 
Explanatory style. 

(d) Under the Critical and the Explanatory styles, SP phrases show strong final-accented 
tendency. Yet, under the Lyric style, the two immediate components of SP phrases have an 
equal chance of obtaining semantic accents. 

Comparing these results with those in previous studies, one can see that both the Critical 
and the Explanatory styles show the same initial-accented tendency in AN phrases as the 
neutral style, while the initial-accented tendency in AV phrases is weakened in the Critical 
style. The Lyric style has the opposite tendency in both AN and AV phrases. The two 
immediate components of PO phrases have an equal chance of obtaining semantic accents in 
the neutral style. However, both the Critical and the Lyric styles have rather strong 
final-accented tendency in PO phrases, and such a final-accented tendency is weakened in the 
Explanatory style. The Lyric style shows similar distribution of sentential accents in SP 
phrases to the neutral style, but the other two styles have strong final-accented tendency. 

For rhythmic accent, a final-accented tendency is observed unanimously in Table 4 (d), 
regardless of reading styles. This is consistent with the conclusions drawn from independent 
neutral sentences [Chu et al. 2003] [Wang et al. 2003b], and it further demonstrates that the 
final-accented tendency of rhythmic accent is not influenced by reading styles. An interesting 
phenomenon is presented in that SP phrases in all reading styles always have the largest AIRs 
among all types of phrases, i.e., the final-accented tendency is comparatively weak in SP 
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phrases. A possible reason is that, when words are grouped into prosodic phrases, the 
relationship between the subjects and the predicates in SP phrases is not as close as in other 
phrases so the two components are often grouped into different prosodic phrases [Wang et al. 
2003c]. 

3.3 Accent Assignment in Disyllabic Prosodic Words 

Since initial parts of disyllabic words share the same number of syllables as final parts, no AI 
is adopted. AIRs are calculated for word types with more than 10 observations in the speech 
corpus. The results are listed in Table 5, in which, (a) is for semantic accent and (b) is for 
rhythmic accent. 

Table 5. Accent indicator in three types of prosodic words under three reading styles 
            (a) Accent indicator ratios for semantic accents2 

Reading styles 
Phrase type 

Lyric Criti. Exp. 

AN 2.91 4.75 8.57 

AV +% 1.33 2.63 

PO   1.86 

            (b) Accent indicator ratios for rhythmic accents3 

Reading styles 
Word type 

Lyric Criti. Exp. 

CO 0.24 0.06 0.22 

AN 0.16 0.21 0.07 

PO   0.43 

AV   0.06 

From Table 5(a)-(b), the initial-accented tendency for semantic accent ( AIRs>1) and the 
final-accented tendency for rhythmic accent ( AIRs<1) are consistently observed in the three 
reading styles. These observations comply with the previous study on accent distribution in 
the neutral style. Therefore, one can conclude that accent distribution within prosodic words is 
seldom affected by reading styles. 

 

                                                 
2 “+%” means stress is always distributed to initial syllables without an exception. 
3 Blank cells in Table 5 indicate no enough observations are available for certain cases. 
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4. Conclusions and Discussions 

This paper investigates the influence of reading styles on the accent assignment within 
high-level constructions, low-level phrases and prosodic words. The results show that (1) 
semantic accents are more affected by reading styles than rhythmic accents and (2) more 
significant influences are observed in larger speech units (such as the high-level constructions 
and the low-level phrases) than in smaller units (such as prosodic words). In detail, 1) 
Semantic accents show a strong initial-accented tendency in all types of prosodic words across 
different reading style, while, rhythmic accents unanimously demonstrate a final-accented 
tendency in prosodic words; 2) In high-level constructions, semantic accents tend to be 
allocated to the final constituents within TR, PO, SP and AS structures in the Explanatory 
style; within TR and SP structures in the Critical style and PO, AO and AS in the Lyric style, 
and they are allocated to the initial constituents within the AO, AS and AP structure in the 
Critical style. Compared with previous study in neutral speech, the Explanatory style has 
similar impact on accent allocation in high-level constructions to the neutral style. The 
Critical style weakens the final-accented tendency in PO constructions and demonstrates 
strong initial-accented tendency in AS constructions. The Lyric style presents more diversity 
with no significant tendency in TR, SP and AP constructions, and initial-accented tendency in 
PO, AO and AS constructions; 3) In low-level phrases, semantic accents are often allocated to 
the final parts within PO and SP phrases. Yet, such a final-accented tendency is weaker for the 
Lyric style in SP phrases and the Explanatory style in PO phrases. In AN phrases, the 
noun-heads are often accented in the Explanatory and the Critical styles, yet, accents normally 
go to the adjuncts in the Lyric style. Both the Lyric and the Critical styles demonstrate a 
final-accented tendency in AV phrases where an initial-accented tendency is observed in the 
Explanatory style. 

These results are consistent with the theory of ornate form [Milic 1965]: to deliver the 
attitude of a speaker through speaking styles. Listeners and speakers share an accent system as 
a convention in which listeners know to go to accented items to find information which the 
speaker is particularly attentive to produce. Therefore, semantic accent is more closely related 
to reading styles and easier to be influenced. 

In the Explanatory style, the speaker’s task is to present messages clearly and concisely 
with an objective tone. This is also a regular way to deliver independent neutral sentences 
where syntactic constraints work actively. Therefore, the overall tendency for semantic accent 
assignment in this style is rather close to that in neutral style and is mainly constrained by the 
syntactic and the prosodic structures of a sentence. 

The Critical style is adopted to make comments, where semantic focuses are normally on 
the core subjects and their actions. As a result, more accents are allocated to the subject part in 
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the AS constructions and to the predicate part in the PO constructions. Accordingly, in 
low-level phrases, more accents go to the heads in AN phrases and the predicates in the SP 
phrase. However, in AV phrases, both the adjuncts and the verbs have equal chance to be 
accented. A possible reason for this is that the manners for actions to take place sometimes 
also play an important role in the discourse. The authors do not have a good explanation for 
why accents tend to be allocated to the objects in PO phrases. 

The Lyric style helps to express personal emotions in a rhythmic way [Wang 2000]. Such 
poetry-like rhythm weakens the effect of syntactic constrains and, in many cases, leads to an 
even distribution of semantic accents in high-level constructions. For low-level phrases, more 
semantic accents are observed near prosodic boundaries to meet the requirement of 
rhyme-scheme, and accordingly final-accented tendencies are presented in AN and AV 
phrases. 
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