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Abstract

Recent advances in Question Answering have
lead to the development of very complex mod-
els which compute rich representations for
query and documents by capturing all pair-
wise interactions between query and docu-
ment words. This makes these models ex-
pensive in space and time, and in practice
one has to restrict the length of the docu-
ments that can be fed to these models. Such
models have also been recently employed for
the task of predicting dialog responses from
available background documents (e.g., Holl-
E dataset). However, here the documents are
longer, thereby rendering these complex mod-
els infeasible except in select restricted set-
tings. In order to overcome this, we use stan-
dard simple models which do not capture all
pairwise interactions, but learn to emulate cer-
tain characteristics of a complex teacher net-
work. Specifically, we first investigate the
conicity of representations learned by a com-
plex model and observe that it is significantly
lower than that of simpler models. Based
on this insight, we modify the simple archi-
tecture to mimic this characteristic. We go
further by using knowledge distillation ap-
proaches, where the simple model acts as a
student and learns to match the output from the
complex teacher network. We experiment with
the Holl-E dialog data set and show that by
mimicking characteristics and matching out-
puts from a teacher, even a simple network can
give improved performance.

1 Introduction

The advent of large scale datasets for QA has lead
to the development of increasing complex neural
models with specialized components for (i) en-
coding the query (ii) encoding the document(s)
(iii) capturing interactions between document and
query words and (iv) generating/extracting the
correct answer span from the given document (Seo
et al., 2016; Hu et al., 2017; Yu et al., 2018). While

these models give state-of-the-art performance on
a variety of datasets, they have very high space and
time complexity. This is a concern, and in prac-
tice, it is often the case that one has to resort to
restricting the maximum length of the input docu-
ment such that the model can run with reasonable
resources (say, a single 12GB Tesla K80 GPU).

Such complex span prediction models are also
being adapted for other NLP tasks such as dialog
response prediction (Moghe et al., 2018), which is
the focus of this work. In particular, we refer to
the Holl-E dataset where the task is to extract the
next response from a document which is relevant
to the conversation (see Figure 1). This setup is
very similar to QA wherein the input is {context,
document} as opposed to {query, document} and
the correct response span needs to be extracted
from the given document. Given this similarity, it
is natural to adopt existing QA models (Seo et al.,
2016; Yu et al., 2018) for this task. However, the
documents in Holl-E dataset are longer, and the
authors specifically report that they were unable
to run these models when the entire document was
given as input. Hence, they report results only
in constrained oracle settings where the document
is trimmed such that the response still lies in the
shortened document. The above situation suggests
that there is clearly a trade-off needed. On one
hand, we want to harness the power of these com-
plex models to achieve better performance and on
the other hand we want to be able to run them with
reasonable compute resources without arbitrarily
trimming the input document.

This trade-off situation naturally leads to the
following question: Is it possible to build a sim-
ple model, with low memory and compute require-
ments, that copy desirable characteristics from
complex models? To answer this, we start with
a relatively simple model with very basic compo-
nents for encoding query, document and captur-
ing interactions. Once these interactions are cap-
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Source Doc: ...comes in. As soon as the door is open,
the Bride’s fist crashes into Vernita’s face. A savage fight
follows, first with fists, then with knives.... The fight
pauses ... At this point Vernita is introduced as a member
of the Deadly Vipers, codename Copperhead. ...

Sample Conversation:
Prober (S1): Which is your favourite character in this?
Responder (S2): My favorite character was Copperhead
because she was kicking butt.
Prober (S3): Oh my goodness I agree, because the fight
with Vernita was the best in the whole movie.
Responder (S4): It’s starts off action packed because
as soon as the door is open, the Bride’s fist crashes into
Vernita’s face. A savage fight follows, first with fists, then
with knives.
Prober (S5): And it gets better when we find out they are
both assassins.
Responder (S6): And a group of them, Vernita is
introduced as a member of the Deadly Vipers, codename
Copperhead.

Figure 1: Sample Conversation from the Holl-E
Dataset. Note that the underlined responses directly
correspond to spans in the background document.

tured, the model computes a final representation
which is then fed to a decoder to predict the cor-
rect span in the document. This recipe is very sim-
ilar to BiDAF (Seo et al., 2016), QANeT (Yu et al.,
2018) but the main difference is that these models
use much more complex encoder and interaction
components to arrive at the final representation.
As expected, the performance of this model is
poor when compared to BiDAF, QANeT. The aim
now is to improve the performance of this model
by carefully analysing or learning from complex
models. Given that the complex model differs
in the manner in which the final representation is
computed, one hypothesis is that it learns richer fi-
nal representations than the simple model. Indeed,
on investigation, we found that the final represen-
tations learned by complex models are diverse for
different inputs (context, document pairs) as com-
pared to the simple model. Based on this insight,
we propose a modification to the simple model
which increases the diversity of the embeddings,
thereby improving the performance.

While this insight obtained by manual investi-
gation is useful, there is clearly scope for learn-
ing by exploring other characteristics of the model.
One principled way of doing this is to use knowl-
edge distillation (Hinton et al., 2015) where the
simple model acts as a student and learns to mimic
the probability distributions predicted by a teacher.
In other words, instead of simply maximizing the
log likelihood of the training data, the simple

model now gets additional signals from the teacher
which act as hints while training.

Our experiments, using the Holl-E dataset show
that by (i) improving the conicity (Chandrahas
et al., 2018) of the representations learned by the
simple model and (ii) mimicking the outputs of the
complex teacher model the simple model can give
improved performance with fewer compute and
memory requirements. In particular, when com-
pared to a standalone simple model the student
model shows an improvement of 3.4% (compare
SAM-mul-train (LD) and SAM-add-topk (LD) en-
tries in Table 2 and Table 3 respectively).

2 Related Work

Over the past few years neural sequence predic-
tion models which take a question as input and
predict the corresponding answer span in a given
document have evolved rapidly. Such models
have also been adapted for dialog response predic-
tion in the context of the Holl-E dataset (Moghe
et al., 2018). These models typically differ in
the components used for capturing interactions
between query and document, capturing interac-
tions between sentences in a document and refin-
ing the query/document representation over multi-
ple passes (Shen et al., 2017; Dhingra et al., 2017;
Sordoni et al., 2016).

In particular, a co-attention network which
computes the importance of every query word
w.r.t. every document word and the importance of
every document word w.r.t. every query word is an
important component in most state of the art mod-
els (Hermann et al., 2015; Kadlec et al., 2016; Cao
et al., 2016; Xiong et al., 2016; Seo et al., 2016;
Gong and Bowman, 2017; Dhingra et al., 2017;
Wang et al., 2017; Shen et al., 2017; Trischler
et al., 2016; Group and Asia, 2017; Tan et al.,
2017; Sordoni et al., 2016). Similarly, some mod-
els (Group and Asia, 2017; Seo et al., 2016; Hu
et al., 2017) contain a self-attention network which
computes the importance of every document word
w.r.t. every other document word. In general,
the most successful models (for example, BiDAF
(Seo et al., 2016), QANeT (Yu et al., 2018)) use
a combination of these components which capture
all pairwise interactions and are thus computation-
ally very expensive. As a result, in practice, these
models are not suitable for longer documents.

We now quickly review existing works which
use the idea of knowledge distillation to build
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compact models (Cheng et al., 2017). For exam-
ple, Ba and Caruana (2014); Hinton et al. (2015);
Lopez-Paz et al. (2016); Chen et al. (2017) train a
shallow student network using soft targets (or class
probabilities) generated by an expensive teacher
instead of the hard targets present in the training
data. Romero et al. (2015) extend this idea to train
a student model using the intermediate represen-
tations learned by the teacher model which act as
additional hints. This idea of Knowledge Distil-
lation has also been tried in the context of prun-
ing networks for multiple object detection (Chen
et al., 2017), speech recognition (Wong and Gales,
2016). In the context of reading comprehension
or span prediction, Hu et al. (2018) have very re-
cently shown that we can distill knowledge from
an ensemble of models into a single model. How-
ever, unlike our work, the single model itself is
a complex model (Hu et al., 2017) containing an
expensive self attention network and a RL agent.
To the best of our knowledge, ours is the first work
which tries to build a simple span prediction model
by distilling knowledge from a complex model.

3 Models For Response Prediction

We view a conversation as sequence of utterances
by a prober and a responder. The response predic-
tion (RP) model aims to predict the utterance by
the responder based on a source document, when
given the query (prober’s most recent utterance)
and the history (past utterance by the prober and
responder). See Figure 1 for an example.

We denote the lengths of source document,
query, prober history and responder history as
T, I, J,K. The LSTMs/GRUs used all have the
same number of cells, denoted by d. In particu-
lar, the document length T is of the order of a few
thousands and the query/history lengths I, J,K
are of the order of a few hundreds. Contrast this
with QA tasks, where T is only of the order of a
few hundreds, and the query length (I+J +K) is
of the order of a few tens.

3.1 BiDAF for RP

BiDAF (Seo et al., 2016) is an extremely popular
model used for span prediction in reading compre-
hension based question answering problems. We
can frame the problem of response prediction as
one of question answering by concatenating the
query, prober history, and responder history into a

single “question”. BiDAF has proven to be hugely
successful in QA tasks, but has a large number
of parameters (about 2.5 million) and consumes
a large amount of computational space and time
during training and prediction.

We use the BiDAF model as a guiding post
while constructing our model, and in particular
focus on the so called query to context attention,
which is a vector (denoted by h̃) that indicates the
weighted sum of the most important words in the
source document, with respect to the query and
histories.

3.2 QANeT for RP

QANeT (Yu et al., 2018) is another recent model
used for span prediction in QA tasks and specifi-
cally targets better space and time efficiency than
BiDAF. Despite this, it still has a large number of
parameters (about 1.3 million) and still consumes
a large amount of computational space and time
during training and prediction. The QANeT model
can also be modified for response prediction in a
similar manner to BiDAF.

3.3 Simple Attention Model for RP

We now describe the simple attention model that
we aim to learn. In a fashion similar to that
of BiDAF and QANeT architectures, the simple
model also operates in 3 distinct layers. See Fig-
ure 2 for an overview into the model.

3.3.1 Word Embedding Layer
The words from the source document, the utter-
ances by the prober and the responder are all en-
coded using standard GloVe embeddings (Pen-
nington et al., 2014).

3.3.2 Contextual Embedding Layer
In the next layer we encode the query (prober’s
most recent utterance) using a BiGRU/BiLSTM,
and encode the previous utterances of the prober
and responder in a query sensitive manner.

Query Encoder: Embedded query words are
passed through BiGRU where final state qI ∈ R2d

acts as query representation.
Query Sensitive History Summariser: The

history of the prober and responder are passed
through a BiGRU to get context sensitive vectors
hP
j ∈ R2d and hR

k ∈ R2d for j ∈ [J ] and k ∈ [K].
These vectors are combined to get vectors hP

and hR. This process of combining uses the
query representation qI , and hence hP and hR can
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Figure 2: A Simple Attention Model with (1) Query Encoder, Prober History Encoder, Responder History Encoder,
and Document Encoder (2) Query to Prober History Attention, Query to Responder History Attention, and Query
& histories to Document Attention (3) Training Labels and Teacher Distribution.

be viewed as query-aware representations of the
prober and responder history. The equations for
hP are given below. The vector hR is also calcu-
lated in a similar manner.

ej = mulW
P
(hP

j ,qI)

α = softmax(e)

hP =
∑
j

αjh
P
j

where mulW (v0,v1) = v>
0 Wv1 is a parameter-

ized multiplicative way of capturing the interac-
tion between two vectors.

3.3.3 Span Prediction Layer
The source document is finally used in this layer
to predict the start and end indices of the response.
The GloVe embedded words of the source docu-
ment are passed through a BiGRU to get context
sensitive vectors ut ∈ R2d, for all t ∈ [T ]. Each
index t gets a score st based on the interaction be-
tween ut and the query/history vectors qI ,h

P,hR.
The scores st are normalized by a softmax and is
taken to be the prediction of the starting word in-
dex.

st = mulW
strt
(ut,qI ,h

P,hR)

α = softmax(s)

where mulW (u0, . . . ,ua) = u>
0

(∑a
i=1W

iui

)
A similar method is used for the prediction of

the ending word index as well.

4 Bridging The Gap Between Simple and
Complex Models

We performed several experiments on the Holl-
E dataset and observed that the complex mod-
els (QANeT and BiDAF) perform better than the
simple attention model described in Section 3.3.
However, they take significantly more time and
memory for training and inference. In fact, for
the examples with longer source documents, both
BiDAF and QANeT run into memory issues when
training. During prediction, the memory issues in
QANeT and BiDAF can be sidestepped by break-
ing the source document into multiple chunks and
taking the highest scoring span.

In the rest of this section we study several
approaches to nudge the simple attention model
to take parameters that make it have similar be-
haviour as the complex models, and check if the
so nudged model demonstrates better performance
on the Holl-E dataset.

4.1 Diversity of Embeddings
We observed that for the simple attention model,
the response predictions at different points in the
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Figure 3: Conicity (i.e., average cosine similarity of
vectors with the mean of all the vectors) of two sets of
vectors with standard deviation 0.1 (red) and 1.3 (blue)

same conversation are often the same, even though
the “right response” is different in those points.
For example, consider the conversation in Figure
1. We expect the trained model to be such that

Pred span(SD, S1, S2, S3) = spanSD(S4)

where SD is the source document, and Si are the
the utterances in the conversation. Similarly, we
expect the trained model to be such that

Pred span(SD, S3, S4, S5) = spanSD(S6)

However we often find that our simple model pre-
dicts the same span for both the cases above,
which is wrong (unless S4 and S6 are the same.)

We hypothesize this as being due to the context
sensitive embeddings of the history not depend-
ing strongly on the query, and hence the span pre-
diction model picks up most information from the
source document. To support this point of view
we measured the diversity of the context-to-query
vectors h̃ of the BiDAF model for several exam-
ples grouped by conversation. In more detail we
computed the conicity (Chandrahas et al., 2018) of
vectors h̃(SD, S1, S2, S3), h̃(SD, S3, S4, S5), . . .
for every conversation in the test set and averaged
it over all conversations. (See Figure 3 for an
overview on conicity). This average conicity was
observed to be about 0.6 (see Table 6), which, ac-
cording to Chandrahas et al. (2018), is low (low
conicity implies high diversity).

We observe similar behaviour for QANeT as
well. The average conicity of the row sums of
the similarity matrix grouped by conversation was
also observed to be about 0.6 (see Table 6).

On the other hand, for our simple attention
model, the average conicity of the vectors hR and
hP, when computed in a similar fashion as men-
tioned above were generally high (about 0.8) (see
Table 6).

Based on these observations we hypothesize
that decreasing the conicity of the vectors hR and
hP would improve the performance of the sim-
ple attention model. In particular, we propose
to change the multiplicative method of combining
vectors into an additive method instead.

In particular we propose to replace the function
mul in our simple model with the function add
defined as follows:

addW (v0,v1, . . . ,va) = w> tanh

(
a∑

i=0

W ivi

)

where the vector w and the matrices W i param-
eterize the mode of combining the input vectors.
This is motivated by Chandrahas et al. (2018) who
show that using additive model in embedding of
entities in knowledge graphs gives consistently
better diversity than using multiplicative models.

4.2 Standard Knowledge Distillation from
Complex Models

While borrowing high level ideas from complex
models, like increasing diversity of the learned
representation can help to some extent, one can
push this further to distill the learned complex
model (Hinton et al., 2015) into the simple atten-
tion model. To achieve this, we train a teacher
model (BiDAF or QANeT) on the training set and
use it to make predictions on the same training
set. The simple attention model would minimise
the sum of two loss functions: 1) Cross entropy
loss of the predicted start and end indices with the
train labels of the start and end indices, 2) KL-
divergence of the predicted start and end indices
from the teacher prediction of the same. The loss
on a single training sample is given below

D(pT
b ||pS

b)+D(yb||pS
b)+D(pT

e ||pS
e )+D(ye||pS

e )
(1)

where D denotes the KL divergence, pT
b ,p

T
e de-

note the predicted begin index and end index dis-
tribution of the teacher model, and pS

b ,p
S
e denote

the predicted begin and end index distribution of
the student model and yb,yS denote the true begin
and end index in one-hot vector form.

4.3 Top-k Based Knowledge Distillation

Another variant of knowledge distillation is as fol-
lows. We do not view the teacher predicted distri-
bution for all indices with importance and just take
the top few predicted indices. In particular the loss
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on a single training sample is given below

D(p̃T
b ||p̃S

b)+D(yb||pS
b)+D(p̃T

e ||p̃S
e )+D(ye||pS

e )
(2)

where p̃T
b , p̃

T
e gives just the (normalised) probabil-

ity of the top-k predictions of teacher model on the
begin and end indices. Similarly p̃S

b , p̃
S
e gives the

student predictions for the begin and end indices
restricted to the top-k entries given by the teacher
model.

4.4 Other Knowledge Distillation
Approaches

As the teacher model is already trained, and the
main objective in knowledge distillation is to have
the student model mimic the teacher model, there
is no need to restrict the objective terms 1 and 3
in equation 1 to only the training data. Hence by
hallucinating conversations and documents we can
get more terms in the objective and has an effect
similar to data augmentation.

Another possible way to take advantage of
teacher models is to extract more information than
simply the predicted spans for each training exam-
ple from the teacher models. In particular one easy
way to extract piece of information is the gradient
of the model output with respect to the input for
the teacher model. The so called Sobolev training
(Czarnecki et al., 2017) exploits this information
and adds two more extra terms to the objective in
(1).

||∇pT
b −∇pS

b ||2 + ||∇pT
e −∇pS

e ||2

The gradients are all taken with respect to the
model input, which would be the source docu-
ment, the query and the histories.

5 Experiments

In this section, we describe the setup used for our
experiments and discuss the results.

5.1 Experiment Setup

We perform experiments using the Holl-E conver-
sation dataset (Moghe et al., 2018) which contains
crowdsourced conversations from the movie do-
main. Every conversation in this dataset is asso-
ciated with background knowledge comprising of
plot details (from Wikipedia), reviews and com-
ments (from Reddit). Every alternate utterance in
the conversation is generated by copying and/or

modifying sentences from this unstructured back-
ground knowledge. We refer the reader again to
Figure 1 for a sample from this dataset.

We use the same train, test and validation splits
as provided by the authors of the original paper
(Moghe et al., 2018). For each chat in the train-
ing data, the authors construct training triplets of
the form {document, context, response}where the
number of train, test and validations triplets are
34486, 4388 and 4318 respectively. The context
contains (i) the query (the prober’s most recent ut-
terance) and (ii) the history (past 2 utterances by
the prober and the responder) as described earlier.
The task then is to train a model which can predict
the response given the document and the context.
At test time, the model is shown document, con-
text and predicts the response.

As mentioned earlier, the authors of Holl-E
found that BiDAF and QANeT run into memory
issues when evaluated on their dataset. Hence,
they propose two setups (i) long document (LD)
setup and (ii) short document (SD) setup. In the
long document setup, the authors do not trim the
document from which the response needs to be
predicted. In the short document setup, the au-
thors trim the document to 256 words such that the
span containing the response is contained in the
trimmed document. This enables them to evalu-
ate BiDAF and QANeT on the trimmed document.
We also report experiments using both the LD and
SD setup.

As mentioned above complex models (BiDAF
and QANeT) face memory issues on training set
with long documents. So for all situations where
we need predictions from complex models for
long documents, we use a BiDAF/QANeT model
trained on short document examples, and the pre-
diction on the long document is made by splitting
the long documents into chunks and feeding it to
the trained BiDAF/QANeT model. The final pre-
dicted span is the largest scoring span across all
chunks.

For all models, we considered the following hy-
perparameters and tuned them using the validation
set. We tried batch sizes of 32 and 64 and the
following GRU sizes: 64, 100, 128. We experi-
mented with 1, 2 and 3 layers of GRU. We used
pre-trained publicly available Glove word embed-
dings 1 of 100 dimensions. The best performance

1https://nlp.stanford.edu/projects/
glove/

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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SAM, SD SAM, LD BiDAF, SD BiDAF, LD QANeT, SD QANeT, LD
Memory 540MB 1.3GB 11GB 11GB 3GB 3GB
Time 30 secs 43 sec 347 secs 710 secs 90 secs 150 secs

Table 1: ‘Inference’ Memory and Time usage for different models. Here SAM, SD and LD refers to Simple
Attention Model, short document and long document respectively.

Model LD SD
SAM-mul-train 36.49 40.08
SAM-add-train 36.96 41.30
BiDAF 38.30* 45.54
QANeT 38.10* 47.67

Table 2: Performance (F1 Scores) of
different baseline models on SD (short
document) and LD (long document) test
set.

Model Details BiDAF QANeT
SAM-mul 36.50 37.03
SAM-add 37.14 37.28
SAM-add-topk 37.29 37.73
SAM-add-aug 37.17 37.01
SAM-add-ensemble 37.30
SAM-add-both 36.80

Table 3: F1 Scores for different variants of simple
attention model on long documents test set.

was with the batch size of 32, 2 layers of GRU
with hidden size 64. We used Adam (Kingma and
Ba, 2014) optimizer with initial learning rate set to
0.001, β1 = 0.9, β2 = 0.999. We performed L2
weight decay with decay rate set to 0.001.

5.2 Model Variant Details

The models that we experiment with are listed
below:

1. SAM-add-Train : The simple attention model
with additive interactions and no teacher terms in
the objective (Only terms 2 and 4 in Eqn. (1)).
2. SAM-add-Teach : The simple attention model
with additive interactions and only knowledge dis-
tillation terms in the objective (Only terms 1 and 3
in Eqn. (1)).
3. SAM-add : The simple attention model with
additive interactions and both knowledge distilla-
tion terms and training data terms in the objective
(all terms in 1).
4. SAM-add-topk : The simple attention model
with additive interactions and knowledge distilla-
tion applied to the top-k indices and training data
terms in the objective (all terms in 2).
5. SAM-add-aug : The SAM-add model, where
the teacher terms are evaluated on hallucinated
data in addition to training data. The halluci-
nated data are derived from the original training
set by reordering the words in the source docu-
ment, query and histories.
6. SAM-add-grad : The SAM-add model, with
extra terms in the loss penalising the deviation of
the gradient of the simple model from the gradient

of the teacher model.
7. SAM-add-both : Same as the SAM-add model,
but has 6 terms instead of the 4 terms in Equa-
tion 1. The extra two terms arise from using both
QANeT and BiDAF instead of just one.
8. SAM-add-ensemble : Same as the SAM-add
model, but the teacher predictions pT are set as
the average of the QANeT and BiDAF predictions.

All the “add” models above also have a “mul”
variant where the additive interaction add is re-
placed by a multiplicative interaction mul.

5.3 Results and Discussion

The F1-scores of the various models we train are
given in Table 2, Table 3 and Table 4. A sum-
mary of the space and time complexity of predic-
tion with the simple model and the complex mod-
els is given in Table 1. The training times and pa-
rameter counts of the models are given in Table 5
We draw several conclusions and inferences from
these results and make some comments below.
Efficient Training with Simple Model: From Ta-
ble 5, we observe that simple attention model has
5 to 10 times less parameters than QANeT and
BiDAF. The training time of the simple model is
also significantly lesser than that of the complex
models.
Efficient Prediction with Simple Model: From
Table 1, we observe that the simple model takes
significantly less memory and time during predic-
tion as well. The complex models run out of mem-
ory on the large document test set, but a prediction
can still be made with a trained BiDAF or QANeT
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Model Details BiDAF QANeT
SAM-add-teach 20.23
SAM-mul 40.81 40.76
SAM-add 42.05 41.89
SAM-add-topk 41.71 42.01
SAM-add-aug 41.65 41.62
SAM-add-ensemble 41.74
SAM-add-both 42.32
SAM-add-grad 41.37 41.72

Table 4: F1 Scores for different variants of simple
attention model on short document test set.

SAM BiDAF QANeT
Parameters 0.25 M 2.5 M 1.3 M
Train Time 307 secs 5880 secs 2213 secs

Table 5: Comparison of parameters (in Million) and
training time (seconds) per epoch for different models.

Model Conicity
Complex Models 0.6
SAM-mul 0.8
SAM-add 0.7

Table 6: Comparison of conicity between variants of
simple-attention model and complex models.

model by splitting the source document into man-
ageable chunks.
Conicity of Multiplicative models vs Additive
Models: As noted before we use two distinct
methods to capture the interaction between a
group of vectors : an additive mechanism add, and
a multiplicative mechanism mul. As mentioned
earlier, an additive model for capturing interac-
tions has been hypothesized to increase diversity.
This is true in our case as well: the conicity of the
hP and hR vectors goes down from about 0.8 to
0.7 (compare SAM-mul and SAM-add entries in
Table 6) when using the additive model instead of
the multiplicative model.
F1 scores of Multiplicative models vs Additive
Models: In addition to improving diversity, us-
ing the additive model add instead of the multi-
plicative model mul increases F1-scores all across
the board. We have not reported scores for certain
multiplicative variants because their performance
is significantly worse.
F1 scores of Simple Model with Knowledge Dis-
tillation: We observe that using a teacher model
for knowledge distillation using the objective in
(1) almost always improves the performance of the
simple model.
Importance of training labels: The objective
in knowledge distillation (Equation (1)) involves
both the training labels and the teacher predicted
distribution. Even though the teacher predicted
distribution also incorporates the training data, re-
moving the training data term from the objective
of knowledge distillation worsens performance
significantly.
Top-k Distillation: The knowledge distillation
approach based on top-k predicted indices results
in the best simple model for long document exam-

ples (see Table 3). The value of k was chosen to
be 50 for the short document case and it is 20 for
the long document case.
Add-Both Knowledge Distillation: Learning
from multiple teachers could lead to better perfor-
mance hence we trained the student model with
two teachers (BiDAF+QANeT). Here the objec-
tive function of student is to minimize KL Diver-
gence between predictions for both teachers. We
achieved best results with this technique on short
document (SD) test set.
Data Augmentation and Gradient Distillation:
While the data augmentation and gradient distilla-
tion methods hold a lot of promise, in the experi-
ments that we conducted, we did not see a signifi-
cant improvement.
QANeT Teachers vs BiDAF Teachers: Using ei-
ther QANeT or BiDAF as a teacher doesn’t seem
to make any difference in the performance of the
student models (compare the two columns in Table
3 and 4).

6 Conclusion

In this work, we address the trade-off between
simple models on one hand which have low mem-
ory and compute requirements and complex mod-
els on the other hand which give better perfor-
mance but are computationally expensive. We pro-
pose a middle ground by training a simple model
to mimic the characteristics of a complex model.
In particular, we make observations from a com-
plex model which learns very diverse representa-
tions for different inputs and suitably modify the
simple model to learn similar diverse representa-
tions. We go further, by using knowledge distil-
lation techniques to improve the simple model by
training it to match the outputs from the complex
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model. We experimented with the Holl-E conver-
sation dataset and showed that by mimicking char-
acteristics of the teacher a simple model can give
improved performance.
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