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Abstract

We explore active learning (AL) for improving
the accuracy of new domains in a natural lan-
guage understanding (NLU) system. We pro-
pose an algorithm called Majority-CRF that
uses an ensemble of classification models to
guide the selection of relevant utterances, as
well as a sequence labeling model to help
prioritize informative examples. Experiments
with three domains show that Majority-CRF
achieves 6.6%-9% relative error rate reduc-
tion compared to random sampling with the
same annotation budget, and statistically sig-
nificant improvements compared to other AL
approaches. Additionally, case studies with
human-in-the-loop AL on six new domains
show 4.6%-9% improvement on an existing
NLU system.

1 Introduction

Intelligent voice assistants (IVA) such as Amazon
Alexa, Apple Siri, Google Assistant, and Microsoft
Cortana, are becoming increasingly popular. For
IVA, natural language understanding (NLU) is a
main component (De Mori et al., 2008), in conjunc-
tion with automatic speech recognition (ASR) and
dialog management (DM). ASR converts user’s
speech to text. Then, the text is passed to NLU
for classifying the action or “intent” that the user
wants to invoke (e.g., PlayMusicIntent, TurnOn-
Intent, BuyItemIntent) and recognizing named-
entities (e.g., Artist, Genre, City). Based on the
NLU output, DM decides the appropriate response,
which could be starting a song playback or turning
off lights. NLU systems for IVA support function-
ality in a wide range of domains, such as music,
weather, and traffic. Also, an important require-
ment is the ability to add support for new domains.

The NLU models for Intent Classification (IC)
and Named Entity Recognition (NER) use machine
learning to recognize variation in natural language.

Diverse, annotated training data collected from IVA
users, or “annotated live utterances,” are essential
for these models to achieve good performance. As
such, new domains frequently exhibit suboptimal
performance due to a lack of annotated live ut-
terances. While an initial training dataset can be
bootstrapped using grammar generated utterances
and crowdsourced collection (Amazon Mechanical
Turk), the performance that can be achieved using
these approaches is limited because of the unex-
pected discrepancies between anticipated and live
usage. Thus, a mechanism is required to select live
utterances to be manually annotated for enriching
the training dataset.

Random sampling is a common method for se-
lecting live utterances for annotation. However,
in an IVA setting with many users, the number of
available live utterances is vast. Meanwhile, due
to the high cost of manual annotation, only a small
percentage of utterances can be annotated. As such,
in a random sample of live data, the number of
utterances relevant to new domains may be small.
Moreover, those utterances may not be informative,
where informative utterances are those that, if an-
notated and added to the training data, reduce the
error rates of the NLU system. Thus, for new do-
mains, we want a sampling procedure which selects
utterances that are both relevant and informative.

Active learning (AL) (Settles, 2009) refers to
machine learning methods that can interact with
the sampling procedure and guide the selection of
data for annotation. In this work, we explore using
AL for live utterance selection for new domains
in NLU. Authors have successfully applied AL
techniques to NLU systems with little annotated
data overall (Tur et al., 2003; Shen et al., 2004).
The difference with our work is that, to the best of
our knowledge, there is little published AL research
that focuses on data selection explicitly targeting
new domains.
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We compare the efficacy of least-
confidence (Lewis and Catlett, 1994) and
query-by-committee (Freund et al., 1997) AL
for new domains. Moreover, we propose an
AL algorithm called Majority-CRF, designed to
improve both IC and NER of an NLU system.
Majority-CRF uses an ensemble of classification
models to guide the selection of relevant utterances,
as well as a sequence labeling model to help
prioritize informative examples. Simulation
experiments on three different new domains show
that Majority-CRF achieves 6.6%-9% relative
improvements in-domain compared to random
sampling, as well as significant improvements
compared to other active learning approaches.

2 Related Work

Expected model change (Settles et al., 2008) and
expected error reduction (Roy and McCallum,
2001) are AL approaches based on decision the-
ory. Expected model change tries to select utter-
ances that cause the greatest change on the model.
Similarly, expected error reduction tries to select
utterances that are going to maximally reduce gen-
eralization error. Both methods provide sophisti-
cated ways for ascertaining the value of annotating
an utterance. However, they require computing an
expectation across all possible ways to label the
utterance, which is computationally expensive for
NER and IC models with many labels and millions
of parameters. Instead, approaches to AL for NLU
generally require finding a proxy, such as model
uncertainty, to estimate the value of getting specific
points annotated.

Tur et al. studied least-confidence and query-by-
committee disagreement AL approaches for reduc-
ing the annotation effort (Tur et al., 2005, 2003).
Both performed better than random sampling, and
the authors concluded that the overall annotation
effort could be halved. We investigate both of these
approaches, but also a variety of new algorithms
that build upon these basic ideas.

Schutze et al. (Schütze et al., 2006) showed that
AL is susceptible to the missed cluster effect when
selection focuses only on low confidence exam-
ples around the existing decision boundary, missing
important clusters of data that receive high confi-
dence. They conclude that AL may produce a sub-
optimal classifier compared to random sampling
with a large budget. To solve this problem Osugi et
al. (Osugi et al., 2005) proposed an AL algorithm

that can balance exploitation (sampling around the
decision boundary) and exploration (random sam-
pling) by reallocating the sampling budget between
the two. In our setting, we start with a represen-
tative seed dataset, then we iteratively select and
annotate small batches of data that are used as feed-
back in subsequent selections, such that extensive
exploration is not required.

To improve AL, Hong-Kwang and Vaib-
hava (Kuo and Goel, 2005) proposed to exploit the
similarity between instances. Their results show
improvements over simple confidence-based selec-
tion for data sizes of less than 5,000 utterances. A
computational limitation of the approach is that it
requires computing the pairwise utterance similar-
ity, anO(N2) operation that is slow for millions of
utterances available in production IVA. However,
their approach could be potentially sped-up with
techniques like locality-sensitive hashing.

3 Active Learning For New Domains

We first discuss random sampling baselines and
standard active learning approaches. Then, we de-
scribe the Majority-CRF algorithm and the other
AL algorithms that we tested.

3.1 Random Sampling Baselines

A common strategy to select live utterances for
annotation is random sampling. We consider two
baselines: uniform random sampling and domain
random sampling.

Uniform random sampling is widespread be-
cause it provides unbiased samples of the live ut-
terance distribution. However, the samples contain
fewer utterances for new domains because of their
low usage frequency. Thus, under a limited an-
notation budget, accuracy improvements on new
domains are limited.

Domain random sampling uses the predicted
NLU domain to provide samples of live utterances
more relevant to the target domains. However, this
approach does not select the most informative ut-
terances.

3.2 Active Learning Baselines

AL algorithms can select relevant and informa-
tive utterances for annotation. Two popular AL
approaches are least-confidence and query-by-
committee.

Least-confidence (Lewis and Catlett, 1994) in-
volves processing live data with the NLU models
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and prioritizing selection of the utterances with the
least confidence. The intuition is that utterances
with low confidence are difficult, and “teaching”
the models how they should be labeled is informa-
tive. However, a weakness of this method is that
out-of-domain or irrelevant utterances are likely
to be selected due to low confidence. This weak-
ness can be alleviated by looking at instances with
medium confidence using measures such as least
margin between the top-n hypotheses (Scheffer
et al., 2001) or highest Shannon entropy (Settles
and Craven, 2008).

Query-by-committee (QBC) (Freund et al., 1997)
uses different classifiers (e.g., SVMs, MaxEnt, Ran-
dom Forests) that are trained on the existing anno-
tated data. Each classifier is applied independently
to every candidate and the utterances assigned the
most diverse labels are prioritized for annotation.
One problem with this approach is that, depend-
ing on the model and the size of the committee,
it could be computationally expensive to apply on
large datasets.

3.3 Majority-CRF Algorithm

Majority-CRF is a confidence-based AL algorithm
that uses models trained on the available NLU train-
ing set but does not rely on predictions from the
full NLU system. Its simplicity compared to a full
NLU system offers several advantages. First, fast
incremental training with the selected annotated
data. Second, fast predictions on millions of utter-
ances. Third, the selected data is not biased to the
current NLU models, which makes our approach
reusable even if the models change.

Algorithm 1 shows a generic AL procedure that
we use to implement Majority-CRF, as well as other
AL algorithms that we tested. We train an ensemble
of models on positive data from the target domain
of interest (e.g., Books) and negative data that is
everything not in the target domain (e.g., Music,
Videos). Then, we use the models to filter and
prioritize a batch of utterances for annotation. After
the batch is annotated, we retrain the models with
the new data and repeat the process.

To alleviate the tendency of the least-confidence
approaches to select irrelevant data, we add unsup-
ported utterances and sentence fragments to the
negative class training data of the AL models. This
helps keep noisy utterances on the negative side of
the decision boundary, so that they can be elimi-
nated during filtering. Note that, when targeting

several domains at a time, we run the selection
procedure independently and then deduplicate the
utterances before sending them for annotation.

Algorithm 1 Generic AL procedure that selects
data for a target domain

Inputs:
D ← positive and negative training data
P ← pool of unannotated live utterances
i← iterations, m← mini-batch size

Parameters:
{Mk} ← set of selection models
F ← filtering function
S ← scoring function

Procedure:
1: repeat i iterations
2: Train selection models {Mk} on D
3: ∀ xi ∈ P obtain prediction scores yki =

Mk(xi)

4: P ′ ← {xi ∈ P : F(y0i ..y
k
i ) }

5: C ← {xi ∈ P ′ : m with the smallest score
S(y0i ..y

k
i )}

6: Send C for manual annotation
7: After annotation is done D ← D ∪ C and

P ← P \ C
8: until

Models. We experimented with n-gram linear
binary classifiers trained to minimize different loss
functions: Mlg ← logistic, Mhg ← hinge, and
Msq ← squared. Each classifier is trained to distin-
guish between positive and negative data and learns
a different decision boundary. Note that we use the
raw unnormalized prediction scores {ylgi , y

hg
i , ysqi }

(no sigmoid applied) that can be interpreted as dis-
tances between the utterance xi and the classifiers
decision boundaries at y = 0. The classifiers are
implemented in Vowpal Wabbit (Langford et al.,
2007) with {1, 2, 3}-gram features. To directly tar-
get the NER task, we used an additionalMcf ←
CRF, trained on the NER labels of the target do-
main.

Filtering function. We experimented with
Fmaj ←

∑
sgn(yk) > 0, i.e., keep only major-

ity positive prediction from the binary classifiers,
and Fdis ←

∑
sgn(yk) ∈ {−1, 1}, i.e., keep only

prediction where there is at least one disagreement.
Scoring function. When the set of models
{Mk} consists of only binary classifiers, we com-
bine the classifier scores using either the sum of
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Algorithm Models {Mi} Filter F Scoring S

AL-Logistic lg sgn(ylg) > 0 ylg

QBC-SA lg, sq, hg
∑

sgn(yk) ∈ {−1, 1}
∑∣∣yk

∣∣
QBC-AS lg, sq, hg

∑
sgn(yk) ∈ {−1, 1}

∣∣∑ yk
∣∣

Majority-SA lg, sq, hg
∑

sgn(yk) > 0
∑∣∣yk

∣∣
Majority-AS lg, sq, hg

∑
sgn(yk) > 0

∣∣∑ yk
∣∣

QBC-CRF lg, sq, hg, CRF
∑

sgn(yk) ∈ {−1, 1} plg × pcrf

Majority-CRF lg, sq, hg, CRF
∑

sgn(yk) > 0 plg × pcrf

Table 1: AL algorithms evaluated. lg,
sq, hg refer to binary classifiers (com-
mittee members) trained with logistic,
squared and hinge loss functions, re-
spectively. yi denotes the score of com-
mittee member i, pcrf denotes the con-
fidence of the CRF model and plg =

(1 + e−ylg

)−1 denotes the confidence
of the logistic classifier. In all cases, we
prioritize by smallest score S.

absolutes Ssa ←
∑
|yki | or the absolute sum

Sas ← |
∑
yki |. Ssa prioritizes utterances where

all scores are small (i.e., close to all decision bound-
aries), and Sas prioritizes utterances where either
all scores are small or there is large disagreement
between classifiers (e.g., one score is large neg-
ative, another is large positive, and the third is
small). Both Ssa and Sas can be seen as gener-
alization of least-confidence to a committee of clas-
sifiers. When the set of models {Mk} includes
a CRF model Mcf , we compute the score with
Scg ← Pcf (i) × Plg(i), i.e., the CRF probability
Pcf (i) multiplied by the logistic classifier prob-
ability Plg(i) = σ(ylgi ), where σ is the sigmoid
function. Note that we ignore the outputs of the
squared and hinge classifiers for scoring, though
they are still be used for filtering.

The full set of configurations we evaluated is
given in Table 1, which specifies the choice of
parameters {Mk},F ,S used in Algorithm 1.

AL-Logistic and QBC serve as baseline AL algo-
rithms. The QBC-CRF and Majority-CRF models
combine the IC focused binary classifier scores
with the NER focused sequence labeling scores
and use filtering by disagreement and majority (re-
spectively) to select informative utterances. To the
best of our knowledge, this is a novel architecture
for active learning in NLU.

Mamitsuka et al. (Mamitsuka et al., 1998) pro-
posed bagging to build classifier committees for
AL. Bagging refers to random sampling with re-
placement of the original training data to create
diverse classifiers. We experimented with bagging
but found that it is not better than using different
classifiers.

4 Experimental Results

4.1 Evaluation Metrics

We use Slot Error Rate (SER) (Makhoul et al.,
1999), including the intent as slot, to evaluate the

overall predictive performance of the NLU models.
SER as the ratio of the number of slot prediction
errors to the total number of reference slots. Errors
are insertions, substitutions and deletions. We treat
the intent misclassifications as substitution errors.

4.2 Simulated Active Learning

AL requires manual annotations which are costly.
Therefore, to conduct multiple controlled experi-
ments with different selection algorithms, we sim-
ulated AL by taking a subset of the available an-
notated training data as the unannotated candidate
pool, and “hiding” the annotations. As such, the
NLU system and AL algorithm had a small pool of
annotated utterances for simulated “new” domains.
Then, the AL algorithm was allowed to choose rel-
evant utterances from the simulated candidate pool.
Once an utterance is selected, its annotation is re-
vealed to the AL algorithm, as well as to the full
NLU system.

Dataset. We conducted experiments using an in-
ternal test dataset of 750K randomly sampled live
utterances, and a training dataset of 42M utterances
containing a combination of grammar generated
and randomly sampled live utterances. The dataset
covers 24 domains, including Music, Shopping, Lo-
cal Search, Sports, Books, Cinema and Calendar.

NLU System. Our NLU system has one set of
IC and NER models per domain. The IC model
predicts one of its in-domain intents or a special out-
of-domain intent which helps with domain classifi-
cation. The IC and NER predictions are ranked into
a single n-best list based on model confidences (Su
et al., 2018). We use MaxEnt (Berger et al., 1996)
models for IC and the CRF models for NER (Laf-
ferty et al., 2001).

Experimental Design. We split the training
data into a 12M utterances initial training set for
IC and NER, and a 30M utterance candidate pool
for selection. We choose Books, Local Search, and
Cinema as target domains to simulate the AL al-
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Domain Train Test Examples

Books 290K 13K “search in mystery books”
“read me a book”

Local
Search 260K 16K “mexican food nearby”

“pick the top bank”

Cinema 270K 9K “more about hulk”
“what’s playing in theaters”

Table 2: Simulated ”new“ target domains for AL exper-
iments. The target domain initial training datasets are
90% grammar generated data. The other 21 ”non-new“
domains have on average 550k initial training datasets
with 60% grammar generated data and 40% live data.

gorithms, see Table 2. Each target domain had
550-650K utterances in the candidate pool. The
rest of the 21 non-target domains have 28.5M utter-
ances in the candidate pool. We also added 100K
sentence fragments and out-of-domain utterances
to the candidate pool, which allows us to compare
the susceptibility of different algorithms to noisy or
irrelevant data. This experimental setup attempts
to simulate the production IVA use case where the
candidate pool has a large proportion of utterances
that belong to different domains.

We employed the different AL algorithms to se-
lect 12K utterances per domain from the candidate
pool, for a total 36K utterance annotation budget.
Also, we evaluated uniform (Rand-Uniform) and
domain (Rand-Domain) random sampling with the
same total budget. We ran each AL configuration
twice and average the SER scores to account for
fluctuations in selection caused by the stochasticity
in model training. For random sampling, we ran
each selection five times.

4.2.1 Simulated Active Learning Results
Table 3 shows the experimental results for the target
domains Books, Local Search, and Cinema. For
each experiment, we add all AL selected data (in-
and out-of-domain), and evaluate SER for the full
NLU system.

We test for statistically significant improvements
using the Wilcoxon test (Hollander et al., 2013)
with 1000 bootstrap resamples and p-value < 0.05.

Random Baselines. As expected, Rand-
Uniform selected few relevant utterances for the
target domains due to their low frequency in the
candidate pool. Rand-Domain selects relevant ut-
terances for the target domains, achieving statis-
tically significant SER improvements compared
to Rand-Uniform. However, the overall gains are

small, around 1% relative per target domain. A sig-
nificant factor for Rand-Domain’s limited improve-
ment is that it tends to capture frequently-occurring
utterances that the NLU models can already recog-
nize without errors. As such, all AL configurations
achieved statistically significant SER gains com-
pared to the random baselines.

Single Model Algorithms. AL-Logistic, which
carries out a single iteration of confidence-based
selection, exhibits a statistically significant reduc-
tion in SER relative to Rand-Domain. Moreover,
using six iterations (i.e., i=6) further reduced SER
by a statistically significant 1%-2% relative to AL-
Logistic(i=1), and resulted in the selection of 200
fewer unsupported utterances. This result demon-
strates the importance of incremental selection for
iteratively refining the selection model.

Committee Algorithms. AL algorithms in-
corporating a committee of models outperformed
those based on single models by a statistically sig-
nificant 1-2% ∆SER. The majority algorithms per-
formed slightly better than the QBC algorithms
and were able to collect more in-domain utterances.
The absolute sum scoring function Sas performed
slightly better than the sum of absolutes Ssa for
both QBC and Majority. Amongst all committee
algorithms, Majority-AS performed best, but the
differences with the other committee algorithms
are not statistically significant.

Committee and CRF Algorithms. AL algo-
rithms incorporating a CRF model tended to out-
perform purely classification-based approaches, in-
dicating the importance of specifically targeting the
NER task. The Majority-CRF algorithm achieves a
statistically significant SER improvement of 1-2%
compared to Majority-AS (the best configuration
without the CRF). Again, the disagreement-based
QBC-CRF algorithm performed worse that the ma-
jority algorithm across target domains. This differ-
ence was statistically significant on Books, but not
on Cinema and Local Search.

In summary, AL yields more rapid improve-
ments not only by selecting utterances relevant to
the target domain but also by trying to select the
most informative utterances. For instance, although
the AL algorithms selected 40-50% false posi-
tive utterances from non-target domains, whereas
Rand-Domain selected only around 20% false pos-
itives, the AL algorithms still outperformed Rand-
Domain. This indicates that labeling ambiguous
false positives helps resolve existing confusions
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Algorithm Group Algorithm (i = 6) Overall Books Local Search Cinema Non-Target
#Utt #Utt ∆SER #Utt ∆SER #Utt ∆SER #Utt

Random Rand-Uniform 35.8K 747 1.20 672 3.37 547 0.57 33.8K
Rand-Domain 35.7K 9853 1.52 9453 4.23 9541 1.75 06.8K

Single Model
AL-Logistic(i=1) 34.9K 5405 4.76 7092 6.54 5224 6.09 17.1K
AL-Logistic 35.1k 5524 6.77 7709 7.24 5330 7.29 16.5K

Committee Models

QBC-AS 35.0K 4768 7.18 7869 8.57 4706 8.72 17.6K
QBC-SA 35.0K 4705 7.12 7721 8.96 4790 7.52 17.7K
Majority-AS 35.1K 5389 7.66 8013 9.07 5526 8.98 16.1K
Majority-SA 35.1K 5267 7.35 8196 8.46 5193 8.42 16.4K

Committee and CRF QBC-CRF 35.1K 3653 7.44 6593 9.78 4064 10.26 20.7K
Majority-CRF 35.1K 6541 8.42 8552 9.92 6951 11.05 13.0K

Table 3: Simulation experimental results with 36K annotation budget. ∆SER is % relative reduction is SER
compared to the initial model: Books SER 30.59, Local Search SER 39.09, Cinema SER 38.71. Higher ∆SER is
better. The best result is in bold, and the second best is underlined. The i = 1 means selection in a single iteration,
otherwise if not specified selection is in six iterations (i = 6). Overall #Utt shows the remaining from the 36K
selected after removing the sentence fragments and out-of-domain utterances. Both target and non-target domains
IC and NER models are re-retrained with the new data.

between domains. Another important observation
is that majority filtering Fmaj performs better than
QBC disagreement filtering Fdis across all of our
experiments. A possible reason for this is that ma-
jority filtering selects a better balance of boundary
utterances for classification and in-domain utter-
ances for NER. Finally, the Majority-CRF results
show that incorporating the CRF model improves
the performance of the committee algorithms. We
assume this is because incorporation of a CRF-
based confidence directly targets the NER task.

4.3 Human-in-the-loop Active Learning
We also performed AL for six new NLU domains
with human-in-the-loop annotators and live user
data. We used the Majority-SA configuration for
simplicity in these case studies. We ran the AL se-
lection for 5-10 iterations with varying batch sizes
between 1000-2000.

Domain ∆SER #Utt Selected #Utt Testset
Recipes 8.97 24.1K 4.7K
LiveTV 6.92 11.6K 1.8K
OpeningHours 7.05 6.8K 583
Navigation 4.67 6.7K 6.4K
DropIn 9.00 5.3K 7.2K
Membership 7.13 4.2K 702

Table 4: AL with human annotator results. ∆SER is %
relative gain compared to the existing model. Higher is
better.

Table 4 shows the results from AL with human
annotators. On each feature, AL improved our
existing NLU model by a statistically significant
4.6%-9%. On average 25% of utterances are false

positive. This is lower than the 50% in the simula-
tion because the initial training data exhibits more
examples of the negative class. Around 10% of the
AL selected data is lost due to being unactionable
or out-of-domain, similar to the frequency with
which these utterances are collected by random
sampling.

While working with human annotators on new
domains, we observed two challenges that impact
the improvements from AL. First, annotators make
more mistakes on AL selected utterances as they
are more ambiguous. Second, new domains may
have a limited amount of test data, so the impact
of AL cannot be fully measured. Currently, we
address the annotation mistakes with manual data
clean up and transformations, but further research
is needed to develop an automated solution. To
improve the coverage of the test dataset for new
domains we are exploring test data selection using
stratified sampling.

5 Conclusions

In this work, we focused on AL methods designed
to select live data for manual annotation. The dif-
ference with prior work on AL is that we specifi-
cally target new domains in NLU. Our proposed
Majority-CRF algorithm leads to statistically sig-
nificant performance gains over standard AL and
random sampling methods while working with a
limited annotation budget. In simulations, our
Majority-CRF algorithm showed an improvement
of 6.6%-9% SER relative gain compared to random
sampling, as well as improvements over other AL
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algorithms with the same annotation budget. Simi-
larly, results with live annotators show statistically
significant improvements of 4.6%-9% compared to
the existing NLU system.
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