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Abstract
FAIRSEQ is an open-source sequence model-
ing toolkit that allows researchers and devel-
opers to train custom models for translation,
summarization, language modeling, and other
text generation tasks. The toolkit is based
on PyTorch and supports distributed training
across multiple GPUs and machines. We also
support fast mixed-precision training and in-
ference on modern GPUs. A demo video can
be found here: https://www.youtube.
com/watch?v=OtgDdWtHvto.

1 Introduction

Neural sequence-to-sequence models have been
successful on a variety of text generation tasks, in-
cluding machine translation, abstractive document
summarization, and language modeling. Accord-
ingly, both researchers and industry professionals
can benefit from a fast and easily extensible se-
quence modeling toolkit.

There are several toolkits with similar basic
functionality, but they differ in focus area and in-
tended audiences. For example, OpenNMT (Klein
et al., 2017) is a community-built toolkit written
in multiple languages with an emphasis on exten-
sibility. MarianNMT (Junczys-Dowmunt et al.,
2018) focuses on performance and the backend is
written in C++ for fast automatic differentiation.
OpenSeq2Seq (Kuchaiev et al., 2018) provides
reference implementations for fast distributed and
mixed precision training. Tensor2tensor (Vaswani
et al., 2018) and Sockeye (Hieber et al., 2018) fo-
cus on production-readiness.

In this paper, we present FAIRSEQ, a sequence
modeling toolkit written in PyTorch that is fast,
extensible, and useful for both research and pro-
duction. FAIRSEQ features: (i) a common inter-
face across models and tasks that can be extended
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with user-supplied plug-ins (§2); (ii) efficient dis-
tributed and mixed precision training, enabling
training over datasets with hundreds of millions
of sentences on current hardware (§3); (iii) state-
of-the-art implementations and pretrained models
for machine translation, summarization, and lan-
guage modeling (§4); and (iv) optimized inference
with multiple supported search algorithms, includ-
ing beam search, diverse beam search (Vijayaku-
mar et al., 2016), and top-k sampling. FAIRSEQ

is distributed with a BSD license and is avail-
able on GitHub at https://github.com/
pytorch/fairseq.

2 Design

Extensibility. FAIRSEQ can be extended through
five types of user-supplied plug-ins, which enable
experimenting with new ideas while reusing exist-
ing components as much as possible.

Models define the neural network architecture
and encapsulate all learnable parameters. Models
extend the BaseFairseqModel class, which
in turn extends torch.nn.Module. Thus any
FAIRSEQ model can be used as a stand-alone mod-
ule in other PyTorch code. Models can addition-
ally predefine named architectures with common
network configurations (e.g., embedding dimen-
sion, number of layers, etc.). We also abstracted
the methods through which the model interacts
with the generation algorithm, e.g., beam search,
through step-wise prediction. This isolates model
implementation from the generation algorithm.

Criterions compute the loss given the model
and a batch of data, roughly: loss =
criterion(model, batch). This formula-
tion makes criterions very expressive, since they
have complete access to the model. For exam-
ple, a criterion may perform on-the-fly genera-
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tion to support sequence-level training (Edunov
et al., 2018b) or online backtranslation (Edunov
et al., 2018a; Lample et al., 2018). Alternatively,
in a mixture-of-experts model, a criterion may
implement EM-style training and backpropagate
only through the expert that produces the lowest
loss (Shen et al., 2019).

Tasks store dictionaries, provide helpers for
loading and batching data and define the training
loop. They are intended to be immutable and pri-
marily interface between the various components.
We provide tasks for translation, language model-
ing, and classification.

Optimizers update the model parameters based
on the gradients. We provide wrappers around
most PyTorch optimizers and an implementation
of Adafactor (Shazeer and Stern, 2018), which is
a memory-efficient variant of Adam.

Learning Rate Schedulers update the learn-
ing rate over the course of training. We pro-
vide several popular schedulers, e.g., the in-
verse square-root scheduler from Vaswani et al.
(2017) and cyclical schedulers based on warm
restarts (Loshchilov and Hutter, 2016).

Reproducibility and forward compatibility.
FAIRSEQ includes features designed to improve re-
producibility and forward compatibility. For ex-
ample, checkpoints contain the full state of the
model, optimizer and dataloader, so that results
are reproducible if training is interrupted and re-
sumed. FAIRSEQ also provides forward compat-
ibility, i.e., models trained using old versions of
the toolkit will continue to run on the latest ver-
sion through automatic checkpoint upgrading.

3 Implementation

FAIRSEQ is implemented in PyTorch and it pro-
vides efficient batching, mixed precision training,
multi-GPU as well as multi-machine training.

Batching. There are multiple strategies to batch
input and output sequence pairs (Morishita et al.,
2017). FAIRSEQ minimizes padding within a mini-
batch by grouping source and target sequences of
similar length. The content of each mini-batch
stays the same throughout training, however mini-
batches themselves are shuffled randomly every
epoch. When training on more than one GPU or
machine, then the mini-batches for each worker
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Figure 1: Illustration of (a) gradient synchronization
and idle time during training, (b) overlapping back-
propagation (backward) with gradient synchronization
to improve training speed, (c) how accumulating gradi-
ent updates can reduce variance in processing time and
reduce communication time.

are likely to differ in the average sentence length
which results in more representative updates.

Multi-GPU training. FAIRSEQ uses the NCCL2
library and torch.distributed for inter-
GPU communication. Models are trained in a syn-
chronous optimization setup where each GPU has
a copy of the model to process a sub-batch of
data after which gradients are synchronized be-
tween GPUs; all sub-batches constitute a mini-
batch. Even though sub-batches contain a simi-
lar number of tokens, we still observe a high vari-
ance in processing times. In multi-GPU or multi-
machine setups, this results in idle time for most
GPUs while slower workers are finishing their
work (Figure 1 (a)). FAIRSEQ mitigates the ef-
fect of stragglers by overlapping gradient synchro-
nization between workers with the backward pass
and by accumulating gradients over multiple mini-
batches for each GPU (Ott et al., 2018b).

Overlapping gradient synchronization starts to
synchronize gradients of parts of the network
when they are computed. In particular, when the
gradient computation for a layer finishes, FAIRSEQ

adds the result to a buffer. When the size of
the buffer reaches a predefined threshold, the gra-
dients are synchronized in a background thread
while back-propagation continues as usual (Fig-
ure 1 (b)). Next, we accumulate gradients for mul-
tiple sub-batches on each GPU which reduces the
variance in processing time between workers since
there is no need to wait for stragglers after each
sub-batch (Figure 1 (c)). This also increases the
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Sentences/sec

FAIRSEQ FP32 88.1
FAIRSEQ FP16 136.0

Table 1: Translation speed measured on a V100 GPU
on the test set of the standard WMT’14 English-
German benchmark using a big Transformer model.

effective batch size but we found that models can
still be trained effectively (Ott et al., 2018b).

Mixed precision. Recent GPUs enable efficient
half precision floating point (FP16) computation.
FAIRSEQ provides support for both full preci-
sion (FP32) and FP16 at training and inference.
We perform all forward-backward computations
as well as the all-reduce for gradient synchroniza-
tion between workers in FP16. However, the pa-
rameter updates remain in FP32 to preserve ac-
curacy. FAIRSEQ implements dynamic loss scal-
ing (Micikevicius et al., 2018) in order to avoid
underflows for activations and gradients because
of the limited precision offered by FP16. This
scales the loss right after the forward pass to fit
into the FP16 range while the backward pass is left
unchanged. After the FP16 gradients are synchro-
nized between workers, we convert them to FP32,
restore the original scale, and update the weights.

Inference. FAIRSEQ provides fast inference for
non-recurrent models (Gehring et al., 2017;
Vaswani et al., 2017; Fan et al., 2018b; Wu et al.,
2019) through incremental decoding, where the
model states of previously generated tokens are
cached in each active beam and re-used. This
can speed up a naı̈ve implementation without
caching by up to an order of magnitude, since
only new states are computed for each token. For
some models, this requires a component-specific
caching implementation, e.g., multi-head attention
in the Transformer architecture.

During inference we build batches with a vari-
able number of examples up to a user-specified
number of tokens, similar to training. FAIRSEQ

also supports inference in FP16 which increases
decoding speed by 54% compared to FP32 with
no loss in accuracy (Table 1).

4 Applications

FAIRSEQ has been used in many applications,
such as machine translation (Gehring et al., 2017;

Edunov et al., 2018b,a; Chen et al., 2018; Ott et al.,
2018a; Song et al., 2018; Wu et al., 2019), lan-
guage modeling (Dauphin et al., 2017; Baevski
and Auli, 2019), abstractive document summariza-
tion (Fan et al., 2018a; Liu et al., 2018; Narayan
et al., 2018), story generation (Fan et al., 2018b,
2019), error correction (Chollampatt and Ng,
2018), multilingual sentence embeddings (Artetxe
and Schwenk, 2018), and dialogue (Miller et al.,
2017; Dinan et al., 2019).

4.1 Machine translation

We provide reference implementations of sev-
eral popular sequence-to-sequence models which
can be used for machine translation, including
LSTM (Luong et al., 2015), convolutional mod-
els (Gehring et al., 2017; Wu et al., 2019) and
Transformer (Vaswani et al., 2017).

We evaluate a “big” Transformer encoder-
decoder model on two language pairs, WMT En-
glish to German (En–De) and WMT English to
French (En–Fr). For En–De we replicate the setup
of Vaswani et al. (2017) which relies on WMT’16
for training with 4.5M sentence pairs, we validate
on newstest13 and test on newstest14. The 32K
vocabulary is based on a joint source and target
byte pair encoding (BPE; Sennrich et al. 2016).
For En–Fr, we train on WMT’14 and borrow the
setup of Gehring et al. (2017) with 36M training
sentence pairs. We use newstest12+13 for valida-
tion and newstest14 for test. The 40K vocabulary
is based on a joint source and target BPE.

We measure case-sensitive tokenized BLEU
with multi-bleu (Hoang et al., 2006) and de-
tokenized BLEU with SacreBLEU1 (Post, 2018).
All results use beam search with a beam width of 4
and length penalty of 0.6, following Vaswani et al.
2017. FAIRSEQ results are summarized in Table 2.
We reported improved BLEU scores over Vaswani
et al. (2017) by training with a bigger batch size
and an increased learning rate (Ott et al., 2018b).

4.2 Language modeling

FAIRSEQ supports language modeling with gated
convolutional models (Dauphin et al., 2017) and
Transformer models (Vaswani et al., 2017). Mod-
els can be trained using a variety of input and out-
put representations, such as standard token embed-
dings, convolutional character embeddings (Kim

1SacreBLEU hash: BLEU+case.mixed+lang.en-{de,fr}+
numrefs.1+smooth.exp+test.wmt14/full+tok.13a+version.1.2.9
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En–De En–Fr

a. Gehring et al. (2017) 25.2 40.5
b. Vaswani et al. (2017) 28.4 41.0
c. Ahmed et al. (2017) 28.9 41.4
d. Shaw et al. (2018) 29.2 41.5

FAIRSEQ Transformer base 28.1 41.1
FAIRSEQ Transformer big 29.3 43.2

detok. SacreBLEU 28.6 41.4
8 GPU training time ∼12 h ∼73 h
128 GPU training time ∼1.3 h ∼7.2 h

Table 2: BLEU on news2014 for WMT English-
German (En–De) and English-French (En–Fr). All re-
sults are based on WMT’14 training data, except for
En–De (b), (c), (d) and our models which were trained
on WMT’16. Train times based on V100 GPUs.

Perplexity

Grave et al. (2016) 40.8
Dauphin et al. (2017) 37.2
Merity et al. (2018) 33.0
Rae et al. (2018) 29.2

FAIRSEQ Adaptive inputs 18.7

Table 3: Test perplexity on WikiText-103 (cf. Table 4).

et al., 2016), adaptive softmax (Grave et al., 2017),
and adaptive inputs (Baevski and Auli, 2019).
We also provide tutorials and pre-trained models
that replicate the results of Dauphin et al. (2017)
and Baevski and Auli (2019) on WikiText-103 and
the One Billion Word datasets.

We evaluate two Transformer language models,
which use only a decoder network and adaptive
input embeddings, following Baevski and Auli
(2019). The first model has 16 blocks, inner di-
mension 4K and embedding dimension 1K; results
on WikiText-103 are in Table 3. The second model
has 24 blocks, inner dimension 8K and embedding
dimension 1.5K; results on the One Billion Word
benchmark are in Table 4.

4.3 Abstractive document summarization

Next, we experiment with abstractive document
summarization where we use a base Transformer
to encode the input document and then generate
a summary with a decoder network. We use the
CNN-Dailymail dataset (Hermann et al., 2015;
Nallapati et al., 2016) of news articles paired
with multi-sentence summaries. We evaluate on

Perplexity

Dauphin et al. (2017) 31.9
Józefowicz et al. (2016) 30.0
Shazeer et al. (2017) 28.0

FAIRSEQ Adaptive inputs 23.0

Table 4: Test perplexity on the One Billion Word
benchmark. Adaptive inputs share parameters with an
adaptive softmax.

ROUGE
1 2 L

See et al. (2017) 39.5 17.3 36.4
Gehrmann et al. (2018) 41.2 18.7 38.3

FAIRSEQ 40.1 17.6 36.8
+ pre-trained LM 41.6 18.9 38.5

Table 5: Abstractive summarization results on the full-
text version of CNN-DailyMail dataset.

the full-text version with no entity anonymization
(See et al., 2017); we truncate articles to 400 to-
kens (See et al., 2017). We use BPE with 30K
operations to form our vocabulary following Fan
et al. (2018a). To evaluate, we use the standard
ROUGE metric (Lin, 2004) and report ROUGE-1,
ROUGE-2, and ROUGE-L. To generate summaries,
we follow standard practice in tuning the min-
imum output length and disallow repeating the
same trigram (Paulus et al., 2017). Table 5 shows
results of FAIRSEQ. We also consider a configura-
tion where we input pre-trained language model
representations to the encoder network and this
language model was trained on newscrawl and
CNN-Dailymail, totalling 193M sentences.

5 Conclusion

We presented FAIRSEQ, a fast, extensible toolkit
for sequence modeling that is scalable and suit-
able for many applications. In the future, we will
continue the development of the toolkit to enable
further research advances.
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