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Abstract

Representing entities and relations in an em-
bedding space is a well-studied approach for
machine learning on relational data. Existing
approaches, however, primarily focus on im-
proving accuracy and overlook other aspects
such as robustness and interpretability. In
this paper, we propose adversarial modifica-
tions for link prediction models: identifying
the fact to add into or remove from the knowl-
edge graph that changes the prediction for a
target fact after the model is retrained. Us-
ing these single modifications of the graph,
we identify the most influential fact for a pre-
dicted link and evaluate the sensitivity of the
model to the addition of fake facts. We in-
troduce an efficient approach to estimate the
effect of such modifications by approximating
the change in the embeddings when the knowl-
edge graph changes. To avoid the combinato-
rial search over all possible facts, we train a
network to decode embeddings to their corre-
sponding graph components, allowing the use
of gradient-based optimization to identify the
adversarial modification. We use these tech-
niques to evaluate the robustness of link predic-
tion models (by measuring sensitivity to addi-
tional facts), study interpretability through the
facts most responsible for predictions (by iden-
tifying the most influential neighbors), and de-
tect incorrect facts in the knowledge base.

1 Introduction

Knowledge graphs (KG) play a critical role in many
real-world applications such as search, structured
data management, recommendations, and question
answering. Since KGs often suffer from incom-
pleteness and noise in their facts (links), a number
of recent techniques have proposed models that em-
bed each entity and relation into a vector space, and
use these embeddings to predict facts. These dense
representation models for link prediction include

tensor factorization [Nickel et al., 2011, Socher
et al., 2013, Yang et al., 2015], algebraic opera-
tions [Bordes et al., 2011, 2013b, Dasgupta et al.,
2018], multiple embeddings [Wang et al., 2014,
Lin et al., 2015, Ji et al., 2015, Zhang et al., 2018],
and complex neural models [Dettmers et al., 2018,
Nguyen et al., 2018]. However, there are only a few
studies [Kadlec et al., 2017, Sharma et al., 2018]
that investigate the quality of the different KG mod-
els. There is a need to go beyond just the accuracy
on link prediction, and instead focus on whether
these representations are robust and stable, and
what facts they make use of for their predictions.

In this paper, our goal is to design approaches
that minimally change the graph structure such
that the prediction of a target fact changes the
most after the embeddings are relearned, which we
collectively call Completion Robustness and Inter-
pretability via Adversarial Graph Edits (CRIAGE).
First, we consider perturbations that remove a
neighboring link for the target fact, thus identi-
fying the most influential related fact, providing an
explanation for the model’s prediction. As an exam-
ple, consider the excerpt from a KG in Figure 1a
with two observed facts, and a target predicted
fact that Princes Henriette is the parent of Violante
Bavaria. Our proposed graph perturbation, shown
in Figure 1b, identifies the existing fact that Fer-
dinal Maria is the father of Violante Bavaria as
the one when removed and model retrained, will
change the prediction of Princes Henriette’s child.
We also study attacks that add a new, fake fact into
the KG to evaluate the robustness and sensitivity
of link prediction models to small additions to the
graph. An example attack for the original graph in
Figure 1a, is depicted in Figure 1c. Such pertur-
bations to the the training data are from a family
of adversarial modifications that have been applied
to other machine learning tasks, known as poison-
ing [Biggio et al., 2012, Corona et al., 2013, Biggio
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Figure 1: Completion Robustness and Interpretability via Adversarial Graph Edits (CRIAGE): Change in
the graph structure that changes the prediction of the retrained model, where (a) is the original sub-graph of the
KG, (b) removes a neighboring link of the target, resulting in a change in the prediction, and (c) shows the effect
of adding an attack triple on the target. These modifications were identified by our proposed approach.

et al., 2014, Zügner et al., 2018].

Since the setting is quite different from tradi-
tional adversarial attacks, search for link prediction
adversaries brings up unique challenges. To find
these minimal changes for a target link, we need to
identify the fact that, when added into or removed
from the graph, will have the biggest impact on the
predicted score of the target fact. Unfortunately,
computing this change in the score is expensive
since it involves retraining the model to recompute
the embeddings. We propose an efficient estimate
of this score change by approximating the change
in the embeddings using Taylor expansion. The
other challenge in identifying adversarial modifi-
cations for link prediction, especially when con-
sidering addition of fake facts, is the combinato-
rial search space over possible facts, which is in-
tractable to enumerate. We introduce an inverter of
the original embedding model, to decode the em-
beddings to their corresponding graph components,
making the search of facts tractable by performing
efficient gradient-based continuous optimization.

We evaluate our proposed methods through fol-
lowing experiments. First, on relatively small KGs,
we show that our approximations are accurate com-
pared to the true change in the score. Second,
we show that our additive attacks can effectively
reduce the performance of state of the art mod-
els [Yang et al., 2015, Dettmers et al., 2018] up to
27.3% and 50.7% in Hits@1 for two large KGs:
WN18 and YAGO3-10. We also explore the util-
ity of adversarial modifications in explaining the
model predictions by presenting rule-like descrip-
tions of the most influential neighbors. Finally, we
use adversaries to detect errors in the KG, obtaining
up to 55% accuracy in detecting errors.

2 Background and Notation

In this section, we briefly introduce some notations,
and existing relational embedding approaches that
model knowledge graph completion using dense
vectors. In KGs, facts are represented using triples
of subject, relation, and object, 〈s, r, o〉, where
s, o ∈ ξ, the set of entities, and r ∈ R, the set
of relations. To model the KG, a scoring function
ψ : ξ ×R× ξ → R is learned to evaluate whether
any given fact is true. In this work, we focus on
multiplicative models of link prediction1, specifi-
cally DistMult [Yang et al., 2015] because of its
simplicity and popularity, and ConvE [Dettmers
et al., 2018] because of its high accuracy. We can
represent the scoring function of such methods as
ψ(s, r, o) = f(es, er) · eo, where es, er, eo ∈ Rd
are embeddings of the subject, relation, and object
respectively. In DistMult, f(es, er) = es � er,
where � is element-wise multiplication operator.
Similarly, in ConvE, f(es, er) is computed by a
convolution on the concatenation of es and er.

We use the same setup as Dettmers et al. [2018]
for training, i.e., incorporate binary cross-entropy
loss over the triple scores. In particular, for subject-
relation pairs (s, r) in the training data G, we
use binary ys,ro to represent negative and positive
facts. Using the model’s probability of truth as
σ(ψ(s, r, o)) for 〈s, r, o〉, the loss is defined as:

L(G) =
∑
(s,r)

∑
o

ys,ro log(σ(ψ(s, r, o)))

+ (1− ys,ro ) log(1− σ(ψ(s, r, o))). (1)

Gradient descent is used to learn the embeddings
es, er, eo, and the parameters of f , if any.

1As opposed to additive models, such as TransE [Bordes
et al., 2013a], as categorized in Sharma et al. [2018].
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3 Completion Robustness and
Interpretability via Adversarial Graph
Edits (CRIAGE)

For adversarial modifications on KGs, we first de-
fine the space of possible modifications. For a tar-
get triple 〈s, r, o〉, we constrain the possible triples
that we can remove (or inject) to be in the form
of 〈s′, r′, o〉 i.e s′ and r′ may be different from the
target, but the object is not. We analyze other forms
of modifications such as 〈s, r′, o′〉 and 〈s, r′, o〉 in
appendices A.1 and A.2, and leave empirical evalu-
ation of these modifications for future work.

3.1 Removing a fact (CRIAGE-Remove)
For explaining a target prediction, we are inter-
ested in identifying the observed fact that has the
most influence (according to the model) on the pre-
diction. We define influence of an observed fact
on the prediction as the change in the prediction
score if the observed fact was not present when
the embeddings were learned. Previous work have
used this concept of influence similarly for sev-
eral different tasks [Kononenko et al., 2010, Koh
and Liang, 2017]. Formally, for the target triple
〈s, r, o〉 and observed graph G, we want to identify
a neighboring triple 〈s′, r′, o〉 ∈ G such that the
score ψ(s, r, o) when trained on G and the score
ψ(s, r, o) when trained onG−{〈s′, r′, o〉} are max-
imally different, i.e.

argmax
(s′,r′)∈Nei(o)

∆(s′,r′)(s, r, o) (2)

where ∆(s′,r′)(s, r, o) = ψ(s, r, o)−ψ(s, r, o), and
Nei(o) = {(s′, r′)|〈s′, r′, o〉 ∈ G}.

3.2 Adding a new fact (CRIAGE-Add)
We are also interested in investigating the robust-
ness of models, i.e., how sensitive are the predic-
tions to small additions to the knowledge graph.
Specifically, for a target prediction 〈s, r, o〉, we
are interested in identifying a single fake fact
〈s′, r′, o〉 that, when added to the knowledge graph
G, changes the prediction score ψ(s, r, o) the most.
Using ψ(s, r, o) as the score after training on
G ∪ {〈s′, r′, o〉}, we define the adversary as:

argmax
(s′,r′)

∆(s′,r′)(s, r, o) (3)

where ∆(s′,r′)(s, r, o) = ψ(s, r, o) − ψ(s, r, o).
The search here is over any possible s′ ∈ ξ, which
is often in the millions for most real-world KGs,

and r′ ∈ R. We also identify adversaries that
increase the prediction score for specific false
triple, i.e., for a target fake fact 〈s, r, o〉, the ad-
versary is argmax(s′,r′)−∆(s′,r′)(s, r, o), where
∆(s′,r′)(s, r, o) is defined as before.

3.3 Challenges

There are a number of crucial challenges when con-
ducting such adversarial attack on KGs. First, eval-
uating the effect of changing the KG on the score
of the target fact (ψ(s, r, o)) is expensive since we
need to update the embeddings by retraining the
model on the new graph; a very time-consuming
process that is at least linear in the size of G. Sec-
ond, since there are many candidate facts that can
be added to the knowledge graph, identifying the
most promising adversary through search-based
methods is also expensive. Specifically, the search
size for unobserved facts is |ξ|×|R|, which, for ex-
ample in YAGO3-10 KG, can be as many as 4.5M
possible facts for a single target prediction.

4 Efficiently Identifying the Modification

In this section, we propose algorithms to address
mentioned challenges by (1) approximating the ef-
fect of changing the graph on a target prediction,
and (2) using continuous optimization for the dis-
crete search over potential modifications.

4.1 First-order Approximation of Influence

We first study the addition of a fact to the graph,
and then extend it to cover removal as well.
To capture the effect of an adversarial modifi-
cation on the score of a target triple, we need
to study the effect of the change on the vector
representations of the target triple. We use es,
er, and eo to denote the embeddings of s, r, o
at the solution of argminL(G), and when con-
sidering the adversarial triple 〈s′, r′, o〉, we use
es, er, and eo for the new embeddings of s, r, o,
respectively. Thus es, er, eo is a solution to
argminL(G ∪ {〈s′, r′, o〉}), which can also be
written as argminL(G) +L(〈s′, r′, o〉). Similarly,
f(es, er) changes to f(es, er) after retraining.

Since we only consider adversaries in the form
of 〈s′, r′, o〉, we only consider the effect of the at-
tack on eo and neglect its effect on es and er. This
assumption is reasonable since the adversary is con-
nected with o and directly affects its embedding
when added, but it will only have a secondary, neg-
ligible effect on es and er, in comparison to its
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effect on eo. Further, calculating the effect of the
attack on es and er requires a third order derivative
of the loss, which is not practical (O(n3) in the
number of parameters). In other words, we assume
that es ' es and er ' er. As a result, to calculate
the effect of the attack, ψ(s, r, o)− ψ(s, r, o), we
need to compute eo − eo, followed by:

ψ(s, r, o)− ψ(s, r, o) = zs,r(eo − eo) (4)

where zs,r = f(es, er). We now derive an efficient
computation for eo−eo. First, the derivative of the
loss L(G) = L(G) + L(〈s′, r′, o〉) over eo is:

∇eoL(G) = ∇eoL(G)− (1− ϕ)zs′,r′ (5)

where zs′,r′ = f(e′s, e
′
r), and ϕ = σ(ψ(s′, r′, o)).

At convergence, after retraining, we expect
∇eoL(G) = 0. We perform first order Taylor ap-
proximation of∇eoL(G) to get:

0 '− (1− ϕ)zᵀs′,r′+

(Ho + ϕ(1− ϕ)zᵀs′,r′zs′,r′)(eo − eo) (6)

whereHo is the d×d Hessian matrix for o, i.e., sec-
ond order derivative of the loss w.r.t. eo, computed
sparsely. Solving for eo − eo gives us, eo − eo =:

(1− ϕ)(Ho + ϕ(1− ϕ)zᵀs′,r′zs′,r′)
−1zᵀs′,r′ .

In practice, Ho is positive definite, making Ho +
ϕ(1 − ϕ)zᵀs′,r′zs′,r′ positive definite as well, and
invertible. Then, we compute the score change as:

ψ(s, r, o)− ψ(s, r, o) = zs,r(eo − eo) (7)

= zs,r((1− ϕ)(Ho + ϕ(1− ϕ)zᵀs′,r′zs′,r′)
−1zᵀs′,r′).

Calculating this expression is efficient since Ho is
a d×d matrix (d is the embedding dimension), and
zs,r, zs′,r′ ∈ Rd. Similarly, we estimate the score
change of 〈s, r, o〉 after removing 〈s′, r′, o〉 as:

−zs,r((1−ϕ)(Ho+ϕ(1−ϕ)zᵀs′,r′zs′,r′)
−1zᵀs′,r′).

4.2 Continuous Optimization for Search
Using the approximations provided in the previous
section, Eq. (7) and (4.1), we can use brute force
enumeration to find the adversary 〈s′, r′, o〉. This
approach is feasible when removing an observed
triple since the search space of such modifications
is usually small; it is the number of observed facts
that share the object with the target. On the other
hand, finding the most influential unobserved fact
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Figure 2: Inverter Network The architecture of our in-
verter function that translate zs,r to its respective (s̃, r̃).
The encoder component is fixed to be the encoder net-
work of DistMult and ConvE respectively.

to add requires search over a much larger space of
all possible unobserved facts (that share the object).
Instead, we identify the most influential unobserved
fact 〈s′, r′, o〉 by using a gradient-based algorithm
on vector zs′,r′ in the embedding space (reminder,
zs′,r′ = f(e′s, e

′
r)), solving the following continu-

ous optimization problem in Rd:

argmax
zs′,r′

∆(s′,r′)(s, r, o). (8)

After identifying the optimal zs′,r′ , we still need
to generate the pair (s′, r′). We design a network,
shown in Figure 2, that maps the vector zs′,r′ to the
entity-relation space, i.e., translating it into (s′, r′).
In particular, we train an auto-encoder where the
encoder is fixed to receive the s and r as one-hot
inputs, and calculates zs,r in the same way as the
DistMult and ConvE encoders respectively (using
trained embeddings). The decoder is trained to take
zs,r as input and produce s and r, essentially invert-
ing f and the embedding layers. As our decoder, for
DistMult, we pass zs,r through a linear layer and
then use two other linear layers for the subject and
the relation separately, providing one-hot vectors as
s̃ and r̃. For ConvE, we pass zs,r through a decon-
volutional layer, and then use the same architecture
as the DistMult decoder. Although we could use
maximum inner-product search [Shrivastava and Li,
2014] for DistMult instead of our defined inverter
function, we are looking for a general approach
that works across multiple models.

We evaluate the performance of our inverter net-
works (one for each model/dataset) on correctly
recovering the pairs of subject and relation from
the test set of our benchmarks, given the zs,r. The
accuracy of recovered pairs (and of each argument)
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WordNet YAGO

DistMult ConvE DistMult ConvE

Recover s 93.4 96.1 97.2 98.1
Recover r 91.3 95.3 99.0 99.6
Recover {s, r} 89.5 94.2 96.4 98.0

Table 1: Inverter Functions Accuracy, we calculate
the accuracy of our inverter networks in correctly re-
covering the pairs of subject and relation from the test
set of our benchmarks.

# Rels #Entities # Train #Test

Nations 56 14 1592 200
Kinship 26 104 4,006 155
WN18 18 40,943 141,442 5000
YAGO3-10 37 123,170 1,079,040 5000

Table 2: Data Statistics of the benchmarks.

is given in Table 1. As shown, our networks achieve
a very high accuracy, demonstrating their ability to
invert vectors zs,r to {s, r} pairs.

5 Experiment Setup

Datasets To evaluate our method, we conduct
several experiments on four widely used KGs. To
validate the accuracy of the approximations, we use
smaller sized Kinship and Nations KGs for which
we can make comparisons against more expensive
but less approximate approaches. For the remain-
ing experiments, we use YAGO3-10 and WN18
KGs, which are closer to real-world KGs in their
size and characteristics (see Table 2).

Models We implement all methods using the
same loss and optimization for training, i.e., Ada-
Grad and the binary cross-entropy loss. We use
validation data to tune the hyperparameters and use
a grid search to find the best hyperparameters, such
as regularization parameter, and learning rate of
the gradient-based method. To capture the effect
of our method on link prediction task, we study
the change in commonly-used metrics for evalua-
tion in this task: mean reciprocal rank (MRR) and
Hits@K. Further, we use the same hyperparame-
ters as in Dettmers et al. [2018] for training link
prediction models for these knowledge graphs.

Influence Function We also compare our method
with influence function (IF) [Koh and Liang, 2017].
The influence function approximates the effect of
upweighting a training sample on the loss for a
specific test point. We use IF to approximate the
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Figure 3: Influence function vs CRIAGE. We plot the
average time (over 10 facts) of influence function (IF)
and CRIAGE to identify an adversary as the number of
entities in the Kinship KG is varied (by randomly sam-
pling subgraphs of the KG). Even with small graphs
and dimensionality, IF quickly becomes impractical.

change in the loss after removing a triple as:

Iup,loss(〈s′, r′, o〉, 〈s, r, o〉) =

−∇θL(〈s, r, o〉, θ̂)ᵀH−1

θ̂
∇θL(〈s′, r′, o〉, θ̂) (9)

where 〈s′, r′, o〉 and 〈s, r, o〉 are training and test
samples respectively, θ̂ represents the optimum pa-
rameters andL(〈s, r, o〉, θ̂) represents the loss func-
tion for the test sample 〈s, r, o〉. Influence func-
tion does not scale well, so we only compare our
method with IF on the smaller size KGs.

6 Experiments

We evaluate CRIAGE by (6.1) comparing CRIAGE
estimate with the actual effect of the attacks,
(6.2) studying the effect of adversarial attacks on
evaluation metrics, (6.3) exploring its application
to the interpretability of KG representations, and
(6.4) detecting incorrect triples.

6.1 Influence Function vs CRIAGE

To evaluate the quality of our approximations and
compare with influence function (IF), we conduct
leave one out experiments. In this setup, we take
all the neighbors of a random target triple as can-
didate modifications, remove them one at a time,
retrain the model each time, and compute the exact
change in the score of the target triple. We can use
the magnitude of this change in score to rank the
candidate triples, and compare this exact ranking
with ranking as predicted by: CRIAGE-Remove,
influence function with and without Hessian matrix,
and the original model score (with the intuition that
facts that the model is most confident of will have
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Methods
Nations Kinship

Adding Removing Adding Removing

ρ τ ρ τ ρ τ ρ τ

Ranking Based on Score 0.03 0.02 -0.01 -0.01 -0.09 -0.06 0.01 0.01
Influence Function without Hessian 0.15 0.12 0.12 0.1 0.77 0.71 0.77 0.71
CRIAGE (Brute Force) 0.95 0.84 0.94 0.85 0.99 0.97 0.99 0.95
Influence Function 0.99 0.95 0.99 0.96 0.99 0.98 0.99 0.98

Table 3: Ranking modifications by their impact on the target. We compare the true ranking of candidate triples
with a number of approximations using ranking correlation coefficients. We compare our method with influence
function (IF) with and without Hessian, and ranking the candidates based on their score, on two KGs (d = 10,
averaged over 10 random targets). For the sake of brevity, we represent the Spearman’s ρ and Kendall’s τ rank
correlation coefficients simply as ρ and τ .

the largest impact when removed). Similarly, we
evaluate CRIAGE-Add by considering 200 random
triples that share the object entity with the target
sample as candidates, and rank them as above.

The average results of Spearman’s ρ and
Kendall’s τ rank correlation coefficients over 10
random target samples is provided in Table 3.
CRIAGE performs comparably to the influence
function, confirming that our approximation is ac-
curate. Influence function is slightly more accurate
because they use the complete Hessian matrix over
all the parameters, while we only approximate the
change by calculating the Hessian over eo. The
effect of this difference on scalability is dramatic,
constraining IF to very small graphs and small em-
bedding dimensionality (d ≤ 10) before we run
out of memory. In Figure 3, we show the time
to compute a single adversary by IF compared to
CRIAGE, as we steadily grow the number of enti-
ties (randomly chosen subgraphs), averaged over
10 random triples. As it shows, CRIAGE is mostly
unaffected by the number of entities while IF in-
creases quadratically. Considering that real-world
KGs have tens of thousands of times more entities,
making IF unfeasible for them.

6.2 Robustness of Link Prediction Models

Now we evaluate the effectiveness of CRIAGE to
successfully attack link prediction by adding false
facts. The goal here is to identify the attacks for
triples in the test data, and measuring their effect on
MRR and Hits@ metrics (ranking evaluations) after
conducting the attack and retraining the model.

Since this is the first work on adversarial attacks
for link prediction, we introduce several baselines
to compare against our method. For finding the

adversarial fact to add for the target triple 〈s, r, o〉,
we consider two baselines: 1) choosing a random
fake fact 〈s′, r′, o〉 (Random Attack); 2) finding
(s′, r′) by first calculating f(es, er) and then feed-
ing −f(es, er) to the decoder of the inverter func-
tion (Opposite Attack). In addition to CRIAGE-
Add, we introduce two other alternatives of our
method: (1) CRIAGE-FT, that uses CRIAGE to
increase the score of fake fact over a test triple,
i.e., we find the fake fact the model ranks second
after the test triple, and identify the adversary for
them, and (2) CRIAGE-Best that selects between
CRIAGE-Add and CRIAGE-FT attacks based on
which has a higher estimated change in score.

All-Test The result of the attack on all test facts
as targets is provided in the Table 4. CRIAGE-
Add outperforms the baselines, demonstrating its
ability to effectively attack the KG representations.
It seems DistMult is more robust against random
attacks, while ConvE is more robust against de-
signed attacks. CRIAGE-FT is more effective than
CRIAGE-Add since changing the score of a fake
fact is easier than of actual facts; there is no ex-
isting evidence to support fake facts. We also see
that YAGO3-10 models are more robust than those
for WN18. Looking at sample attacks (provided
in Appendix A.4), CRIAGE mostly tries to change
the type of the target object by associating it with a
subject and a relation for a different entity type.

Uncertain-Test To better understand the effect of
attacks, we consider a subset of test triples that
1) the model predicts correctly, 2) difference be-
tween their scores and the negative sample with the
highest score is minimum. This “Uncertain-Test”
subset contains 100 triples from each of the original
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Models
YAGO3-10 WN18

All-Test Uncertain-Test All-Test Uncertain-Test

MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

D
is

tM
ul

t

DistMult 0.458 37 (0) 1.0 100 (0) 0.938 93.1 (0) 1.0 100 (0)
+ Adding Random Attack 0.442 34.9 (-2.1) 0.91 87.6 (-12.4) 0.926 91.1 (-2) 0.929 90.4 (-9.6)
+ Adding Opposite Attack 0.427 33.2 (-3.8) 0.884 84.1 (-15.9) 0.906 87.3 (-5.8) 0.921 91 (-9)

+ CRIAGE-Add 0.379 29.1 (-7.9) 0.71 58 (-42) 0.89 86.4 (-6.7) 0.844 81.2 (-18.8)
+ CRIAGE-FT 0.387 27.7 (-9.3) 0.673 50.5 (-49.5) 0.86 79.2 (-13.9) 0.83 74.5 (-25.5)
+ CRIAGE-Best 0.372 26.9 (-10.1) 0.658 49.3 (-50.7) 0.838 77.9 (-15.2) 0.814 72.7 (-27.3)

C
on

vE

ConvE 0.497 41.2 (0) 1.0 100 (0) 0.94 93.3 (0) 1.0 100 (0)
+ Adding Random Attack 0.474 38.4 (-2.8) 0.889 83 (-17) 0.921 90.1 (-3.2) 0.923 89.7 (-10.3)
+ Adding Opposite Attack 0.469 38 (-3.2) 0.874 81.9 (-18.1) 0.915 88.9 (-4.4) 0.908 88.1 (-11.9)

+ CRIAGE-Add 0.454 36.9 (-4.3) 0.738 61.5 (-38.5) 0.897 87.8 (-5.5) 0.895 87.6 (-12.4)
+ CRIAGE-FT 0.441 33.2 (-8) 0.703 57.4 (-42.6) 0.865 80 (-13.3) 0.874 79.5 (-20.5)
+ CRIAGE-Best 0.423 31.9 (-9.3) 0.677 54.8 (-45.2) 0.849 79.1 (-14.2) 0.858 78.4 (-21.6)

Table 4: Robustness of Representation Models, the effect of adversarial attack on link prediction task. We
consider two scenario for the target triples, 1) choosing the whole test dataset as the targets (All-Test) and 2)
choosing a subset of test data that models are uncertain about them (Uncertain-Test).
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Figure 4: Per-Relation Breakdown showing the effect
of CRIAGE-Add on different relations in YAGO3-10.

test sets, and we provide results of attacks on this
data in Table 4. The attacks are much more effec-
tive in this scenario, causing a considerable drop in
the metrics. Further, in addition to CRIAGE signifi-
cantly outperforming other baselines, they indicate
that ConvE’s confidence is much more robust.

Relation Breakdown We perform additional anal-
ysis on the YAGO3-10 dataset to gain a deeper
understanding of the performance of our model.
As shown in Figure 4, both DistMult and ConvE
provide a more robust representation for isAffili-
atedTo and isConnectedTo relations, demonstrat-
ing the confidence of models in identifying them.
Moreover, the CRIAGE affects DistMult more in
playsFor and isMarriedTo relations while affecting
ConvE more in isConnectedTo relations.

Rule Body, R1(a, c) ∧R2(c, b) ⇒ Target, R(a, b)

Common to both
isConnectedTo(a, c)∧ isConnectedTo(c, b) isConnectedTo
isLocatedIn(a, c)∧ isLocatedIn(c, b) isLocatedIn
isAffiliatedTo(a, c)∧ isLocatedIn(c, b) wasBornIn
isMarriedTo(a, c)∧ hasChild(c, b) hasChild

only in DistMult
playsFor(a, c)∧ isLocatedIn(c, b) wasBornIn
dealsWith(a, c)∧ participatedIn(c, b) participatedIn
isAffiliatedTo(a, c)∧ isLocatedIn(c, b) diedIn
isLocatedIn(a, c)∧ hasCapital(c, b) isLocatedIn

only in ConvE
influences(a, c)∧ influences(c, b) influences
isLocatedIn(a, c)∧ hasNeighbor(c, b) isLocatedIn
hasCapital(a, c)∧ isLocatedIn(c, b) exports
hasAdvisor(a, c)∧ graduatedFrom(c, b) graduatedFrom

Extractions from DistMult [Yang et al., 2015]
isLocatedIn(a, c) ∧ isLocatedIn(c, b) isLocatedIn
isAffiliatedTo(a, c) ∧ isLocatedIn(c, b) wasBornIn
playsFor(a, c) ∧ isLocatedIn(c, b) wasBornIn
isAffiliatedTo(a, c) ∧ isLocatedIn(c, b) diedIn

Table 5: Extracted Rules for identifying the most in-
fluential link. We extract the patterns that appear more
than 90% times in the neighborhood of the target triple.
The output of CRIAGE-Remove is presented in red.

6.3 Interpretability of Models

To be able to understand and interpret why a link is
predicted using the opaque, dense embeddings, we
need to find out which part of the graph was most
influential on the prediction. To provide such expla-
nations for each predictions, we identify the most
influential fact using CRIAGE-Remove. Instead of
focusing on individual predictions, we aggregate
the explanations over the whole dataset for each re-
lation using a simple rule extraction technique: we
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Methods 〈s′, r′, o〉 Noise 〈s′, r, o〉 Noise

Hits@1 Hits@2 Hits@1 Hits@2

Random 19.7 39.4 19.7 39.4
Lowest 16 37 26 47
CRIAGE 42 62 55 76

Table 6: Error Detection Accuracy in the neighbor-
hood of 100 chosen samples. We choose the neighbor
with the least value of ∆(s′,r′)(s, r, o) as the incorrect
fact. This experiment assumes we know each target
fact has exactly one error.

find simple patterns on subgraphs that surround the
target triple and the removed fact from CRIAGE-
Remove, and appear more than 90% of the time.
We only focus on extracting length-2 horn rules,
i.e., R1(a, c) ∧R2(c, b)⇒ R(a, b), where R(a, b)
is the target and R2(c, b) is the removed fact.

Table 5 shows extracted YAGO3-10 rules that
are common to both models, and ones that are not.
The rules show several interesting inferences, such
that hasChild is often inferred via married parents,
and isLocatedIn via transitivity. There are several
differences in how the models reason as well; Dist-
Mult often uses the hasCapital as an intermedi-
ate step for isLocatedIn, while ConvE incorrectly
uses isNeighbor. We also compare against rules
extracted by Yang et al. [2015] for YAGO3-10 that
utilizes the structure of DistMult: they require do-
main knowledge on types and cannot be applied to
ConvE. Interestingly, the extracted rules contain all
the rules provided by CRIAGE, demonstrating that
CRIAGE can be used to accurately interpret mod-
els, including ones that are not interpretable, such
as ConvE. These are preliminary steps toward inter-
pretability of link prediction models, and we leave
more analysis of interpretability to future work.

6.4 Finding Errors in Knowledge Graphs

Here, we demonstrate another potential use of ad-
versarial modifications: finding erroneous triples in
the knowledge graph. Intuitively, if there is an error
in the graph, the triple is likely to be inconsistent
with its neighborhood, and thus the model should
put least trust on this triple. In other words, the
error triple should have the least influence on the
model’s prediction of the training data. Formally,
to find the incorrect triple 〈s′, r′, o〉 in the neigh-
borhood of the train triple 〈s, r, o〉, we need to find
the triple 〈s′, r′, o〉 that results in the least change
∆(s′,r′)(s, r, o) when removed from the graph.

To evaluate this application, we inject random

triples into the graph, and measure the ability of
CRIAGE to detect the errors using our optimiza-
tion. We consider two types of incorrect triples: 1)
incorrect triples in the form of 〈s′, r, o〉 where s′ is
chosen randomly from all of the entities, and 2) in-
correct triples in the form of 〈s′, r′, o〉 where s′ and
r′ are chosen randomly. We choose 100 random
triples from the observed graph, and for each of
them, add an incorrect triple (in each of the two sce-
narios) to its neighborhood. Then, after retraining
DistMult on this noisy training data, we identify
error triples through a search over the neighbors of
the 100 facts. The result of choosing the neighbor
with the least influence on the target is provided in
the Table 6. When compared with baselines that
randomly choose one of the neighbors, or assume
that the fact with the lowest score is incorrect, we
see that CRIAGE outperforms both of these with
a considerable gap, obtaining an accuracy of 42%
and 55% in detecting errors.

7 Related Work

Learning relational knowledge representations has
been a focus of active research in the past few years,
but to the best of our knowledge, this is the first
work on conducting adversarial modifications on
the link prediction task.

Knowledge graph embedding There is a rich lit-
erature on representing knowledge graphs in vector
spaces that differ in their scoring functions [Wang
et al., 2017, Goyal and Ferrara, 2018, Fooshee et al.,
2018]. Although CRIAGE is primarily applicable
to multiplicative scoring functions [Nickel et al.,
2011, Socher et al., 2013, Yang et al., 2015, Trouil-
lon et al., 2016], these ideas apply to additive scor-
ing functions [Bordes et al., 2013a, Wang et al.,
2014, Lin et al., 2015, Nguyen et al., 2016] as well,
as we show in Appendix A.3.

Furthermore, there is a growing body of litera-
ture that incorporates an extra types of evidence
for more informed embeddings such as numeri-
cal values [Garcia-Duran and Niepert, 2017], im-
ages [Oñoro-Rubio et al., 2017], text [Toutanova
et al., 2015, 2016, Tu et al., 2017], and their combi-
nations [Pezeshkpour et al., 2018]. Using CRIAGE,
we can gain a deeper understanding of these meth-
ods, especially those that build their embeddings
wit hmultiplicative scoring functions.

Interpretability and Adversarial Modification
There has been a significant recent interest in con-
ducting an adversarial attacks on different machine
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learning models [Biggio et al., 2014, Papernot
et al., 2016, Dong et al., 2017, Zhao et al., 2018a,b,
Brunet et al., 2018] to attain the interpretability,
and further, evaluate the robustness of those mod-
els. Koh and Liang [2017] uses influence function
to provide an approach to understanding black-box
models by studying the changes in the loss occur-
ring as a result of changes in the training data. In
addition to incorporating their established method
on KGs, we derive a novel approach that differs
from their procedure in two ways: (1) instead of
changes in the loss, we consider the changes in the
scoring function, which is more appropriate for KG
representations, and (2) in addition to searching for
an attack, we introduce a gradient-based method
that is much faster, especially for “adding an attack
triple” (the size of search space make the influence
function method infeasible). Previous work has
also considered adversaries for KGs, but as part
of training to improve their representation of the
graph [Minervini et al., 2017, Cai and Wang, 2018].

Adversarial Attack on KG Although this is the
first work on adversarial attacks for link prediction,
there are two approaches [Dai et al., 2018, Zügner
et al., 2018] that consider the task of adversarial
attack on graphs. There are a few fundamental dif-
ferences from our work: (1) they build their method
on top of a path-based representations while we fo-
cus on embeddings, (2) they consider node classifi-
cation as the target of their attacks while we attack
link prediction, and (3) they conduct the attack
on small graphs due to restricted scalability, while
the complexity of our method does not depend on
the size of the graph, but only the neighborhood,
allowing us to attack real-world graphs.

8 Conclusions

Motivated by the need to analyze the robustness
and interpretability of link prediction models, we
present a novel approach for conducting adversarial
modifications to knowledge graphs. We introduce
CRIAGE, completion robustness and interpretabil-
ity via adversarial graph edits: identifying the fact
to add into or remove from the KG that changes the
prediction for a target fact. CRIAGE uses (1) an es-
timate of the score change for any target triple after
adding or removing another fact, and (2) a gradient-
based algorithm for identifying the most influential
modification. We show that CRIAGE can effec-
tively reduce ranking metrics on link prediction
models upon applying the attack triples. Further,

we incorporate the CRIAGE to study the inter-
pretability of KG representations by summarizing
the most influential facts for each relation. Finally,
using CRIAGE, we introduce a novel automated
error detection method for knowledge graphs. We
have release the open-source implementation of our
models at: https://pouyapez.github.io/criage.
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A Appendix

We approximate the change on the score of the
target triple upon applying attacks other than the
〈s′, r′, o〉 ones. Since each relation appears many
times in the training triples, we can assume that
applying a single attack will not considerably af-
fect the relations embeddings. As a result, we just
need to study the attacks in the form of 〈s, r′, o〉
and 〈s, r′, o′〉. Defining the scoring function as
ψ(s, r, o) = f(es, er) · eo = zs,r · eo, we further
assume that ψ(s, r, o) = es · g(er, eo) = es · xr,o.

A.1 Modifications of the Form 〈s, r′, o′〉
Using similar argument as the attacks in the form of
〈s′, r′, o〉, we can calculate the effect of the attack,
ψ(s, r, o)− ψ(s, r, o) as:

ψ(s, r, o)− ψ(s, r, o) = (es − es)xs,r (10)

where xs,r = g(er, eo).
We now derive an efficient computation for (es−

es). First, the derivative of the lossL(G) = L(G)+
L(〈s, r′, o′〉) over es is:

∇esL(G) = ∇esL(G)− (1− ϕ)xr′,o′ (11)

where xr′,o′ = g(e′r, e
′
o), and ϕ = σ(ψ(s, r′, o′)).

At convergence, after retraining, we expect
∇esL(G) = 0. We perform first order Taylor ap-
proximation of∇esL(G) to get:

0 '− (1− ϕ)xᵀ
r′,o′+

(Hs + ϕ(1− ϕ)xᵀ
r′,o′xr′,o′)(es − es)

(12)

where Hs is the d×d Hessian matrix for s, i.e. sec-
ond order derivative of the loss w.r.t. es, computed
sparsely. Solving for es − es gives us:

es − es =

(1− ϕ)(Hs + ϕ(1− ϕ)xᵀ
r′,o′xr′,o′)

−1xᵀ
r′,o′

In practice, Hs is positive definite, making Hs +
ϕ(1 − ϕ)xᵀ

r′,o′xr′,o′ positive definite as well, and
invertible. Then, we compute the score change as:

ψ(s, r, o)− ψ(s, r, o) = xr,o(es − es) =

((1− ϕ)(Hs + ϕ(1− ϕ)xᵀ
r′,o′xr′,o′)

−1xᵀ
r′,o′)xr,o.

(13)

A.2 Modifications of the Form 〈s, r′, o〉
In this section we approximate the effect of attack
in the form of 〈s, r′, o〉. In contrast to 〈s′, r′, o〉
attacks, for this scenario we need to consider the
change in the es, upon applying the attack, in ap-
proximation of the change in the score as well.
Using previous results, we can approximate the
eo − eo as:

eo − eo =

(1− ϕ)(Ho + ϕ(1− ϕ)zᵀs,r′zs,r′)
−1zᵀs,r′

(14)
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Target Triple CRIAGE-Add

D
is

tM
ul

t Brisbane Airport, isConnectedTo, Boulia Airport Osman Ozköylü, isPoliticianOf, Boulia Airport
Jalna District, isLocatedIn, India United States, hasWonPrize, India

Quincy Promes, wasBornIn, Amsterdam Gmina Krzeszyce, hasGender, Amsterdam
Princess Henriette, hasChild, Violante Bavaria Al Jazira Club, playsFor, Violante Bavaria

C
on

vE

Brisbane Airport, isConnectedTo, Boulia Airport Victoria Wood, wasBornIn, Boulia Airport
National Union(Israel), isLocatedIn, Jerusalem Sejad Halilović, isAffiliatedTo, Jerusalem

Robert Louis, influences, David Leavitt David Louhoungou, hasGender, David Leavitt
Princess Henriette, hasChild, Violante Bavaria Jonava, isAffiliatedTo, Violante Bavaria

Table 7: Top adversarial triples for target samples.

and similarly, we can approximate es − es as:

es − es =

(1− ϕ)(Hs + ϕ(1− ϕ)xᵀ
r′,oxr′,o)

−1xᵀ
r′,o

(15)

whereHs is the Hessian matrix over es. Then using
these approximations:

zs,r(eo − eo) =

zs,r((1− ϕ)(Ho + ϕ(1− ϕ)zᵀs,r′zs,r′)
−1zᵀs,r′)

and:

(es − es)xr,ō =

((1− ϕ)(Hs + ϕ(1− ϕ)xᵀ
r′,oxr′,o)

−1xᵀ
r′,o)xr,ō

and then calculate the change in the score as:

ψ(s, r, o)− ψ(s, r, o) =

zs,r.(eo − eo) + (es − es).xr,ō =

zs,r((1− ϕ)(Ho + ϕ(1− ϕ)zᵀs,r′zs,r′)
−1zᵀs,r′)+

((1− ϕ)(Hs + ϕ(1− ϕ)xᵀ
r′,oxr′,o)

−1xᵀ
r′,o)xr,ō

(16)

A.3 First-order Approximation of the
Change For TransE

In here we derive the approximation of the change
in the score upon applying an adversarial modifi-
cation for TransE [Bordes et al., 2013a]. Using
similar assumptions and parameters as before, to
calculate the effect of the attack, ψ(s, r, o) (where
ψ(s, r, o) = |es + er − eo|), we need to compute
eo. To do so, we need to derive an efficient com-
putation for eo. First, the derivative of the loss
L(G) = L(G) + L(〈s′, r′, o〉) over eo is:

∇eoL(G) = ∇eoL(G) + (1− ϕ)
zs′,r′ − eo
ψ(s′, r′, o)

(17)

where zs′,r′ = e′s + e′r, and ϕ = σ(ψ(s′, r′, o)).
At convergence, after retraining, we expect
∇eoL(G) = 0. We perform first order Taylor ap-
proximation of∇eoL(G) to get:

0 '

(1− ϕ)
(zs′,r′ − eo)

ᵀ

ψ(s′, r′, o)
+ (Ho −Hs′,r′,o)(eo − eo)

(18)

Hs′,r′,o = (1− ϕ)ϕ
(zs′,r′ − eo)

ᵀ(zs′,r′ − eo)

ψ(s′, r′, o)2
+

1− ϕ
ψ(s′, r′, o)

− (1− ϕ)
(zs′,r′ − eo)

ᵀ(zs′,r′ − eo)

ψ(s′, r′, o)3

(19)

whereHo is the d×d Hessian matrix for o, i.e., sec-
ond order derivative of the loss w.r.t. eo, computed
sparsely. Solving for eo gives us:

eo = −(1− ϕ)(Ho −Hs′,r′,o)
−1 (zs′,r′ − eo)

ᵀ

ψ(s′, r′, o)

+ eo (20)

Then, we compute the score change as:

ψ(s, r, o) = |es + er − eo|
= |es + er + (1− ϕ)(Ho −Hs′,r′,o)

−1

(zs′,r′ − eo)
ᵀ

ψ(s′, r′, o)
− eo| (21)

Calculating this expression is efficient since Ho

is a d× d matrix.

A.4 Sample Adversarial Attacks
In this section, we provide the output of the
CRIAGE-Add for some target triples. Sample ad-
versarial attacks are provided in Table 7. As it
shows, CRIAGE-Add attacks mostly try to change
the type of the target triple’s object by associating it
with a subject and a relation that require a different
entity types.


