
Proceedings of NAACL-HLT 2019, pages 3543–3556
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

3543

Attention is not Explanation

Sarthak Jain
Northeastern University

jain.sar@husky.neu.edu

Byron C. Wallace
Northeastern University

b.wallace@northeastern.edu

Abstract

Attention mechanisms have seen wide adop-
tion in neural NLP models. In addition to
improving predictive performance, these are
often touted as affording transparency: mod-
els equipped with attention provide a distribu-
tion over attended-to input units, and this is
often presented (at least implicitly) as com-
municating the relative importance of inputs.
However, it is unclear what relationship ex-
ists between attention weights and model out-
puts. In this work we perform extensive exper-
iments across a variety of NLP tasks that aim
to assess the degree to which attention weights
provide meaningful “explanations" for predic-
tions. We find that they largely do not. For
example, learned attention weights are fre-
quently uncorrelated with gradient-based mea-
sures of feature importance, and one can iden-
tify very different attention distributions that
nonetheless yield equivalent predictions. Our
findings show that standard attention mod-
ules do not provide meaningful explanations
and should not be treated as though they do.
Code to reproduce all experiments is avail-
able at https://github.com/successar/
AttentionExplanation.

1 Introduction and Motivation

Attention mechanisms (Bahdanau et al., 2014) in-
duce conditional distributions over input units to
compose a weighted context vector for down-
stream modules. These are now a near-ubiquitous
component of neural NLP architectures. Attention
weights are often claimed (implicitly or explic-
itly) to afford insights into the “inner-workings”
of models: for a given output one can inspect the
inputs to which the model assigned large attention
weights. Li et al. (2016) summarized this com-
monly held view in NLP: “Attention provides an
important way to explain the workings of neural
models". Indeed, claims that attention provides
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Figure 1: Heatmap of attention weights induced over
a negative movie review. We show observed model at-
tention (left) and an adversarially constructed set of at-
tention weights (right). Despite being quite dissimilar,
these both yield effectively the same prediction (0.01).

interpretability are common in the literature, e.g.,
(Xu et al., 2015; Choi et al., 2016; Lei et al., 2017;
Martins and Astudillo, 2016; Xie et al., 2017).1

Implicit in this is the assumption that the input
units (e.g., words) accorded high attention weights
are responsible for model outputs. But as far as
we are aware, this assumption has not been for-
mally evaluated, and our findings here suggest that
it is problematic. More specifically, we empir-
ically investigate the relationship between atten-
tion weights, inputs, and outputs. Assuming at-
tention provides an explanation for model predic-
tions, we might expect the following properties to
hold. (i) Attention weights should correlate with
feature importance measures (e.g., gradient-based
measures); (ii) Alternative (or counterfactual) at-
tention weight configurations ought to yield corre-
sponding changes in prediction (and if they do not
then are equally plausible as explanations). We re-
port that neither property is consistently observed
by standard attention mechanisms in the context
of text classification, question answering (QA),
and Natural Language Inference (NLI) tasks when
RNN encoders are used.

1We do not intend to single out any particular work; in-
deed one of the authors has himself presented (supervised)
attention as providing interpretability (Zhang et al., 2016).

https://github.com/successar/AttentionExplanation
https://github.com/successar/AttentionExplanation


3544

Consider Figure 1. The left panel shows the
original attention distribution α over the words of
a particular movie review using a standard atten-
tive BiLSTM architecture for sentiment analysis.
It is tempting to conclude from this that the token
waste is largely responsible for the model coming
to its disposition of ‘negative’ (ŷ = 0.01). But one
can construct an alternative attention distribution
α̃ (right panel) that attends to entirely different to-
kens yet yields an essentially identical prediction
(holding all other parameters of f , θ, constant).

Such counterfactual distributions imply that ex-
plaining the original prediction by highlighting
attended-to tokens is misleading insofar as alter-
native attention distributions would have yielded
an equivalent prediction (e.g., one might conclude
from the right panel that model output was due pri-
marily to was rather than waste). Further, the at-
tention weights in this case correlate only weakly
with gradient-based measures of feature impor-
tance (τg = 0.29). And arbitrarily permuting the
entries in α yields a median output difference of
0.006 with the original prediction.

These and similar findings call into question
the view that attention provides meaningful insight
into model predictions. We thus caution against
using attention weights to highlight input tokens
“responsible for” model outputs and constructing
just-so stories on this basis, particularly with com-
plex encoders.

Research questions and contributions. We ex-
amine the extent to which the (often implicit) nar-
rative that attention provides model transparency2

holds across tasks by exploring the following em-
pirical questions.

1. To what extent do induced attention weights
correlate with measures of feature impor-
tance – specifically, those resulting from gra-
dients and leave-one-out methods?

2. Would alternative attention weights (and
hence distinct heatmaps/“explanations”) nec-
essarily yield different predictions?

Our findings with respect to these questions (as-
suming a BiRNN encoder) are summarized as fol-
lows: (1) Only weakly and inconsistently, and, (2)
No; it is very often possible to construct adver-
sarial attention distributions that yield effectively

2Defined as per (Lipton, 2016); we are interested in
whether attended-to features are responsible for outputs.

equivalent predictions as when using the origi-
nally induced attention weights, despite attending
to entirely different input features. Further, ran-
domly permuting attention weights often induces
only minimal changes in output.

2 Preliminaries and Assumptions

We consider exemplar NLP tasks for which atten-
tion mechanisms are commonly used: classifica-
tion, natural language inference (NLI), and ques-
tion answering.3 We adopt the following general
modeling assumptions and notation.

We assume model inputs x ∈ RT×|V |, com-
posed of one-hot encoded words at each position.
These are passed through an embedding matrix E
which provides dense (d dimensional) token repre-
sentations xe ∈ RT×d. Next, an encoder Enc con-
sumes the embedded tokens in order, producing
T m-dimensional hidden states: h = Enc(xe) ∈
RT×m. We predominantly consider a Bi-RNN
as the encoder module, but for completeness we
also analyze convolutional and (unordered) ‘aver-
age embedding’ variants.4

A similarity function φ maps h and a query
Q ∈ Rm (e.g., hidden representation of a question
in QA, or the hypothesis in NLI) to scalar scores,
and attention is then induced over these: α̂ =
softmax(φ(h,Q)) ∈ RT . In this work we con-
sider two common similarity functions: Additive
φ(h,Q) = vT tanh(W1h + W2Q) (Bahdanau
et al., 2014) and Scaled Dot-Product φ(h,Q) =
hQ√
m

(Vaswani et al., 2017), where v,W1,W2 are
model parameters.

Finally, a dense layer Dec with parameters θ
consumes a weighted instance representation and
yields a prediction ŷ = σ(θ · hα) ∈ R|Y|, where
hα =

∑T
t=1 α̂t · ht; σ is an output activation func-

tion; and |Y| denotes the label set size.

3 Datasets and Tasks

For binary text classification, we use:
Stanford Sentiment Treebank (SST) (Socher

et al., 2013). 10,662 sentences tagged with senti-
ment on a scale from 1 (most negative) to 5 (most
positive). We filter out neutral instances and di-
chotomize the remaining sentences into positive
(4, 5) and negative (1, 2).

3While attention is perhaps most common in seq2seq
tasks like translation, our impression is that interpretability
is not typically emphasized for such tasks, in general.

4In the latter case, ht is the embedding of token t after
being passed through a linear layer and ReLU activation.
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Dataset |V | Avg. length Train size Test size Test performance
SST 16175 19 3034 / 3321 863 / 862 0.81
IMDB 13916 179 12500 / 12500 2184 / 2172 0.88
ADR Tweets 8686 20 14446 / 1939 3636 / 487 0.61
20 Newsgroups 8853 115 716 / 710 151 / 183 0.94
AG News 14752 36 30000 / 30000 1900 / 1900 0.96
Diabetes (MIMIC) 22316 1858 6381 / 1353 1295 / 319 0.79
Anemia (MIMIC) 19743 2188 1847 / 3251 460 / 802 0.92
CNN 74790 761 380298 3198 0.64
bAbI (Task 1 / 2 / 3) 40 8 / 67 / 421 10000 1000 1.0 / 0.65 / 0.64
SNLI 20982 14 182764 / 183187 / 183416 3219 / 3237 / 3368 0.78

Table 1: Dataset characteristics. For train and test size, we list the cardinality for each class, where applicable:
0/1 for binary classification (top), and 0 / 1 / 2 for NLI (bottom). Average length is in tokens. Test metrics are
F1 score, accuracy, and micro-F1 for classification, QA, and NLI, respectively; all correspond to performance
using a BiLSTM encoder. We note that results using convolutional and average (i.e., non-recurrent) encoders are
comparable for classification though markedly worse for QA tasks.

IMDB Large Movie Reviews Corpus (Maas
et al., 2011). Binary sentiment classification
dataset containing 50,000 polarized (positive or
negative) movie reviews, split into half for train-
ing and testing.

Twitter Adverse Drug Reaction dataset (Nikfar-
jam et al., 2015). A corpus of ∼8000 tweets re-
trieved from Twitter, annotated by domain experts
as mentioning adverse drug reactions.

20 Newsgroups (Hockey vs Baseball). Col-
lection of ∼20,000 newsgroup correspondences,
partitioned (nearly) evenly across 20 categories.
We extract instances belonging to baseball and
hockey, which we designate as 0 and 1, respec-
tively, to derive a binary classification task.

AG News Corpus (Business vs World).5 496,835
news articles from 2000+ sources. We follow
(Zhang et al., 2015) in filtering out all but the top
4 categories. We consider the binary classification
task of discriminating between world (0) and busi-
ness (1) articles.

MIMIC ICD9 (Diabetes) (Johnson et al., 2016).
A subset of discharge summaries from the MIMIC
III dataset of electronic health records. The task is
to recognize if a given summary has been labeled
with the ICD9 code for diabetes (or not).

MIMIC ICD9 (Chronic vs Acute Anemia) (John-
son et al., 2016). A subset of discharge sum-
maries from MIMIC III dataset (Johnson et al.,
2016) known to correspond to patients with ane-
mia. Here the task to distinguish the type of ane-
mia for each report – acute (0) or chronic (1).

For Question Answering (QA):
CNN News Articles (Hermann et al., 2015). A

corpus of cloze-style questions created via auto-
5http://www.di.unipi.it/~gulli/AG_

corpus_of_news_articles.html

matic parsing of news articles from CNN. Each
instance comprises a paragraph-question-answer
triplet, where the answer is one of the anonymized
entities in the paragraph.

bAbI (Weston et al., 2015). We consider the
three tasks presented in the original bAbI dataset
paper, training separate models for each. These
entail finding (i) a single supporting fact for a
question and (ii) two or (iii) three supporting state-
ments, chained together to compose a coherent
line of reasoning.

Finally, for Natural Language Inference (NLI):
The SNLI dataset (Bowman et al., 2015). 570k

human-written English sentence pairs manually
labeled for balanced classification with the labels
neutral, contradiction, and entailment, supporting
the task of natural language inference (NLI). In
this work, we generate an attention distribution
over premise words conditioned on the hidden rep-
resentation induced for the hypothesis.

We restrict ourselves to comparatively sim-
ple instantiations of attention mechanisms, as de-
scribed in the preceding section. This means we
do not consider recently proposed ‘BiAttentive’
architectures that attend to tokens in the respec-
tive inputs, conditioned on the other inputs (Parikh
et al., 2016; Seo et al., 2016; Xiong et al., 2016).

Table 1 provides summary statistics for all
datasets, as well as the observed test performances
for additional context.

4 Experiments

We run a battery of experiments that aim to ex-
amine empirical properties of learned attention
weights and to interrogate their interpretability
and transparency. The key questions are: Do

http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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Gradient (BiLSTM) τg Gradient (Average) τg Leave-One-Out (BiLSTM) τloo
Dataset Class Mean ± Std. Sig. Frac. Mean ± Std. Sig. Frac. Mean ± Std. Sig. Frac.

SST 0 0.34 ± 0.21 0.48 0.61 ± 0.20 0.87 0.27 ± 0.19 0.33
1 0.36 ± 0.21 0.49 0.60 ± 0.21 0.83 0.32 ± 0.19 0.40

IMDB 0 0.44 ± 0.06 1.00 0.67 ± 0.05 1.00 0.34 ± 0.07 1.00
1 0.43 ± 0.06 1.00 0.68 ± 0.05 1.00 0.34 ± 0.07 0.99

ADR Tweets 0 0.47 ± 0.18 0.76 0.73 ± 0.13 0.96 0.29 ± 0.20 0.44
1 0.49 ± 0.15 0.85 0.72 ± 0.12 0.97 0.44 ± 0.16 0.74

20News 0 0.07 ± 0.17 0.37 0.79 ± 0.07 1.00 0.06 ± 0.15 0.29
1 0.21 ± 0.22 0.61 0.75 ± 0.08 1.00 0.20 ± 0.20 0.62

AG News 0 0.36 ± 0.13 0.82 0.78 ± 0.07 1.00 0.30 ± 0.13 0.69
1 0.42 ± 0.13 0.90 0.76 ± 0.07 1.00 0.43 ± 0.14 0.91

Diabetes 0 0.42 ± 0.05 1.00 0.75 ± 0.02 1.00 0.41 ± 0.05 1.00
1 0.40 ± 0.05 1.00 0.75 ± 0.02 1.00 0.45 ± 0.05 1.00

Anemia 0 0.47 ± 0.05 1.00 0.77 ± 0.02 1.00 0.46 ± 0.05 1.00
1 0.46 ± 0.06 1.00 0.77 ± 0.03 1.00 0.47 ± 0.06 1.00

CNN Overall 0.24 ± 0.07 0.99 0.50 ± 0.10 1.00 0.20 ± 0.07 0.98
bAbI 1 Overall 0.25 ± 0.16 0.55 0.72 ± 0.12 0.99 0.16 ± 0.14 0.28
bAbI 2 Overall −0.02 ± 0.14 0.27 0.68 ± 0.06 1.00 −0.01 ± 0.13 0.27
bAbI 3 Overall 0.24 ± 0.11 0.87 0.61 ± 0.13 1.00 0.26 ± 0.10 0.89
SNLI 0 0.31 ± 0.23 0.36 0.59 ± 0.18 0.80 0.16 ± 0.26 0.20

1 0.33 ± 0.21 0.38 0.58 ± 0.19 0.80 0.36 ± 0.19 0.44
2 0.31 ± 0.21 0.36 0.57 ± 0.19 0.80 0.34 ± 0.20 0.40

Table 2: Mean and std. dev. of correlations between gradient/leave-one-out importance measures and attention
weights. Sig. Frac. columns report the fraction of instances for which this correlation is statistically significant;
note that this largely depends on input length, as correlation does tend to exist, just weakly. Encoders are denoted
parenthetically. These are representative results; exhaustive results for all encoders are available to browse online.

learned attention weights agree with alternative,
natural measures of feature importance? And,
Had we attended to different features, would the
prediction have been different?

More specifically, in Section 4.1, we empir-
ically analyze the correlation between gradient-
based feature importance and learned attention
weights, and between ‘leave-one-out’ (LOO) mea-
sures and the same. In Section 4.2 we then con-
sider counterfactual (to those observed) attention
distributions. Under the assumption that atten-
tion weights are explanatory, such counterfactual
distributions may be viewed as alternative poten-
tial explanations; if these do not correspondingly
change model output, then the original attention
weights do not provide unique explanation for
predictions, i.e., attending to other features could
have resulted in the same output.

To generate counterfactual attention distribu-
tions, we first consider randomly permuting ob-
served attention weights and recording associated
changes in model outputs (4.2.1). We then pro-
pose explicitly searching for “adversarial” atten-
tion weights that maximally differ from the ob-
served attention weights (which one might show in
a heatmap and use to explain a model prediction),
and yet yield an effectively equivalent prediction
(4.2.2). The latter strategy also provides a use-
ful potential metric for the reliability of attention
weights as explanations: we can report a measure

quantifying how different attention weights can be
for a given instance without changing the model
output by more than some threshold ε.

All results presented below are generated on
test sets. We present results for Additive atten-
tion below. The results for Scaled Dot Product
in its place are comparable. We provide a web
interface to interactively browse the (very large
set of) plots for all datasets, model variants, and
experiment types: https://successar.github.

io/AttentionExplanation/docs/.
In the following sections, we use Total Vari-

ation Distance (TVD) as the measure of change
between output distributions, defined as follows.
TVD(ŷ1, ŷ2) = 1

2

∑|Y|
i=1 |ŷ1i − ŷ2i|. We use

the Jensen-Shannon Divergence (JSD) to quan-
tify the difference between two attention dis-
tributions: JSD(α1, α2) = 1

2KL[α1||α1+α2
2 ] +

1
2KL[α2||α1+α2

2 ].

4.1 Correlation Between Attention and
Feature Importance Measures

We empirically characterize the relationship be-
tween attention weights and corresponding fea-
ture importance scores. Specifically we measure
correlations between attention and: (1) gradient
based measures of feature importance (τg), and,
(2) differences in model output induced by leav-
ing features out (τloo). While these measures are
themselves insufficient for interpretation of neu-

https://successar.github.io/AttentionExplanation/docs/
https://successar.github.io/AttentionExplanation/docs/
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Figure 2: Histogram of Kendall τ between attention and gradients. Encoder variants are denoted parenthetically;
colors indicate predicted classes. Exhaustive results are available for perusal online. Best viewed in color.

ral model behavior (Feng et al., 2018), they do
provide measures of individual feature importance
with known semantics (Ross et al., 2017). It is thus
instructive to ask whether these measures correlate
with attention weights.

The process we follow to quantify this is de-
scribed in Algorithm 1. We denote the input re-
sulting from removing the word at position t in x
by x−t. Note that we disconnect the computation
graph at the attention module so that the gradient
does not flow through this layer.

Algorithm 1 Feature Importance Computations
h← Enc(x), α̂← softmax(φ(h,Q))
ŷ ← Dec(h, α)

gt ← |
∑|V |

w=1 1[xtw = 1] ∂y
∂xtw
| ,∀t ∈ [1, T ]

τg ← Kendall-τ(α, g)
∆ŷt ← TVD(ŷ(x−t), ŷ(x)) , ∀t ∈ [1, T ]
τloo ← Kendall-τ(α,∆ŷ)

Table 2 reports summary statistics of Kendall
τ correlations for each dataset. Full distributions
are shown in Figure 2, which plots histograms of
τg for every data point in the respective corpora.
(Corresponding plots for τloo are similar and the
full set can be browsed via the online supplement.)
We plot these separately for each class: orange (�)
represents instances predicted as positive, and pur-
ple (�) those predicted to be negative. For SNLI,
colors �, � and � code for contradiction, entail-
ment, and neutral respectively.

In general, observed correlations are modest

(recall: 0 indicates no correspondence, 1 im-
plies perfect concordance) for the BiRNN encoder.
The centrality of observed densities hovers around
or below 0.5 in most of the corpora considered.
Moreover, as per Table 2, correlation is sufficiently
weak that a statistically significant correlation be-
tween attention weights and feature importance
scores (both gradient and feature erasure based)
cannot consistently be established across corpora.

In contrast, gradients in “average” embedding
based models show very high degree of correspon-
dence with attention weights – on average across
corpora, correlation between LOO scores and at-
tention weights is ∼0.375 points higher for this
encoder, compared to the BiLSTM. These results
suggest that, in general, attention weights do not
strongly or consistently agree with such feature
importance scores in models with contextualized
embeddings. This is problematic for the view of
attention weights as explanatory, given the face
validity of input gradient/erasure based explana-
tions (Ross et al., 2017; Li et al., 2016). On some
datasets — notably the MIMIC tasks, and to a
lesser extent the QA corpora — this correlation
is consistently significant but remains relatively
weak. This could be attributed to increased length
of documents for these datasets providing stronger
signal to standard hypothesis testing methods.

For reference we report correlations between
gradients and LOO scores in the Appendix and
online materials; these are consistently stronger
than the correlation between attention weights and
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either feature importance score for the recurrent
(BiLSTM) encoder. These exhibit, on average, a
(i) 0.2 and (ii)∼ 0.25 greater correlation with each
other than BiLSTM attention and (i) LOO and (ii)
gradient scores.

4.2 Counterfactual Attention Weights
We next consider what-if scenarios corresponding
to alternative (counterfactual) attention weights.
The idea is to investigate whether the prediction
would have been different, had the model empha-
sized (attended to) different input features. More
precisely, suppose α̂ = {α̂t}Tt=1 are the atten-
tion weights induced for an instance, giving rise
to model output ŷ. We then consider counterfac-
tual distributions over y, under alternative α.

We experiment with two means of construct-
ing such distributions. First, we simply scram-
ble the original attention weights α̂, re-assigning
each value to an arbitrary, randomly sampled in-
dex (input feature). Second, we generate an ad-
versarial attention distribution: this is a set of at-
tention weights that is maximally distinct from α̂
but that nonetheless yields an equivalent predic-
tion (i.e., prediction within some ε of ŷ).

4.2.1 Attention Permutation
To characterize model behavior when attention
weights are shuffled, we follow Algorithm 2.

Algorithm 2 Permuting attention weights
h← Enc(x), α̂← softmax(φ(h,Q))
ŷ ← Dec(h, α̂)
for p← 1 to 100 do

αp ← Permute(α̂)
ŷp ← Dec(h, αp) . Note : h is not changed

∆ŷp ← TVD[ŷp, ŷ]
end for
∆ŷmed ← Medianp(∆ŷp)

Figure 3 depicts the relationship between the
maximum attention value in the original α̂ and the
median induced change in model output (∆ŷmed)
across instances in the respective datasets. Colors
again indicate class predictions, as above.

We observe that there exist many points with
small ∆ŷmed despite large magnitude attention
weights. These are cases in which the attention
weights might suggest explaining an output by
a small set of features (this is how one might
reasonably read a heatmap depicting the atten-
tion weights), but where scrambling the attention

makes little difference to the prediction.
In some cases, such as predicting ICD codes

from notes using the MIMIC dataset, one can see
different behavior for the respective classes. For
the Diabetes task, e.g., attention behaves intu-
itively for at least the positive class; perturbing
attention in this case causes large changes to the
prediction. We again conjecture that this is due to
a few tokens serving as high precision indicators
for the positive class; in their absence (or when
they are not attended to sufficiently), the predic-
tion drops considerably. However, this is the ex-
ception rather than the rule.

4.2.2 Adversarial Attention
We next propose a more focused approach to
counterfactual attention weights, which we will re-
fer to as adversarial attention. The intuition is to
explicitly seek out attention weights that differ as
much as possible from the observed attention dis-
tribution and yet leave the prediction effectively
unchanged. Such adversarial weights violate an
intuitive property of explanations: shifting model
attention to very different input features should
yield corresponding changes in the output. Alter-
native attention distributions identified adversari-
ally may then be viewed as equally plausible ex-
planations for the same output.

Operationally, realizing this objective requires
specifying a value ε that defines what qualifies as
a “small” difference in model output. Once this
is specified, we aim to find k adversarial distri-
butions {α(1), ..., α(k)}, such that each α(i) max-
imizes the distance from original α̂ but does not
change the output by more than ε. In practice we
simply set this to 0.01 for text classification and
0.05 for QA datasets.6

We propose the following optimization problem
to identify adversarial attention weights.

maximize
α(1),...,α(k)

f({α(i)}ki=1)

subject to ∀i TVD[ŷ(x, α(i)), ŷ(x, α̂)] ≤ ε
(1)

Where f({α(i)}ki=1) is:

k∑
i=1

JSD[α(i), α̂] +
1

k(k − 1)

∑
i<j

JSD[α(i), α(j)]

(2)
6We make the threshold slightly higher for QA because

the output space is larger and thus small dimension-wise per-
turbations can produce comparatively large TVD.
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Figure 3: Median change in output (∆ŷmed) (x-axis) densities in relation to the max attention (max α̂) (y-axis)
obtained by randomly permuting instance attention weights. Encoders denoted parenthetically. Plots for all corpora
and using all encoders are available online.

In practice we maximize a relaxed version
of this objective via the Adam SGD opti-
mizer (Kingma and Ba, 2014): f({α(i)}ki=1) +
λ
k

∑k
i=1 max(0,TVD[ŷ(x, α(i)), ŷ(x, α̂)]− ε).7

Equation 1 attempts to identify a set of new at-
tention distributions over the input that is as far
as possible from the observed α (as measured
by JSD) and from each other (and thus diverse),
while keeping the output of the model within ε
of the original prediction. We denote the out-
put obtained under the ith adversarial attention by
ŷ(i). Note that the JS Divergence between any two
categorical distributions (irrespective of length) is
bounded from above by 0.69.

One can view an attentive decoder as a func-
tion that maps from the space of latent input repre-
sentations and attention weights over input words
∆T−1 to a distribution over the output space Y .
Thus, for any output ŷ, we can define how likely
each attention distribution α will generate the out-
put as inversely proportional to TVD(y(α), ŷ).

Figure 4 depicts the distributions of max JSDs
realized over instances with adversarial attention
weights for a subset of the datasets considered.
Colors again indicate predicted class. Mass toward
the upper-bound of 0.69 indicates that we are fre-
quently able to identify maximally different atten-
tion weights that hardly budge model output. We
observe that one can identify adversarial attention
weights associated with high JSD for a significant
number of examples. This means that is often the

7We set λ = 500.

Algorithm 3 Finding adversarial attention weights
h← Enc(x), α̂← softmax(φ(h,Q))
ŷ ← Dec(h, α̂)
α(1), ..., α(k) ← Optimize Eq 1
for i← 1 to k do

ŷ(i) ← Dec(h, α(i)) . h is not changed

∆ŷ(i) ← TVD[ŷ, ŷ(i)]
∆α(i) ← JSD[α̂, α(i)]

end for
ε-max JSD← maxi 1[∆ŷ(i) ≤ ε]∆α(i)

case that quite different attention distributions over
inputs would yield essentially the same (within ε)
output.

In the case of the diabetes task, we again ob-
serve a pattern of low JSD for positive examples
(where evidence is present) and high JSD for neg-
ative examples. In other words, for this task, if one
perturbs the attention weights when it is inferred
that the patient is diabetic, this does change the
output, which is intuitively agreeable. However,
this behavior again is an exception to the rule.

We also consider the relationship between max
attention weights (indicating strong emphasis on
a particular feature) and the dissimilarity of iden-
tified adversarial attention weights, as measured
via JSD, for adversaries that yield a prediction
within ε of the original model output. Intuitively,
one might hope that if attention weights are peaky,
then counterfactual attention weights that are very
different but which yield equivalent predictions
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(g) CNN-QA (BiLSTM)
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(h) BAbI 1 (BiLSTM)

Figure 4: Histogram of maximum adversarial JS Divergence (ε-max JSD) between original and adversarial atten-
tions over all instances. In all cases shown, |ŷadv − ŷ| < ε. Encoders are specified in parantheses. Best viewed in
color.

would be more difficult to identify.
Figure 5 illustrates that while there is a nega-

tive trend to this effect, it is realized only weakly.
Put another way: there exist many cases (in all
datasets) in which despite a high attention weight,
an alternative and quite different attention config-
uration over inputs yields effectively the same out-
put. In light of this, presenting a heatmap implying
that a particular set of features is primarily respon-
sible for an output would seem to be misleading.

5 Related Work

We have focused on attention mechanisms and the
question of whether they afford transparency, but a
number of interesting strategies unrelated to atten-
tion mechanisms have been recently proposed to
provide insights into neural NLP models. These
include approaches that measure feature impor-
tance based on gradient information (Ross et al.,
2017; Sundararajan et al., 2017) (aligned with the
gradient-based measures that we have used here),
and methods based on representation erasure (Li
et al., 2016), in which dimensions are removed
and then the resultant change in output is recorded
(similar to our experiments with removing tokens
from inputs, albeit we do this at the input layer).

Comparing such importance measures to atten-
tion scores may provide additional insights into
the working of attention based models (Ghaeini
et al., 2018). Another novel line of work in this
direction involves explicitly identifying explana-
tions of black-box predictions via a causal frame-

work (Alvarez-Melis and Jaakkola, 2017). We
also note that there has been complementary work
demonstrating correlation between human atten-
tion and induced attention weights, which was rel-
atively strong when humans agreed on an explana-
tion (Pappas and Popescu-Belis, 2016). It would
be interesting to explore if such cases present ex-
plicit ‘high precision’ signals in the text (for ex-
ample, the positive label in diabetes dataset).

More specific to attention mechanisms, re-
cent promising work has proposed more princi-
pled attention variants designed explicitly for in-
terpretability; these may provide greater trans-
parency by imposing hard, sparse attention. Such
instantiations explicitly select (modest) subsets of
inputs to be considered when making a predic-
tion, which are then by construction responsible
for model output (Lei et al., 2016; Peters et al.,
2018). Structured attention models (Kim et al.,
2017) provide a generalized framework for de-
scribing and fitting attention variants with explicit
probabilistic semantics. Tying attention weights to
human-provided rationales is another potentially
promising avenue (Bao et al., 2018). We hope
our work motivates further development of these
methods, resulting in attention variants that both
improve predictive performance and provide in-
sights into model predictions.

6 Discussion and Conclusions

We have provided evidence that correlation be-
tween intuitive feature importance measures (in-
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Figure 5: Densities of maximum JS divergences (ε-max JSD) (x-axis) as a function of the max attention (y-axis)
in each instance for obtained between original and adversarial attention weights.

cluding gradient and feature erasure approaches)
and learned attention weights is weak when using
a BiRNN encoder (Section 4.1). We also estab-
lished that counterfactual attention distributions
— which would tell a different story about why
a model made the prediction that it did — often
have no effect on model output (Section 4.2).

These results suggest that while attention mod-
ules consistently yield improved performance on
NLP tasks, their ability to provide transparency
for model predictions is (in the sense of point-
ing to inputs responsible for outputs) questionable.
More generally, how one is meant to interpret the
‘heatmaps’ of attention weights placed over inputs
that are commonly presented is unclear. These
seem to suggest a story about how a model arrived
at a particular disposition, but the results here in-
dicate that the relationship between this and atten-
tion is not obvious, at least for RNN encoders.

There are important limitations to this work
and the conclusions we can draw from it. We have
reported the (generally weak) correlation between
learned attention weights and various alternative
measures of feature importance, e.g., gradients.
We do not imply that such alternative measures are
necessarily ideal or should be considered ‘ground
truth’. While such measures do enjoy a clear in-
trinsic (to the model) semantics, their interpreta-
tion for non-linear neural networks can nonethe-
less be difficult for humans (Feng et al., 2018).
Still, that attention consistently correlates poorly
with multiple such measures ought to give pause to
practitioners. That said, exactly how strong such
correlations ‘should’ be to establish reliability as

explanation is an admittedly subjective question.
We note that the counterfactual attention ex-

periments demonstrate the existence of alternative
heatmaps that yield equivalent predictions; thus
one cannot conclude that the model made a partic-
ular prediction because it attended over inputs in
a specific way. But these adversarial weights may
themselves be unlikely under the attention module
parameters. Further, it may be that multiple plau-
sible explanations exist, complicating interpreta-
tion. We would maintain that in such cases the
model should highlight all plausible explanations,
but one may instead view a model that provides
‘sufficient’ explanation as reasonable.

An additional limitation is that we have only
considered a handful of attention variants, selected
to reflect common module architectures for the
respective tasks included in our analysis. Alter-
native attention specifications may yield different
conclusions; and indeed we hope this work moti-
vates further development of principled attention
mechanisms (or encoders). Finally, we have lim-
ited our evaluation to tasks with unstructured out-
put spaces, i.e., we have not considered seq2seq
tasks, which we leave for future work. However
we believe interpretability is more often a consid-
eration in, e.g., classification than in translation.
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Appendices

A Model details

For all datasets, we use spaCy for tokenization.
We map out of vocabulary words to a special
<unk> token and map all words with numeric
characters to ‘qqq’. Each word in the vocabulary
was initialized to pretrained embeddings. For gen-
eral domain corpora we used either (i) FastText
Embeddings (SST, IMDB, 20News, and CNN)
trained on Simple English Wikipedia, or, (ii)
GloVe 840B embeddings (AGNews and SNLI).
For the MIMIC dataset, we learned word embed-
dings using Gensim over all discharge summaries
in the corpus. We initialize words not present
in the vocabulary using samples from a standard
Gaussian N (µ = 0, σ2 = 1).

A.1 BiLSTM
We use an embedding size of 300 and hidden size
of 128 for all datasets except bAbI (for which we
use 50 and 30, respectively). All models were reg-
ularized using `2 regularization (λ = 10−5) ap-
plied to all parameters. We use a sigmoid activa-
tion functions for binary classification tasks, and
a softmax for all other outputs. We trained the
model using maximum likelihood loss using the
Adam Optimizer with default parameters in Py-
Torch.

A.2 CNN
We use an embedding size of 300 and 4 kernels of
sizes [1, 3, 5, 7], each with 64 filters, giving a final
hidden size of 256 (for bAbI we use 50 and 8 re-
spectively with same kernel sizes). We use ReLU
activation function on the output of the filters. All
other configurations remain same as BiLSTM.

A.3 Average
We use the embedding size of 300 and a projection
size of 256 with ReLU activation on the output of
the projection matrix. All other configurations re-
main same as BiLSTM.

B Further details regarding attentional
module of gradient

In the gradient experiments, we made the decision
to cut-off the computation graph at the attention
module so that gradient does not flow through this
layer and contribute to the gradient feature im-
portance score. For the sake of gradient calcula-
tion this effectively treats the attention as a sepa-
rate input to the network, independent of the input.
We argue that this is a natural choice to make for
our analysis because it calculates: how much does
the output change as we perturb particular inputs
(words) by a small amount, while paying the same
amount of attention to said word as originally es-
timated and shown in the heatmap?

C Correlations between Feature
Importance measures

A question one might have here is how well cor-
related LOO and gradients are with one another.
We report such results in their entirety on the pa-
per website, and we summarize their correlations
relative to those realized by attention in a BiL-
STM model with LOO measures in Figure 6. This
reports the mean differences between (i) gradient

https://spacy.io/
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.simple.vec
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.simple.vec
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://radimrehurek.com/gensim/
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Figure 6: Mean difference in correlation of (i) LOO
vs. Gradients and (ii) Attention vs. LOO scores using
BiLSTM Encoder + Tanh Attention. On average the
former is more correlated than the latter by >0.2 τloo.
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Figure 7: Mean difference in correlation of (i) LOO
vs. Gradients and (ii) Attention vs. Gradients using
BiLSTM Encoder + Tanh Attention. On average the
former is more correlated than the latter by ∼0.25 τg .

and LOO correlations, and (ii) attention and LOO
correlations. As expected, we find that these ex-
hibit, in general, considerably higher correlation
with one another (on average) than LOO does with
attention scores. (The lone exception is on SNLI.)
Figure 7 shows the same for gradients and atten-
tion scores; the differences are comparable. In the
ADR and Diabetes corpora, a few high precision
tokens indicate (the positive) class, and in these
cases we see better agreement between LOO/gra-
dient measures with attention; this is consistent
with Figure 4 which shows that it is difficult for
the BiLSTM variant to find adversarial attention
distributions for Diabetes.

A potential issues with using Kendall τ as our
metric here is that (potentially many) irrelevant
features may add noise to the correlation mea-
sures. We acknowledge that this as a shortcoming
of the metric. One observation that may mitigate
this concern is that we might expect such noise to
depress the LOO and gradient correlations to the
same extent as they do the correlation between at-
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Figure 8: Difference in mean correlation of attention
weights vs. LOO importance measures for (i) Av-
erage (feed-forward projection) and (ii) BiLSTM En-
coders with Tanh attention. Average correlation (ver-
tical bar) is on average ∼0.375 points higher for the
simple feedforward encoder, indicating greater corre-
spondence with the LOO measure.

tention and feature importance scores; but as per
Figure 7, they do not. We also note that the cor-
relations between the attention weights on top of
feedforward (projection) encoder and LOO scores
are much stronger, on average, than those be-
tween BiLSTM attention weights and LOO. This
is shown in Figure 8. Were low correlations due
simply to noise, we would not expect this.8

D Graphs

To provide easy navigation of our (large set
of) graphs depicting attention weights on
various datasets/tasks under various model
configuration we have created an interactive
interface to browse these results, accessible
at: https://successar.github.io/
AttentionExplanation/docs/.

E Adversarial Heatmaps

SST
Original: reggio falls victim to relying on the

very digital technology that he fervently scorns
creating a meandering inarticulate and ultimately
disappointing film

Adversarial: reggio falls victim to relying on
the very digital technology that he fervently scorns
creating a meandering inarticulate and ultimately
disappointing film ∆ŷ: 0.005

IMDB
8The same contrast can be seen for the gradients, as one

would expect given the direct gradient paths in the projection
network back to individual tokens.

https://successar.github.io/AttentionExplanation/docs/
https://successar.github.io/AttentionExplanation/docs/


3555

Original: fantastic movie one of the best film
noir movies ever made bad guys bad girls a jewel
heist a twisted morality a kidnapping everything is
here jean has a face that would make bogart proud
and the rest of the cast is is full of character actors
who seem to to know they’re onto something good
get some popcorn and have a great time

Adversarial: fantastic movie one of the best
film noir movies ever made bad guys bad girls
a jewel heist a twisted morality a kidnapping
everything is here jean has a face that would make
bogart proud and the rest of the cast is is full
of character actors who seem to to know they’re
onto something good get some popcorn and have
a great time ∆ŷ: 0.004

20 News Group - Sports
Original:i meant to comment on this at the time

there ’ s just no way baserunning could be that
important if it was runs created would n ’ t be
nearly as accurate as it is runs created is usually
about qqq qqq accurate on a team level and there
’ s a lot more than baserunning that has to account
for the remaining percent .

Adversarial:i meant to comment on this at the
time there ’ s just no way baserunning could be
that important if it was runs created would n ’ t be
nearly as accurate as it is runs created is usually
about qqq qqq accurate on a team level and there
’ s a lot more than baserunning that has to account
for the remaining percent . ∆ŷ: 0.001

ADR
Original:meanwhile wait for DRUG and

DRUG to kick in first co i need to prep dog food
etc . co omg <UNK> .

Adversarial:meanwhile wait for DRUG and
DRUG to kick in first co i need to prep dog food
etc . co omg <UNK> . ∆ŷ: 0.002

AG News
Original:general motors and daimlerchrysler

say they # qqq teaming up to develop hybrid
technology for use in their vehicles . the two giant
automakers say they have signed a memorandum
of understanding

Adversarial:general motors and
daimlerchrysler say they # qqq teaming up
to develop hybrid technology for use in their
vehicles . the two giant automakers say they have
signed a memorandum of understanding . ∆ŷ:
0.006

SNLI
Hypothesis:a man is running on foot
Original Premise Attention:a man in a gray

shirt and blue shorts is standing outside of an
old fashioned ice cream shop named sara ’s old
fashioned ice cream , holding his bike up , with a
wood like table , chairs , benches in front of him .

Adversarial Premise Attention:a man in a
gray shirt and blue shorts is standing outside of
an old fashioned ice cream shop named sara ’s old
fashioned ice cream , holding his bike up , with a
wood like table , chairs , benches in front of him .
∆ŷ: 0.002

Babi Task 1
Question: Where is Sandra ?
Original Attention:John travelled to the garden

. Sandra travelled to the garden
Adversarial Attention:John travelled to the

garden . Sandra travelled to the garden ∆ŷ: 0.003

CNN-QA
Question:federal education minister @place-

holder visited a @entity15 store in @entity17 ,
saw cameras

Original:@entity1 , @entity2 ( @entity3
) police have arrested four employees of a
popular @entity2 ethnic - wear chain after a
minister spotted a security camera overlooking
the changing room of one of its stores . federal
education minister @entity13 was visiting a
@entity15 outlet in the tourist resort state of
@entity17 on friday when she discovered a
surveillance camera pointed at the changing room
, police said . four employees of the store
have been arrested , but its manager – herself
a woman – was still at large saturday , said
@entity17 police superintendent @entity25 . state
authorities launched their investigation right after
@entity13 levied her accusation . they found an
overhead camera that the minister had spotted
and determined that it was indeed able to take
photos of customers using the store ’s changing
room , according to @entity25 . after the incident
, authorities sealed off the store and summoned
six top officials from @entity15 , he said . the
arrested staff have been charged with voyeurism
and breach of privacy , according to the police .
if convicted , they could spend up to three years
in jail , @entity25 said . officials from @entity15
– which sells ethnic garments , fabrics and other
products – are heading to @entity17 to work
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with investigators , according to the company .
" @entity15 is deeply concerned and shocked at
this allegation , " the company said in a statement
. " we are in the process of investigating this
internally and will be cooperating fully with the
police . "

Adversarial:@entity1 , @entity2 ( @entity3
) police have arrested four employees of a
popular @entity2 ethnic - wear chain after a
minister spotted a security camera overlooking
the changing room of one of its stores . federal
education minister @entity13 was visiting a
@entity15 outlet in the tourist resort state of
@entity17 on friday when she discovered a
surveillance camera pointed at the changing room
, police said . four employees of the store
have been arrested , but its manager – herself
a woman – was still at large saturday , said
@entity17 police superintendent @entity25 . state
authorities launched their investigation right after
@entity13 levied her accusation . they found an
overhead camera that the minister had spotted
and determined that it was indeed able to take
photos of customers using the store ’s changing
room , according to @entity25 . after the incident
, authorities sealed off the store and summoned
six top officials from @entity15 , he said . the
arrested staff have been charged with voyeurism
and breach of privacy , according to the police .
if convicted , they could spend up to three years
in jail , @entity25 said . officials from @entity15
– which sells ethnic garments , fabrics and other
products – are heading to @entity17 to work
with investigators , according to the company .
" @entity15 is deeply concerned and shocked at
this allegation , " the company said in a statement
. " we are in the process of investigating this
internally and will be cooperating fully with the
police . " ∆ŷ: 0.005


