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Abstract 

This paper presents an investigation on the use of explicit statistical duration 
models for Cantonese connected-digit recognition. Cantonese is a major Chinese 
dialect. The phonetic compositions of Cantonese digits are generally very simple. 
Some of them contain only a single vowel or nasal segment. This makes it difficult 
to attain high accuracy in the automatic recognition of Cantonese digit strings. 
Recognition errors are mainly due to the insertion or deletion of short digits. It is 
widely admitted that the hidden Markov model does not impose effective control 
on the duration of the speech segments being modeled. Our approach uses a set of 
statistical duration models that are built explicitly from automatically segmented 
training data. They parametrically describe the distributions of various absolute and 
relative duration features. The duration models are used to assess recognition 
hypotheses and produce probabilistic duration scores. The duration scores are 
added with an empirically determined weight to the acoustic score. In this way, a 
hypothesis that is competitive in acoustic likelihood, but unfavorable in temporal 
organization, will be pruned. The conventional Viterbi search algorithms for 
connected-word recognition are modified to incorporate both state-level and 
word-level duration features. Experimental results show that absolute state duration 
gives the most noticeable improvement in digit recognition accuracy. With the use 
of duration information, insertion errors are much reduced, while deletion errors 
increase slightly. It is also found that explicit duration models are more effective 
for slow speech than for fast speech. 
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1. Introduction 

In the past two decades, automatic speech recognition (ASR) has advanced to a high 
performance level. The state-of-the-art technology predominantly uses hidden Markov models 
(HMM), which provide a nicely formulated framework for the modeling of speech signals. 
This framework is amenable to a set of mathematically rigorous algorithms for the estimation 
of model parameters and pattern classification. For ASR, an HMM consists of a number of 
states that are arranged into a left-to-right topology. The states can be thought of as a sequence 
of acoustic targets that constitute a speech segment. The output probability density functions 
(pdf) associated with individual states describe the spectral variability in the realization of 
these targets. The temporal structure is reflected mainly in the evolution of the states, which is 
governed by state transition probabilities. 

It is widely acknowledged that an HMM does not impose effective control on the 
duration of the speech segment being modeled. HMM-based ASR systems frequently make 
errors. A significant portion of these recognition errors exhibit unreasonable time durations or 
duration proportions. For the task of connected-digit recognition in various languages in 
particular, a lot of errors are due to the insertion of short digits [Dong and Zhu 2002; Kwon 
and Un 1996]. The problem is extremely severe with noise-corrupted speech [Yang 2004]. 

Connected-digit recognition has many useful applications that often require very high 
recognition accuracies. Despite its limited vocabulary size, it is not straightforward to attain 
the desired performance level because the combination of digits is unrestricted. Knowledge 
sources like lexical constraints and word-level language models are not applicable in this case. 
Therefore, it becomes particularly important to fully exploit the information embedded in the 
acoustic signals. Other than the spectral features, prosodic features, like pitch and duration, 
can be considered. 

In this paper, we focus on the use of duration information for Cantonese connected-digit 
recognition. Our approach uses a set of statistical duration models that are built explicitly from 
automatically segmented training data. The duration models are used to assess the recognition 
hypotheses, based on the measured duration at the either state or the model levels. As a result, 
a probabilistic duration score is generated and added with an empirically determined weight to 
the conventional acoustic score. In this way, a hypothesis that is competitive in acoustic 
likelihood, but unfavorable in temporal organization, is pruned. 

 There have been many studies on explicit duration modeling for ASR. Recognition 
performance can be improved to various extents. The most commonly used duration features 
include whole-model duration [Lee et al. 1989], absolute state duration [Russell and Moore 
1985; Levinson 1986] and normalized (relative) state duration [Rabiner 1989; Power 1996]. 
The design of duration models has been application-dependent. In most cases, parametric 
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distributions have been used so that each duration model can be represented by a few 
parameters. 

HMM based speech recognition is formulated as a process of searching for the optimal 
path among many possibilities. The optimality is measured in terms of the path’s accumulated 
probability or likelihood. With the duration models, the conventional probabilistic path score 
can be modified to include the duration scores. Unlike the acoustic likelihood, duration scores 
are not computed on a short-time frame basis. There may be cases in which, when a path 
extension decision is made, some of the competing paths involve duration scores and others do 
not. Thus, the search is only sub-optimal. Examples of such sub-optimal methods can be found 
in [Power 1996]. 

In this work, we adopt the one-pass approach and aim for an optimal search. The 
conventional Viterbi search algorithm for connected-word recognition is modified to facilitate 
the incorporation of explicit duration models at both the state and the model levels. The 
effectiveness of different duration features is evaluated through recognition experiments. 

In the next section, a brief introduction to the Cantonese dialect is given and the task of 
Cantonese connected-digit recognition is described. Baseline recognition performance is also 
presented. Statistical modeling of various types of duration features is described in Section 3. 
The ways of integrating duration models into the speech recognition processes are explained 
in Section 4. Experimental results are presented and discussed in Section 5. Conclusions are 
given in Section 6. 

2. Cantonese Connected-Digit Recognition 

2.1 About Cantonese 
Cantonese is one of the major dialects of Chinese. It is the mother tongue of over 60 million 
people in Southern China and Hong Kong. Like Mandarin, Cantonese is a monosyllabic and 
tonal language. A Cantonese utterance is considered a string of monosyllabic sounds. Each 
Chinese character is pronounced as a single syllable that carries a specific tone. A character 
may have multiple pronunciations, and a syllable typically corresponds to a number of 
different characters. As shown in Table 1, each Cantonese digit is pronounced as a 
monosyllable sound. 
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Table 1. Phonetic transcriptions of the 10 Cantonese digits 

Digit IPA LSHK 

0 ling4 

1 jat1 

2 ji6 

3 saam1 

4 sei3 

5 ng5 

6  luk6 

7 cat1 

8 baat3 

9 gau2 

2.2 Baseline System 
Our baseline system for Cantonese connected-digit recognition was trained with the CUDIGIT 
database, which is part of a whole series of Cantonese spoken language corpora developed at 
the Chinese University of Hong Kong [Lee et al. 1998a]. CUDIGIT is a collection of 
Cantonese digit strings. The data collected were all read speech. Speakers were prompted with 
onr digit string at a time, with Chinese characters and Arabic digits displayed in parallel on a 
computer screen. The recordings were carried out in a closed quiet room using a high-quality 
microphone. The speech signal was sampled at 16 kHz. The database contains an exhaustive 
permutation of digit strings from one to four syllables long. There are also randomly generated 
strings that are of 7, 8, and 16 digits long. A total of 25 male and 25 female speakers were 
recorded. Each speaker spoke about 570 digit strings. 

 For the acoustic models of the baseline system, the training data included 11,387 
utterances from 20 male speakers. In addition, 2,847 utterances from the other 5 male speakers 
in CUDIGIT were reserved as development data, which were used as the estimation of the 
weighting factor for the duration models (see Section 5.1). 

The utterances for performance evaluation were from a different database, which was 
recently collected for speaker recognition research. It contains Cantonese digit strings 
recorded under the same acoustic conditions as CUDIGIT. About 900 utterances from 5 male 
speakers were used in this study. In terms of the total number of digit occurrences, the amount 
of the evaluation data is similar to the development data. 
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Feature extraction was done with a 20-msec Hamming window and 10-msec window 
overlapping. 32 nonlinearly spaced (Mel-scale) filter banks were used to cover the bandwidth 
of 8 kHz and the first 12 cepstral coefficients were computed. Each feature vector had 39 
components, including the 12 Mel-Frequency Cepstral Coefficient (MFCC), log-energy, and 
their first and second order derivatives. Cepstral liftering was applied to the cepstral 
coefficients. 

Each Cantonese digit was modeled by a whole-word HMM. The HMM had 6 left-to-right 
connected states. There was no state-skipping transition. Each state was associated with a 
mixture of 8 Gaussian distributions. Diagonal covariance matrices were assumed. There were 
also a six-state “silence” model and a one-state “sp” model for the non-speech signal. The 
baseline recognition performance is given in Table 2. 

Table 2. Baseline performance for Cantonese connected-digit recognition 

Digit accuracy Deletions Substitutions Insertions 

95.09% 82 116 418 

2.3 Discussion 
As shown in Table 2, insertions and deletions accounted for over 80% of the recognition 
errors. It must also be noted that 68.2% of the insertion and deletion errors were due to the 
digits “2” and “5” [Zhu 2005]. The phonetic compositions of Cantonese digits are generally 
very simple. This makes it difficult to attain high accuracy in the automatic recognition of 
Cantonese digit strings. For example, the digit “2” can be regarded as a single vowel segment. 
When this digit is repetitively spoken in a continuous utterance, the boundaries between them 
tend to be blurred because the signal’s spectrum remains virtually unchanged. This will cause 
deletion and insertion errors in speech recognition. Moreover, “2” is phonetically very similar 
to the coda part of the digit “4”. It is easily confused with this coda, and recognition errors 
will occur. 

Figure 1 shows the spectrogram of an example utterance. It contains the digit string “22” 
during the period of 0.5 – 0.81 sec. There is no observable spectral discontinuity that signifies 
the boundary between the two digits. Similarly, in the example shown in Figure 2, the coda of 
digit “4” is likely to be recognized as an inserted “2”. 
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Another problematic digit is “5”, which can be approximated as a single nasal segment. 
Like “2”, if the digit “5” is uttered repetitively in a continuous utterance, the spectral cues are 
not sufficient for detecting the digit boundaries. It is easily confused with the nasal codas of 
the digits “0” and “3.” 

Although the duration of a digit is affected by many different factors, it by no means has 
an unlimited range of variation, especially in those applications where the speaking style and 
the speaking rate are relatively stable. In the cases in which repetitive “2” or “5” segments are 
merged or a single segment is split, the durations of the recognized digit segments usually 
deviate much from their nominal values. Similar argument can be made when the string “42” 

“4”
Figure 2. Spectrogram of an utterance that contains the digit “4” 

“22”

Figure 1. Spectrogram of an utterance that contains the digit string “22” 
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is recognized as a single digit “4” or vice versa. Prior knowledge about digit durations would 
be helpful to correct such errors. In addition to the absolute duration, relative duration features, 
e.g. the ratio between the duration of certain state(s) and that of the whole digit, are also useful. 
These features reflect the regularity that governs possible internal adjustments among the 
sub-components of a digit segment. In the next section, the statistical modeling of both 
absolute and relative duration features is discussed. 

3. Duration Modeling for Cantonese Digits 

3.1 Duration Features 
Duration can be measured and modeled at segments of various lengths. The measurements of 
duration information are referred to as duration features. In an HMM-based system, HMMs 
are used to model and segment speech signals. In our baseline system, each Cantonese digit 
was modeled by a whole-word HMM. Given a digit string, the durations of individual digits 
were given directly by the model-level segmentation. State durations were derived from the 
state-level time alignment. 

Both state duration and model duration have been found to be useful for speech 
recognition, but their effectiveness varies across applications. It was reported that the use of 
the relative state duration (with respect to the model duration) leads to better recognition 
performance than the use of the absolute state and model durations [Power 1996]. 

In this study, both the absolute state duration and the absolute digit duration were 
investigated. As for the relative duration features, the relative state duration (with respect to 
the digit duration) and the so-called tail part ratio were used. The tail part ratio measures the 
relative duration of the tail part of a digit. The tail part is defined to cover the last two states of 
an HMM. The tail part ratio can be considered a variation of normalized state duration. From 
the baseline recognition results, it is observed that the tail part corresponds roughly to the last 
phonetic unit of the digit. As mentioned in Section 2.3, the two mono-phone digits, i.e., “2” 
and “5”, are easily confused with the tail part of other digits. When the tail part is deleted or 
prolonged, the tail part ratio becomes unreasonable. 

3.2 Statistical Modeling 
In [Russell and Moore 1985], Poisson distribution was used to model state duration. While the 
model is simple to estimate (only one free parameter), it is not generally applicable because it 
demands that the variance be equal to the mean. It was found that Gaussian and Gamma 
distributions are more appropriate [Levinson 1986]. In [Gadde 2000], a mixture of Gaussian 
distributions was used to model multivariate duration features. In [Burshtein 1995], it was 
shown that Gamma distribution fits the empirical data better than the Gaussian distribution for 
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Duration (frame) 

Figure 3. Distribution for the absolute digit duration for the digit “0” 

both state and model durations. In [Dong and Zhu 2002], it was also found that duration 
models using Gamma distributions are superior to other parametric distributions in terms of 
speech recognition accuracy. 

Figure 3 shows the empirical distribution of the absolute duration of digit “0” as well as 
the corresponding Gamma fit. The empirical distribution was obtained through supervised 
segmentation (also known as forced alignment) of the training data in CUDIGIT. It can be 
seen that the Gamma distribution fits the empirical measurements quite well. This is also true 
for all other digits [Zhu 2005]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each HMM state, there is one distribution for absolute state duration and one 
distribution for relative state duration to be modeled. Thus, the total number of state duration 
distributions is 120. More than 70% of these empirical distributions can be approximated quite 
well as Gamma functions [Zhu 2005]. The distributions that do not fit well have complicated 
shapes, e.g., multi-modal. Similar observations are made concerning the modeling of relative 
state duration. For simplicity, uni-modal Gamma distribution is used in all state duration 
models. 

 As for the tail part ratios, the empirical distributions can all be nicely modeled with 
uni-modal Gamma functions. One of the examples is given in Figure 4. 
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Figure 4. Distribution of the tail part ratio for the digit “0” 
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3.3 Training of Duration Models 
In this study, Gamma distribution was used for the statistic modeling of duration features. 
Ther training of a duration model refers to the process of estimating the parameters of the 
Gamma distribution from segmented training utterances. Given a large amount of training 
utterances, manual segmentation at the word (digit) level is not realistic, let alone at the state 
level. Supervised automatic segmentation can be done with a set of acoustic models (HMMs) 
that are trained beforehand. This is referred to as the multi-pass training approach. 

To obtain a truly optimal solution, the parameters of duration models must be estimated 
jointly with the HMM parameters, because they depend on each other [Russell and Moore 
1985; Levinson 1986]. This one-pass approach is computationally expensive. Moreover, it is 
not applicable when sophisticated duration features, like relative state duration, are being 
modeled. Experimental results also showed that multi-pass training can be just as effective as 
one-pass training in terms of recognition performance [Rabiner 1989]. In this study, the 
duration models were trained through the multi-pass approach. 

In summary, for our study regarding Cantonese connected-digit recognition, explicit 
duration models were established for the absolute digit duration, the absolute state duration, 
the relative state duration, and the tail part ratio. Each duration model was represented by a 
Gamma distribution, which was trained with CUDIGIT training data through the multi-pass 
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approach. In the subsequent discussion, the abbreviations in Table 3 are used to refer to the 
different duration features. 

Table 3. Different duration features 

AD Absolute digit duration 

AS Absolute state duration 

RS Relative state duration 

TR Tail part ratio 

4. Integrating Duration Models into Speech Recognition 

As described earlier, the problem of connected-word recognition concerns the search for an 
optimal word string among many possibilities. The search space is formed by the HMM states, 
and a word string is in this way essentially a path connected by the states. The basic idea 
behind incorporating duration models into the search process is to make the duration 
probabilities contributive to the path probability. The challenge is to ensure that each path 
extension decision is optimal, considering that the duration probability is computed in a 
different time scale from the acoustic probability. 

 In the conventional Viterbi algorithm [Ney 1984], the problem of searching for an 
optimal complete path can be decomposed into many sub-problems at the frame level. The 
sub-problem at a particular frame t is to find the optimal partial path extended to each 
legitimate state. Let ( , , )t v j  denote the optimal partial path extended to state j of model v and 
at frame t. The accumulated path score is denoted by ( , , )L t v j . The sub-problem at frame t 
can be solved given the solutions to the sub-problems at 1t , i.e., the immediately preceding 
frame. The path extension algorithm is explained as follows: 

1) If the path is extended to the first state of an HMM, the predecessor can be the last state of 
any HMM or the current state itself. The path extension is done by,  

, 1 11 1, ,1 max 1, , , ( 1, ,1)N N t
u

L t v L t u N a L t v a b oЀ ,              (1) 

where N is the number of states in the model and , 1N Na  is the probability of exit from 
state N. Here we assume that all HMMs have the same number of states. 

2) For a path extended to state j of a model, where 1j , we have 

 
 or
1

, , max 1, , ij j t
i j
i j

L t v j L t v i a b o .                              (2) 

That is, the predecessor can be either state j itself or state j-1 of the same HMM, because we 
have assumed there is no state skipping. 
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The path extension is performed with a step size of one frame. To incorporate the 
duration model scores, the path extension needs to cover a longer time span. For state-level 
duration features, it should cover the time span of an HMM state. For word-level features, it 
should cover the span of a model. 

4.1 Incorporation of State-Level Duration Model 
For state-level duration features, the duration scores can only be computed if there is a state 
transition. In this case, the notion of path extension is defined differently. The step size of the 
path extension is a state instead of a frame. The path extension stretches from the beginning 
frame of one state to the beginning frame of another state. The state duration is a variable that 
affects the path extension decision. 

Let ( , , )t v j  denote the optimal partial path that extends to state j of model v at frame t, 
and ( , , )L t v j  be the corresponding accumulated path score. Accordingly, the path extension 
algorithms are modified as follows: 

1) When the path gets to the first state of an HMM, its predecessor can be the last state of any 
other HMM. For each possible predecessor ( , , )t d u N , the duration score , ( )u ND d  is 
computed, where d  is the duration of staying at state N . , ( )u ND d  is incorporated into 
the path extension decision as 

min max

, 1, 1, , l max , , ( ) ( )
w

u N tu t d t
N N N

d d d

L t v L t d u N a b o D d b o ,     (3) 

where dmax and dmin are the upper and lower bounds, respectively, of the state duration value, 
and w is an empirically determined weighting factor that controls the relative contribution of 
the duration scores. 

2) For the path extension from state 1j  to state j  of an HMM, where 1j , we have 

min max

1, 1 , 1, , max , , 1 ( ) ( )
w

j j j u j j t
d d d t d t

L t v j L t d v j a b o D d b o ,    (4) 

In this case, all competing path extensions are from state 1j  to state j . They differ 
from each other in terms of the time instant at which the extension occurs, which is 
specified by the value of d . 

The above formulation is referred to as the 3-dimensional optimal decoder, because the 
token ( , , )t v j  has three elements. As seen in Eqs. (3) and (4), each possible path extension 
involves the computation of ( )i

t d t
b o . If the paths are evaluated individually, there are a 

lot of duplicated computations. To alleviate this problem, the search algorithm is 
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re-formulated. A new dimension “d” is introduced into the path token. The token ( , , , )t v j d  
refers to a path that has stayed at state j in HMM v for d frames at frame t. Equations (3) and 
(4) can be written as 

 

min max

, 1 , 1, ,1,1 max 1, , , ( )
w

N N u N tu

d d d

L t v L t u N d a D d b o ,           (5) 

min max

1, , 1, , ,1 max 1, , 1, ( )
w

j j u j j t
d d d

L t v j L t v j d a D d b o ,          (6) 

, , , 1, , , 1 j tL t v j d b oL t v j d .                                   (7) 

Such a 4-dimensional formulation is equivalent to the decoding framework in [Gu et al. 
1991]. The computation cost of this decoder is dmax times that of the baseline decoder. 

4.2 Incorporation of Word-Level Duration Models 
To incorporate word-level duration scores, the step size of a path extension is defined to be a 
word (an HMM). A path extension is from the beginning frame of one word to that of another 
word. Let ( , )t v  denote the optimal partial path that extends to HMM v at frame t, and let 

( , )L t v  be its path score. The path extension decision is obtained as follows: 

 

min max

, max , ( , , 1) ( ) w
uu

d d d

L t v L t d u warp u t d t D d ,                (8) 

where ( , , 1)warp u t d t  is the probability that the sub-sequence of feature vectors from t-d to 
t-1 is generated by HMM u, and dmax and dmin are the upper and lower bounds, respectively, of 
a word duration. ( )uD d  is the word-level duration score given by HMM u. It can be 
contributed by one or more duration features, including AD, RS, and TR as described in 
Section 3.1. For RS, it is assumed that the relative durations of individual states are 
independent of each other and the overall duration score is given by the multiplication of the 
probabilities obtained at all states. 

Similar to the state-level case, the 4-dimensional formulation of the above algorithm is 
given as 

 

min max

, 1 1, ,1,1 max 1, , , ( ) w
N N u tu

d d d

L t v L t u N d a D d b o ,            (9) 



 

 

Using Duration Information in Cantonese Connected-Digit Recognition        ˄ˆ               

         
 or

1

, , , max 1, , , 1 ij j ti j

i j

L t v j d L t v i d a b o ,                         (10) 

where ( , , , )t v j d  refers to a path that has stayed at state j of HMM v for d frames. The 
computation cost of this decoder is dmax times that of the baseline. Since word duration is 
much larger than state duration, the computation load of integrating word-level duration 
features is much heavier than that with state-level features. Such a 4-dimensional formulation 
is equivalent to the decoding framework in [Kwon and Un 1996]. 

5. Experimental Results and Discussion 

5.1 Effectiveness of Different Duration Features 
Experiments on Cantonese connected-digit recognition were carried out to evaluate the use of 
different duration features and their combinations. In all the experiments, the acoustic models 
were the same as those in the baseline system. The features and weights in the experiments are 
listed in Table. It is observed that the acoustic scores produced by the HMMs have a much 
wider dynamic range than the duration scores. Therefore, the effect of duration models tends 
to be overshadowed by that of HMM. In this work, a positive weighting factor w is used to 
balance the situation. For each of them, the weighting factor w for the duration scores was 
empirically determined from the development data (see Section 2.2). Different values of 
weights were tested and the one with the best results are shown as in Table 4. The values of 
dmax are 15 and 80 for state-level and word-level models, respectively. 

Table 4. List of duration features and the respective weights for duration scores 
Duration features w 

State-level AS 3 
AD 6 
RS 4 
TR 4 
AD+RS 6, 2 

Word-level 

AD+TR 6, 4 

In addition, an experiment was performed using the word insertion penalty method, 
which is commonly used to reduce insertions [Huang et al. 2001]. The penalty value was also 
determined empirically from the development data. 

The experimental results are given in Table 5. In all cases, the recognition accuracy is 
improved compared with the baseline system. The most significant improvement is 2.36% in 
terms of digit accuracy, which is attained by using the absolute state duration. The 
performance improvement results mostly from the reduction in insertion errors, and the 
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substitution errors also decreased. Meanwhile, more deletion errors are produced. The use of 
the word insertion penalty method can also improve recognition accuracy. However, it is not 
as effective as the explicit duration models. 

Table 5. Recognition performance with different duration features 
Method of duration control Accuracy Deletions Substitutions Insertions 

Baseline 95.09% 82 116 418 
State-level AS 97.45% 105 88 127 

AD 96.70% 132 100 182 
RS 96.74% 98 108 203 
TR 96.11% 81 100 308 
AD+RS 97.22% 142 90 116 

Word-level 

AD+TR 97.24% 133 90 124 
Insertion penalty 96.37% 124 117 215 

The absolute state duration (AS) gives a better recognition performance than any of the 
word-level features. Since the incorporation of a state-level duration model requires much less 
computation, it is more preferable than the word-level duration models. 

Among the three word-level features, the relative state duration (RS) is the most effective, 
while the tail part ratio (TR) gives little improvement. The combined use of word-level 
features, e.g., AD+RS and AD+TR, attains a similar performance to AS. This implies that RS 
and TR carry certain complementary information to AD. 

5.2 The Effect of the Speaking Rate 
It is obvious that duration features depend greatly on the speaking rate. We divided the 
evaluation utterances evenly into three categories based on their speaking rates. The speaking 
rate was defined based on normalized word duration as described in [Lee et al. 1998b]. For 
each category, a set of speaking-rate dependent duration models were built. 

Table 6 shows the recognition performance for each speaking rate category. It is noted 
that the use of duration models is most effective for slow utterances, though improvement is 
observed in all categories. 

Table 6. Recognition accuracy (%) for different speaking rates 
Method of duration control Fast Medium Slow 

Baseline 96.19% 94.79% 93.57% 
State-level AS 96.77% 97.96% 97.40% 

AD+RS 96.45% 97.70% 97.40% 
Word-level 

AD+TR 96.42% 97.89% 96.92% 
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6. Conclusions 

HMM does not give effective control over duration. For speech recognition tasks in which 
high-level linguistic constraints are not applicable, the duration of speech segments is a useful 
cue that supplements the conventional spectral features. In this work, we have shown how 
duration features can be used to improve the accuracy of Cantonese connected-digit 
recognition. 

 Among all of the duration features investigated, the absolute state duration gave the 
most noticeable performance improvement. A similar level of performance was also achieved 
with the combined use of absolute digit duration and relative state duration. With the use of 
duration information, insertion errors were much reduced, while deletion errors increased 
slightly. The reduction in insertion errors is particularly critical for Cantonese speech 
recognition because many of the short syllables in Cantonese are likely to be inserted if there 
is no duration control. Our experimental results also revealed that explicit duration models 
were more effective for slow speech than fast speech. 

To incorporate duration models into the speech recognition process, the standard Viterbi 
search algorithm has to be modified. To ensure that the search is optimal, a larger step size for 
path extension is needed so as to accommodate the long time-span required for computing the 
duration scores. This leads to a significant increase in the computation load. To reduce the 
computation load, a sub-optimal search can be considered. 
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Modeling Cantonese Pronunciation Variations for 

Large-Vocabulary Continuous Speech Recognition 

Tan Lee , Patgi Kam  and Frank K. Soong  

Abstract 

This paper presents different methods of handling pronunciation variations in 
Cantonese large-vocabulary continuous speech recognition. In an LVCSR system, 
three knowledge sources are involved: a pronunciation lexicon, acoustic models 
and language models. In addition, a decoding algorithm is used to search for the 
most likely word sequence. Pronunciation variation can be handled by explicitly 
modifying the knowledge sources or improving the decoding method. Two types of 
pronunciation variations are defined, namely, phone changes and sound changes. 
Phone change means that one phoneme is realized as another phoneme. A sound 
change happens when the acoustic realization is ambiguous between two phonemes. 
Phone changes are handled by constructing a pronunciation variation dictionary to 
include alternative pronunciations at the lexical level or dynamically expanding the 
search space to include those pronunciation variants. Sound changes are handled by 
adjusting the acoustic models through sharing or adaptation of the Gaussian 
mixture components. Experimental results show that the use of a pronunciation 
variation dictionary and the method of dynamic search space expansion can 
improve speech recognition performance substantially. The methods of acoustic 
model refinement were found to be relatively less effective in our experiments. 

Keywords: Automatic Speech Recognition, Pronunciation Variation, Cantonese 

1. Introduction 

Given a speech input, automatic speech recognition (ASR) is a process of generating possible 
hypotheses for the underlying word sequence. This can be done by establishing a mapping 
between the acoustic features and the yet to be determined linguistic representations. Given 
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the high variability of human speech, such mapping is in general not one-to-one. Different 
linguistic symbols can give rise to similar speech sounds, while the same linguistic symbol 
may also be realized in different pronunciations. The variability is due to co-articulation, 
regional accents, speaking rate, speaking style, etc. Pronunciation modeling is aimed at 
providing an effective mechanism by which ASR systems can be adapted to pronunciation 
variability. 

Pronunciation variations can be divided into two types: phone change and sound change 
[Kam 2003] [Liu and Fung 2003]. In [Saraçlar and Khudanpur 2000] [Liu 2002], they are also 
referred to as complete change and partial change, respectively. A phone change happens 
when a baseform (canonical) phoneme is realized as another phoneme, which is referred to as 
its surface-form. The baseform pronunciation is considered to be the “standard” pronunciation 
that the speaker is supposed to use. Surface-form pronunciations are the actual pronunciations 
that different speakers may use. A sound change can be described as variation in phonetic 
properties, such as nasalization, centralization, voicing, etc. Acoustically, the variant sound is 
considered to be neither the baseform nor any surface-form phoneme. In other words, we 
cannot find an appropriate unit in the language’s phoneme inventory to represent the sound. In 
terms of the scope of such variations, pronunciation variations can be divided into 
word-internal and cross-word variations [Strik and Cucchiarini 1999]. 

There have been many studies on modeling pronunciation variations for improving ASR 
performance. They are focused mainly on two problems: 1) prediction of the pronunciation 
variants, and 2) effective use of pronunciation variation information in the recognition process 
[Strik and Cucchiarini 1999]. Knowledge-based approaches use findings from linguistic 
studies, existing pronunciation dictionaries, and phonological rules to predict the 
pronunciation variations that could be encountered in ASR [Aubert and Dugast 1995] 
[Kessens et al. 1999]. Data-driven approaches attempt to discover the pronunciation variants 
and the underlying rules from acoustic signals. This is done by performing automatic phone 
recognition and aligning the recognized phone sequences with reference transcriptions to find 
out the surface forms [Saraçlar et al. 2000] [Wester 2003]. Some studies used hand-labelled 
corpora [Riley et al. 1999]. 

The key components of a large-vocabulary continuous speech recognition system are the 
acoustic models, the pronunciation lexicon and the language models [Huang et al. 2001]. The 
acoustic models are a set of hidden Markov models (HMM) that characterize the statistical 
variations of input speech. Each HMM represents a specific sub-word unit, e.g. a phoneme. 
The pronunciation lexicon and the language models are used to define and constrain the ways 
sub-word units can be concatenated to form words and sentences. They are used to define a 
search space from which the most likely word string(s) can be determined with a 
computationally efficient decoding algorithm. Within such a framework, pronunciation 
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variations can be handled by modifying one or more of the knowledge sources or improving 
the decoding algorithm. Phone changes can be handled by replacing the baseform transcription 
with surface-form transcriptions, i.e. the actual pronunciations observed. In an LVCSR system, 
this can be done by either augmenting the baseform lexicon with the additional pronunciation 
variants [Kessens et al. 1999] [Liu et al. 2000] [Byrne et al. 2001], or expanding the search 
space during the decoding process to include those variants [Kam and Lee 2002]. In order to 
deal with sound changes, pronunciation modeling must be applied at a lower level, for 
example, on the individual states of a hidden Markov model (HMM) [Saraçlar et al. 2000]. In 
general, acoustic models are trained solely with baseform transcriptions. It is assumed that all 
training utterances follow exactly the canonical pronunciations. This convenient, but 
apparently unrealistic, assumption renders the acoustic models inadequate in representing the 
variations of speech sounds. To alleviate this problem, various methods of acoustic model 
refinement were proposed [Saraçlar et al. 2000] [Venkataramani and Byrne 2001] [Liu 2002]. 

In this paper, the pronunciation variations in continuous Cantonese speech are studied. 
The linguistic and acoustic properties of spoken Cantonese are considered in the analysis of 
pronunciation variations and, subsequently, the design of pronunciation modeling techniques 
for LVCSR. Like in most conventional approaches, phone changes are anticipated by using an 
augmented pronunciation lexicon. The lexicon includes the most frequently occurring 
alternative pronunciations that are derived from training data. We also describe a novel 
method of dynamically expanding the search space during decoding to include pronunciation 
variants that are predicted with context-dependent pronunciation models. For sound changes, 
we propose to measure the similarities between confused baseform and surface-form models at 
the Gaussian mixture component level and, accordingly, refine the models through sharing 
and adaptation of the relevant mixture components. 

In the next section, the properties of spoken Cantonese are described and the 
fundamentals of Cantonese LVCSR are explained. In Section 3, different methods of modeling 
pronunciation variations at the lexical level are presented in detail and experimental results are 
given. The techniques for handling sound changes through acoustic model refinement are 
described in Section 4. Conclusions are given in Section 5. 

2. Cantonese LVCSR 

2.1 About Cantonese 
Cantonese is one of the major Chinese dialects. It is the mother tongue of over 60 million 
people in Southern China and Hong Kong [Grimes et al. 2000]. The basic unit of written 
Cantonese is a Chinese character [Chao 1965]. Chinese characters are ideographic, meaning 
that they contain no information about pronunciation. There are more than ten thousand 
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distinctive characters. In Cantonese, each of them is pronounced as a single syllable that 
carries a specific tone. A sentence is spoken as a string of monosyllabic sounds. A character 
may have multiple pronunciations, and a syllable typically corresponds to a number of 
different characters. 

A Cantonese syllable is formed by concatenating two types of phonological units: the 
Initial and the Final, as shown in Figure 1 [Hashimoto 1972]. There are 20 Initials (including 
the null Initial) and 53 Finals in Cantonese, in contrast to 23 Initials and 37 Finals in Mandarin. 
Table 1 and Table 2 list the Initials and Finals of Cantonese. They are labeled using Jyut Ping, 
a phonemic transcription scheme proposed by the Linguistic Society of Hong Kong [LSHK 
1997]. In terms of the manner of articulation, the 20 Initials can be categorized into seven 
classes: null, plosive, affricate, fricative, glide, liquid, and nasal. The 53 Finals can be divided 
into five categories: vowel (long), diphthong, vowel with nasal coda, vowel with stop coda, 
and syllabic nasal. Except for [m] and [ng], each Final contains at least one vowel element. 
The stop codas, i.e., -p, -t and -k, are unreleased. In Cantonese, there are more than 600 
legitimate Initial-Final combinations, which are referred to as base syllables. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

BASE SYLLABLE 
Initial Final 

[Onset] Nucleus [Coda] 

Figure 1. The composition of a Cantonese syllable. [] means optional. 

Table 1.The Cantonese Initials 
Jyut Ping symbols Manner of Articulation Place of Articulation 

[b] Plosive, unaspirated Labial 
[d] Plosive, unaspirated Alveolar 
[g] Plosive, unaspirated Velar 
[p] Plosive, aspirated Labial 
[t] Plosive, aspirated Alveolar 
[k] Plosive, aspirated Velar 

[gw] Plosive, unaspirated, lip-rounded Velar, labial 
[kw] Plosive, aspirated, lip-rounded Velar, labial 
[z] Affricate, unaspirated Alveolar 
[c] Affricate, aspirated Alveolar 
[s] Fricative Alveolar 
[f] Fricative Dental-labial 
[h] Fricative Vocal 
[j] Glide Alveolar 
[w] Glide Labial 
[l] Liquid Lateral 
[m] Nasal Labial 
[n] Nasal Alveolar 

[ng] Nasal Velar 
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Table 2.The 53 Cantonese Finals 
CODA 

 
Nil -i -u -p -t -k -m -n -ng 

-aa- [aa] [aai] [aau] [aap] [aat] [aak] [aam] [aan] [aang] 
-a-  [ai] [au] [ap] [at] [ak] [am] [an] [ang] 
-e- [e] [ei]    [ek]   [eng] 
-i- [i]  [iu] [ip] [it] [ik] [im] [in] [ing] 
-o- [o] [oi] [ou]  [ot] [ok]  [on] [ong] 
-u- [u] [ui]   [ut] [uk]  [un] [ung] 

-yu- [yu]    [yut]   [yun]  
-oe- [oe] [eoi]   [eot] [oek]  [eon] [oeng] 

N 
U 
C 
L 
E 
U 
S 

       [m]  [ng] 

 

From phonological points of view, Cantonese has nine tones that are featured by 
differently stylized pitch patterns. They are divided into two categories: entering tones and 
non-entering tones. The entering tones occur exclusively with syllables ending in a stop coda 
(-p, -t, or –k). They are contrastively shorter in duration than the non-entering tones. In 
terms of pitch level, each entering tone coincides roughly with a non-entering counterpart. In 
many transcription schemes, only six distinctive tone categories are defined. They are labeled 
as Tone 1 to Tone 6 in the Jyu Ping system. If tonal difference is considered, the total number 
of distinctive tonal syllables is about 1,800. 

Table 3 gives an example of a Chinese word and its spoken form in Cantonese. The word 
 ଚ (meaning “we”) is pronounced as two syllables. The first syllable is formed from theݺ
Initial [ng] and the Final [o], with Tone 5. The second syllable is formed from the Initial [m] 
and the Final [un], with Tone 4. 

Table 3.An example Chinese word and its Cantonese pronunciations 
Word Chinese characters Base syllables Initial & Final Tone 

 ngo [ng] [o] 5 ݺ
 ଚݺ

ଚ mun [m] [un] 4 

2.2 Linguistic Studies on Pronunciation Variations in Cantonese 
Over the past twenty years, there have been sociolinguistic studies on how phonetic variations 
in Cantonese are related with social characteristics of speakers such as sex, age, and 
educational background. They have revealed some systematic patterns underlying the phonetic 
variations [Bauer and Benedict 1997] [Bourgerie 1990] [Ho 1994]. Table 4 gives a summary 
of the major observations in these studies. 
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Table 4. Major phonetic variations in Cantonese observed by sociolinguistic studies 
[n] ~ [l] Inter-change between nasal and lateral Initials 
[ng]~ null Inter-change between velar nasal and null Initial. Initial consonants
[gw]  [g] Change from labialized velar to delabialized velar before 

back-round vowel [o] 

Syllabic nasal [ng] 
 [m] 

Change from velar nasal to bilabial nasal 

-ng  -n Change from velar nasal coda to dental nasal coda 
Final consonants -k ~ -t 

-k ~ -p 
Inter-change between velar stop coda and dental or glottal 
stop coda 

It was found that [n] [l], [ng] null, and [gw] [g] correlate with the sex and age of a 
speaker [Bourgerie 1990]. Older people make these substitutions much less frequently than 
younger generations. Female speakers tend to substitute [n] with [l], and delete [ng] more 
frequently than males. A correlation with the formality of the speech situation was also 
observed [Bourgerie 1990]. In casual speech, [l], null Initial, and [g] occur more frequently. 
According to [Bauer and Benedict 1997], the variations are also related to the development of 
neighboring dialects in the Pearl River Delta. 

When the preceding syllable ends with a nasal coda, there is a tendency to substitute the 
Initial [l] of the succeeding syllable with [n] [Ho 1994]. Labial dissimilation is probably the 
cause of the change [gw] [g], when the right context is -o, for example “gwok” ഏ 
(country), pronounced as “gok” ߡ (corner). The sequence of the two lip-rounded segments 
-w- and -o- become redundant or unnecessary with the second one driving out the first. The 
change [ng] [m] is due to the fact that when [ng] occurs in the presence of a bilabial coda, 
its place of articulation changes to bilabial. For example, “sap ng” Լն (fifteen) becomes 
“sap m” through the perseverance of the bilabial closure of the coda -p into the articulation of 
the following syllabic nasal. This is referred to as perseveratory assimilation [Bauer and 
Benedict 1997]. 

Other pronunciation variations are due to the dialectal accents of non-native speakers, 
who may have difficulties mastering some of the Cantonese pronunciations. They sometimes 
use the pronunciation of their mother tongue to pronounce a Cantonese word, for example, 
“ngo” ݺ (me) is pronounced as “wo” by a Mandarin speaker. 

2.3 Cantonese LVCSR: the Baseline System 
Figure 2 gives the functional block diagram of a typical LVCSR system. At the front-end 
processing module, the input speech is analyzed and converted into a sequence of acoustic 
feature vectors, denoted by O . The goal of speech recognition is to determine the most 
probable word sequence W , given the observation O . With the Bayes’ formula, the decision 
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Input  
Speech Front-End 

Processing 
Decoder Recognized 

word sequence 

Language 
Model 
P(W) 

Knowledge Sources

Acoustic 
Feature 
vectors 

Pronunciation 
Lexicon 
P(B|W)

Acoustic 
Model 
P(O|B) 

Figure 2. A typical LVCSR system 

can be made as 

* arg max ( | ) arg max ( | ) ( )
W W

W P W O P O W P W .           (1) 

Usually the acoustic models are built at the sub-word level. Let B  be the sub-word 
sequence that represents W . Eq. (1) can be written as 

* arg max ( | ) ( | ) ( )
W

W P O B P B W P W ,            (2) 

where ( | )P O B  and ( )P W  are referred to as the (sub-word level) acoustic models and the 
language models, respectively. ( | )P B W  is given by a pronunciation lexicon. 

 In the case of Chinese speech recognition, the sub-word units can be either syllables, 
Initials and Finals, or phone-like units. The recognition output is typically represented as a 
sequence of Chinese characters. The details of our baseline system for Cantonese LVCSR are 
given below. 

 

 

 

 

 

 

 

 

 

 

 

Front-end processing 

Acoustic feature vectors are computed every 10 msec. Each feature vector is composed of 39 
elements, which includes 12 Mel-frequency cepstral coefficients, log energy, and their 
first-order and second-order derivatives. The analysis window size is 25 msec. 
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Acoustic models 

The acoustic models are right-context-dependent cross-word Initials and Finals models [Wong 
2000]. The number of HMM states for Initial and Final units are 3 and 5, respectively. Each 
state is represented by a mixture of 16 Gaussian components. The decision tree based state 
clustering approach is used to allow the sharing of parameters among models. 

Pronunciation lexicons and language models 

The lexicon contains about 6,500 entries, among which 60% are multi-character words and the 
others are single-character words [Wong 2000]. These words were selected from a newspaper 
text corpus of 98 million Chinese characters. The out-of-vocabulary percentage is about 1% 
[Wong 2000]. For each word entry, the canonical pronunciation(s) is specified in the form of 
Initials and Finals [CUPDICT 2003]. The language models are word bi-grams that were 
trained with the same text corpus described above. 

Decoder 

The search space is formed from lexical trees that are derived from the pronunciation lexicon. 
One-pass Viterbi search is used to determine the most probable word sequence [Choi 2001]. 
The acoustic models were trained using CUSENT, which is a read speech corpus of 
continuous Cantonese sentences collected at the Chinese University of Hong Kong [Lee et al. 
2002]. There are over 20,000 gender-balanced training utterances. The test data in CUSENT 
consists of 1,200 utterances from 6 male and 6 female speakers. The performance of the 
LVCSR system is measured in terms of word error rate (WER) for the 1,200 test utterances. 
The baseline WER is 25.34%. 

3. Handling Phone Change with Pronunciation Models 

The pronunciation lexicon used in the baseline system provides only the baseform 
pronunciation for each of the word entries. In real speech, the baseform pronunciations are 
realized differently, depending on the speakers, speaking styles, etc. Phone change means that 
the pronunciation variation can be considered as one or more Initial or Final (IF) unit in the 
baseform pronunciation being substituted by another IF unit. Note that the substituting 
surface-form unit is also one of the legitimate IF units, as listed in Tables 1 and 2. 

A pronunciation model (PM) is a descriptive and predictive model by which the 
surface-form pronunciation(s) can be derived from the baseform one. There have been three 
different types of models proposed by previous studies. They are: 1) phonological rules for 
generating pronunciation variations [Wester 2003] [Kessens et al. 2003], 2) a pronunciation 
variation dictionary (PVD) that explicitly lists alternative pronunciations [Aubert and Dugast 
1995] [Kessens et al. 1999] [Liu et al. 2000], and 3) statistical decision trees that predict 
pronunciation variations according to phonetic context [Riley et al. 1999] [Fosler-Lussier 
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1999] [Saraçlar et al. 2000]. In this study, two different approaches to handling phone changes 
in Cantonse ASR are formulated and evaluated. The first approach uses a probabilistic PVD to 
augment the baseform lexicon. This is a straightforward and commonly used method that has 
been proven effective for various tasks and languages [Strik and Cucchiarini 1999]. In the 
second approach, pronunciation variation information is introduced during the decoding 
process. Decision tree based PMs are used to dynamically expand the search space. In 
[Saraçlar et al. 2000], a similar idea was presented. Decision tree based PMs were applied to a 
word lattice to construct a recognition network that includes surface-form realizations. 

3.1 Use of a Pronunciation Variation Dictionary (PVD) 
In this study, the information about Cantonese pronunciation variations is obtained through 
the data-driven approach. This is done by aligning the baseform transcriptions with the 
recognized surface-form IF sequences for all training utterances. For each training utterance, 
the surface-form IF sequence is obtained through phoneme recognition with the acoustic 
models as described in Section 2.3. To reflect the syllable structure of Cantonese, the 
recognition output is constrained to be a sequence of Initial-Final pairs. With this approach, 
only substitutions at the IF level are considered pronunciation variations. Partial change of an 
IF unit and the deletion of an entire Initial or Final are not reflected in the surface-form IF 
sequences. 

The surface-form phoneme sequence is then aligned with the baseform transcription. 
This gives a phoneme accuracy of 90.33%. The recognition errors are due, at least partially, to 
phoneme-level pronunciation variation. For a particular baseform phoneme b and a 
surface-form phoneme s, the probability of b being pronounced as s is computed based on the 
number of times that b is recognized as s. This probability is referred to as the variation 
probability (VP). As a result, each pair of IF units is described with a probability of being 
confused. This is also referred to as a confusion matrix [Liu et al. 2000]. It is assumed that 
systematic phone change can be detected by a relatively high VP, while a low VP is more 
likely due to recognition errors. A VP threshold is used to prune those less frequent 
surface-form pronunciations. As a result, for each baseform IF unit, we can find a certain 
number of surface-form units, each with a pre-computed VP. 

A straightforward way of handling pronunciation variation is to augment the basic 
pronunciation lexicon with alternative pronunciations [Strik and Cucchiarini 1999]. Such an 
augmented lexicon is named a pronunciation variation dictionary (PVD). In the PVD, each 
word can have multiple pronunciations, each being assigned a word-level variation probability 
(VP). The PVD can be obtained from the IF confusion matrix. The word-level VP is given by 
multiplying the phone-level VPs of all the individual phonemes in the surface-form 
pronunciation. With the use of the PVD, the goal of speech recognition is essentially to search 
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for the most probable word sequence by considering all possible surface-form realizations. 
This can be conceptually illustrated by modifying Eq. (2) as 

*
, ,

,
arg max ( | ) ( | ) ( )W k W k

W k
W P O S P S W P W ,           (3) 

where ,W kS  denotes one of the surface-forms realizations of W . ,( )W kP S W  are obtained 
from the word-level VPs. 

3.2 Prediction of Pronunciation Variation during Decoding 
The PVD includes both context-independent and context-dependent phone changes. Since 
each word is treated individually, the phonetic context being considered is limited to within 
the word. To deal with cross-word context-dependent phone changes, we propose applying 
pronunciation models at the decoding level. Our baseline system uses a one-pass search 
algorithm [Choi 2001]. The search space is structured as lexical trees. Each node on a tree 
corresponds to a baseform IF unit. The search is token based. Each token represents a path that 
reaches a particular lexical node. The propagation of tokens follows the lexical trees, which 
cover only the legitimate phoneme sequences as specified by the pronunciation lexicon. The 
search algorithm can be modified in a way that the number of alive tokens is increased to 
account for pronunciation variations. When a path extends from a particular IF node, its 
destination node can be either the legitimate node (baseform pronunciation) or any of the 
predicted surface-form nodes. In other words, the search space is dynamically expanded 
during the search process. 

In this approach, a context-dependent pronunciation model is needed to predict the 
surface-form phoneme given the baseform phoneme and its context. It is implemented using 
the decision tree clustering technique, following the approaches described in [Riley et al. 1999] 
[Fosler-Lussier 1999]. Each baseform phoneme is described using a decision tree. Given a 
baseform phoneme, as well as its left context (the right context is not available in a forward 
Viterbi search), the respective decision-tree pronunciation model (DTPM) gives all possible 
surface-form realizations and their corresponding VPs [Kam and Lee 2002]. 

Like the confusion matrix, the DTPM is trained with the phoneme recognition outputs for 
the CUSENT training utterances. The training involves an optimization process by which the 
surface-form phonemes are clustered based on phonetic context. At a particular node of the 
tree, a set of “yes/no” questions about the phonetic context are evaluated. Each question leads 
to a different partition of the training data. The question that minimizes the overall conditional 
entropy of the surface-form realizations is selected for that node. The node-splitting process 
stops when there are too few training data [Kam 2003]. 
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3.3 Experimental Results and Discussion 
Table 5 gives the recognition results with the use of PVDs that are constructed with different 
values of the VP threshold. The baseline system uses the basic pronunciation lexicon that 
contains 6,451 words. The size of the PVD increases as the VP threshold decreases. It is 
obvious that the introduction of pronunciation variants improves recognition performance. 
The best performance is attained with a VP threshold of 0.05. In this case, the PVD contains 
8,568 pronunciations for the 6,451 words, i.e. 1.33 pronunciation variants per word. With a 
very small value for the VP threshold, e.g. 0.02, the recognition performance is not good 
because there are too many pronunciation variants being included and some of them do not 
really represent pronunciation variation. 

Table 5. Recognition results of using a PVD with different VP thresholds 
 VP threshold 
 

Baseline 
0.02 0.05 0.10 0.15 0.20 

Word error rate (%) 25.34 23.91 23.49 23.70 23.64 23.58 
No. of word entries in 

the PVD 6,451 20,840 8,568 7,356 7,210 7,171 

Table 6 shows the recognition results attained by using the DTPM for dynamic search 
space expansion. It appears that this approach is as effective as the PVD. Unlike the results for 
the PVD, the performance with a VP threshold of 0.2 is better than that with a threshold of 
0.05. This means that the predictions made by the DTPM should be pruned more stringently 
than the IF confusion matrix. Because of its context-dependent nature, the DTPM has 
relatively less training data, and the variation probabilities cannot be reliably estimated. It is 
preferable not to include those unreliably predicted pronunciation variants. 

Table 6. Recognition results by dynamic search space expansion 
 VP threshold 
 

Baseline 
0.05 0.2 

Word error rate (%) 25.34 23.53 23.27 

By analyzing the recognition results in detail, it is observed that many errors are 
corrected by allowing the following pronunciation variations: 

Initials: [gw] [g], [n] [l], [ng] null 

Finals: [ang] [an], [ng] [m] (syllabic nasal) 

These observations match well with the findings in sociolinguistic studies on Cantonese 
phonology (Section 2.2). 
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4. Handling Sound Change by Acoustic Model Refinement 

Unlike phone changes, a sound change cannot be described as a simple substitution of one 
phoneme for another. It is regarded as a partial change from the baseform phoneme to a 
surface-form phoneme [Liu and Fung 2003]. Our approaches presented below attempt to 
refine the acoustic models to handle the acoustic variation caused by sound changes. The 
acoustic models are continuous-density HMMs. The output probability density function (pdf) 
at each HMM state is a mixture of Gaussian distributions. The use of multiple mixture 
components is intended to describe complex acoustic variabilities. The acoustic models 
trained only according to the baseform pronunciations are referred to as baseform models. 
Each baseform phoneme may have different surface-form realizations. The acoustic models 
representing these surface-form phonemes are referred to as surface-form models. A baseform 
model doesnot reflect the acoustic properties of the relevant surface-form phonemes. One way 
of dealing with this deficiency is through the sharing of Gaussian mixture components among 
the baseform and surface-form models. In [Saraçlar et al. 2000], a state-level pronunciation 
model (SLPM) was proposed. It allows the HMM states of a baseform model to share the 
output densities of its surface-form phonemes. A state-to-state alignment was obtained from 
decision-tree PMs, and the most frequently confused state pairs were involved in parameter 
sharing. In [Liu and Fung 2004], the method of phonetic mixtures tying was applied to deal 
with sound changes. A set of so-called extended phone units were derived from acoustic 
training data to describe the most prominent phonetic confusion. These units were then 
modeled by mixture tying with the baseform models. In this study, we investigate both the 
sharing and adaptation of the acoustic model parameters at the mixture level [Kam et al. 
2003]. 

4.1 Sharing of Mixture Components 
First of all, the states of the baseform and surface-form models are aligned. It is assumed that 
both models have the same number of states. Then, state j  of the baseform model is aligned 
with state j  of the surface-form model. Consider a baseform phoneme B . The output pdf at 
state j  is given as 

1
( ) ( ; , )

M
j t jm t jm jm

m
b o w N o ,            (4) 

where M  is the number of Gaussian mixture components, and jmw  is the weight for the 
mth mixture component. The baseform output pdf can be modified to include the contributions 
from the surface-form states 
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,
1

'( ) ( , ) ( ) ( , ) ( )
n

n

N
j t j t n S j t

n
S B

b o VP B B b o VP S B q o ,             (5) 

where nS  denotes the nth surface-form of B , N  is the total number of surface-forms,  
( , )nVP S B  is the variation probability of nS  with respect to baseform B , and , ( )

ns j tq o  
denotes the output pdf of state j  of the nth surface-form model. 

The number of mixture components in the resultant baseform model depends on N . 
More surface-form pronunciations bring in more mixture components to the modified 
baseform state. As the number of mixture components is changed, re-estimation of mixture 
weights is required. 

4.2 Adaptation of Mixture Components 
Although sharing mixture components yields an acoustically richer model, it also greatly 
increases the model size for which more memory space and higher computation complexities 
are required. Moreover, if the baseform and surface-form mixture components are very similar, 
including them all in the modified baseform is unnecessarily superfluous. 

We propose to refine the baseform acoustic models through parameters adaptation. The 
total number of model parameters remains unchanged. Like in the approach of mixture sharing, 
the states of the baseform and surface-form models are aligned. The surface-forms are 
generated from the IF confusion matrix. Consider the aligned states of the baseform phoneme 
B  and one of its surface-forms S . Let ( )Bm i  and ( )Sm j  denote the ith mixture 
component in the baseform state and the jth mixture component in the surface-form state, 
respectively, where , 1, 2, ,i j M . The distances between all pairs ( ( )Bm i , ( )Sm j ) are 
computed. Then each surface-form component is paired up with the nearest baseform 
component. That is, for each ( )Sm j , we find 

( )
ˆ arg min ( ( ), ( ))

B

B S
m i

i d m i m j .                     (6) 

The “distance” between two Gaussian distributions is calculated using the 
Kullback-Leibler divergence (KLD) [Myrvoll and Soong 2003]. Given two multivariate 
Gaussian distributions f  and g , the symmetric KLD has the following closed form 

1 1 1 11( , ) {( )( )( ) 2 }
2

T
f g f g f g f g g fd f g trace ,     (7) 

where  and  denote the mean vectors and the covariance matrices of the two 
distributions, respectively, and I  is the identity matrix. 
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As a result, for this pair of baseform and surface-form states, each Gaussian component 
( )Bm i  is associated with k  surface-form components, as illustrated in Figure 3. The 

centroid of these k  components is computed. If the baseform B  has n  surface forms, 
there will be n  such centroids. These surface-form centroids and the corresponding 
baseform component are weighted with the VP, and together produce a new centroid that is 
taken as the adapted baseform component. In this way, the adapted model is expected to shift 
towards the surface-form phonemes. The extent of such a shift depends on the VP. The mean 
and covariance of the centroid of k  weighted Gaussian components can be found by 
minimizing the following weighted divergence 

1,
{ ', '} arg min ( , )

c c

k
c c n c n

n
a d f f ,                   (8) 

where nf   denotes the nth component and na  is the respective weighting coefficient. 
Assuming diagonal covariances, the weighted centroid is given as [Myrvoll and Soong 2003] 

1 1
1

1 1
1

2
1

1
1

( ( ) ( )) ( )
'( )

( ( ) ( ))

[ ( ) ( ( ) ( )) ]
'( )

( )

k
n n c n n

c k
n n c n

k
n n n c n

c k
n n n

a i i i
i

a i i

a i i i
i

a i

.          (9) 
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Figure 3. Mapping between baseform and surfaceform mixture components 
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4.3 Experimental Results and Discussion 
Table 7 gives the recognition results attained with the two methods of acoustic model 
refinement. The VP threshold for surface-form prediction is set at 0.05. Apparently, both 
approaches improve recognition performance. The sharing of mixture components seems to be 
more effective than adaptation. However, this is at the cost of a substantial increase in model 
complexity. The baseline acoustic models have a total of 32,144 Gaussian components. The 
adaptation approach retains the same number of Gaussian components. The models obtained 
with the sharing approach have 37,505 components, 17% more than the baseline. If we use an 
equal number of components in the baseline acoustic models, the baseline word error rate will 
be reduced to 24.34%, and the benefit of sharing mixture components is only marginal. 

Table 7. Recognition results with different methods of acoustic model refinement 

 Baseline Sharing Adaptation 

Word error rate (%) 25.34 23.96 24.70 

With the adaptation approach, the baseform pdf is shifted towards the corresponding 
surface forms. If a surface-form pdf is far away from the baseform one, the extent of the 
modification will be substantial and, consequently, the modified pdf may fail to model the 
original baseform. On the other hand, the sharing approach has the problem of undesirably 
including redundant components in the baseform models. Thus we combine these two 
approaches. The idea is to perform adaptation using the surface-form components that are 
close to the baseform, and at the same time, to use those relatively distant components for 
sharing. 

The values of the KLD between the baseform pdf and the nearest surface-form pdf have 
been analyzed. As illustrative examples, the histograms of the KLD at different states between 
[aak] (baseform) and [aa] (surface form), and between [aak] and [aat], are shown as in 
Figure 4. There are two main types of KLD distributions: 1) concentration around small values 
(e.g., states 1 and 2 of the pair “[aak] [aa]”), and 2) a wide range of values (e.g., states 3 to 
5 of the pair “[aak] [aa]”). A small KLD means that the mixture components of the 
baseform and surface forms are similar. In this case, the baseform components adapt to the 
surface form. In the case of a widely distributed KLD, the surface-form components should 
not be used to adapt the baseform components, but rather should be kept along with the 
modified baseform model in order to explicitly characterize irregular pronunciations. In this 
way, a combined approach to baseform model refinement is formulated. 

Despite the good intentions, the combined use of sharing and adaptation doesnot lead to 
favorable experimental results. With a total of 34,042 mixture components in the refined 
acoustic models, the word error rate is 24.57%. The baseline performance is 24.93% with the 
same model complexity. 
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5. Conclusions 

In this study, we have classified pronunciation variations into phone changes and sound 
changes. However, these are not well defined classifications, especially for the sound changes. 
There is not a clear boundary that separates a phoneme substitution (phone change) from a 
phoneme modification (sound change). This may partially explain why the proposed 
techniques of handling sound change are not as effective as the methods for handling phone 
change. 

The use of a PVD is intuitive and straightforward in implementation. It can reduce the 
word error rate noticeably. When constructing a PVD, the value of the VP threshold needs to 
be carefully determined. While a tight threshold obviously doesnot show any effect, a lax 
control of the PVD size leads to not only a long recognition time but also performance 
degradation. The method of dynamic search space expansion during decoding can bring about 
the same degree of performance improvement as the PVD. However, the training of 
context-dependent pronunciation prediction models requires a large amount of data. 

The methods of acoustic model refinement donot improve recognition performance as 
much as we expected. Similar effect can be achieved by using more mixture components. 
Indeed, more mixture components can describe more complex acoustic variations, which 
include the variations caused by alternative pronunciations. The sharing of mixture 
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components is equivalent to having more mixture components right at the beginning of 
acoustic models training. Adaptation of mixture components is not as effective as increasing 
the number of mixture components. 

For any of the above methods to be effective, the accurate and efficient acquisition of 
pronunciation variation information is most critical. Manual labeling is impractical. Automatic 
detection of pronunciation variations is still an open problem. 
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A Maximum Entropy Approach for  

Semantic Language Modeling 

Chuang-Hua Chueh , Hsin-Min Wang  and Jen-Tzung Chien  

Abstract 

The conventional n-gram language model exploits only the immediate context of 
historical words without exploring long-distance semantic information. In this 
paper, we present a new information source extracted from latent semantic analysis 
(LSA) and adopt the maximum entropy (ME) principle to integrate it into an 
n-gram language model. With the ME approach, each information source serves as 
a set of constraints, which should be satisfied to estimate a hybrid statistical 
language model with maximum randomness. For comparative study, we also carry 
out knowledge integration via linear interpolation (LI). In the experiments on the 
TDT2 Chinese corpus, we find that the ME language model that combines the 
features of trigram and semantic information achieves a 17.9% perplexity reduction 
compared to the conventional trigram language model, and it outperforms the LI 
language model. Furthermore, in evaluation on a Mandarin speech recognition task, 
the ME and LI language models reduce the character error rate by 16.9% and 8.5%, 
respectively, over the bigram language model. 

Keywords: Language Modeling, Latent Semantic Analysis, Maximum Entropy, 
Speech Recognition 

1. Introduction 

Language modeling plays an important role in automatic speech recognition (ASR). Given a 
speech signal O , the most likely word sequence Ŵ  is obtained by maximizing a posteriori 
probability )( OWp , or, equivalently, the product of acoustic likelihood )( WOp  and prior 
probability of word sequence ( )p W : 

           ˆ arg max ( ) arg max ( ) ( )
W W

W p W O p O W p W .                  (1) 
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This prior probability corresponds to the language model that is useful in characterizing 
regularities in natural language. Also, this language model has been widely employed in 
optical character recognition, machine translation, document classification, information 
retrieval [Ponte and Croft 1998], and many other applications. In the literature, there were 
several approaches have been taken to extract different linguistic regularities in natural 
language. The structural language model [Chelba and Jelinek 2000] extracted the relevant 
syntactic regularities based on predefined grammar rules. Also, the large-span language model 
[Bellegarda 2000] was feasible for exploring the document-level semantic regularities. 
Nevertheless, the conventional n-gram model was effective at capturing local lexical 
regularities. In this paper, we focus on developing a novel latent semantic n-gram language 
model for continuous Mandarin speech recognition. 

When considering an n-gram model, the probability of a word sequence W  is written as 
a product of probabilities of individual words conditioned on their preceding n-1 words 

1
1 2 1 1 1

1 1
( ) ( , , , ) ( ,..., ) ( )

T T i
T i i n i i i n

i i
p W p w w w p w w w p w w ,        (2) 

where 1
1

i
i nw  represents historical words for word iw , and the n-gram parameter 

1
1( )i

i i np w w  is usually obtained via the maximum likelihood estimation: 

1 1
1 1

1

( )
( )

( )

i
i i n

i i n i
i n

c w
p w w

c w
.                          (3) 

Here, 1( )i
i nc w  is the number of occurrences of word sequence 1

i
i nw  in the training data. 

Since the n-gram language model is limited by the span of window size n, it is difficult to 
characterize long-distance semantic information in n-gram probabilities. To deal with the issue 
of insufficient long-distance word dependencies, several methods have been developed by 
incorporating semantic or syntactic regularities in order to achieve long-distance language 
modeling. 

One simple combination approach is performed using the linear interpolation of different 
information sources. With this approach, each information source is characterized by a 
separate model. Various information sources are combined using weighted averaging, which 
minimizes overall perplexity without considering the strengths and weaknesses of the sources 
in particular contexts. In other words, the weights were optimized globally instead of locally. 
The hybrid model obtained in this way cannot guarantee the optimal use of different 
information sources [Rosenfeld 1996]. Another important approach is based on Jaynes’ 
maximum entropy (ME) principle [Jaynes 1957]. This approach includes a procedure for 
setting up probability distributions on the basis of partial knowledge. Different from linear 
interpolation, this approach determines probability models with the largest randomness and 
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simultaneously captures all information provided by various knowledge sources. The ME 
framework was first applied to language modeling in [Della Pietra et al. 1992]. In the 
following, we survey several language model algorithms where the idea of information 
combination is adopted. 

In [Kuhn and de Mori 1992], the cache language model was proposed to merge domain 
information by boosting the probabilities of words in the previously-observed history. In 
[Zhou and Lua 1999], n-gram models were integrated with the mutual information (MI) of 
trigger words. The MI-Trigram model achieved a significant reduction in perplexity. In 
[Rosenfeld 1996], the information source provided by trigger pairs was incorporated into an 
n-gram model under the ME framework. Long-distance information was successfully applied 
in language modeling. This new model achieved a 27% reduction in perplexity and a 10% 
reduction in the word error rate. Although trigger pairs are feasible for characterizing 
long-distance word associations, this approach only considers the frequently co-occurring 
word pairs in the training data. Some important semantic information with low frequency of 
occurrence is lost. To compensate for this weakness, the information of entire historical 
contexts should be discovered. Since the words used in different topics are inherently different 
in probability distribution, topic-dependent language models have been developed accordingly. 
In [Clarkson and Robinson 1997], the topic language model was built based on a mixture 
model framework, where topic labels were assigned. Wu and Khudanpur [2002] proposed an 
ME model by integrating n-gram, syntactic and topic information. Topic information was 
extracted from unsupervised clustering in the original document space. A word error rate 
reduction of 3.3% was obtained using the combined language model. In [Florian and 
Yarowsky 1999], a delicate tree framework was developed to represent the topic structure in 
text articles. Different levels of information were integrated by performing linear interpolation 
hierarchically. In this paper, we propose a new semantic information source using latent 
semantic analysis (LSA) [Deerwester et al. 1990; Berry et al. 1995], which is used for 
reducing the disambiguity caused by polysemy and synonymy [Deerwester et al. 1990]. Also, 
the relations of semantic topics and target words are incorporated with n-gram models under 
the ME framework. We illustrate the performance of the new ME model by investigating 
perplexity in language modeling and the character-error rate in continuous Mandarin speech 
recognition. The paper is organized as follows. In the next section, we introduce an overview 
of the ME principle and its relations to other methods. In Section 3, the integration of semantic 
information and n-gram model via linear interpolation and maximum entropy is presented. 
Section 4 describes the experimental results. The evaluation of perplexity and character-error 
rate versus different factors is conducted. The final conclusions drawn from this study are 
discussed in Section 5. 
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2. Maximum Entropy Principle 

2.1 ME Language Modeling 
The underlying idea of the ME principle [Jaynes 1957] is to subtly model what we know, and 
assume nothing about what we do not know. Accordingly, we choose a model that satisfies all 
the information we have and that makes the model distribution as uniform as possible. Using 
the ME model, we can combine different knowledge sources for language modeling [Berger et 
al. 1996]. Each knowledge source provides a set of constraints, which must be satisfied to find 
a unique ME solution. These constraints are typically expressed as marginal distributions. 
Given features 1, , Nf f , which specify the properties extracted from observed data, the 
expectation of if  with respect to empirical distribution ( , )p h w  of history h and word w is 
calculated by 

,
( ) ( , ) ( , )i i

h w
p f p h w f h w ,                         (4) 

where ( )if  is a binary-valued feature function. Also, using conditional probabilities in 
language modeling, we yield the expectation with respect to the target conditional distribution 

( )p w h  by 

            
,

( ) ( ) ( ) ( , )i i
h w

p f p h p w h f h w .                       (5) 

Because the target distribution is required to contain all the information provided by these 
features, we specify these constraints 

           ( ) ( ),      for 1, ,  i ip f p f i N .                      (6) 

Under these constraints, we maximize the conditional entropy or uniformity of distribution 
( )p w h . Lagrange optimization is adopted to solve this constrained optimization problem. For 

each feature if , we introduce a Lagrange multiplier i . The Lagrangian function ),( p  
is extended by 

1
( , ) ( ) ( ) ( )

N
i i i

i
p H p p f p f ,                   (7) 

with conditional entropy defined by 

,
( ) ( ) ( ) log ( )

h w
H p p h p w h p w h .                    (8) 
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Finally, the target distribution ( )p w h  is estimated as a log-linear model distribution 

1

1( ) exp ( , )
( )

N
i i

i
p w h f h w

Z h
,                     (9) 

where ( )Z h  is a normalization term in the form of  

1
( ) exp ( , )

N
i i

w i
Z h f h w ,                     (10) 

determined by the constraint ( ) 1w p w h . The General Iterative Scaling (GIS) algorithm or 
Improved Iterative Scaling (IIS) algorithm [Darroch and Ratcliff 1972; Berger et al. 1996; 
Della Pietra et al. 1997] can be used to find the Lagrange parameters . The IIS algorithm is 
briefly described as follows. 

 

Input:  Feature functions 1 2, , , Nf f f  and empirical distribution ( , )p h w  

Output: Optimal Lagrange multiplier i
ˆ  

1. Start with 0i  for all 1, 2, ,i N . 

2. For each 1, 2, ,i N : 

a.  Let i  be the solution to 

,
( ) ( ) ( , ) exp( ( , )) ( )i i i

h w
p h p w h f h w F h w p f , 

where 
1

( , ) ( , )
N

i
i

F h w f h w . 

b. Update the value of i  according to iii .  

3. Go to step 2 if any i  has not converged. 

 

With the parameters }ˆ{ i , we can calculate the ME language model by using Eqs. (9) and 
(10). 

2.2 Relation between ML and ME Modeling 
It is interesting to note the relation between maximum likelihood (ML) and ME language 
models. The purpose of ML estimation is to find a generative model with the maximum 
likelihood of training data. Generally, the log-likelihood function is adopted in the form of 

( , )

,,
( ) log ( | ) ( , ) log ( | )p h w

h wh w
L p p w h p h w p w h .                 (11) 
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Under the same assumption that the target distribution ( )p w h  is log-linear, as shown in Eqs.  
(9) and (10), the log-likelihood function is extended to 

1

,

' 1

exp ( , )
( ) ( , ) log

exp ( , ')

N
i i

i
Nh w

i i
w i

f h w
L p p h w

f h w
.               (12) 

By taking the derivative of the log-likelihood function with respect to i  and setting it at 
zero, we can obtain the same constraints in Eq. (6) by using the following derivations: 

1

, , ''

' 1

, , ''

exp ( , ")
( , ) ( , ) ( , ) ( , ") 0,

exp ( , ')

( , ) ( , ) ( , ) ( " | ) ( , ") 0,

N
i i

i
i iNh w h w w

i i
w i

i i
h w h w w

f h w
p h w f h w p h w f h w

f h w

p h w f h w p h w p w h f h w

        

, "
( , ) ( , ) ( ) ( " | ) ( , ") 0,

( ) ( ).

i i
h w h w

i i

p h w f h w p h p w h f h w

p f p f
.               (13) 

In other words, the ME model is equivalent to an ML model with a log-linear model. In Table 
1, we compare various properties using ML and ME criteria. Under the assumption of 
log-linear distribution, the optimal parameter ML  is estimated according to the ML 
criterion. The corresponding ML model 

ML
p  is obtained through an unconstrained 

optimization procedure. On the other hand, ME performs the constrained optimization. The 
ME constraint allows us to determine the combined model 

ML
p  with the highest entropy. 

Interestingly, these two estimation methods achieve the same result. 

Table 1. Relation between ML and ME language models 

Objective function )( pL  )( pH  

Criterion Maximum Likelihood Maximum Entropy 

Type of search Unconstrained optimization Constrained optimization 

Search space real values  p satisfied with constraints 

Solution ML  MEp  

MEML
pp  
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2.3 Minimum Discrimination Information and Latent ME 
The ME principle is a special case of minimum discrimination information (MDI) that has 
been successfully applied to language model adaptation [Federico 1999]. Let ( , )bp h w  be the 
background model trained from a large corpus of general domain, and ( , )ap h w  represents 
the adapted model estimated from an adaptation corpus of new domain. In the MDI adaptation, 
the language model is adapted by minimizing the distance between the background model and 
the adapted model. The non-symmetric Kullback-Leibler distance (KLD) 

( , )
( ( , ), ( , )) ( , ) log

( , )
a

a b a
w b

p h w
D p h w p h w p h w

p h w
                (14) 

is used for distance measuring. Obviously, when the background model is a uniform 
distribution, the MDI adaptation is equivalent to the ME estimation. More recently, the ME 
principle was extended to latent ME (LME) mixture modeling, where the latent variables 
representing underlying topics were merged [Wang et al. 2004]. To find the LME solution, the 
modified GIS algorithm, called expectation maximization iterative scaling (EM-IS), was used. 
The authors also applied the LME principle to incorporate probabilistic latent semantic 
analysis [Hofmann 1999] into n-gram modeling by serving the semantic information as the 
latent variables [Wang et al. 2003]. In this study, we use the semantic information as explicit 
features for ME language modeling. Latent semantic analysis (LSA) is adopted to build 
semantic topics. 

3. Integration of Semantic Information and N-Gram Models 

Modeling long-distance information is crucial for language modeling. In [Chien and Chen 
2004; Chien et al. 2004], we successfully incorporated long-distance association patterns and 
latent semantic knowledge in language models. In [Wu and Khudanpur 2002], the integration 
of statistical n-gram and topic unigram using the ME approach was presented. Clustering of 
document vectors in the original document space was performed to extract topic information. 
However, the original document space was generally sparse and filled with noises caused by 
polysemy and synonymy [Deerwester et al. 1990]. To explore robust and representative topic 
characteristics, here we introduce a new knowledge source to extract long-distance semantic 
information for n-gram modeling. Our idea is to adopt the LSA approach and extract semantic 
topic information from the reduced LSA space. The proposed procedure of ME semantic topic 
modeling is illustrated in Figure 1. Because the occurrence of a word is highly related to the 
topic of current discourse, we apply LSA to build representative semantic topics. The 
subspace of semantic topics is constructed via k-means clustering of document vectors 
generated from the LSA model. Furthermore, we combine semantic topics and conventional 
n-grams under the ME framework [Chueh et al. 2004]. 
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      Figure 1. Implementation procedure for ME semantic topic modeling 

3.1 Construction of Semantic Topics 
Latent semantic analysis (LSA) is popular in the areas of information retrieval [Berry et al. 
1995] and semantic inference [Bellegarda 2000]. Using LSA, we can extract latent structures 
embedded in words across documents. LSA is feasible for exploiting these structures. The first 
stage of LSA is to construct an M D  word-by-document matrix A . Here, M  and D  
represent the vocabulary size and the number of documents in the training corpus, respectively. 
The expression for the ( , )i j  entry of matrix A  is [Bellegarda 2000] 

,
, (1 ) i j

i j i
j

c
a

n
,                            (15) 

where jic ,  is the number of times word iw  appears in document jd , jn  is the total 
number of words in jd , and i  is the normalized entropy of iw , computed by 

, ,

1

1 log
log

D i j i j
i

j i i

c c
D t t

,                       (16) 

where it  is the total number of times term iw  appears in the training corpus. In the second 
stage, we project words and documents into a lower dimensional space by performing singular 
value decomposition (SVD) for matrix A  

T T
R R R RA U V U V A ,                      (17) 

where R  is a reduced R R  diagonal matrix with singular values, RU  is an M R  
matrix whose columns are the first R  eigenvectors derived from word-by-word correlation 
matrix TAA , and RV  is a D R  matrix whose columns are the first R  eigenvectors 
derived from the document-by-document correlation matrix TA A . The matrices U , , and 
V  are original full matrices for RU , R , and RV , respectively. The reduced dimension 
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has the property min( , )R M D . After the projection, each column of T
R RV  characterizes 

the location of a particular document in the reduced R-dimensional semantic space. Also, we 
can perform document clustering [Bellegarda 2000; Bellegarda et al. 1996] in the common 
semantic space. Each cluster consists of related documents in the semantic space. In general, 
each cluster in the semantic space reflects a particular semantic topic, which is helpful for 
integration in language modeling. During document clustering, the similarity of documents 
and topics in the common semantic space is determined by a cosine measure 

sim( , ) cos( , )
| || |

T T
j R R kT T

j k R j R k T T
R j R k

d U U t
d t U d U t

U d U t
,               (18) 

where jd , kt  are the vectors constructed by document j and document cluster k, 
respectively. T

R jU d and T
R kU t  are the projected vectors in the semantic space. By assigning 

topics to different documents, we can estimate the topic-dependent unigram ( )i kp w t  and 
incorporate this information into the n-gram model. In what follows, we present two 
approaches for integrating the LSA information into the semantic language model, namely the 
linear interpolation approach and the maximum entropy approach. 

3.2 Integration via Linear Interpolation 
Linear interpolation (LI) [Rosenfeld 1996] is a simple approach to combining information 
sources from n-grams and semantic topics. To find the LI n-gram model, we first construct a 
pseudo document-vector from a particular historical context h . Using the projected document 
vector, we apply the nearest neighbor rule to detect the closest semantic topic kt  
corresponding to history h . Given n-gram model n ( )p w h  and topic-dependent unigram 
model ( )kp w t , the hybrid LI language model is computed by 

( ) ( ) ( )kp w h k p w h k p wLI n n t t ,                  (19) 

where the interpolation coefficients have the properties n t0 , 1k k  and n t 1k k . 
Without the loss of generalization, an n-gram model and a topic-dependent model are 
integrated using fixed weights. Also, the expectation-maximization (EM) algorithm [Dempster 
et al. 1977] can be applied to dynamically determine the value of these weights by minimizing 
the overall perplexity. 

3.3 Integration via Maximum Entropy 
More importantly, we present a new ME language model combining information sources of 
n-grams and semantic topics. N-grams and semantic topics serve as constraints for the ME 
estimation. As shown in Table 2, two information sources partition the event space so as to 
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obtain feature functions. Here, the trigram model is considered. Let iw  denote the current 
word to be predicted by its historical words. The columns and rows represent different 
constraints that are due to trigrams and semantic topics, respectively. The event space is 
partitioned into events En  and Et  for different cases of n-grams and semantic topics, 
respectively. It comes out of the probability of the joint event ( , )p E En t  to be estimated. 

Table 2. Event space partitioned according to trigrams and semantic topics 

iww  1 n1ends in ( )h w E  1 2 n2 ends in , ( )h w w E 2 3 n3ends in , ( )h w w E   

1 t1( )h Et  n1 t1( , )p E E  n2 t1( , )p E E  n3 t1( , )p E E   

2 t2( )h Et  n1 t2( , )p E E  n2 t2( , )p E E  n3 t2( , )p E E   

     

Accordingly, the feature function for each column or n-gram event is given by 

        1 2n 1  if  ends  in ,  and 
( , )

0 otherwise
i i i

i
h w w w w

f h w .                (20) 

In addition, the feature function for each row or semantic topic event has the form 

                 t 1 if  and 
( , )

0 otherwise
k i

i
h w w

f h w
t

.                     (21) 

We can build constraints corresponding to the trigrams and semantic topics as follows: 

 

Trigram:  

n n
2 1( ) ( ) ( , ) ( , ) ( , ) ( , , )i i i i i

h,w h,w
p h p w h f h w p h w f h w p w w w .           (22) 

Semantic topics: 

t t( ) ( ) ( , ) ( , ) ( , ) ( , )i i k i
h,w h,w

p h p w h f h w p h w f h w p h wt .            (23) 

Under these constraints, we apply the IIS procedure described in Section 2.1 to estimate 
feature parameters n

i  and t
i , used for combining information sources from trigrams and 

semantic topics, respectively. Finally, the solution provided by the ME semantic language 
modeling ME ( )p w h  is computed by substituting n

i  and t
i  into Eqs. (9) and (10). We 

will compare the performance of LI language model LI ( )p w h  and ME language model 

ME ( )p w h  in the following experiments. 
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4. Experimental Results 

In this study, we evaluate the proposed ME language model by measuring the model 
perplexity and the character-error rate in continuous speech recognition. The conventional 
n-gram language model is used as the baseline, while the ME language model proposed by Wu 
and Khudanpur [2002] is also employed for comparison. In addition, we also compare the 
maximum-entropy-based (ME) hybrid language model with the linear-interpolation-based (LI) 
hybrid language model. In the experiments, the training corpus for language modeling was 
composed of 5,500 Chinese articles (1,746,978 words in total) of the TDT2 Corpus, which 
were collected from the XinHua News Agency [Cieri et al. 1999] from January to June in 
1998. The TDT2 corpus contained the recordings of broadcasted news audio developed for the 
tasks of cross-lingual cross-media Topic Detection and Tracking (TDT) and speech 
recognition. The audio files were recorded in single channel at 16 KHz in 16-bit linear 
SPHERE files. We used a dictionary of 32,909 words provided by Academic Sinica, Taiwan. 
18,539 words in this dictionary occurred at least once in the training corpus. When carrying 
out the LSA procedure, we built a 32,909 5,500  word by document matrix A  from the 
training data. We used MATLAB to implement SVD and k-means operations and, accordingly, 
performed document clustering and determined semantic topic vectors. The topic-dependent 
unigram was interpolated with the general unigram for model smoothing. The dimensionality 
of the LSA model was reduced to 100R . We performed the IIS algorithm with 30 
iterations. All language models were smoothed using Jelinek-Mercer smoothing [Jelinek and 
Mercer 1980], which is calculated based on the interpolation of estimated distribution and 
lower order n-grams. 

4.1 Convergence of the IIS Algorithm 
First of all, we examine the convergence property of the IIS algorithm. Figure 2 shows the 
log-likelihood of the training data using the ME language model versus different IIS iterations. 
In this evaluation, the number of semantic topics was set at 30. The ME model that combines 
the features of trigram and semantic topic information was considered. Typically, the 
log-likelihood increases consistently with the IIS iterations. The IIS procedure for the ME 
integration converged after five or six iterations. 

4.2 Evaluation of Perplexity 
One popular evaluation metric for language models for speech recognition is the perplexity of 
test data. Perplexity can be interpreted as the average number of branches in the text. The 
higher the perplexity, the more branches the speech recognition system should consider. 
Generally speaking, a language model with lower perplexity implies less confusion in 
recognition and achieves higher speech-recognition accuracy. To evaluate the perplexity, we 
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selected an additional 734 Chinese documents from the XinHua News Agency, which 
consisted of 244,573 words, as the test data. First, we evaluated the effect of the length of 
history h  for topic identification. The perplexities of LI and ME models are shown in 
Figures 3 and 4, respectively. Here, C represents the number of document clusters or semantic 
topics. In the LI implementation, for each length of history h , the interpolation weight with 
the lowest perplexity was empirically selected. It is obvious that the proposed ME language 
model outperforms Wu’s ME language model [Wu and Khudanpur 2002] and the ME 
language model outperforms the LI language model. Furthermore, a larger C produces lower 
perplexity and the case that considering 50 historical words obtains the lowest perplexity. 
Accordingly, we fixed the length of h  at 50 in the subsequent experiments. Table 3 details 
the perplexities for bigram and semantic language models based on LI and ME. We found that 
the perplexity was reduced from 451.4 (for the baseline bigram) to 444.7 by using Wu’s 
method and to 441 by using the proposed method when the combination was based on linear 
interpolation (LI) and the topic number was 30. With the maximum entropy (ME) estimation, 
the perplexity was further reduced to 399 and 393.7 by using Wu’s method and the proposed 
method, respectively. No matter whether Wu’s method or the proposed method was used, the 
ME language model consistently outperformed the LI language model with different numbers 
of semantic topics. We also evaluated these models based on the trigram features. The results 
are summarized in Table 4. We can see that, by integrating latent semantic information into 
the trigram model, the perplexity is reduced from 376.6 (for the baseline trigram) to 345.3 by 
using the LI model and to 309.3 by using the ME model, for the case of C=100. The 
experimental results again demonstrate that the performance improves with the number of 
semantic topics and that the proposed method consistently outperforms Wu’s method, though 
the improvement is not very significant. 
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Figure 2. Log-Likelihood of training data versus the number of IIS iterations 
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Figure 3. Perplexity of the LI model versus the length of history 
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Figure 4. Perplexity of the ME model versus the length of history 
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Table 3. Comparison of perplexity for bigram, LI and ME semantic language models 
Wu's methodʳ Proposed methodʳ

ʳ ʳ Bigramʳ
LIʳ MEʳ LIʳ MEʳ

C=30ʳ 444.7ʳ 399ʳ 441ʳ 393.7ʳ

C=50ʳ 442.9ʳ 402ʳ 438ʳ 394.8ʳ

C=100ʳ

451.4ʳ

437ʳ 397.2ʳ 435.7ʳ 401.2ʳ

Table 4. Comparison of perplexity for trigram, LI and ME semantic language models 

Wu's methodʳ Proposed methodʳ
ʳ ʳ Trigramʳ

LIʳ MEʳ LIʳ MEʳ

C=30ʳ 355.1ʳ 317.1ʳ 349.7ʳ 311.9ʳ

C=50ʳ 353.3ʳ 315.9ʳ 347.1ʳ 310.4ʳ

C=100ʳ

376.6ʳ

347.1ʳ 309.9ʳ 345.3ʳ 309.3ʳ

4.3 Evaluation of Speech Recognition 
In addition to perplexity, we evaluated the proposed language models for a continuous 
Mandarin speech recognition task. Character-error rates are reported for comparison. The 
initial speaker-independent, hidden Markov models (HMM’s) were trained by the benchmark 
Mandarin speech corpus TCC300 [Chien and Huang 2003], which was recorded in office 
environments using close-talking microphones. We followed the construction of 
context-dependent sub-syllable HMM’s for Mandarin speech presented in [Chien and Huang 
2003]. Each Mandarin syllable was modeled by right context-dependent states where each 
state had, at most, 32 mixture components. Each feature vector consisted of twelve 
Mel-frequency cepstral coefficients, one log energy, and their first derivatives. The maximum 
a posteriori (MAP) adaptation [Gauvian and Lee 1994] was performed on the initial HMM’s 
using 83 training sentences (about 10 minutes long), from Voice of America (VOA) news, in 
the TDT2 corpus for corrective training. The additional 49 sentences selected from VOA news 
were used for speech recognition evaluation. This test set contained 1,852 syllables, with a 
total length of 6.6 minutes. To reduce the complexity of the tree copy search in decoding a test 
sentence, we assumed each test sentence corresponded to a single topic, which was assigned 
according to the nearest neighbor rule. Due to the above complexity, in this study we only 
implemented the language model by combining bigram and semantic information in our 
recognizer. Figure 5 displays the character-error rate versus the number of topics. We can see 
that the character-error rate decreases in the beginning and then increases as the number of 
topics increases. Basically, more topics provide higher resolution for representing the 
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information source. However, the model with higher resolution requires larger training data 
for parameter estimation. Otherwise, the overtraining problem occurs and the performance 
degrades accordingly. The character-error rates used in Wu’s method and the proposed 
method are summarized in Table 5. In the case of C=50, the proposed LI model can achieve an 
error-rate reduction of 8.5% compared to the bigram model, while the proposed ME model 
attains a 16.9% error-rate reduction. The proposed method in general achieves lower error 
rates compared to Wu’s method. 
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Figure 5. Character error rate (%) versus the number of topics 

Table 5. Comparison of character error rate (%) for bigram, LI and ME semantic 
language models 

Wu's method Proposed method 
ʳ  Bigram 

LI ME LI ME 

C=30 38.9 36.4 36.7 34.9 

C=50 38.1 36.8 37.9 34.4 

C=100 

41.4 

38.3 36.5 37.3 36.1 

To evaluate the statistical significance of performance difference between the proposed 
method and Wu’s method, we applied the matched-pairs test [Gillick and Cox 1989] to test 
the hypothesis that the number of recognition errors that occur when using the proposed 
method is close to that with Wu’s method. In the evaluation, we calculated the difference 



 

 

ˈ˅                                                    Chuang-Hua Chueh et al. 

 

between character errors induced by Wu’s method aE  and the proposed method tE  for 
each utterance. If the mean of variable t az E E  was zero, we accepted the conclusion that 
these two methods are not statistically different. To carry out the test, we calculated the 
sample mean z  and sample variance z  from N utterances and determined the test 
statistic ( )z z N . Then, we computed the probability 2Pr( )P z  and 
compared P with a chosen significance level . When P , this hypothesis was rejected 
or, equivalently, the improvement obtained with the proposed method was statistically 
significant. In the evaluation, we applied the respective best case of Wu’s method and the 
proposed method (i.e., ME language modeling, and C=30 for Wu’s method but C=50 for the 
proposed method) in the test and obtained a P value of 0.0214. Thus, at the 0.05  level of 
significance, the proposed method is better than Wu’s method. That is, the proposed LSA 
based topic extraction is desirable for discovering semantic information for language 
modeling. 

5. Conclusions 

We have presented a new language modeling approach to overcome the drawback of lacking 
long-distance dependencies in a conventional n-gram model that is due to the assumption of 
the Markov chain. We introduced a new long-distance semantic information source, called the 
semantic topic, for knowledge integration. Instead of extracting the topic information from the 
original document space, we proposed extracting semantic topics from the LSA space. In the 
constructed LSA space with reduced dimensionality, the latent relation between words and 
documents was explored. The k-means clustering technique was applied for document 
clustering. The estimated clusters were representative of semantic topics embedded in general 
text documents. Accordingly, the topic-dependent unigrams were estimated and combined 
with the conventional n-grams. When performing knowledge integration, both linear 
interpolation and maximum entropy approaches were carried out for comparison. Generally 
speaking, linear interpolation was simpler for implementation. LI combined two information 
sources through a weighting factor, which was estimated by minimizing the overall perplexity. 
This weight was optimized globally such that we could not localize the use of weights for 
different sources. To achieve an optimal combination, the ME principle was applied. Each 
information source served as a set of constrains to be satisfied for model combination. The IIS 
algorithm was adopted for constrained optimization. From the experimental results of Chinese 
document modeling and Mandarin speech recognition, we found that ME semantic language 
modeling achieved a desirable performance in terms of model perplexity and character-error 
rates. The combined model, through linear interpolation, achieved about an 8.3% perplexity 
reduction over the trigram model. The proposed semantic language model did compensate the 
insufficiency of long-distance information in a conventional n-gram model. Furthermore, the 
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ME semantic language model reduced perplexity by 17.9%. The ME approach did provide a 
delicate mechanism for model combination. Also, in the evaluation of speech recognition, the 
ME semantic language model obtained a 16.9% character-error rate reduction over the bigram 
model. The ME model was better than the LI model for speech recognition. In the future, we 
will validate the coincidence between the semantic topics discovered by the proposed method 
and the semantic topics labeled manually. We will also extend the evaluation of speech 
recognition using higher-order n-gram models over a larger collection of speech data. 
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Robust Target Speaker Tracking in  

Broadcast TV Streams 

Junmei Bai*, Hongchen Jiang*, Shilei Zhang*,  

Shuwu Zhang* and Bo Xu* 

Abstract 

This paper addresses the problem of audio change detection and speaker tracking in 
broadcast TV streams. A two-pass audio change detection algorithm, which 
includes detection of the potential change boundaries and refinement, is proposed. 
Speaker tracking is performed based on the results of speaker change detection. In 
speaker tracking, Wiener filtering, endpoint detection of pitch, and segmental 
cepstral feature normalization are applied to obtain a more reliable result. The 
algorithm has low complexity. Our experiments show that the algorithm achieves 
very satisfactory results. 

Keywords: Speaker Tracking, Audio Segmentation, Entropy, GMM 

1. Introduction 

Broadcast TV programs are rich multimedia information resources. They contain large 
amounts of AV (audio & video) contents including speech, music, images, motion, text, and 
so on. Finding ways to extract and manage these various kinds of AV content information is 
becoming extremely important and necessary for application-oriented multimedia content 
mining and management. The analysis and classification of audio data are important tasks in 
many applications, such as speaker tracking, speech recognition, and content-based indexing. 
Among of them, target speaker tracking in TV streams is an important research topic for TV 
scene analysis. In contrast with general speaker recognition, speaker detection in audio 
streams usually requires segments of relatively homogenous speech and speaker tracking in 
this task should also determine the target speakers’ locations, in other word, the starting and 
ending times. In such applications, effective methods for segmenting continuous audio streams 
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into homogeneous segments are required. 

The problem of acoustic segmentation and classification has become crucial for the 
application of automatic speech recognition to audio stream processing. The automatic 
segmentation of long audio streams and the clustering of audio segments according to 
different acoustic characteristics have received much attention recently [Lu and Zhang 2002; 
Chen and Gopalakrishnan 1998; Delacourt and Wellekens 2000; Wilcox et al. 1994; Pietquin 
et al. 2002]. To detect target speakers in an audio stream, it is best to segment the audio 
stream into homogeneous regions according to changes in speaker identity, environmental 
conditions and channel conditions. In fact, there are no explicit cues of changes among these 
audio signals, and the same speaker may appear multiple times in audio streams. Thus, it is not 
easy to segment an audio stream correctly. Various segmentation algorithms proposed in the 
literature [Lu and Zhang 2002; Chen and Gopalakrishnan 1998; Delacourt and Wellekens 
2000; Ajmera et al. 2003; Cettolo and Federico 2000] can be categorized as follows [Chen et 
al. 1998]: 

1) Decoder-guided segmentation algorithms: The input audio stream is first decoded by an 
automation speech recognition (ASR) systems, and then the desired segments are produced 
by cutting the input at the silence locations generated by the decoder. Other information 
from the decoder, such as gender information, can also be utilized in segmentation. 

2) Model-based segmentation algorithms: Different models, e.g., Gaussian mixture models, 
are build for a fixed set of acoustic classes, such as telephone speech, pure music, etc, from 
a training corpus. In these schemes, a sliding window approach and multivariate Gaussian 
models are generally used. Decisions about the maximum likelihood boundary are made. 

3) Metric-based segmentation algotithms: The audio stream is segmented at places where 
maxima of the distances between neighboring windows appear, and distance measures, 
such as the KL distance and the generalized likelihood ratio (GLR) distance [Fisher et al. 
2003], are utilized. 

These methods are not very successful at detecting acoustic changes that occur in data 
[Chen et al.1998]. Decoder-guided segmentation only places boundaries at silence locations, 
which in general have no direct connection with acoustic changes in the data. Model-based 
segmentation usually can not be generalized to unseen acoustic conditions. Meanwhile, both 
model-based and metric-based segmentation rely on a threshold which sometimes lacks 
stability and robustness. In addition, model-based segmentation does not generalize to unseen 
acoustic conditions. 

As for target speaker detection, which is similar to general speaker verification, the 
traditional methods focus on likelihood ratio detection and template matching. Among these 
approaches, Gaussian Mixture Models (GMMs) have been the most successful so far 
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[Reynolds et al. 2000]. Reynolds also extended of these methods by adapting the speaker 
model from a universal background model (UBM). The speaker detector we adopted in our 
experiments is based on adapted GMMs. In the target speaker detecting system, we also used 
the segmental cepstral mean and variance normalization (SCMVN) to normalize the cepstral 
coefficients to get robust segmental parameter statistics that are suitable for various kinds of 
environmental conditions. 

2. Overview 

The task of automatic speaker tracking involves finding target speakers in test audio streams. 
Given an audio stream, all the segments containing a target speaker’s voice must be located 
with the starting and ending times. The general approach to speaker tracking consists of three 
steps: audio segmentation, audio classification, and speaker verification. A complete block 
diagram of the proposed speaker tracking system is shown in Figure 1. The diagram shows 
how the components of the system fit together. 

 

 

 

 

 

 

 

 

 

 

 

 

The three steps are defined as three modules in Figure 1, denoted as M1, M2, and M3. 
First, audio streams are segmented in M1 by means of two-pass audio segmentation. Then, in 
M2, these audio segments are classified into different classes, such as speech, music, noise 
and so on. Last, the speech segments are tested in M3 to verify if target speakers appear in the 
audio streams. Sometimes, M2 is not necessary when the speaker verification module can 
distinguish target speakers with other audio signals with acceptable precision. The individual 
blocks will be described in detail in following sections. 

Figure 1. Block diagram of the speaker tracking system components 

M1—Segmentation Module, M2 —Classification Module, M3—Speaker verification 

M 1 M 2 

M 3
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3. Two-Pass Audio Segmentation 

The goal of automatic segmentation of audio signals is to detect changes in speaker identity, 
environmental conditions, and channel conditions. The problem is to find acoustic change 
detection points in an audio stream. A two-pass segmentation process for audio streams is 
presented in this paper. First, audio segmentation based on entropy is used to detect potential 
audio change points. Then, speaker change boundary refinement based on Bayesian decisions 
is applied. 

3.1 First-Pass Segmentation Based on Entropy 
In the first pass, we use entropy measures to determine the turn candidates. Entropy is a 
measure of the uncertainty or disorder in a given distribution [Papoulis 1991]. There are many 
methods for calculating entropy. Ajmera calculates entropy based on posterior probabilities 
and sets it as one of the features for discriminating speech and music [Ajmera et al. 2003]. It is 
a model-based classification scheme that makes decisions based on the scores of audio signals 
to two models: a speech model and a music model. Generally, the speech model is estimated 
from lots of speech spoken by different speakers, and it acts as a universal model. Thus, it is 
not suitable for distinguishing different speakers, particularly unknown speakers. 

The entropy method used in this work is also an extension of the model-based 
segmentation scheme. Generally, model-based methods apply a maximum likelihood of the 
Gaussian process with a penalty weight to detect turns in audio streams. By appropriately 
defining this penalty, one can generate decisions based on the Akaike Information Criterion 
(AIC), the Bayesian Information Criterion (BIC), the Consistent AIC (CAIC), the Minimum 
Description Length (MDL) principle, and the Minimum Message Length (MML) principle. It 
has been found that BIC, MDL, and CAIC give the best results and that with proper tuning, all 
three produce comparable results [Cettolo et al. 2000]. 

In this paper, entropy is calculated based on statistical parameters of audio features. The 
decision rule is not based on scores but on the shape of the entropy contour. In order to clearly 
show the performance of our method, it is compared with BIC in this paper. The of 
entropy-based audio segmentation scheme is described in detail in the following: 

Entropy of a Gaussian Random Variable [You et al. 2004]: 

Assume a random variable X of dimension K. The entropy of the random variable (RV) is 
computed by first estimating its probability distribution function (pdf). We can compute the 
pdf either from the RV’s histogram or from a parameterized distribution. The latter is used to 
reduce the amount of computation. Assume that the pdf follows a K-dimensional Gaussian 
density: 
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2 2 ( ) ( )( ) | 2 |

TX XP X e ,                               (1-a) 

where  is the mean vector and is the covariance matrix. The entropy of X is 

( ) ( ) ( )E X P X LogP X dX  .                                 (1-b) 

Eq. (1-b) can been replaced by [You et al. 2004]: 

( ) 2 logE X KLog .                                    (1-c) 

The entropy curve of a speech signal in a sliding window is calculated as follows: 

Define 1 2{ , , }NY y y y  as the cepstral sequence of an audio stream in a sliding window 
of N frames. At a given frame index j (1 )j N , the sliding window is partitioned into two 
sub-windows. Denote them as ( ) 1 2{ , , , }j l jY y y y  and ( ) 1 2{ , , , }j r j j NY y y y , 
respectively. The lengths of the two windows are ( )j lN and ( )j rN ( ( ) ( )j l j rN N N ) 
respectively. Assume that each window is generally modeled with a multivariate Gaussian 
density, such as ( ) ( )( , )j l j lN µ and ( ) ( )( , )j r j rN µ , respectively. The sum of the entropy of 
each side of the window is computed as follows: 

( ) ( )( )
( ) ( ) ( ) ( )

1 1
( log 2 ) log 2 )

j l j lN N
i

j l j l j l j l
i i

E K K N ,              (1-d) 

( ) ( )( )
( ) ( ) ( ) ( )

1 1
( log 2 ) log 2

j r j rN N
i

j r j r j r j r
i i

E K K N .              (1-e) 

Then, the segmentation entropy at j  can be computed as follows 

( ) ( )

( ) ( ) ( ) ( )
1 1

( ) ( ) ( ) ( )

( ) log 2 log | | log 2 log | |,

( ) log 2 log | | log | | .

j l j rN N

j l j l j r j r
i i

j l j l j r j r

E j K N K N

E j NK N N
     (1-f) 

log 2NK  is a constant. It is ineffective for determining the entropy curve and can been 
omitted. Thus, the segmentation entropy at j  can be simplified as follows: 

       ( ) ( ) ( ) ( )( ) log | | log | |j l j l j r j rE j N N .                              (1) 

Decision making is performed by analyzing the entropy curve in each window as 
described below. 

H1: There is a potential change point in the sliding window. 

The sequence entropy value shows a step-down change until it reaches a minimal value 
at time t . Then, it increases gradually. t can be considered as a change point. Here, 

arg min ( )
j

t E j . 
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H0: There is no any change point in the sliding window. 

The segmentation entropies vary randomly. 

We can make the following observations: 

a) The minimal entropy varies for different window sizes and different audio conditions. 
However, if the entropy decreases gradually till it reaches a minimal polar, then it 
increases gradually, there is a changing point at the polar. 

b) Since there are fewer data in the region close to the original point on the left, the 
segmentation entropies in this region are unable to describe the entropy curve accurately. 
The same is true, on the right. Thus, these two regions are ignored in the final analysis. As 
shown in Figure 2, t  is defined as the number of the points ignored on each side. 

c) The basic processing unit or the sliding window length is 3s; however, the overlapping 
length between two neighboring windows is not fixed. If there is not change point in the 
prior window, the overlapping length is 1.5s; otherwise, the overlapping length is relative 
to the location of the last change point in the prior window. 

3.2 Second-Pass Speaker Change Boundary Refinement 
Often there are false positives in potential speaker change points obtained with the algorithms 
described above. To remove false positives, a refinement algorithm is applied. The algorithm 
is based on the dissimilarity between two adjacent sub-segments. In this step, two distance 
measures, the Bayesian decision and KL distance, are applied to validate or discard candidates 
from the first pass.�Suppose the feature vector extracted from each sub-segment is Gaussian, 
and assume that the feature probability distribution functions are n-variable normal 
populations, such as 1 1( , )N µ and 2 2( , )N µ . The Bayesian decision distance between two 
speech segments can be defined as [Lu et al. 2002] 

1 11
1 2 1 22 [( )( )]BDD tr .                                     (2) 

Figure 2. Samples of entropy contour 
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Provided that the speech of each segment can been modeled with a multivariate Gaussian 
density, the Kullback-Leibler (KL) distance between two speech slices is defined by 
[Homayoon et al. 1998] 

1 1 2 21

1 21

( )

( )

i i i iM
i

KL i iM
i

w d w d
D

w w
,                                          (3) 

1 11 2 2 2

1 12 2

j j ji ii

ij j i i jd ,                                (3-a) 

1 min( )i
ij

j
d d ,                                                    (3-b) 

2 min( )j
ij

i
d d .                                                    (3-c) 

{ | 1, 2,..., }i
t tw w i M is the mixture weight of the model of the tth segment.�

In general, if two speech segments are spoken by the same speaker, the distance between 
them will be small; otherwise, the distance will be large. Thus, we apply a simple criterion: if 
the distance between two speech segments is larger than a given threshold, then these two 
segments can be considered as to be spoken by different speakers. The thresholds adopted in 
this study were set experientially. Figure 3 shows an example of two-pass audio segmentation 
of 26-second long audio stream. The audio stream includes two speakers and 3 speaker change 
boundaries, which are 7s, 15s and 22s respectively. It can be seen that the number of the 
potential boundaries is greater than that of real boundaries. The Bayesian decision is 
performed on these potential speaker change points to remove the false ones. In Figure 3, Dbd, 

Figure 3. Two pass segmentation procedure: the entropy contour and the 
Bayesian decision 
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is an experiential threshold for the Bayesian decision. 

3.3 Audio Segments Classification 

The aim of audio classification is to distinguish speech and other audio signals. Currently, the 
state-of-the-art method of classification is based on GMM. Four models were applied in our 
experiments, a speech model, an unvoiced model, a music model, and a noise model, to 
classify the audio segments. Among them, only speech slices were used to detect target 
speakers in subsequent processing. 

4. Target Speaker Tracking System 

To a certain extent, speaker detection is similar to automatic speaker verification (ASV), 
which is used to verify the identity claimed by a speaker. The general approach to speaker 
detection mainly consists of four parts: speech signal pre-processing, speaker feature 
extraction, speaker modeling, and recognition. 

4.1 Speech Slice Pre-Processing 
In automatic speaker detection systems, the mismatch between training and recognition, 
generated by additive or convoluting noises, often severely degrades the recognition accuracy. 
In addition, the non-speech signals, mainly silence and noise, contain little information of 
speakers. They are the same for each person and contain no distinguishing features, only ones 
that are confusing for speaker detection. They can degrade the discrimination ability for 
different speakers. Thus it is necessary to reduce the noise and discard the irrelevant 
information before performing speaker features extraction. In our experiments, we applied 
Wiener filtering and pitch-based endpoint detection in speech slice pre-processing. 

Though pitch is a robust feature to noise, it is difficult to measure pitch accurately and 
reliably for several reasons. Since the key is to detect the active endpoints by means of pitch, 

Figure 4. Pre-processing by Wiener filter and endpoint detection on pitch 
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it is not appropriate to put much emphasis on the precision values of pitch. Moreover, we use 
wiener filter to alleviate the noise, which makes the pitch detection more precise. In Figure 4, 
we can see that the pitch, which is mostly susceptible to noise, is near the endpoint. We set the 
active endpoint at the place where the pitch is less than zero. Although the pitch may not be 
precise, it is valid for endpoint detection. If the interval between two adjacent unvoiced frames 
is too short, say, less than 10 frames, then these unvoiced frames will be reserved. 

4.2 Speaker Feature Extraction and Normalization 
Although there is no exclusive feature for distinguishing different speakers’ voices, the speech 
spectrum has been shown to be very effective for speaker recognition. This is because the 
spectrum reflects a person’s vocal tract structure, the predominant physiological factor that 
distinguishes one person’s voice from others. The Mel-frequency cepstral coefficient (MFCC) 
vectors have been used extensively for speaker recognition. However, the MFCC features can 
be severely affected by noise. Thus, some methods should be used to compensate for the 
corrupted speech. 

The widely used method for Cepstral feature normalization is Cepstral mean subtraction 
(CMS). CMS is performed over an entire file, and it can reduce the stationary convolution 
noise caused by the channel. However, CMS can also reduce some slow dynamic features of 
speakers. In this study, the segmental cepstral mean and variance normalization (SCMVN) 
were used. SCMVN is calculated as follows: 

( 1) / 2
( 1) / 2

( ) ( )
ˆ ( )

( )
t L t

t L
t

x i i
x i

i
 ,                                     (4) 

where, tX is the feature vector at time t , and L is the length of the sliding window; t , which 
is the first frame in the current window, gives the current place of the window in the speech; 

( )t i  and ( )t i  are the means and variances of the feature vector in this window.�It should 
be noted that the length of the window, L , is fixed since the normalization of all feature 
should be uniform. In addition, a proper value of L should be adopted. The estimations of 

( )t i and ( )t i may be imprecise if L is too short. And if it is too long, the calculation will be 
more complex. 

SCMVN has two possible effects: Firstly, it can reduce the action of addition noises in 
feature variance. Generally, addition noises result in decreased variance. Secondly, the 
features are mapped to a normal distribution over a sliding window, which is helpful for 
modeling the speakers’ GMM later in speaker recognition. 
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4.3 Speaker Tracking 
The basic speaker detector is a likelihood ratio detector with target and alternative probability 
distributions. For text independent speaker verification GMMs (Gaussian Mixture Models) 
have been most successful so far [Reynolds et al. 2000]. The test ratio may be expanded by 
using the Bayesian rule: 

( | ) ( ) ( | )
( )

( | ) ( ) ( | )
i UBM i

UBM i UBM

f x g f x
T x

f x g f x
,                               (5) 

where ( )g  is the prior density. In fact, the prior density is assumed to be equal for the 
UBM and the target model. The set of feature vectors is often very large, hence, the value 
of (..)f  is often very small. Therefore, it is common to compute the logarithm of the test ratio 
instead. The log-test ratio is given by 

( ) log ( | ) log ( | )i i UBMx f x f x .                                 (6) 

Thus, the most suitable speaker models can be found based on the largest likelihood ratio. If 
the largest likelihood ratio is larger than a threshold, the identity of the current speaker can be 
determined; otherwise, the current segment is considered for a new speaker. In this way, we 
can determine the identity of the current speaker. Suppose that so far, K speakers are 
registered in the speaker model database; the concrete expression for identifying the speaker 
of the current segment is as follows: 

          
0

0

arg max max

max

i i
i

i

if
ID

Non if
,                                     (7) 

where 1 i K  and Non represents a new speaker. The threshold 0  can be either speaker 
dependent or speaker independent. The purpose of speaker dependent thresholds is to reduce 
the negative effects of speaker dependent variability on performance. Another solution is to 
apply a reversible transform to score values so that the result is equivalent to using speaker 
dependent thresholds. For practical reasons, the transform is based on impostor scores rather 
than on true speaker scores. One such method, currently known as znorm [Reynolds 1995], 
transforms the impostor score distribution to zero mean and unit variance, while a Gaussian 
distribution is assumed. For an observation x and a claimed identity i , the normalized 
log-test is given by 

( )
( )Znorm i i

i
i

x
x ,                                           (8) 

where i and i are the moment estimates of the impostor score distribution for a speaker i . 
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5. Experiments 

5.1 Database 
The proposed audio segmentation and speaker tracking algorithms were evaluated using an 
audio database, recorded directly from the CCTV news channel. The database is composed of 
about 10 hours of audio streams, which are from different TV programs, such as news, 
interviews, music, and movies. In the test database, at least one target speaker appeared in 
each file. 

Figure 5 reports the length statistics for the segments in the test set. A segment was 
defined as a contiguous portion of an audio signal, homogeneous in terms of acoustic source 
and channel. The duration of two adjacent turns in the test data varied from 2 seconds to 5 
minutes. In Figure 5, the x-axis is the time duration, and the number reprensents the duration. 
On the right side of Figure 5, the first row corresponds to the second row. For example, 
1=”<3s” and 2=”3s~10s”. This shows that about 2% of the audio segments were less than 3 
seconds long. We tested the performance with windows of 2 seconds and 3 seconds. It was 
observed that the performance decreased dramatically when the two-second window is used. 
Thus, we selected 3 seconds as the unit window size. That is to say, for those speaker 
segments which were less than 3 seconds long, the segmentation results were not reliable. 

 

 

 

 

 

 

 

 

 

5.2 Experimental Setup 
The input audio stream was first down-sampled into a uniform format: 8KHZ, 16bits, and 
mono-channel, regardless of the input format. In first pass segmentation, the speech stream 
was then pre-emphasized and divided into sub-segments using 3-second window with some 
overlapping. That is, the basic processing unit was 3 seconds; however, the temporal 
resolution of segmentation was not fixed. If there was no change point in the prior window, 

Figure 5. Histogram for the audio segment durations of all audio streams and 
Target speakers 
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the overlapping length was 1.5 second, or the overlapping length was relative to the location 
of the last change point in the prior window. 

In target speaker detection, the most important features extracted from the frame were 
MFCC and pitch. MFCC and the delta parameters were employed to characterize target 
speakers. The 16-dimensional MFCC vector and 1-dimensional energy were extracted from 
the speech signal every 12 ms with a 24 ms window. The delta parameters were then 
computed and appended to the previous vectors, thus producing a 34-dimensional feature 
vector. 

There were a total of 40 target speakers, who consisted of reporters, commentators, 
comperes, and interviewees. The target models were adapted from UBM parameters, using 
two minutes of training data. The target speaker detector was a likelihood ratio detector for 
adaptation GMMs. Our UBM was a 1024 mixture GMM, trained using about 6 hours of 
broadcast data from 60 speakers with equal number of males and females. Target models were 
derived by means of Bayesian adaptation from the UBM parameters using two minutes of 
training data. Only the mean vectors were adapted, as this had been observed to provide better 
performance. The amount of adaptation of each mixture mean was data dependent. 

The baseline system only used CMS to alleviate noises; then, Wiener filtering, endpoint 
detection via the pitch, and SCMVN were applied, respectively. 

5.3 Experimental Results 
The criteria of performance for audio segmentation and speaker detection are shown below: 

For audio segmentation, the false alarm rate (FAR) and missed detection rate (MDR) 
were calculated as follows [Lu et al. 2002]: 

det 100%
det

number of false ectionFAR
number of false ection number of true change

 , 

det 100%number of miss ectionMDR
number of true change

 . 

For target speaker detection: the false alarm rate (FA), false reject rate (FR), and Equal 
Error Rate (ERR) were calculated as follows: 

arg 100%
arg

number of false accepted as t etsFA
number of segments number of t et segments

 , 

100%
arg

number of False rejectedFR
number of true t et segments

 . 

When FA FR , ERR FA FR . ERR is a common criterion for judging the 
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performance of speaker verification systems. 

5.3.1 Results of Audio Segmentation 
The statistics results of audio segmentation are shown in Table 1. In first pass segmentation, 
the entropy-based method was better than BIC, particularly in MDR. However, FAR was still a 
little high with both methods. This was mostly due to the following reasons. First, FAR in long 
segments is great. As shown in Figure 5, about 10% of the segments were longer than 60 
seconds. These long segments resulted in 5%-10% FAR. Second, the noise information 
increased FAR. In fact, some of the false detections in long segments affected the 
speaker-tracking performance a little, for about 20 seconds of speech is enough for speaker 
recognition. What’s more, about 25% FAR appeared in speech signals. Thus, a speaker change 
boundary refinement algorithm was applied to remove false positives. As shown in Table 1, 
second pass refinement decreased FAR from 30.4% to 14.4% and from 31.2% to 14.9% based 
on the entropy results and on BIC results, respectively, In MDR, there was about a 0.6% 
increase based on the entropy results and a 1.8% increase based on the BIC results. As for the 
second pass refinement schemes, Bayesian decision was little better than the KL distance. 

Table 1. The results of two-pass audio segmentation 
 FAR MDR  FAR MDR 

BD 14.4% 7.1% 
Entropy 30.4% 6.5% Second 

pass KL 16.0% 7.3% 

BD 14.9% 14.5% 
First 
Pass 

BIC 31.2% 13.1% Second 
pass KL 15.2% 15.0% 

5.3.2 Results of Target Speaker Detection 
There are many factors that affect the performance of speaker detection. Among them, the 
target speech duration is a very important factors especially for the false reject (FR) rate in 
target speaker detection. Generally speaking, the shorter the speech is, the higher FR and FA 
will be. As shown in Figure 6, the FR rate decreased greatly with increasing time when the 
speech durations were less than 20 seconds long. And it changed little when the speech 
durations were longer than 20 seconds. Noise is another interference factor in target speaker 
detection. The performance in target speaker detection with different strategies is shown in 
Table 2. The EER and the relative improvement compared with the baseline are illustrated in 
Table 2. Compared with the conventional CMS, SCMVN was better at compensating for the 
corruption caused by noise. Its effect was clear in target speaker detection. Wiener filtering 
and endpoint detection based on pitch are only used in speaker detection because the error in 
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noise estimating in Wiener filtering increases when the noise environment changes, so it 
cannot work well with long speech durations. In this case, Wiener filtering is not helpful but 
costly in terms of time. And silence signals are useful for audio segmenting, so they are not 
discarded. However, their effects in speaker detection were clear in our experiments. The 
integrated system with SCMVN, Wiener filtering, and endpoint detection showed the best 
performance. 

Table 2. The ERR of target speaker detection 
Case ERR ERR Relative Reduction 

Baseline 25.2% 0 
WF + ED 23.3% 9.1% 

SCMVN + WF + ED 22.8% 9.5% 

6. Conclusion 

In this paper, we have presented a novel approach to unsupervised audio segmentation and a 
speaker tracking system. A two-pass audio change detection algorithm has been proposed, 
which includes potential audio change detection and speaker boundary refinement. The results 
of two-pass audio segmentation are classified as speech or music according their 
characteristics. Speaker tracking is based on the results of audio classification. In speaker 
tracking, Wiener filtering, endpoint detction based on pitch, and the segmental cepstral mean 
and variance normalization are applied to get more reliable results. The algorithm achieves 
satisfactory accuracy. 

There is still room for improvement of the proposed approach. In the experiments, we 
found that if two speakers were speaking synchronously, it was not easy to detect the change 
boundary. It was also found that the same speaker in various environments sometimes was 
detected as different speakers or rejected. This indicates that our compensation for the 

Figure 6. The FR of speaker detection at different speech durations 
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mismatch effect of the environment or channel is still insufficient. In our future research, we 
will focus on these issues. 
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A Fast Framework for the Constrained Mean 

Trajectory Segment Model by Avoidance of  

Redundant Computation on Segment1 

Yun Tang , Wenju Liu , Yiyan Zhang  and Bo Xu  

Abstract 

The segment model (SM) is a family of methods that use the segmental distribution 
rather than frame-based density (e.g. HMM) to represent the underlying 
characteristics of the observation sequence. It has been proved to be more precise 
than HMM. However, their high level of complexity prevents these models from 
being used in practical systems. In this paper, we propose a framework that can 
reduce the computational complexity of the Constrained Mean Trajectory Segment 
Model (CMTSM), one type of SM, by fixing the number of regions in a segment so 
as to share the intermediate computation results. Our work is twofold. First, we 
compare the complexity of SM with that of HMM and point out the source of the 
complexity in SM. Secondly, a fast CMTSM framework is proposed, and two 
examples are used to illustrate this framework. The fast CMTSM achieves a 95.0% 
string accurate rate in the speaker-independent test on our mandarin digit string 
data corpus, which is much higher than the performance obtained with HMM-based 
system. At the mean time, we successfully keep the computation complexity of SM 
at the same level as that of HMM. 

Keywords: Speech Recognition, Segment Model, Mandarin Digit String 
Recognition 

1. Introduction 

The Hidden Markov Model (HMM) [Rabiner et al. 1993] has been used successfully for 
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acoustic modeling in many speech recognition systems. Given the state sequence, feature 
vectors are assumed to be conditionally independent, and the task of extracting the trajectory 
can be elegantly achieved by applying the Viterbi algorithm frame by frame. However, the 
above assumption is far from realistic, which limits the HMM’s ability to capture the relations 
within a segment. Another weakness of HMM is that it is not accurate enough to represent a 
non-stationary observation sequence by means of a piecewise constant state [Deng et al. 1994; 
Hon et al. 1999]. In order to handle these problems, a lot of methods have been proposed, 
including SM [Ostendorf et al. 1996], which is a family of methods among them. 

SM is totally different from HMM in terms of its segmental decoding method and 
potential for accomplishing some tasks effectively that are naturally difficult for an HMM 
based system, since it integrates more segmental information into the decoding process, 
produces the n-best list during the decoding process etc. However, the good acoustic modeling 
of SM is at the cost of high computation, which is much higher than that of HMM. It prevents 
SM from being applied in practical systems. The high complexity of SM is mainly due to the 
segment evaluation process. Segment evaluation cannot be decomposed and the intermediate 
computation information is not shareable between different segments even when two segments 
only differ by one frame. Previous work accelerated SM using efficient segment pruning 
algorithms. V. Digalakis et al. [1992] proposed a pruning method to speed up SM. They 
estimate the score of a segment from part of the segment. Then those hypotheses with low 
likelihood are pruned before the whole segment is evaluated. The amount of reduction in 
computation depends on the discrimination ability of the feature vector. S. Lee et al. [1998] 
and J. Glass [2003] proposed a landmark-based algorithm that reduces the search space by 
detecting the potential boundaries of phonemes with the aid of special features or HMM 
decoders, so that the number of the possible hypothesized segments in the search space can be 
reduced greatly. However, since the detection of boundaries is unreliable and not accurate 
enough, the efficiency of this algorithm is discounted. The most important point is that the 
speed of SM based on the above methods is still far slower than that of HMM, since the 
computations performed by these algorithms are based on segments, while in the case of 
HMM, they are based on frames. In this paper, we propose a framework to reduce the 
complexity of the Constrained Mean Trajectory Segment Model (CMTSM) [Ostendorf et al. 
1996], one family of SM. In this new framework, CMTSM can divide segment computations 
into frame computations, which are shared between different segments; thus, the redundant 
computations of segments can be avoided. Guided by this framework, we have measured the 
complexity of Stochastic Segment Model (SSM) [Ostendorf et al. 1989] based on the number 
of Gaussian mixture models evaluated during recognition, and found that the complexity is not 
proportional to the product of the model’s number and the maximum allowable duration, but is 
only related to the number of models, or more exactly, to the number of regions in the system. 
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The complexity of SSM is on the same level as that of HMM. The speed of the Parametric 
Trajectory Model (PTM) [Gish et al. 1992; Deng et al. 1994], another type of CMTSM, can 
also be greatly enhanced with some minor modifications of the original algorithm, based on 
our framework. 

The rest of this paper is organized as follows. SM is introduced in the next section by 
comparing HMM with SM in terms of modeling and decoding. Then, in Section 3, we present 
the fast framework for CMTSM and two examples, the fast SSM and the fixed PTM, illustrate 
it. Section 4 presents experimental results obtained with the fast framework. Finally, 
conclusions are drawn in Section 5. 

2. Segment Model and Decoding 

2.1 Introduction to the Segment Model 
In HMM, the model unit is the state, and the relations among feature vectors are represented 
by the relations among the states mapping to these features. In SM, the model unit is based on 
segments, such as phonemes, syllables, and words. Hence, the relations between feature 
vectors in the same segment are modeled directly. The probability density of a variable length 
feature sequence 1 1 2{ , ,... }l

lx x x x  measured by SM can be represented as follows: 

1 1 1( | ) ( | ) ( | )l l lp x f x g x ,                 (1) 

where is the label of the acoustic model, 1( | )lf x is the output density of SM, and 

1( | )lg x is a segment level score, such as the duration score. 

2.2 Decoding Comparison between HMM and SM 
The goal of a speech recognizer is to find the most likely word sequence given sentence 1

Tx . 
Let 1

N  be the label sequence of acoustic models representing words intended by the speaker, 
who produces 1

Tx above. That is, 

1 1
1 1 1 1 1 1

, ,
ˆ arg max ( | ) arg max ( ) ( | )

N N

N N T N T N
N N

p x p p x ,                (2) 

where 1( )Np is the probability measured by the language model and 1 1( | )T Np x is the 
density measured by acoustic models. More exactly, 1 1( | )T Np x is the product of acoustic 
models' densities in different segments of 1

Tx : 

,

( ) ( )
1 1 ( 1) 1 ( 1) 1

1 1
( | ) ( | ) max ( | )

T N

N NS i S iT N
i iS i S iSS i i

p x p x p x ,           (3) 

( 1) ( )S i S i , (0) 0S and ( )S N T , 
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where ,T N is the segmentation boundary set dividing a T -length sequence into N parts 
and ( )S i  is the boundary point of segment i . 

2.2.1 Decoding in HMM 
The above decoding process is accomplished by the Viterbi algorithm in HMM. We will take 
a left-to-right HMM without state skipping as an example to illustrate decoding in HMM: 

* *
1

1
( , ) ln ( | , ) max ( ( , )). , 1 | |, 2m m m

i j i
J i p x i J j i m T i L ,        (4) 

where * ( , )mJ i  is the maximum accumulated score for the state sequence from the 1-th frame 
to the m -th frame, given state i and model label for frame mx ; ( | , )mp x i  is the state score 
of frame mx ; is the number of models; L  is the number of states for . 

The above formula can be applied to all internal states of each model (i.e., 2i ). At the 
boundary of the model, i.e., 1i , the formula is in the following form: 

* * *
1 1

1 | |
( ,1) ln ( | ,1) max [ ( , ) ln( ( )), ( ,1)].m m m mJ p x J L p J               (5) 

The final solution for the best path is 

* *

1
max[ ( , ]TJ J L ,                   (6) 

and the best path can be obtained by backtracking the best final score. 

The cost of the Viterbi algorithm is essentially the cost of computing the state scores. 
According to (4) and (5), the amount of computation required for the state scores is 
proportional to the number of states in each model and the observation sequence length. If the 
pruning is not considered, the approximate time complexity for the Viterbi algorithm 
is ( | | )SO T L C , where SC  is the time cost of computing ( | , )mp x i  and L  is the 
average number of states in each model. 

2.2.2 Decoding in SM 
SMs have to explore all possible segment boundaries due to the segmental decoding, whereas 
the problem of obtaining exact acoustic model boundaries can be avoided with HMM, since 
the frame that the exit state maps to is the boundary of the model. Though the decoding 
procedure can be performed by means of dynamic programming, the complexity of SM is still 
much higher than that of HMM. The decoding formula for SM is 

   * *
,

max{ ln[ ( | )]( ) ln[ ( )] },m
mJ J p x m P C                 (7) 
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where *
mJ  is the accumulated score of the best model sequence ending at time point m and C  

is the insert factor for each segment. The best segment sequence can be obtained by 
back-tracking from the best final score *

TJ . 

Given the beginning (or end) point of models, the decoder has to hypothesize segments 
with different durations, from the minimum to the maximum length, to determine the other 
boundary point of the segment that may spring from this point. Assuming that the maximum 
allowed duration is maxL , we find that the time complexity of SM is max( | | )SegO C T L , 
where SegC is the time cost of a segment and is comparable with or even more complex than 

SC L in HMM. Hence, SM is more costly than HMM. 

3. Fast Framework for CMTSM 

As discussed in Section 2.2.2, the high complexity of SM is due to two factors. First, SM 
explores more hypothesized models than HMM does in each frame; second, in each frame, 
SM needs to measure the densities of segments that pass this point, whereas HMM only needs 
to evaluate the densities of states mapping to this point. The second factor is more important 
for current SM systems, since density evaluation represents the lion’s share in the whole 
computation. Figure 1 shows the percentage of the time spent on density evaluation against the 
total time needed for the digit string recognition task with HMM and SSM. The model unit for 
SSM and HMM is the context independent whole-word. The computation involved in density 
evaluation is extremely time-consuming in the case of the conventional SSM and 97.6% of the 
time is spent obtaining segment scores, whereas the corresponding percentage in the case of 
HMM is only 51.4%. The time cost ratio for density evaluation in SM is much higher than that 
in HMM. The key advantage of our fast framework is that it changes the computation in SM 
from segment-based style to frame-based style and the frame-based results can be shared by 
different segments. Such transformation can be achieved in one family of SM, i.e., CMTSM. 
In the fast SM, which we will describe below, the time cost ratio for density evaluation is 
lowered to 64.2%, close to that of HMM. The details of experimental setup and total time used 
for decoding will be given in Section 4 (Table 5). 
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Figure 1. Percentage of the time for density evaluation in the decoding 
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Those SMs, including SSM and PTM, whose segmental distributions are modeled by 
means of region distributions while frame-based features are assumed to be conditionally 
independent given the region sequence, are called CMTSM. The so-called region here is 
similar to the conception of the state in HMM, which is the basic unit used to measure the 
probability distribution of a frame. The value of 1( | )lf x in (1) is the product of a series of 
frame-based region scores [Ostendorf et al. 1996]: 

1
1

ln ( | ) ln ( | , , )
ll

i i
i

f x p x r l ,             (8) 

where ( | , , )i ip x r l is the score of region ir  in frame ix  for model , given duration l . 
The mapping of a feature vector to a region is only related to the segment duration and its 
position in the segment. So the measurement of the frame score for a specific region is 
unrelated to other frames or other regions. 

The assumption, frame-based features being assumed to be conditionally independent 
given the region sequence in CMTSM, guarantees to change the density evaluation from 
segment-based style to frame-based style, and the segment score can be obtained by 
recombining the region scores in an efficient way. However, these frame-based results can not 
be shared among different segments, since region models are conditional on the segment 
duration, as Equation (8) shows. We relax the modeling condition by assuming that the region 
model is independent of the segment duration. In order to achieve this, we use linear time 
resampling to map the variable length segment 1

lx  to a fixed length feature sequence l
Ly , so 

all the segment models have the same duration. In other words, the duration can be ignored in 
region models. In this way, the region scores can be shared by segments with different 
durations. The resampling function is [Ostendorf et al. 1989] 

, 0 ,i i l
L

y x i L                    (9) 

where z  is the largest integer n z . Equation (8) can be simplified as 

1
1

ln ( | ) ln ( | , )
Ll

i i
i

f x p y r .                 (10) 

In short, to speed up CMTSM, we first resample a variable length segment to obtain a 
fixed length sequence and then measure region models using the fixed length segment model. 
In our implementation, a memory table is used to store the region scores in different frames. 
The computation at each feature frame consists of two parts: the computations for all the 
region models mapping to that frame, and addition operations needed to obtain the scores of 
segments over that frame; whereas the conventional SMs have to completely measure all the 
segments that pass that frame. This is the framework we propose to reduce the complexity of 
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CMTSM. In the following, two examples will be given to illustrate the framework. 

3.1 Complexity of SSM 
SSM represents a variable length observation sequence by means of a fixed length region 
sequence. A resampling function is used to map the variable length segment 1

lx to the fixed 
length model region sequence 1

Ly . Two kinds of resampling can be adopted to map a variable 
length sequences to a fixed L-length sequence. One is space-based resampling, and the other is 
linear time resampling [Ostendorf et al. 1989]. Space resampling chooses L sampling points, 
which are equidistant (Euclidean distance) along the segment trajectory, by means of 
interpolation. The linear time resampling is similar to (9). The two resampling functions have 
similar performances as reported by M. Ostendorf. Given model , the log conditional 
probability of a segment 1

lx  is 

1
1

log[ ( | )] log[ ( | , )] log[ ( | )]
Ll

i i
i

P x a p y a r P l ,                 (11) 

where ( | )P l is the duration distribution of the segment, given . 

According to (11), SegC is proportional to the number of regions in the model and can be 
represented as RC L , where RC is the time cost of region model ( | , )i ip y a r and L  is the 
average number of region models. The complexity of SSM is max( | | )RO T L C L , 
according to the conclusion drawn in Section 2.2. 

Based on the discussion of the fast CMTSM, SSM can be greatly accelerated by choosing 
the linear time resampling, and the computation of region scores in (11) can be shared by 
segments with different durations. The total cost of the SSM algorithm is essentially the cost 
of computing the region scores. Thus, the time complexity, measured based on the number of 
evaluated region models, is ( | | )RO T L C . 

3.2 Fast PTM 
In PTM, the features in a segment are modeled by means of parameterization through constant, 
linear, or higher order polynomial regression instead of by using a sequence of regions to 
represent the curve of the trajectory. Given model , a speech segment 1

lx  can be modeled 
as 

0

1( ) ( )
1

pP
i i

p

ix B p E
l

,                                     (12) 

where )( pB  is the polynomial regression coefficient of order P and iE  is a residual error 
with covariance matrix  after fitting data using the first term in (12). The frame score with 
duration l is, 
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/ 2 1 / 2

1

0 0

1( | , ) ,
(2 ) | |

1 1 1exp{ ( ( ) ) ( ( ) )} .
2 1 1

i i d

p pP P
i i

p p

p x r

i ix B p x B p
l l

       (13) 

In the conventional method, the region models are conditional on the segment duration. 
The durations of segments are different and so are the P -order polynomials in (12). As a 
result, the frame score ( | , )p x ri i  calculated using (13) can not be shared among different 
segments, even when two segments only differ from each other by one frame. For example, 
assume that two segments for the same model both begin at the 1-st frame and that the first 
one ends at the 10-th frame and the other at the 15-th frame. The polynomial coefficients of 
these two segments are listed in Table 1. 

Table 1. The polynomial coefficients of the segments with different durations 

  Rate    No.i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

i/10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ˉ ˉ ˉ ˉ ˉ 

i/15 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.80 0.87 0.93 1.00 

In fast PTM, we also fix the number of regions in the model and use the linear time 
resampling to map a variable length segment to the region sequence with a fixed duration, so 
the region model is independent of the segment duration. In this way, the speed of PTM can be 
greatly enhanced. 

There are two main factors that limit errors introduced by resampling of the original 
feature on an acceptable scale, and these errors do little harm to the accuracy of the system. 
The first is the slowly time varying nature of speech signals [Rabiner et al. 1993], which can 
be seen as a quasi-stationary process. The speech feature vector is similar to the nearby feature 
vectors. Usually, the length of a region sequence in our system is longer than the average 
length of an observation sequence, so the region model can well approximate the feature that 
would appear in the corresponding position of a segment. The second factor is that resampled 
features are used in both the training phase and recognition phase, which guarantees the 
compatibility of resampled features with models. Figure 2 shows the trajectories of a speech 
data sequence and two man-made data sequences produced by 5-order polynomial regression. 
One polynomial fit the original observation sequence, and the other one fit the fixed length 
observation sequence resampled from the original features. The fixed length was 56. All the 
trajectories are shown in normalized time axes in Figure 2. It can be seen that the two 
regression trajectories are almost tiled together and that the linear time resampling does little 
harm to the model. 
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Figure 2. Trajectories for an original data sequence and two man-made data 
sequences produced by polynomial regression. 

4. Experiments and Results 

Our methods were verified on a mandarin digit string recognition system. Digit string 
recognition has achieved a satisfied performance in English [Rabiner et al. 1989]. However, 
due to the serious confusion among mandarin digits, the state-of-the-art of mandarin digital 
string recognition systems does not match that of the English counterpart. The performance of 
a recognition system depends not only on the size of the vocabulary but also on the degree of 
confusability among words in the vocabulary. Mandarin is a monosyllabic and tonal language, 
in which a syllable is composed of a syllable initial, syllable final, and tone. Insertion or 
deletion errors mainly exist in non-syllable initial words, e.g., “1,” “2,” and “5.” If a digit’s 
syllable final is similar to that of non-syllable initial words, it is difficult to segment the 
non-syllable initial words and segmentation errors tend to occur, such as the confusability 
between “5” and “55.” Substitution errors mainly occur among “6,” “9,” and “yiao” (“yiao” is 
the variation of “1”), or between “2” and “8” because of the similarity of their syllable finals. 

4.1 Experimental Setup 
Data Corpus: the mandarin digit string database includes the speech of 55 males, each of 
which made 80 utterances. The length of each utterance varies from 1 to 7 digits with an 
average length of 4. The vocabulary is “0” to “9”and “yiao1.” Statistical results show that all 
digits have the same probability of being uttered, and that the connections among digits are 
considered and balanced. At the same time, the positions (start/middle/end) of the digits in 
strings are also balanced [Deng et al. 2000]. We took the speech of the first 40 speakers 
(ordered by the name of speakers) as the training set and the data from the remaining 15 
speakers as the test set. The frame size of acoustic features was 25.6 ms and the frame shift 
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was 10ms. For each frame, a 39-dimension vector, composed of 12 MFCC and 1 normalized 
energy, 13 first order deviations and 13 secondary deviations, was calculated. 

Baseline Systems: three systems were studied, HMM, SSM, and PTM. The state in 
HMM (or region in SSM) was modeled by the Gaussian Mixture Model (GMM). In all the 
experiments, a diagonal covariance matrix was assumed for each GMM. Table 2 compares the 
baselines’ configures. Sts is the number of states, Res is the number of regions, MCs is the 
number of mixture components, “ID” means the acoustic unit is modeled by the whole-word 
(context independent), and “D” means the acoustic unit is tri-word based (context dependent) 
in Table 2. 

Table 2. The settings of the models in the experiments 

Model Sts (Res) MCs Type 

HMMI 8 16 ID 

HMMII 8 16 D 

SSMI 25 5 ID 

SSMII 40 10 ID 

PTM   15 ID 

The HMMs in the experiments were structured left to right with 8 states, 6 emitting 
distributions, and no state skipping, except for the "silence" model, which had 3 states and 1 
emitting distribution. HMMI was decoded with the conventional Viterbi algorithm, and 
HMMII adopted a two-pass search strategy: the first pass was implemented using the forward 
Viterbi algorithm, and the second pass using the backward A* decoding to integrate the 
duration distribution [Deng et al. 2000]. HMMII was modeled using the tri-word model, while 
the other systems were modeled by the whole-word model. SSMI and SSMII were two SSM 
systems. SSMI had Gaussian densities comparable with those of HMMI so that a comparison 
of the performance between SSM and HMM would be meaningful. SSMII, which had more 
region models and mixture components than SSMI, achieved the best performance in the digit 
string recognition task. The baseline PTM was consisted of three sub-segments [Deng et al. 
1994] and the polynomial regression order was 2. 

4.2 Experimental Results 
Table 3 compares the modeling ability of HMM and SSM. It can be seen that SSM achieved 
better performance than HMM. SSMI performed better than not only HMMI but also HMMII. 
When the number of regions and mixture components increased, SSMII achieved 95% string 
accuracy for mandarin digit strings. “S Cor,” “W err,” ” Ins err,” “Del err” and “Sub err” are 
the string correction rate, word error rate, insertion error rate, deletion error rate and the 
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substitution error rate respectively. 

 Table 3. Comparison of digit string recognition performance 
                 achieved with SSM and HMM 

 

 

 

For the purpose of comparison, the number of regions in a sub-region sequence was fixed 
at 20 and the total number of region models was 60 (20 3) in each fast PTM. The feature 
frames in a segment were mapping to these 60 region models using the time linear resampling. 
The other parameters were the same as those for the baseline PTM system. Table 4 presents 
the recognition results obtained with the fixed PTM and the original PTM. It shows that the 
performance of the PTM system was slightly downgraded following the modifications but still 
acceptable (0.6% string accuracy loss). 

Table 4. Recognition results obtained with PTM and fixed PTM 
Methods S Corr. W err Ins err Del err Sub err 

PTM 95.10% 1.53% 0.30% 0.24% 0.99% 

Fixed PTM 94.50% 1.82% 0.14% 0.68% 1.00% 

The efficiency of the different recognition systems, including the conventional SSM, fast 
SSM, PTM, fixed PTM, and HMM, is compared in Table 5. We used the utterances of one 
person (80 strings) in the test set. As shown in Table 5, the fast algorithm boosted SMs and 
reduced the complexity of SM to the same level of that of HMM. The most noticeable 
achievement was made by the fixed PTM system, which was 90 times faster than the original 
one. 

Table 5. Time comparison of SM, Fast SM, and HMM 
 T (s) 
HMMI 35 
HMMII 87 
Conventional SSMI 1816 
Fast SSMI 101 
Fast SSMII 162 
PTM 23854 
Fixed PTM 271 

 S Corr. W err Ins err Del err Sub err 
HMMI 87.10% 3.88% 0.64% 2.14% 1.10% 
HMMII 91.80% 2.53% 0.19% 0.87% 1.47% 
SSMI 92.52% 2.58% 0.23% 0.72% 1.63% 
SSMII 95.00% 1.64% 0.35% 0.27% 1.02% 
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5. Conclusions 

In this paper, a fast framework has been proposed to boost the speed of CMTSM based on the 
assumption that the region model of SM is independent from the segment duration, so that 
intermediate results are shared during the computation of segment scores. Two examples, 
SSM and PTM, have been used to illustrate this framework. The improved systems are far 
more effective than the original models. Based on this framework, it is potential to implement 
SM to LVCSR [Tang et al. 2005] in current computation condition and this will be our focus 
of future work. 
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Voice Activity Detection Based on Auto-Correlation 

Function Using Wavelet Transform and 

Teager Energy Operator 

Bing-Fei Wu  and Kun-Ching Wang  

Abstract 

In this paper, a new robust wavelet-based voice activity detection (VAD) algorithm 
derived from the discrete wavelet transform (DWT) and Teager energy operation 
(TEO) processing is presented. We decompose the speech signal into four subbands 
by using the DWT. By means of the multi-resolution analysis property of the DWT, 
the voiced, unvoiced, and transient components of speech can be distinctly 
discriminated. In order to develop a robust feature parameter called the speech 
activity envelope (SAE), the TEO is then applied to the DWT coefficients of each 
subband. The periodicity of speech signal is further exploited by using the subband 
signal auto-correlation function (SSACF) for. Experimental results show that the 
proposed SAE feature parameter can extract the speech activity under poor SNR 
conditions and that it is also insensitive to variable-level of noise. 

Keywords: Voice Activity Detection, Auto-Correlation, Wavelet, Teager Energy 

1. Introduction 

Voice activity detection (VAD) refers to the ability to distinguish speech from noise and is an 
integral part of a variety of speech communication systems, such as speech coding, speech 
recognition, hand-free telephony, and echo cancellation. In the GSM-based communication 
system, a VAD scheme is used to lengthen the battery power through discontinuous 
transmission when speech-pause is detected [Freeman et al. 1989]. Moreover, a VAD 
algorithm can be used under a variable bit rate of the speech coding system in order to control 
the average bit rate and the overall quality of speech coding [Kondoz et al. 1994]. Perviously, 
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Sohn et al. [Sohn et al. 1998] presented a VAD algorithm that adopts a novel noise spectrum 
adaptation by applying soft decision techniques. The decision rule is drawn from the 
generalized likelihood ratio test by assuming that the noise statistics are known a priori. Cho 
et al. [Cho et al. 2001] presented an improved version of the algorithm designed by Sohn. 
Specifically, Cho presented a smoothed likelihood ratio test to reduce the detection errors. 
Furthermore, Beritelli et al. [Beritelli et al. 1998] developed a fuzzy VAD using a pattern 
matching block consisting of a set of six fuzzy rules. Additionally, Nemer et al. [Nemer et al. 
2001] designed a robust algorithm based on higher order statistics (HOS) in the residual 
domain of the linear prediction coding coefficients (LPC). Meanwhile, the International 
Telecommunication Union-Telecommunications Sector (ITU-T) designed G. 729B VAD 
[Benyassine et al. 1997], which consists of a set of metrics, including line spectral frequencies 
(LSF), low band energy, zero-crossing rate (ZCR), and full-band energy. However, the 
common feature parameters mentioned above are based on averages over windows of fixed 
length or are derived through analysis based on a uniform time-frequency resolution. For 
example, it is well known that speech signals contain many transient components and exhibit 
the non-stationary property. The classical Fourier Transform (FT) works well for wide sense 
stationary signals but fails in the case of non-stationary signals since it applies only 
uniform-resolution analysis. Conversely, if the multi-resolution analysis (MRA) property of 
DWT [Strang et al. 1996] is used, the classification of speech into voiced, unvoiced or 
transient components can be accomplished. 

The periodic property is an inherent characteristic of speech signals and is commonly 
used to characterize speech. In this paper, the periodic properties of subband signals are 
exploited to accurately extract speech activity. In fact, voiced or vowel speech sounds have a 
stronger periodic property than unvoiced sounds and noise signals, and this property is 
concentrated in low frequency bands. Thus, we let the low frequency bands have high 
resolution in order to enhance the periodic property by decomposing only the low band in each 
level. Three-level wavelet decomposition is further divided into four non-uniform subbands. 
Consequently, the well-known “Auto-Correlaction Function (ACF)” is defined in the subband 
domain to evaluate the periodic intensity of each subband, and is denoted as the “Subband 
Signal Auto-Correlaction Function (SSACF)”. Generally speaking, the existing methods for 
suppressing noise are almost all based on the frequency domain. However, these methods 
indeed waste too much computing power in on-line work. Considering computing complexity, 
the Teager energy operator (TEO), which is a powerful nonlinear operator and has been 
successfully used in various speech processing applications [Kaiser et al. 1990],[Bovik et al. 
1993],[Jabloun et al. 1999] is applied to eliminate noise components from the wavelet 
coefficients in each subband priori to SSACF measurement. Consequently, to evaluate the 
periodic intensity of each subband signal, a Mean-Delta method [Ouzounov et al. 2004] is 
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applied in the envelope of each SSACF. First, the Delta SSACF, similar to the delta-cepstrum 
evaluation, is used to measure the local variation of each SSACF. Next, since the DSSACF is 
averaged over its length, the value of the Mean DSSACF (MDSSACF) can almost describe the 
amount of periodicity in each subband. Eventually, by only summing the values of the four 
MDSSACFs, we can apply a robust feature parameter, called the speech activity envelope 
(SAE) parameter. Experimental results show that the envelope of the SAE feature parameter 
can accurately indicate the boundary of speech activity under poor SNR conditions and that it 
is also insensitive to variable-level noise. In addition, the proposed wavelet-based VAD can be 
performed on-line. 

This paper is organized as follows. Section 2 describes the proposed algorithm based on 
DWT and TEO. In addition, the proposed robust feature parameter is also discussed. Section 3 
evaluates the performance of the proposed algorithm and compares it with that of other 
wavelet-based VAD algorithms and ITU-T G.729B VAD. Finally, Section 4 presents 
conclusions. 

2. The Proposed Algorithm Based on DWT and TEO 

In this section, each part for the proposed VAD algorithm is discussed in turn. 

2.1 Discrete Wavelet Transform 
The wavelet transform (WT) is based on time-frequency signal analysis. This wavelet analysis 
adopts a windowing technique with variable-sized regions. It allows the use of long time 
intervals when we want more precise low-frequency information, and shorter regions where 
we want high-frequency information. It is well known that speech signals contain many 
transient components and exhibit the non-stationary property. When we make use of the MRA 
property of the WT, better time-resolution is needed in the high frequency range to detect the 
rapid changing transient component of a signal, while better frequency resolution is needed in 
the low frequency range to track slowly time-varying formants more precisely. Through MRA 
analysis, the classification of speech into voiced, unvoiced or transient components can be 
accomplished. An efficient way to implement this DWT using filter banks was developed in 
1988 by Mallat [Mallat 1989]. 

In Mallat’s algorithm, the j -level approximations jA  and details jD  of the input 
signal are determined by using quadrature mirror filters (QMF). Figure 1 shows that the 
decomposed subband signals A  and D  are the approximation and detail parts of the input 
speech signal obtained by using the high-pass filter and low-pass filter, implemented with the 
Daubechies family wavelet, where the symbol Ц2 denotes an operator of downsampling by 2. 
In fact, a voiced or vowel speech sound has more significant periodicity than an unvoiced 
sound on noise signal. Thus, the periodicity of a subband signal can be exploited to accurately 
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extract speech activity. In addition, the periodicity is almostly concentrated in low frequency 
bands, so we let the low frequency bands have high resolution in order to enhance the periodic 
property by decomposing only low bands in each level. Figure 2 employed the used structure 
of three-level wavelet decomposition. By using DWT, we can divide the speech signal into 
four non-uniform subbands. The wavelet decomposition structure can be used to obtain the 
most significant periodicity in the subband domain. 

 

 
Figure 1. Discrete wavelet transform (DWT) using filter banks 

 
 
 

 
Figure 2. Structure of three-level wavelet decomposition 

2.2 Teager Energy Operator 
It has been observed that the TEO can enhance the discriminability between speech and noise 
and further suppress noise components from noisy speech signals [Jabloun et al. 1999]. 
Compared with the traditional noise suppression approach based on the frequency domain, the 
TEO based noise suppression can be more easily implemented through the time domain. 
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In continuous-time, the TEO is defined as 

2[ ( )] [ ( )] ( ) ( )c s t s t s t s t , 

where ( )s t  is a continuous-time signal and s ds dt . In discrete-time, the TEO can be 
approximated by 

 2[ ( )] ( ) ( 1) ( 1)d s n s n s n s n ,                                          (1) 

where ( )s n  is a discrete-time signal. 

Let us consider a speech signal ( )s n  degraded by uncorrelated additive noise ( )u n , the 
resulting signal is shown below: 

 ( ) ( ) ( )y n s n u n .                                                       (2) 

The Teager energy of the noisy speech signal [ ( )]d y n  is given by 

 [ ( )] [ ( )] [ ( )] 2 [ ( ), ( )]d d dy n s n u n s n u n ,                               (3) 

where [ ( )]d s n  and [ ( )]d u n  are the Teager energy of the discrete speech signal and the 
additive noise, respectively. The subscript d  means the “discrete.” [ ( ), ( )]d s n u n  is the 
cross- d  energy of ( )s n  and ( )v n , such that 

 [ ( ), ( )] ( ) ( ) 0.5 ( 1) ( 1) 0.5 ( 1) ( 1)d s n u n s n u n s n u n s n u n ,              (4) 

where the symbol  denotes the inner product. Since ( )s n  and ( )u n  are zero mean and 
independent, the expected value of the cross- d  energy is zero. Thus, Eq.(5) can be derived 
from Eq.(3) as shown below: 

 [ ( )] [ ( )] [ ( )]
d d d

E y n E s n E u n .                                   (5) 

Experimental results show that the Teager energy of the speech is much higher than that 
of the noise. Thus, compared with [ ( )]dE y n , [ ( )]dE u n  is negligible as shown by 

 [ ( )] [ ( )]d dE y n E s n .                                             (6) 

2.3 Subband Signal Auto-Correlation Function (SSACF) 
The definition of the “Auto-Correlation Function (ACF)” used to measure the self-periodic 
intensity of subband signal sequences is shown below: 

 
0

( ) ( ) ( ),   0,1,......
p k

n
R k s n s n k k p ,                                     (7) 

where p  is the length of ACF and k  denotes the shift of the sample. 
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In this subsection, the ACF will be defined in the subband domain and called the 
“Subband Signal Auto-Correlation Function (SSACF).” It can be derived from the wavelet 
coefficients on each subband following TEO processing. 

Figure 3 displays that the waveform of the normalized SSACFs ( (0) 1R ) of each 
subband, respectively. It is observed that the SSACF of voiced speech has more obvious peaks 
than that of unvoiced speech and white noise does. In addition, for unvoiced speech, the ACF 
has more intense periodicity than white noise does, especially in the 3A  subband. 

 
Figure 3. Examples of normalized SSACF for voiced speech, unvoiced speech and 

white noise 

2.4 Mean of the absolute values of the DSSACF (MDSSACF) 
To evaluate the periodic intensity of subband signals, a Mean-Delta method is applied here to 
each SSACF. First, a measure similar to delta cepstrum evaluation is used to estimate the 
periodic intensity of the SSACF, namely, the “Delta Subband Signal Auto-Correlation 
Function (DSSACF),” as shown below: 

 
2

( )
( )

M

m M
M M

m M

mR k m
R k

m
,                                              (8) 
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where MR  is the DSSACF over an M -sample neighborhood. 

For a particular frame, it is computed by using only the frame’s SSACF (intra-frame 
processing), while the delta cepstrum is computed by using cepstrum coefficients from 
neighboring frames (inter-frame processing). It is observed that the DSSACF value is almost 
similar to the local variation over the SSACF. 

Second, the delta of the SSACF is averaged over an M -sample neighborhood MR , 
where the mean of the absolute values of the DSSACF (MDSSACF) is given by 

 
1

0

1 ( )
bN

M M
kb

R R k
N

,                                                 (9) 

where bN  indicates the length of the subband signal. 

Figure 4 shows that the SAE feature parameter is developed by summing the four 
MDSSACF values. Each subband can provide information for extracting voice activity 
precisely. It is found that the SAE feature parameter accurately indicates the boundary of 
speech activity under -5dB factory noise. 

 
Figure 4. The development of the SAE feature parameter with and without 

band-decomposition 
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2.5 Block Diagram of the Proposed Wavelet-Based VAD 

 
Figure 5. Block diagram of the proposed wavelet-based VAD 

A block diagram of the proposed wavelet-based VAD algorithm is displayed in Figure 5. For a 
given level j , the wavelet transform decomposes the noisy speech signal into 1j  
subbands corresponding to wavelet coefficients sets, ,

j
k nw . In this case, for level 3j , 

 3
, { ( ),3},    1.... ,  1....4k mw DWT s n n N k ,                                (10) 

where 3
,k mw  denotes the thm  coefficient of the thk  subband. N  denotes the window 

length. The decomposed length of each subband is 2kN . If 1k , 3
1,mw  corresponds to 

the 1thD  subband signal. 

In TEO processing, 

 3 3
, ,[ ],   k=1...4k m d k mt w .                                              (11) 

The SSACF is derived from the Teager energy of noisy speech as follows: 

 3 3
, ,[ ]k m k mR R t ,                                                       (12) 

where [ ]R  denotes the auto-correlation operator. 

Next, the DSSACF is given by 

 3 3
, ,[ ]k m k mR R ,                                                      (13) 

where [ ]  denotes the Delta operator. 
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Then, the MDSSACF is obtained by 

 3 3
,[ ]k k mR E R .                                                        (14) 

where [ ]E  indicates the mean operator. 

Finally, the SAE feature parameter is obtained by 

 
4 3

1
k

k
SAE R .                                                        (15) 

2.6 A VAD Decision Based on Adaptive Thresholding 
In order to accurately determine the boundary of voice activity, the VAD decision is usually 
made through thresholding. To estimate the time-varying noise characteristics accurately, in 
this subsection, an adaptive threshold value is derived from the statistics of the SAE feature 
parameter during a noise-only frame, and the VAD decision process recursively updates the 
threshold by using the mean and variance of the values of the SAE parameters. We compute 
the initial noise mean and variance with the first five frames, assuming that the first five 
frames contain noise only. We then compute the thresholds for the speech and noise as follows 
[Gerven et al. 1997]: 

 s n s nT ,                                                     (16) 

 n n n nT ,                                                     (17) 

where sT  and nT  indicate the speech threshold and noise threshold, respectively. Similarly, 

n  and n  represent the mean and variance of the values of the SAE parameters, 
respectively. 

The VAD decision rule is defined as follows: 

 
if  ( ( ) )   ( )=1
else if  ( ( ) )   ( )=0;
else  ( )= ( 1).

s

n

SAE t T VAD t
SAE t T VAD t

VAD t VAD t
                                        (18) 

If the detection result shows a noise period, the mean and variance of the values of the 
SAE are updated by as follows: 

 ( ) ( 1) (1 ) ( )n nt t SAE t ,                                      (19) 

 2 2( ) [ ] [ ( )]n buffer mean nt SAE t ,                                     (20) 
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 2 2 2[ ] ( ) [ ] ( 1) (1 ) ( )buffer mean buffer meanSAE t SAE t SAE t .               (21) 

Here, 2[ ] ( 1)buffer meanSAE t  is a mean of the buffer of the SAE value during a 
noise-only frame. We then update the thresholds by using the updated mean and variance of 
the values of the SAE parameters. Figure 6 displays the VAD decision, based on the adaptive 
threshold strategy. It is clearly seen that the boundary of voice activity has been accurately 
extracted. The two thresholds are updated during voice-inactivity but not during 
voice-activity. 

 
Figure 6. Adaptive thresholding strategy for extracting the boundary of  

voice activity 

3. Simulation Results 

The proposed wavelet-based VAD algorithm operates on a frame-by-frame basis (frame size = 
256 samples/frame, overlapping size = 64 samples, 8M , 5s , 1n  and 

0.95 ). The results of speech activity detection were obtained under three kinds of 
background noise, which included white noise, car noise, and factory noise, taken from the 
Noisex-92 database [Varga et al. 1993]. The speech database contained 60 speech phrases (in 
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Mandarin and in English) spoken by 32 native speakers (22 males and 10 females), sampled at 
8000 Hz and linearly quantized at 16 bits per sample. The two probabilities of correctly 
detecting speech frames, csP , and falsely detecting speech frames, fP , were the ratio of the 
correct speech decision to the total number of hand-labeled speech frames and the ratio of the 
false speech decision or false noise decision to the total number of hand-labeled frames used 
to objectively measure performance of these three VADs. 

Table 1 compares the performance of the proposed wavelet-based VAD, the 
wavelet-based VAD proposed by Chen et al. [Chen et al. 2002], and the ITU standard G.729B 
[Benyassine et al. 1997] under three types of noise and three specific SNR values: 30,10, and 
-5dB. From this table, it can be seen that in terms of the average correct and false speech 
detection probability, the proposed wavelet-based VAD is superior to Chen’s VAD algorithm 
and G.729B VAD over all three SNRs under various types of noise. Table 2 shows the 
computing time of the three VAD algorithms, where Matlab was used on a Celeron 2.0G CPU 
PC to process 138 frames of a speech signal. It is found that the computing time consists of the 
time needed for feature extraction, and the voice activity decision process. The computing 
time of Chen’s VAD was nearly twelve times longer than that of proposed VAD. We attribute 
the computing time of Chen’s VAD to five-level wavelet decomposition. Its feature parameter 
is based on 17 critical-subbands, using the perceptual wavelet packet transform (PWPT). And 
after, wavelet reconstruction is required in Chen’s approach. In our approach, however, we 
only divide four subbands using wavelet transform and do not waste extra computing time on 
wavelet reconstruction. 

Table 1. Performance of the proposed wavelet-based approach, Chen’s 
wavelet-based approach [9] and G.729B VAD 

Noise Conditions cSP (%) fP (%) 

Type SNR(dB) Proposed 
VAD 

Chen’s 
VAD 

G.729B 
VAD 

Proposed 
VAD 

Chen’s 
VAD 

G.729B 
VAD 

30 99.1 97.3 92.1 6.2 6.9 7.3 
10 97.3 96.1 86.5 8.6 9.3 16.3 Car 

Noise 
-5 92.6 93.5 72.3 10.5 10.9 21.5 

30 96.9 97.2 96.9 7.6 10.3 9.1 
10 93.1 94.1 82.3 8.8 13.2 18.9 Factory 

Noise 
-5 87.2 85.6 70.7 10.9 15.4 26.4 

30 99.1 97.2 98.4 1.3 1.9 2.0 

10 98.5 98.1 86.3 1.5 1.8 3.6 White 
Noise 

-5 93.2 92.9 60.5 1.6 2.3 3.3 

Average 95.22 94.67 82.89 6.33 8 12.04 
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Table 2. The computing time required by the three VAD algorithms 
VAD type Feature Extraction Processing Voice Activity Decision 
G.729B 0.048 s 0.023 s 
Chen’VAD 4.126 s 0.098 s 
Proposed VAD 0.23 s 0.12 s 

Figure 7 shows the performance of the proposed VAD for an utterance produced 
continuously under variable-level noise. We decreased and increased the level of background 
noise and set the SNR value to 0 dB. Compared with the envelope of the VAS parameter, it is 
observed that the envelope of the SAE parameter was more robust against the variable 
noise-level and able to extract the exact boundary of the voice activity. This can be mainly 
attributed to the fact that the value of each MDSSACF depends on the amount of variation of 
the ACF, not on the energy level of the signal. 

 

 
Figure 7. The effects of variable noise-level on the proposed SAE parameter and 

Chen’s VAS parameter for a noisy speech sentence consisting of 
continuous words 
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4. Discussion 

Compared with Chen’s wavelet-based VAD, our experimental results shows that the proposed 
wavelet-based VAD algorithm is more suitable for on-line work. In terms of complexity, 
Chen’s wavelet-based VAD algorithm [Chen et al. 2002] requires five-level wavelet 
decomposition to decompose the speech signal into 17 critical-subbands by using PWPT. In 
addition, it uses more extra computing time to complete wavelet reconstruction. In tests with 
non-stationary noise, it was found that each MDSSACF depends only on the amount of 
variation of the normalized ACF, not on the energy level of the signal, so the envelope of the 
proposed SAE feature parameter is insensitive to variable-level noise. Conversely, in Chen’s 
wavelet-based method, the VAS feature parameter closely depends on the subband energy, so 
the achieved performance is poor under variable-level noise. 
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