
Proceedings of NAACL-HLT 2019: Demonstrations, pages 42–47
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

42

Eidos, INDRA, & Delphi: From Free Text to Executable Causal Models

Rebecca Sharp, Adarsh Pyarelal, Benjamin M. Gyori†, Keith Alcock,
Egoitz Laparra, Marco A. Valenzuela-Escárcega, Ajay Nagesh, Vikas Yadav,

John A. Bachman†, Zheng Tang, Heather Lent, Fan Luo, Mithun Paul,
Steven Bethard, Kobus Barnard, Clayton T. Morrison, Mihai Surdeanu

University of Arizona, Tucson, Arizona, USA
†Harvard Medical School, Boston, Massachusetts, USA
{bsharp,adarsh}@email.arizona.edu

Abstract

Building causal models of complicated phe-
nomena such as food insecurity is currently
a slow and labor-intensive manual process.
In this paper, we introduce an approach that
builds executable probabilistic models from
raw, free text. The proposed approach is im-
plemented through three systems: Eidos1, IN-
DRA2 and Delphi3. Eidos is an open-domain
machine reading system designed to extract
causal relations from natural language. It is
rule-based, allowing for rapid domain trans-
fer, customizability, and interpretability. IN-
DRA aggregates multiple sources of causal in-
formation and performs assembly to create a
coherent knowledge base and assess its relia-
bility. This assembled knowledge serves as
the starting point for modeling. Delphi is a
modeling framework that assembles quantified
causal fragments and their contexts into exe-
cutable probabilistic models that respect the se-
mantics of the original text and can be used to
support decision making.

1 Introduction

Food insecurity is an extremely complex phe-
nomenon that affects wide swathes of the global
population, and is governed by factors ranging from
biophysical variables that affect crop yields, to so-
cial, economic, and political factors such as migra-
tion, trade patterns, and conflict.

For any attempt to combat food insecurity to
be effective, it must be informed by a model that
comprehensively considers the myriad of factors
influencing it. Furthermore, for analysts and deci-
sion makers to truly trust such a model, it must be
causal and interpretable, as in, it must provide a
mechanistic explanation of the phenomenon, rather
than just being a black-box statistical construction.

1https://github.com/clulab/eidos
2https://github.com/sorgerlab/indra
3https://github.com/ml4ai/delphi

Currently, however, these models are hand-built
for each new situation and require many months to
construct, resulting in long delays for much-needed
interventions.

Here we propose an end-to-end system that
combines open-domain information extraction (IE)
with a quantitative model-building framework,
transforming free text into executable probabilistic
models that capture complex real-world systems.
All code and data described here is open-source and
publicly available, and we provide a short video
demonstration4.

Contributions:
(1) We introduce Eidos, a rule-based open-domain
IE system that extracts causal statements from raw
text. To maximize domain independence, Eidos is
largely unlexicalized (with the exception of causal
cues such as promotes), and implements a top-
down approach where causal interactions are ex-
tracted first, followed by the participating concepts,
which are grounded with specific geospatial and
temporal contexts for model contextualization. Ei-
dos also extracts quantifiable adjectives (e.g. sig-
nificant) that can be used to form a bridge between
qualitative statements and quantitative modeling.

(2) We describe an extension of the Integrated Net-
work and Dynamical Reasoning Assembler (IN-
DRA, Gyori et al., 2017), an automated knowledge
and model assembly system which implements in-
terfaces to Eidos and multiple other machine read-
ing systems. Originally developed to assemble
models of biochemical mechanisms, we general-
ized INDRA to represent general causal influences
as INDRA Statements, and load a taxonomy of
concepts to align related Statements from multiple
readers and documents.

(3) We introduce Delphi, a Bayesian modeling
4https://youtu.be/FcLEJej1uAg

https://github.com/clulab/eidos
https://github.com/sorgerlab/indra
https://github.com/ml4ai/delphi
https://youtu.be/FcLEJej1uAg
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Figure 1: Overall architecture showing the flow of informa-
tion between the systems.

framework that converts the above statements into
executable probabilistic models that respect the se-
mantics of the source text. These models can help
decision-makers rapidly build intuition about com-
plicated systems and their dynamics. The proposed
framework is interpretable due to its foundation in
rule-based IE and Bayesian generative modeling.

Architecture: In Fig. 1, we show a high-level de-
piction of the information flow pipeline. First, nat-
ural language texts serve as inputs to Eidos, which
performs causal relation extraction, grounding, and
spatiotemporal contextualization. The extracted
relations are subsequently aggregated by INDRA
into data structures called INDRA Statements for
downstream modeling. These serve as an input
to Delphi, which assembles a causal probabilistic
model from them.

2 Causal Information Extraction

Eidos was designed as an open-domain IE sys-
tem (Banko et al., 2007) with a top-down approach
that allows us to not be limited to a fixed set of con-
cepts, as determining this set across multiple dis-
tinct domains (e.g., agronomy and socioeconomics)
is close to impossible. First, we find trigger words
signaling a relation of interest and then extract and
expand the participating concepts (2.1), link these
concepts to a taxonomy (2.2), and annotate them
with temporal and spatial context (2.3).5,6

In addition to an API that can be used for ma-
chine reading at scale, Eidos has a webapp that
provides users a way to see what rules were re-
sponsible for the extracted content, as well as brat
visualizations (Stenetorp et al., 2012) of the output,

5This has some similarities to FrameNet (Baker et al.,
1998), whose Causation frame has targets (triggers) and frame
elements (participating concepts) that are associated with a
taxonomy (the FrameNet hierarchy). In our case, the concepts
come from a domain-specific taxonomy.

6We assume here that causal relations are specified within
sentences rather than across sentences at the document level,
and that the concepts involved in the causal relations can be
linked to an appropriate taxonomy.

facilitating rapid development of the interpretable
rule-grammars.

2.1 Reading Approach

To understand our top-down approach, let us con-
sider the individual steps involved in processing
the following sentence: The significantly increased
conflict seen in South Sudan forced many families
to flee in 2017.

(1) We begin by preprocessing the text with depen-
dency syntax using Stanford CoreNLP (Manning
et al., 2014) and the processors library7.

(2) Then, Eidos finds any occurrences of quanti-
fiers (gradable adjectives and adverbs). These are
common in the high-level texts relevant to food
insecurity, such as reports from UN agencies and
nonprofits, but they are difficult to use in quantita-
tive models without additional information. In the
example above, the word significantly is found as
a quantifier of increased. Delphi uses these quan-
tifiers to construct probability density functions
using the crowdsourced data of Sharp et al. (2018),
as detailed in 4.

(3) Next, Eidos uses a set of trigger words to find
causal and correlational relations with an Odin
grammar (Valenzuela-Escárcega et al., 2016). Odin
is an information extraction framework which in-
cludes a declarative language supporting both sur-
face and syntactic patterns and a runtime system.
Eidos’s grammar was based in part on the biomedi-
cal grammar developed by Valenzuela-Escárcega
et al. (2018) but adapted to the open domain and
our representation of concepts. This rule gram-
mar is fully interpretable and easily editable, allow-
ing users to make modifications without needing
to retrain a complex model. In the example sen-
tence from earlier, the extraction of a causal rela-
tion would be triggered by the word forced, with
conflict and families identified as the initial cause
and effect, respectively.

(4) The initial cause and effect are then expanded
using dependency syntax following the approach
of Hahn-Powell et al. (2017). Namely, from each
of the initial arguments, we traverse outgoing de-
pendency links to expand the arguments into their
dependency subgraph. Here, the resulting argu-
ments are significantly increased conflict seen in
South Sudan and many families to flee in 2017.

7https://github.com/clulab/processors
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Figure 2: Screenshot of the Eidos output for the running
example sentence, visualized in Eidos’s webapp.

(5) Relevant state information is then added to the
expanded concepts. Representing the polarity of
an influence on the causal relation edge (i.e., in
terms of promotes or inhibits) can be lossy, so Ei-
dos instead uses concept states (i.e., concepts can
be increased, decreased, and/or quantified). In the
example above, Eidos marks the concept pertaining
to conflict as being increased and quantified. If de-
sired, the promotion/inhibition representation with
edge polarity can be straightforwardly recovered.
The final output of the Eidos system for the run-
ning example sentence, as displayed in the Eidos
webapp, is shown in Fig. 2.

2.2 Concept linking

The Eidos reading system, with its top-down ap-
proach, was designed to keep extracted concepts as
close to the text as possible, intentionally allowing
downstream users to make decisions about event
semantics depending on their use cases. As a result,
linking concepts to a taxonomy becomes critical
for preventing sparsity.

Eidos’s concept linking is based on word-
embedding similarities. A given concept (with stop
words removed), is represented by the average of
the word embeddings for each of its words. A
vector for each node in the taxonomy is similarly
calculated (using the provided “examples” for the
node), and the taxonomy node whose vector is
closest to the concept vector is considered to be
the grounding. In practice, Eidos returns the top k
groundings, allowing for downstream disambigua-
tion. The concept linking strategy is modular and
allows for grounding to any taxonomy provided
in the human-readable YAML format. With this
method, Eidos is able to link to an arbitrary num-
ber of taxonomies, at both high and low levels of
abstraction.

2.3 Temporal and geospatial normalization

Time normalization The context surrounding
the extractions is often critical for downstream rea-
soning. Eidos integrates the temporal parser of
Laparra et al. (2018) that uses a character recur-
rent neural network to identify time expressions
in the text which are then linked together with a
set of rules into semantic graphs which follow the
SCATE schema (Bethard and Parker, 2016) and
can be interpreted using temporal logic to obtain
the intervals referred to by the time expressions.

After the time expressions are identified and nor-
malized, an Odin grammar attaches them to the
causal relations extracted by Eidos. If the docu-
ment creation time is provided, it is also parsed by
our model and used as the default temporal attach-
ment for those causal relations without a temporal
expression in their close context.

Geospatial normalization Eidos’s geospatial
normalization module (Yadav et al., 2019) has two
components: a detection component consisting of
the word-level LSTM named entity recognition
(NER) model of Yadav and Bethard (2018), and a
normalization component which implements popu-
lation heuristics (i.e., selecting the most populous
location (Magge et al., 2018)) and filters using a
distance-based heuristic (Magge et al., 2018).

3 Assembly of causal relations

The output of Eidos is processed by INDRA into
a collection of INDRA Statements, each of which
represents a causal influence relation. INDRA is
also able to process the output of multiple other
reading systems that extract causal relations from
text (these systems are not described in detail here).
INDRA implements input processor modules to
extract standardized Statements from each reading
system. A Statement represents a causal influence
between two Concepts (a subject and an object),
each of which is linked to one or more taxonomies
(see Section 2.2). The Statement also captures the
polarity and magnitude of change in both subject
and object, if available. Finally, one or more Ev-
idences are attached to each Statement capturing
provenance (reader, document, sentence) and con-
text (time, location) information. This common
representation establishes a link between diverse
knowledge sources and several model formalism
endpoints.

Given the attributes of each Statement and a tax-
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onomy to which Concepts are linked, INDRA cre-
ates a Statement graph whose edges capture (i) re-
dundancy between two Statements (ii) hierarchical
refinement between two Statements, and (iii) con-
tradiction between two Statements. Statements that
are redundant, or in other words, capture the same
causal relation, are merged and their evidences are
aggregated. A probability model is then used which
captures the empirical precision of each reader to
calculate the overall support (a “belief” score) for a
Statement given the joint probability of correctness
implied by the evidence. As a seed to this prob-
ability model, INDRA loads empirical precision
values collected via human curation for each Eidos
rule. INDRA exposes a collection of methods to
filter Statements that can be composed to form a
problem-specific assembly pipeline, including (i)
filtering by Statement belief and Concept linking
accuracy (ii) filtering to more general or specific
Statements (with respect to a taxonomy), and (iii)
filtering contradictions by belief. INDRA also ex-
poses a REST API and JSON-based serialization
of Statements.

INDRA contains multiple modules that can as-
semble Statements into causal graphs (for visual-
ization or inference) and executable ODE mod-
els. In the architecture presented here, Delphi
(our Bayesian modeling framework) takes INDRA
Statements directly as input, and serves as a proba-
bilistic model assembly system.

4 Causal Probabilistic Models from Text

Statements produced by INDRA are assembled by
Delphi into a structure called a causal analysis
graph, or CAG. In Fig. 3, we show the CAG result-
ing from our running example sentence (cell [1]).
The node labels (conflict and human migration)
in the CAG correspond to entries in the high-level
taxonomy that the concepts have been grounded to.

Representation We represent abstract concepts
such as conflict and human migration as real-valued
latent variables in a dynamic Bayes network (DBN)
(Dagum et al., 1992), and the indicators correspond-
ing to these concepts as observed variables. By an
indicator, we mean a tangible quantity that serves
as a proxy for the abstract concept8. For example,
the variable Net migration (as defined in World
Bank (2018)) is one of several indicators for the

8Note that these are not the same as the indicator random
variables encountered in probability theory.

Figure 3: Construction of a causal analysis graph from the
running example sentence.

concept of human migration. To capture the un-
certainty inherent in interpreting natural language,
we take the transition model of the DBN itself to
be a random variable with an associated proba-
bility distribution. We interpret sentences about
causal relations as saying something about the func-
tional relationship between the concepts involved.
For example, we interpret the running example
sentence as giving us a clue about the shape of
∂(human migration)/∂(conflict).

Assembly To assemble our model, we do the fol-
lowing9:

(1) We construct the aforementioned distribution
over the transition model of the DBN using the ex-
tracted polarities of the causal relations as well as
the gradable adjectives associated with the concepts
involved in the relations. The transition model is a
matrix whose elements are random variables rep-
resenting the coefficients of a system of linear dif-
ferential equations (Guan et al., 2015), with distri-
butions obtained by constructing a Gaussian kernel
density estimator over Cartesian products of the
crowdsourced responses collected by Sharp et al.
(2018) for the adjectives in each relation.

(2) To provide more tangible results, we map the
abstract concepts to indicator variables for which
we have time series data. This data is gathered from
a number of databases, including but not limited to

9The complete mathematical details of the model assem-
bly process are out of the scope of this paper, but can be found
at: http://vision.cs.arizona.edu/adarsh/
Arizona_Text_to_Model_Procedure.pdf

http://vision.cs.arizona.edu/adarsh/Arizona_Text_to_Model_Procedure.pdf
http://vision.cs.arizona.edu/adarsh/Arizona_Text_to_Model_Procedure.pdf
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Figure 4: Results of conditional forecasting experiment with
CAG built from example sentence.

the FAOSTAT (Food and Agriculture Organization
of the United Nations, 2018) and the World Devel-
opment Indicators (World Bank, 2018) databases.
The mapping is done using the OntologyMapper
tool in Eidos that uses word embedding similarities
to map entries in the high-level taxonomy to the
lower-level variables in the time series data.

(3) Then, we associate values with indicators using
a parameterization algorithm that takes as input
some spatiotemporal context, and retrieves values
for the indicators from the time series data, falling
back to aggregation over a (configurable) set of
aggregation axes in order to prevent null results.
In Fig. 3, we show the indicators automatically
mapped to the conflict and human migration nodes
(conflict incidences and net migration, respectively)
and their values for the spatiotemporal context of
South Sudan in April 2017.

Conditional forecasting Once the model is as-
sembled, we can run experiments to obtain quan-
titative predictions for indicators, which can build
intuitions about the complex system in question
and support decision making. The outputs take
the form of time series data, with associated uncer-
tainty estimates. An example is shown in Fig. 4,
in which we investigate the impact of increasing
conflict on human migration using our model, with
∂(conflict)/∂t = 0.1e−t. The predictions of the
model reflect (i) the semantics of the source text
(increased conflict leads to increased migration)

and (ii) the uncertainty in interpreting the source
sentence. The confidence bands in the lower plot re-
flect the distribution of the crowdsourced gradable
adjective data.

5 Assessment

We are currently in the process of developing a
framework to quantitatively evaluate the models as-
sembled using this pipeline, primarily via backcast-
ing. However, the systems have been qualitatively
evaluated by MITRE, an independent performer
group in the World Modelers program charged with
designing and conducting evaluations of the tech-
nologies developed. For the evaluation, a causal
analysis graph larger than the toy running exam-
ple in this paper (≈ 20 nodes) was created and
executed. Noted strengths of the system include
the ability to drill down into the provenance of
the causal relations, the integration of multiple ma-
chine readers, and the plausible directionality of
the produced forecast (given the sentences used to
construct the models). Some limitations were also
noted, i.e., that the initialization and parameteriza-
tion of the models were somewhat opaque (which
hindered explainability) and some aspects of un-
certainty are captured by the readers but not fully
propagated to the model. We are actively working
on addressing both of these limitations.

6 Conclusion

Complex causal models are required in order to
address key issues such as food insecurity that span
multiple domains. As an alternative to expensive,
hand-built models which can take months to years
to construct, we propose an end-to-end framework
for creating executable probabilistic causal models
from free text. Our entire pipeline is interpretable
and intervenable, such that domain experts can use
our tools to greatly reduce the time required to
develop new causal models for urgent situations.
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