
Proceedings of NAACL-HLT 2019, pages 106–113
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

106

Are the Tools up to the Task? An evaluation of commercial dialog tools in
developing conversational enterprise-grade dialog systems

Marie Meteer, Meghan Hickey, Ellen Eide Kislal, David Nahamoo, Carmi Rothberg
Pryon, Inc.

mmeteer, mhickey, ekislal, dnahamoo, crothberg@pryoninc.com

Abstract
There has been a significant investment in di-
alog systems (tools and runtime) for build-
ing conversational systems by major compa-
nies including Google, IBM, Microsoft, and
Amazon. The question remains whether these
tools are up to the task of building conversa-
tional, task-oriented dialog applications at the
enterprise level. In our company, we are ex-
ploring and comparing several toolsets in an
effort to determine their strengths and weak-
nesses in meeting our goals for dialog system
development: accuracy, time to market, ease
of replicating and extending applications, and
efficiency and ease of use by developers. In
this paper, we provide both quantitative and
qualitative results in three main areas: natural
language understanding, dialog, and text gen-
eration. While existing toolsets were all in-
complete, we hope this paper will provide a
roadmap of where they need to go to meet the
goal of building effective dialog systems.

1 Introduction
With the explosion of smart devices and the signif-
icant improvement in speech recognition over the
past few years, the demand for intelligent, conver-
sational dialog systems is rising quickly. At our
company we are working to meet that demand in
the enterprise market to provide secure and natu-
ral means for accessing information and improv-
ing business processes. Essential to meeting this
demand is getting dialog systems into the hands
of customers as quickly as possible while ensur-
ing accurate interpretation of utterances as well as
conversational means of handling ambiguity, er-
ror, and out of domain/out of scope utterances.

In this paper we explore whether the dialog
tools available from a number of companies are
up to the task of creating complete systems effi-
ciently. We provide both quantitative and qualita-
tive results in three main areas:

• Natural language understanding: intent and
entity accuracy, out-of-domain and out-of-
scope identification, and anaphora and coref-
erence resolution.

• Dialog management: frame-based and con-
textual dialog control, dialog structure, and
digression.

• Response generation: text generation, error
correction and clarification.

We provide results and examples across multi-
ple domains to illustrate the challenges in devel-
oping a truly conversational dialog system. As we
will show, there is considerable progress in accu-
racy of intents and entities in constrained domains
across all of the toolsets. However, capturing sub-
tle differences in in-scope vs. out-of-scope utter-
ances is still difficult, as is partial understanding,
which is important for clarification. For dialog
management, all of the tools offer some ability to
use frames, however they differ in how robust they
are to context. Similarly, for error correction and
clarification, the ability to react based on context is
limited. Finally, in text generation, we found there
was no support beyond template-based generation,
which impacts not only naturalness, but the ability
to interpret a user’s follow-on utterance.

There has been other work comparing just the
accuracy of these tools (e.g.(Braun et al., 2017)).
as well as the ability of applications built with
them to handle particular dialog structures, such as
subdialogs (Larsson, 2017) and question answer-
ing behavior (Larsson, 2015). Our focus is on the
tools themselves and our goal is to not just look at
what they do, but what we need them to do.

2 Natural Language Understanding

The most mature component of dialog tools is nat-
ural language understanding (NLU). The field has



107

settled on the notion that understanding comprises
recognizing the user‘s intent and extracting the en-
tities in the utterance required to fulfill the intent.
While the terms harken back to Barbara Grosz and
Candy Sidner‘s seminal paper “Intentional and At-
tentional Structure” 1986, the implementation can
be more closely tied to work at AT&T, which com-
bined statistical classification used for call rout-
ing in applications like HMIHY (How May I Help
You) with mainly rule-based extraction of enti-
ties (Gupta et al., 2006). Nuance 9 tools allowed
both utterance classification (“Statistical Seman-
tic Models”) and partial parsing for information
extraction (“Robust Parsing Grammars”) commer-
cially over a decade ago (Nuance, 2002), though a
single utterance could only be processed by one
or the other, not both, which significantly limited
effectiveness compared to today‘s systems.

In addition to being fairly mature, NLU perfor-
mance can also be evaluated quantitatively. We
compared three tools, Google’s Dialogflow1 (pre-
viously api.ai), IBM Watson Assistant2, and Mi-
crosoft LUIS3.

We choose two domains to compare. The first
is a tech support IT FAQ system which initially
included a fairly limited set of questions with an-
swers designed by the customer. Some of these
questions had multiple answers based on informa-
tion such as what kind of computer the user had.
The second lets users ask questions about their
own financial statements, so the questions are lim-
ited by the information available on the account
and the answers are user-dependent. Both are cur-
rently in trial with customers.

We report results on our regression tests rather
than the live application. All of the questions in
the test sets were “fully specified” in that there was
no missing information that needed to be filled in
through dialog.

1https://dialogflow.com
2https://www.ibm.com/watson/ai-assistant/
3https://www.luis.ai

Domains IT V1 IT V2 Finance
Intents 23 51 14
Entities 30 44 15
Training 1164 14525 426
In domain test 267 450 113
OOD test 150 100

Table 1: Test domain numbers

Figure 1: Intent Accuracy

Our first set of tests compared performance be-
tween LUIS, Watson and Dialogflow on the two
domains. Details of size, training and test are
shown in Table 1. We were able to do a direct
comparison of intent recognition across the three
systems, since we wrote acripts that translated a
single source of intents, examples, and entities into
the formats required for the tools. Figure 1 shows
the performance across the three tools on for IT
FAQ V1 and FIN. They were relatively close, with
LUIS and Watson each taking first place depend-
ing on the domain.

2.1 Intents and Training
In this section, we discuss the effects of increase
in scope and increase in training data. Due to time
constraints we focused this work on just the IT do-
main tested on LUIS and Watson. We has more
than doubled the scope of the IT application and
used both data collection and automatic paraphras-
ing to increase the amount of training data.

Collecting data when operating in a rapid pro-
duction mode is challenging. We used Google
forms and other tools to collect “paraphrases”
from SMEs (subject matter experts) internally and
from the customer. One of our first discoveries
was that not not everyone knows what a para-
phrase is and many of the samples were related
questions, for example “How do I disable auto-
matic software updates?” was given as a para-
phrase of “How do I get automatic software up-
dates?”

2.1.1 Augmented Training Data
In order to further increase the training data, we
used a grammar-based data augmentation tech-
nique for generating additional paraphrases for the



108

Training Training LUIS Watson
V1: Human 1164 63.2% 70.2%
V2: V1+Auto 14525 73.0% 75.5%

Table 2: Intent accuracy comparing training amounts

IT domain. The grammar contained 58 equivalen-
cies, where each equivalency consisted of two or
more synonymous words or phrases.

An example of an equivalency is shown here,
with alternatives separated by semi-colons:

should i: is it ok to;am i allowed to;do
i have permission to;is it bad to;is it
against company policy to;is it okay to

In order to generate paraphrases, we create two
copies of each sentence, the unaltered input and
a processed version of the sentence, each labeled
with the intents and entities from the original. The
script looks for instances of entries in each equiv-
alence class. If one is found, it randomly replaces
that entry with one of the other entries in that class.
If no entries of any equivalence class are found in
a particular sentence, the paraphrase is identical to
the original. After running the script the desired
number of times, we take the set of unique sen-
tences in the output as our augmented dataset. Ta-
ble 2 shows performance of LUIS and Watson on
V1 (human created training only) and V2 (human
plus automatic paraphrases).

2.1.2 How much is enough?
We also experimented with running the script be-
tween one and four times, giving us the potential
for up to 16 times the amount of data in our orig-
inal set. After eliminating duplicates, though, the
amount of data is smaller, as shown Table 3 4:

We built models in Luis for each of these train-
ing sets and test on a common test set of 600 sen-
tences. Results are shown in the third column of
the table.

Because the test set is generated from the same
methodology as the training set, it lacks some
variability which we expect to see in a deployed
system. As an attempt to model that variabil-
ity, we experimented with also passing the test set
through the same paraphrase generation module as
the training set. Doing so resulted in a new test set

4While results within a table are consistent, different sets
of results may differ given the evolving nature of commercial
systems.

with 3005 sentences. Results on that augmented
test set are shown in the 4th column of Table 3.

By looking at results on the unaugmented test
together with the results on the augmented test,
we decided that the set of 7528 training utterances
resulted in a desirable model in that it did not
degrade the performance on the original test set
and resulted more robust performance on the aug-
mented test set.

2.2 Out of Domain and Scope
A significant challenge in a deployed system is
recognizing when an utterance is out of domain
(OOD), and thus can’t be answered. This includes
questions:

• Questions from a different domain, e.g. ask-
ing the IT FAQ application about the weather,

• Questions in the domain, but not in the scope
of the application, e.g. the IT FAQ might be
able to help you get a VPN account, but not a
Jira account.

• ”Adversarial” questions, that is intentially
trying to break the system, e.g. “Can you eat
VPN?” and “What do you look like”.

The choice of the domain and scope in a com-
mercial system is defined largely by the customer
but not always clear to the end users, who may
think the IT FAQ can help them get any kind of
account or the app can answer the same things as
Siri.

In the finance domain we used a 100 utterance
OOD test set and introduced a new intent for clas-
sifying these utterances as “None”. The “None”
category had 28 training utterances, which was
about average for the categories in V1. The sec-
ond set in Figure 2 combines the in and out of do-
main test sets and the third set shows results on

No. Iter No. Sents Intent Acc.
Orig. Test Aug. Test

0 (orig) 2296 72.8 69.9
1 3086 73.5 73.9
2 4789 74.2 76.1
3 7528 73.0 76.9
4 10719 71.8 76.5

Table 3: Results of data augmentation on the standard
test set.



109

Figure 2: Intent Accuracy In and out of domain

just OOD. It is clear that performance drops sig-
nificantly in all the tools due to the OOD effect.

Figure 3 shows the correct accept vs. correct-
reject curves for each of the tools as we thresh-
old the response based on confidence scores. The
Watson score has better confidence scores than the
other tools.

While overall we find the tools quite good at
classifying in-scope intents, their performance is
poor on detecting out of domain and scope, which
are admittedly difficult to model with a classifier.
However, on the positive side, the tools allowed
us to get a system into the hands of users quickly
without having to start with a massive data collec-
tion effort. As we get more user data to help iden-
tify kinds of out of domain and out of scope ques-
tions will be asked, we will be able to improve on
the base performance.

2.3 Entities
All three tools allow entities to be defined in mul-
tiple ways, as shown in Figure 4. System entities
are common types, such as time and currency that
have been built and trained by the creators of the

Figure 3: Confidence Scores

Figure 4: Entity Types

tools. Regular expressions can be defined by ap-
plication developers to capture structured strings,
like order numbers. The most interesting distinc-
tion is between learned and exact match entities.
Machine learned entities are able to identify syn-
onyms without having to predefine them. For ex-
ample, if “passphrase” is used in the same context
as “password” the system should be able to recog-
nize it as a synonym.

In Dialogflow, the predominant method of
defining entities is exact match, which defines en-
tity types with values and synonyms. Learned en-
tities appear to be fairly limited and used for things
like items on a shopping list.

In LUIS, exact match entities are “List” enti-
ties, which also has a type, values and synonyms.
Machine learned entities, which take context into
account, are call “simple”. In order to capture
type and values, you can use “hierachical” enti-
ties. For example, in the IT domain, the ”Invest-
ment Account” entity has as its children the five
different investment accounts. The accounts had
fairly complex names which were frequently re-
duced, for example the “Membership Contribution
Pension Fund” could be referred to as the “Mem-
bership Fund”, “Membership Contribution Fund”,
“Pension”, etc. We implemented these both as list
and learned entities, as shown in Table 4. List
had better performance, but required listing all the
variations. Learned requires annotation, which is
also a cost, but it is not the case that every variant
has to be accounted for.

Watson has a beta feature that lets you annotate
entities in context, including annotating counter

Train Test List Learned
Account 228 61 96.3% 93.8%
Slot 102 26 100% 91.5%

Table 4: Test for Entities and Slots



110

examples, which may be able to be used to im-
prove performance, though due to bandwidth we
were not able to do a comparison.

2.3.1 Slot filling
Slot filling is a core capability in NLU: recogniz-
ing not just that an entity occurred, but which pa-
rameter or “slot” it is filling. In most cases, which
slot is being filled can be determined by the type
of the entity, so as long as it is correctly identified,
the slot is filled correctly. However in some cases
one entity type can fill two different slots, as in
transferring funds from Account A to Account B.

As with entity recognition, all three tools pro-
vide slot filling functionality we found that more
rule based methods of identifying slots was more
accurate than learned slot filling (see Table 4).

2.3.2 Recognizing new entities
Anything that does not match an entity is ignored.
While this simplifies understanding, it can lead to
false positives. For example, the question “What‘s
my balance” in the finance app applies to the en-
tire portfolio if no specific account is mentioned.
However, if an account is mentioned but not accu-
rately recognized, the answer will be incorrect.

A notable exception of this is LUIS, which has
the unique ability to find entities that haven‘t been
predefined through “key phrases”. This additional
information can be used in flagging problem in-
terpretations and used in clarification dialogs, as
in the example “How do I get a Jira account?”, the
intent ProcedureGetAccount is triggered and a key
phrase “Jira account” is found, which would allow
a clarification response such as I think you‘re ask-
ing about how to get an account, but I don‘t know
anything about a “Jira account”.

2.4 Language Contraction
An essential part of language understanding is the
ability to interpret utterances when they undergo
what we might call “language contraction” where
some parts are left out or replaced with pronouns
or reduced forms. While as we show in Section
3, dialog structure can be used to emulate lan-
guage contraction interpretation, none of the tools
address the phenomenon directly. There are two
kinds of constructions that need to be addressed
for dialog tools to be able to effectively handle
conversational dialog.

Coreference: Where a pronoun or other refer-
ring expression is directly referring to some previ-

ous entity in the sentence.

• Whats the balance in my retirement account?
When does it vest?

Ellipsis: Part of the utterance is left out and can
be filled in by some portion of an earlier sentence.

• What are the fees on my retirement account?
How about my annuity?

While none of the tools address this directly,
both Watson and Dialogflow keep track of values
in context variables. For example, in Watson, once
you ask about one investment account, the variable
investmentAccount is set, so the sequence
below would be answered correctly:

Whats the value of my portfolio plan?
What are the fees?
How much as it changed over the past quarter?
However, if you asked about an account it

didnt understand, such as “What are the fees
for my fidelity investments”, it would miss that
and answer based on the previous setting of the
investmentAccount variable.

3 Dialog Management

Beyond the level of interpretation of single utter-
ances, the tools differ significantly. In this section
we look at the development of the dialog struc-
ture and the management and application of con-
text. To illustrate the various capabilities, we use
a real estate application, which has more complex
interactions. We compare the approaches of Di-
alogflow and Watson Assistant. The Microsoft
offering has three separate tools each with their
own interface and would have been a steep learn-
ing curve for developers who are not already well-
versed in the Microsoft landscape, so we did not
pursue it further.

A significant difference between the approaches
in the tools is how tightly integrated the dialog
capabilities are with the NLP. In Dialogflow, the
intents are the basic dialog components and both
context and control are defined as part of the in-
tent definition, whereas Watson Assistant provides
a separate interface that explicitly allows dialog
nodes to be defined independently from intents
and entities.

Defining dialog structure independently from
the intents can be advantageous. First, the con-
dition of whether a dialog node is triggered can be



111

Figure 5: DialogFlow

dependent on variables outside of the interpreta-
tion of the utterance, for example checking a con-
text variable to determine whether a user is logged
in. Second, an intent can function differently de-
pending on where in the dialog that intent occurs.

The dialog structure allows users‘ answers,
which are dependent on what question is asked,
to be interpreted correctly, as seen in Figure 5.

Dialog structure can allow for the interpreta-
tion of coreference and ellipsis, as shown in Fig-
ure 6. Neither tool has any model of coreference
or anaphora, however, careful construction of the
dialog structure ensure that the utterances are in-
terpreted correctly.

3.1 Frame-based Dialog Management
Frame-based dialog management uses the slot fill-
ing in a frame or form to control the dialog. The
advantage is that it allows mixed initiative interac-
tion: users can provide the slot values in any order
and “package” them into any grouping. For exam-
ple, the CalculateMortgagePayment intent
requires an amount, term, and interest rate. The
user might start by saying “What is the monthly
payment for $500,000 mortgage over 30 years
at 4% interest” or just “How much would the
monthly payment be for $500,000”. The dialog
manager fills slots as the information is provided
and then asks the user specifically for information
that it doesn’t have yet. In this example, the dialog
manager might ask for a rate, but the user might
choose to respond: “I am looking for a 30-year
mortgage”.

In contrast, a traditional procedural dialog man-
ager covering all the possible response sequences
would require complicated software development
and maintenance. While only very narrow do-
mains can be fully controlled with a frame-based
mechanism, it is a very useful control structure for
a range of intents which have multiple required
slots to fill.

Figure 6: Watson

In Dialogflow, frames are defined as part of the
definition of the intents. Entities are explicitly
associated with the intent and any subset can be
marked as “required” and the developer provides
a prompt which will be asked if the entity is not
filled. One downside is that the frame control
can’t be interrupted. For example, if the system
says “What zip code would you like to search?”
the user can’t ask “What’s the zip code for Arling-
ton?” before answering. There is also no capabil-
ity for prompting for multiple required parameters
at the same time. The questions are simply strings
rather than being composed dynamically, so con-
text can’t be taken into account.

Watson Assistant defines frames at the node
level. The functionality is similar, allowing the
app developer to add prompts for required entities.
It also allows for a single prompt to be defined
if none of the slots have been filled. In addition,
there are ”Handlers” that can interrupt the process
if the user doesn’t provide the required informa-
tion.

3.2 Context Management
Context plays an important role in both interpre-
tation and control of the dialog, for example the
dialog manager needs to:

• Keep track of variable values that are used
later, such as the user’s name.

• Record that a particular action was com-
pleted, such as logging in, so that it can be
checked later as a condition for another ac-
tion.

• Collect information over multiple turns, such
as search criteria to narrow results.

Intents in Dialogflow have input and output con-
text variables to gate actions as well as to store the
values of entities. We found some difficulties in
keeping values in the context over multiple turns.



112

Watson assistant used the dialog structure to man-
age the context. While this made it clearer, there
was no easy way to control what is kept in the con-
text. However, there is a view of context variables
and values in the tool interface which is useful in
the design process and debugging.

3.3 Challenges in Dialog
While Watson Assistant’s use of a dialog tree pro-
vides greater functionality, it still falls short when
attempting to build a fully mixed initiative sys-
tem. ”Digressions” are allowed in Watson, but
need to be defined in advance, so in the zip code
example above, the application developer would
need to put an explicit digression to a node for
FindZipcode which would then return to the
original dialog node. While this one seems fairly
obvious, it quickly becomes difficult to predict any
place the user could digress from a conversation.

4 Response Generation

Text generation is a hard problem and has gotten
neither the attention nor funding that understand-
ing and other subfields of natural language have
gotten over the years. It is not surprising that it
is the least developed part of the tools. Within
the tools, the responses are created by the app de-
velopers, either just as word strings, mostly for
prompts, or templates with variables that corre-
spond to entities.

Both tools allow multiple responses to be cre-
ated that will be chosen from randomly, creating
some variability, but only Watson assistant allows
the responses to be contextually dependent, based
on the values of context variables.

The problem with these approaches is not just
the lack of variability, but also since responses
are merely strings with some parameters, there
is no representation of the constituent structure
or the meaning of the response. In the follow-
ing exchange, ”that” refers to the VP constituent
corresponding to the procedure of getting an ac-
count. However, this constituent is not available
for coreference.

S: In order to do save listings, you need to get
an account.

U: How do I do that?

4.1 Error Recovery and Clarification
Successful dialog systems require the ability to
know when the system did not understand or is not

able to answer. We looked at out of domain/scope
identification in Section 2.2, but the challenge is
in extracting sufficient information to make an in-
telligent response (Stoyanchev et al., 2016). For
example a ”reprise question”, which is a clarifi-
cation that repeats a portion of the original utter-
ance, requires that some portion of the utterance to
be understood, as in the following, which would
need a ProcedureGetAccount intent to be
recognized in order to answer with one of the two
reprise clarifications in the example:

U: How do I get an account on Jira?
S: How do you get what?
U: How do you get what kind of account?
Another important element in good error recov-

ery dialog is not simply repeating the same error
message over and over. Best practice in develop-
ing speech IVRs is to keep track of both the type
of error (e.g. no input vs. low confidence) and the
number of tries the user has made in order to vary
the error message (e.g. first time, ”say again”, sec-
ond, “try rephrasing”, and third, type or just move
on). While we didn’t find this capability in Di-
alogflow, Watson allows the choice of which re-
sponse to give to be based on the value of a context
variable, which can be set as a counter.

Dialogflow’s “Default Fallback Intent” and
Watson’s ”Anything else” trigger when no other
intent or dialog node triggers, however, without
context there is no ability to tailor the response.
Again, Watson’s use of an explicit dialog tree al-
lows the developer to have multiple “fallbacks”.
Within each subdialog, the final node can be set to
fire if none of the other conditions hold.

4.2 Conclusion

We provided results and examples across a small
number of domains to illustrate the challenges in
developing a dialog system that supports building
easy to use, natural conversational applications.

The rank-ordered accuracies of the tools var-
ied across domains. While some differences exist
among the tools in terms of how entities are han-
dled, more significant differences among them lie
in how tightly coupled the NLP and dialog com-
ponents are.

At our company, we focus on inventing and
implementing additional modules with enhanced
complimentary features and functions to improve
the utility of the three dialog systems that we pre-
sented in this paper.



113

References
Daniel Braun, Adrian Hernandez-Mendez, Florian

Matthes, and Manfred Langen. 2017. Evaluating
natural language understanding services for conver-
sational question answering systems. In Proceed-
ings of the 18th Annual SIGdial Meeting on Dis-
course and Dialogue, pages 174–185.

Barbara J Grosz and Candace L Sidner. 1986. Atten-
tion, intentions, and the structure of discourse. Com-
putational linguistics, 12(3):175–204.

Narendra Gupta, Gokhan Tur, Dilek Hakkani-Tur,
Srinivas Bangalore, Giuseppe Riccardi, and Mazin
Gilbert. 2006. The at&t spoken language under-
standing system. IEEE Transactions on Audio,
Speech, and Language Processing, 14(1):213–222.

Staffan Larsson. 2015. The state of the art in dealing
with user answers. In Proceedings of the 19th Work-
shop on the Semantics and Pragmatics of Dialogue.
SEMDIAL, pages 190–191.

Staffan Larsson. 2017. User-initiated sub-dialogues in
state-of-the-art dialogue systems. In Proceedings of
the 18th Annual SIGdial Meeting on Discourse and
Dialogue, pages 17–22.

Nuance. 2002. Advanced Developers Guide.

Svetlana Stoyanchev, Pierre Lison, and Srinivas Ban-
galore. 2016. Rapid prototyping of form-driven di-
alogue systems using an open-source framework.
In Proceedings of the 17th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 216–219.


