@inproceedings{aldarmaki-diab-2019-context,
title = "Context-Aware Cross-Lingual Mapping",
author = "Aldarmaki, Hanan and
Diab, Mona",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/N19-1391/",
doi = "10.18653/v1/N19-1391",
pages = "3906--3911",
abstract = "Cross-lingual word vectors are typically obtained by fitting an orthogonal matrix that maps the entries of a bilingual dictionary from a source to a target vector space. Word vectors, however, are most commonly used for sentence or document-level representations that are calculated as the weighted average of word embeddings. In this paper, we propose an alternative to word-level mapping that better reflects sentence-level cross-lingual similarity. We incorporate context in the transformation matrix by directly mapping the averaged embeddings of aligned sentences in a parallel corpus. We also implement cross-lingual mapping of deep contextualized word embeddings using parallel sentences with word alignments. In our experiments, both approaches resulted in cross-lingual sentence embeddings that outperformed context-independent word mapping in sentence translation retrieval. Furthermore, the sentence-level transformation could be used for word-level mapping without loss in word translation quality."
}
Markdown (Informal)
[Context-Aware Cross-Lingual Mapping](https://preview.aclanthology.org/fix-sig-urls/N19-1391/) (Aldarmaki & Diab, NAACL 2019)
ACL
- Hanan Aldarmaki and Mona Diab. 2019. Context-Aware Cross-Lingual Mapping. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3906–3911, Minneapolis, Minnesota. Association for Computational Linguistics.