
Proceedings of NAACL-HLT 2019, pages 3257–3267
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

3257

Understanding Learning Dynamics Of Language Models with SVCCA

Naomi Saphra and Adam Lopez
Institute for Language, Cognition, and Computation

University of Edinburgh
n.saphra@ed.ac.uk alopez@ed.ac.uk

Abstract

Research has shown that neural models im-
plicitly encode linguistic features, but there
has been no research showing how these en-
codings arise as the models are trained. We
present the first study on the learning dy-
namics of neural language models, using a
simple and flexible analysis method called
Singular Vector Canonical Correlation Anal-
ysis (SVCCA), which enables us to compare
learned representations across time and across
models, without the need to evaluate directly
on annotated data. We probe the evolution of
syntactic, semantic, and topic representations
and find that part-of-speech is learned earlier
than topic; that recurrent layers become more
similar to those of a tagger during training;
and embedding layers less similar. Our results
and methods could inform better learning al-
gorithms for NLP models, possibly to incor-
porate linguistic information more effectively.

1 Introduction

Large neural networks have a notorious capacity
to memorize training data (Zhang et al., 2016),
but their high accuracy on many NLP tasks shows
that they nonetheless generalize. One apparent ex-
planation for their performance is that they learn
linguistic generalizations even without explicit su-
pervision for those generalizations—for example,
that subject and verb number agree in English
(Linzen et al., 2016); that derivational suffixes at-
tach to only specific parts of speech (Kementched-
jhieva and Lopez, 2018); and that short segments
of speech form natural clusters corresponding to
phonemes (Alishahi et al., 2017). These studies
tell us that neural models learn to implicitly rep-
resent linguistic categories and their interactions.
But how do they learn these representations?

One clue comes from the inspection of multi-
layer models, which seem to encode lexical cate-

gories in lower layers, and more contextual cate-
gories in higher layers. For example, Blevins et al.
(2018) found that a word’s part of speech (POS) is
encoded by lower layers, and the POS of its syn-
tactic parent is encoded by higher layers; while
Belinkov et al. (2018) found that POS is encoded
by lower layers and semantic category is encoded
by higher layers. More generally, the most useful
layer for an arbitrary NLP task seems to depend on
how “high-level” the task is (Peters et al., 2018).
Since we know that lower layers in a multi-layer
model converge to their final representations more
quickly than higher layers (Raghu et al., 2017), it
is likely that models learn local lexical categories
like POS earlier than they learn higher-level lin-
guistic categories like semantic class.

How and when do neural representations come
to encode specific linguistic categories? Answers
could explain why neural models work and help us
improve learning algorithms. We investigate how
representations of linguistic structure are learned
over time in neural language models (LMs), which
are central to NLP: on their own, they are used
to produce contextual representations of words for
many tasks (e.g. Peters et al., 2018); while con-
ditional LMs power machine translation, speech
recognition, and dialogue systems. We use a sim-
ple and flexible method, Singular Vector Canon-
ical Correlation Analysis (SVCCA; Raghu et al.,
2017), which allows us to compare representa-
tions from our LM at each epoch of training with
representations of other models trained to predict
specific linguistic categories. We discover that
lower layers initially discover features shared by
all predictive models, but lose these features as the
LM explores more specific clusters. We demon-
strate that different aspects of linguistic structure
are learned at different rates within a single recur-
rent layer, acquiring POS tags early but continuing
to learn global topic information later in training.
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2 Methods

Our experiments require a LM, tagging models,
and a method to inspect the models: SVCCA.

2.1 Language model
We model the probability distribution over a se-
quence of tokens x1 . . . x|x| with a conventional
two-layer LSTM LM. The pipeline from input xt
at time step t to a distribution over xt+1 is de-
scribed in Formulae (1)–(4). At time step t, input
word xt is embedded as (1) het , which is input to
a two-layer LSTM, producing outputs (2) h1t and
(3) h2t at these layers, along with cell states c1t and
c2t . A softmax layer converts h2t to a distribution
from which (4) x̂t+1 is sampled.

het = embedding(xt) (1)

h1t , c
1
t = LSTM1(h

e
t , h

1
t−1, c

1
t−1) (2)

h2t , c
2
t = LSTM2(h

1
t , h

2
t−1, c

2
t−1) (3)

x̂t+1 ∼ softmax(h2t ) (4)

Each function can be thought of as a representa-
tion or embedding of its discrete input; hence het is
a representation of xt, and—due to the recursion
in (2)—h1t is a representation of x1 . . . xt.

2.2 Tagging models
To inspect our language model for learned linguis-
tic categories, we will use a collection of tagging
models, designed to mimic the behavior of our lan-
guage model but predicting the next tag rather than
the next word. Given x1 . . . x|x|, we model a corre-
sponding sequence of tags y1 . . . y|x| using a one-
layer LSTM. (Our limited labeled data made this
more accurate on topic tagging than another two-
layer LSTM, so this architecture does not directly
parallel the LM.)

het
′ = embedding′(xt) (5)

h1t
′, c1t

′ = LSTM′(het
′, h1t−1

′, c1t−1
′) (6)

ŷt+1 ∼ softmax′(h1t
′) (7)

We will also discuss input taggers, which share
this architecture but instead sample yt, the tag of
the most recently observed word.

2.3 SVCCA
SVCCA is a general method to compare the cor-
relation of two vector representations. Let dA and
dB be their dimensions. ForN data points we have
two distinct views, given by matricesA ∈ RN×dA

and B ∈ RN×dB . We project these views onto a
shared subspace in two steps:

1. Use Singular Value Decomposition (SVD) to
reduce matrices A and B to lower dimen-
sional matrices A′ and B′, respectively. This
is necessary because many dimensions in the
representations are noisy, and in fact cancel
each other out (Frankle and Carbin, 2018).
SVD removes dimensions that were likely to
be less important in the original representa-
tions from A and B, and in keeping with
Raghu et al. (2017), we retain enough dimen-
sions to keep 99% of the variance in the data.

2. Use Canonical Correlation Analysis (CCA)
to project A′ and B′ onto a shared sub-
space, maximizing the correlation of the pro-
jections. Formally, CCA identifies vectors
w, v to maximize ρ = <w>A′,v>B′>

‖w>A′‖‖v>B′‖ . We
treat these w, v as new basis vectors, comput-
ing the top dC (a hyperparameter) such ba-
sis vectors to form projection matrices W ∈
RdC×dA′ , V ∈ RdC×dA′ . The resulting pro-
jections WA′ and V B′ map onto a shared
subspace where the representations of each
datapoint from A′ and B′ are maximally cor-
related.

Intuitively, the correlation ρ will be high if both
representations encode the same information, and
low if they encode unrelated information. Figure 1
illustrates how we use SVCCA to compare repre-
sentation h2t of our language model with the recur-
rent representation of a tagger, h1t

′. In practice, we
run over all time steps in a test corpus, rather than
a single time step as illustrated.

3 Experimental Setup

We trained our LM on a corpus of tok-
enized, lowercased English Wikipedia (70/10/20
train/dev/test split). To reduce the number of
unique words in the corpus, we excluded any sen-
tence with a word type appearing fewer than 100
times. Words appearing fewer than 100 times in
the resulting training set are replaced with an un-
known token. The resulting training set has over
227 million tokens of 20K types.

We train for 50 epochs to maximize cross-
entropy, using a batch size of 40, dropout ratio
of 0.2, and sequence length of 35. The optimizer
is standard SGD with clipped gradients at 0.25,
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Figure 1: SVCCA used to compare the layer h2 of a language model and layer h1′ of a tagger.

Tag These cats live in that house .
UDP POS DET NOUN VERB ADP DET NOUN SYM
PTB POS DT NNS VBP IN DT NN .

SEM (coarse) DEM ENT EVE ATT DEM ENT LOG
SEM (fine) PRX CON ENS REL DST CON NIL

topic pets pets pets pets pets pets pets

Table 1: An annotated example sentence from the article pets, based on an example from Bjerva et al. (2016).

Figure 2: Test performance of the LM. Vertical dotted
lines indicate when the optimizer rescales the step size.

with the learning rate quartered when validation
loss increases. The result of training is shown in
Figure 2, which illustrates the dips in loss when
learning rate changes. All experiments on the LM
throughout training are conducted by running the
model at the end of each epoch in inference mode
over the test corpus.

3.1 Taggers

To understand the representations learned by our
LM, we compare them with the internal represen-
tations of tagging models, using SVCCA. Where
possible, we use coarse-grained and fine-grained
tagsets to account for effects from the size of the
tagset. Table 1 illustrates our tagsets.

POS tagging For syntactic categories, we use
POS tags, as in Belinkov et al. (2017). As a
coarse-grained tagset, we use silver Universal De-
pendency Parse (UDP) POS tags automatically
added to our Wikipedia corpus with spacy.1 We
also use a corpus of fine-grained human anno-
tated Penn Treebank POS tags from the Groningen
Meaning Bank (GMB; Bos et al., 2017).

Semantic tagging We follow Belinkov et al.
(2018) in representing word-level semantic infor-
mation with silver SEM tags (Bjerva et al., 2016).
SEM tags disambiguate POS tags in ways that are
relevant to multilingual settings. For example, the
comma is not assigned a single tag as punctua-
tion, but has distinct tags according to its function:
conjunction, disjunction, or apposition. The 66
fine-grained SEM tag classes fall under 13 coarse-
grained tags, and an ‘unknown’ tag.

Global topic For topic, we classify each word
of the sequence by its source Wikipedia article;
for example, every word in the wikipedia article
on Trains is labeled “Trains”. This task assesses
whether the network encodes the global topic of
the sentence.

1https://spacy.io/
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Figure 3: SVCCA score between representations at
each epoch and from the final trained LM.

UDP silver POS and topic information use the
same corpus, taken from the 100 longest articles
in Wikipedia randomly partitioned in a 70/10/20
train/dev/test split. Each token is tagged with POS
and with the ID of the source article. The corpus
is taken from the LM training data, which may in-
crease the similarity between the tag model and
LM. Because both tag predictors are trained and
tested on the same domain as the LM, they can
be easily compared in terms of their similarity to
the LM representation. Though the SEM corpus
and the PTB corpus are different domains from
the Wikipedia training data, we compare their ac-
tivations on the same 191K-token 100-article test
corpus.

Table 2 describes the training and validation
corpus statistics for each tagging task. Note that
topic and UDP POS both apply to the same en-
wikipedia corpus, but PTB POS and SEM use two
different unaligned sets from the GMB corpus.

4 Experiments, Results, and Analysis

A benefit of SVCCA is its flexibility: it can com-
pute the correlation of a hidden representation to
any other vector. Raghu et al. (2017) used it
to understand learning dynamics by comparing a
learned representation to snapshots of the same
representation at different epochs during training.
We use a similar experiment to establish the basic
learning dynamics of our model. In our shallow
2-level model, activations at h1 converge slightly
after h2 (Figure 3). This differs from the results
of Raghu et al. (2017), who found that a 5-layer
stacked LSTM LM exhibits faster convergence at
lower layers, but this difference may be attributed
to our much larger training data, which gives our
model sufficient training data at early epochs.

Figure 4: SVCCA score between the LM at each epoch
and a LM with different initialization.

Empirical upper bounds. Our main experi-
ments will test the rate at which different linguis-
tic categories are learned by different layers, but
to interpret the results, we need to understand the
behaviour of SVCCA for these models. In the-
ory, SVCCA scores can vary from 0 for no corre-
lation to 1 for perfect correlation. But in practice,
these extreme cases will not occur. To establish
an empirical upper bound on correlation, we com-
pared the similarity at each epoch of training to the
frozen final state of a LM with identical architec-
ture but different initialization, trained on the same
data (Figure 4).2 The correlations increase over
time as expected, but to a maximum near 0.64;
we don’t expect correlations between our LM and
other models to exceed this value. We explore cor-
responding lower bounds in our main experiments
below.

Correlations between different layers. Next
we examine the correlation between different lay-
ers of the same model over time (Figure 5). We ob-
serve that, while over time correlation increases, in
general closer layers are more similar, and they are
less correlated than they are with the same layer of
a differently initialized model. This supports the
idea that we should compare recurrent layers with
recurrent layers because their representations play
similar roles within their respective architectures.

SVCCA vs. Diagnostic classifiers A popular
method to analyze learned representations is to use
a diagnostic classifier (Belinkov et al., 2017; Hup-
kes et al., 2018) or probe (Conneau et al., 2018), a
separate model that is trained to predict a linguistic
category of interest, yt, from an arbitrary hidden
layer ht. Diagnostic classifiers are widely used
(Belinkov et al., 2018; Giulianelli et al., 2018).

2This experiment is similar to the comparisons of ran-
domly initialized models by Morcos et al. (2018).
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number token count label t+ 1 label t randomized
tag corpus of classes train dev acc ppl acc ppl acc ppl
UDP POS wiki 17 665K 97K 50 4.3 93 1.2 21 8.9
PTB POS GMB 36 943K 136K 51 4.7 95 1.18 14 18.0
SEM (coarse) GMB 14 937K 132K 55 3.5 91 1.3 22 9.0
SEM (fine) GMB 67 937K 132K 50 5.6 88 1.45 17 21.5
topic wiki 100 665K 97K 36 19.1 37 16.3 5 81.6

Table 2: Tag predictor and tagger statistics. Accuracy and perplexity on t + 1 are from the target tag predictor,
on t are from the input tagger. Metrics obtained when training on randomly shuffled labels are provided as a low
baseline. Accuracy is on the test set from the training domain (GMB or Wikipedia).

Figure 5: SVCCA score between different layers of the
LM at each epoch. For example, ρ(h2, h1) compares
the activations h2 with the activations h1.

But if a diagnostic classifier is trained on enough
examples, then random embeddings as input rep-
resentations often outperform any pretrained inter-
mediate representation (Wieting and Kiela, 2019;
Zhang and Bowman, 2018). This suggests that
diagnostic classifiers may work simply by mem-
orizing the association between an embedding and
the most frequent output category associated with
that embedding; since for many words their cate-
gory is (empirically) unambiguous, this may give
an inflated view of just how much a model “under-
stands” about that category.

Our use of SVCCA below will differ from the
use of diagnostic classifiers in an important way.
Diagnostic classifiers use the intermediate repre-
sentations of the LM as inputs to a tagger. A repre-
sentation is claimed to encode, for example, POS
if the classifier accurately predicts it—in other
words, whether it can decode it from the repre-
sentation. We will instead evaluate the similarity
between the representations in an LM and in an
independently-trained tagger. The intuition behind
this is that, if the representation of our LM encodes
a particular category, then it must be similar to the
representation of model that is specifically trained
to predict that category. A benefit of the approach
is that similarity can be evaluated on any dataset,
not only one that has been labeled with the linguis-

Figure 6: Learning dynamics interpreted with diagnos-
tic classifiers labeling input word tag yt.

tic categories of interest.
Another distinction from the typical use of diag-

nostic classifiers is that probes are usually used to
decode tag information about the context or most
recent input from the hidden state at the current
step. Because the hidden representation at time
t is meant to encode predictive information about
the target word at time t+1, we treat it as encoding
a prediction about the tag of the target word.

To understand the empirical strengths and
weaknesses of these approaches, we compare the
use of SVCCA and diagnostic classifiers in under-
standing learning dynamics. In other words, we
ask: is our first conceptual shift (to SVCCA) nec-
essary? To test this, we use the same model as Be-
linkov et al. (2017), which classifies an arbitrary
representation using a ReLU followed by a soft-
max layer. To be consistent with Belinkov et al.
(2017), we use yt as their target label. We repeat
their method in this manner (Figure 6) as well as
applying our second modification, in which we in-
stead target the label yt+1 (Figure 7).

We found the correlations to be relatively stable
over the course of training. This is at odds with
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Figure 7: Learning dynamics interpreted with diagnos-
tic classifiers labeling target word tag yt+1.

the results in Figures 2 and 3, which suggest that
representations change substantially during train-
ing in ways that materially affect the accuracy of
the LM. This suggests that diagnostic classifiers
are not illustrating improvements in word repre-
sentations throughout training, and we conclude
that they are ineffective for understanding learning
dynamics. Our remaining experiments use only
SVCCA.

4.1 SVCCA on Output Tag Prediction

We applied SVCCA to each layer of our LM with
the corresponding layer of each tag predictor in
order to find the correlation between the LM rep-
resentation and the tag model representation at
each level (Figure 8). To establish empirical lower
bounds on correlation, we also trained our taggers
on the same data with randomly shuffled labels,
as in Zhang et al. (2016). These latter experi-
ments, denoted by the dotted lines of Figure 8,
show how much of the similarity between mod-
els is caused by their ability to memorize arbi-
trary associations. Note that the resulting scores
are nonzero, likely because the linguistic structure
of the input shapes representations even when the
output is random, due to the memorization phase
of training (Shwartz-Ziv and Tishby, 2017).

The strongest similarity at recurrent layers be-
longs to the most local property, the UDP POS
tag. Both coarse- and fine-grained semantic tags,
which rely on longer range dependencies, fall be-
low UDP POS consistently. Topic, which is global
to an entire document, is the least captured and the
slowest to stabilize. Indeed, correlation with true

Figure 8: SVCCA correlation scores between the LM
predicting xt+1 and the tag model predicting yt+1. At
the end of each epoch, we compare the current LM with
the final tag model. Dotted lines use shuffled tags. Gray
vertical lines mark when the step size is rescaled.
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topic falls consistently below the score for a model
trained on randomized topic tags, implying that
early in training the model has removed the con-
text necessary to identify topic (below even the in-
adequate contextual information memorized by a
model with random labels), which depends on the
general vocabulary in a sentence rather than a local
sequence. Over time correlation rises, possibly be-
cause the model permits more long-distance con-
text to be encoded. Khandelwal et al. (2018) found
that LSTMs remember content words like nouns
for more time steps than they remember function
words like prepositions and articles. We hypothe-
size that the LM’s slower stabilization on topic is
related to this phenomenon, since it must depend
on content words, and its ability to remember them
increases throughout training.

The encoder layer exhibits very different pat-
terns. Because the representation produced by the
encoder layer is local to the word, the nuances
that determine how a word is tagged in context
cannot be learned. The encoder layers are all
highly similar to each other, which suggests that
the unigram representations produced by the en-
coder are less dependent on the particular end task
of the neural network. Similarity between the en-
coders declines over time as they become more
specialized towards the language modeling task.
This decline points to some simple patterns which
are learned for all language tasks, but which are
gradually replaced by representations more use-
ful for language modeling. This process may even
be considered a naturally occurring analog to the
common practice of initializing the encoder layer
as word embeddings pretrained an unrelated task
such as skipgram or CBOW (Mikolov et al., 2013).
It seems that the ‘easy’ word properties, which
immediately improve performance, are similar re-
gardless of the particular language task.

At h1, the correlation shows a clear initial de-
cline in similarity for all tasks. This seems to point
to an initial representation that relies on simple
shared properties, which in the first stage of train-
ing is gradually dissolved before the layer begins
to converge on a structure shared with each tag
predictor. It may also be linked to the information
bottleneck learning phases explored by Shwartz-
Ziv and Tishby (2017). They suggest that neu-
ral networks learn by first maximizing the mutual
information between the input and internal rep-
resentation, then minimizing the mutual informa-

tion between the internal representation and out-
put. The network thus initially learns to effectively
represent the input, then compresses this represen-
tation, keeping only the elements relevant to the
output.3 If the LM begins by maximizing mutual
information with input, because the input is identi-
cal for the LM and tag models it may lead to these
similar initial representations, followed by a de-
cline in similarity as the compression narrows to
properties specific to each task.

4.2 SVCCA on Input Tagging

Our second conceptual shift is to focus on out-
put tag prediction—asking what a representation
encodes about the next output word, rather than
what it has encoded about words it has already ob-
served in the input. What effect does this have?
Since we already studied output tags in the pre-
vious set of experiments, here we consider input
tags, in the style of most diagnostic classifier anal-
ysis (Figure 9). The learning dynamics are similar
to those for tag prediction, but the UDP POS tag-
ger decreases dramatically in all correlations while
the GMB-trained taggers4 often increase slightly.
While the shapes of the lines are similar, UDP
POS no longer consistently dominates the other
tasks in recurrent layer correlation. Instead, we
find the more granular PTB POS tags lead to the
most similar representations.

5 Discussion and Conclusions

We find clear patterns in the encoding of linguistic
structure with SVCCA, in contrast to the weaker
results from a less responsive diagnostic classifier.
Because SVCCA proves so much more sensitive
than the diagnostic classifiers currently in use, we
believe that future work on measuring the encod-
ing of linguistic structure should use the similarity
of individual modules from independently trained
tag predictors rather than the performance of tag
predictors trained on a particular representation.

This system should also be of interest because
it is efficient. To train a diagnostic classifier, we
must run a forward pass of the LM for each for-
ward pass of the auxiliary model, while SVCCA
only requires the LM to run on the test set. A fur-

3This memorization–compression learning pattern paral-
lels the memorization–generalization of the first half of the
U-shaped curve exhibited by human children learning irreg-
ular word forms. Kirov and Cotterell (2018) observe similar
patterns when artificially modeling inflection.

4PTB POS, SEM (fine), and SEM (coarse)
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Figure 9: SVCCA correlation scores between LM ac-
tivations when predicting xt+1 and tagger activations
when labeling yt. Dotted lines use shuffled tags. Gray
vertical lines mark when the step size is rescaled.

ther efficiency gain is particular to studying learn-
ing dynamics: we train only one tagger and com-
pare it to different versions of the LM over train-
ing, but for standard probing, we must train a
new version of each layer’s tagger at each epoch.
Our SVCCA experiments in Figure 8 ran in hours,
while the diagnostic classifier experiments in Fig-
ure 7 ran for days.

Our method holds another, more subtle advan-
tage. Our analysis provides an alternative view of
what it means for a model to encode some lin-
guistic trait. The literature on analyzing neural
networks includes a broad spectrum of interpreta-
tions about what it means to encode a property. At
one end of the spectrum lies the purely informa-
tional view (e.g., mutual information; Noshad and
Hero III, 2018). Mutual information is a very flex-
ible view, but it requires us to compute theoretical
information content, which in practice can only be
estimated. Furthermore, information can be rep-
resented without being used, as shown by Van-
massenhove et al. (2017), who found that NMT
systems often predicted tense according to a di-
agnostic classifier but did not produce the cor-
rect tense as output. The other end of the spec-
trum is focused on the structure of the represen-
tation space (e.g., the features and the property
in question are linearly similar; Alishahi et al.,
2017). Analyzing structural similarity should rem-
edy the shortcomings of the informational view,
but most intermediate representations are not tar-
geted to extract the property in question through
a linear transformation, and failing to be inter-
pretable through such simple extraction should not
be equated to a failure to encode that property.

Most of the literature on analyzing representa-
tions, by probing with a more complex architec-
ture, seeks the flexibility of mutual information
with the concreteness and tractability of the struc-
tural view – but instead obscures the strict infor-
mation view without offering interpretable infor-
mation about the structure, because the architec-
ture of a diagnostic classifier affects its perfor-
mance. It should not be surprising that represen-
tational quality as measured by such systems is
a poor indicator of translation quality (Cífka and
Bojar, 2018). SVCCA, in contrast, is a structural
view that does not directly compare an activation
that targets word prediction with a particular tag,
but instead compares that activation with one tar-
geting the prediction of the tag.
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Let us consider a specific common probing
method. What do we learn about the LM when a
feedforward network cannot extract tag informa-
tion directly from the embedding layer, but can
from a recurrent layer? It may be tempting to con-
clude that tag information relies heavily on con-
text, but consider some alternative explanations.
If the embedding encodes the tag to be interpreted
by a recurrent layer, a feedforward network may
not be capable of representing the function to ex-
tract that tag because it does not have access to a
context vector for aiding interpretation of the hid-
den layer. Perhaps its activation functions cover a
different range of outputs. By directly comparing
LSTM layers to LSTM layers and embedding lay-
ers to embedding layers, we respect the shape of
their outputs and the role of each module within
the network in our analysis.

The results of our analysis imply that early in
training, representing part of speech is the natu-
ral way to get initial high performance. However,
as training progresses, it increasingly benefits the
model to represent categories with longer-range
dependencies, such as topic.

6 Future Work

One direction for future work is exploring how
generalization interacts with the correlations be-
tween LMs and tag predictors. It may be that a
faithful encoding of a property like POS tag in-
dicates that the LM is relying more on linguistic
structure than on memorizing specific phrases, and
therefore is associated with a more general model.

If these measurements of structure encoding are
associated with more general models, we might in-
troduce regularizers or other modifications that ex-
plicitly encourage correlation with a tagging task.

Combes et al. (2018) identified the phenomenon
of gradient starvation, meaning that while fre-
quent and unambiguous features are learned
quickly in training, they slow down the learning
of rarer features. For example, artificially bright-
ening images according to their class leads to a
delay in learning to represent the more complex
natural class features. Although it is tempting to
claim that semantic structure is learned using syn-
tactic structure as natural scaffolding, it is possible
that the simple predictive power of POS is acting
as an attractor and starving semantic features that
are rarer and more ambiguous. A possible direc-
tion for future work would be to explore which of

these explanations is true, possibly by decorrelat-
ing particular aspects of linguistic structure from
language modeling representations.

The techniques in this paper could be applied to
better understand the high performance of a sys-
tem like ELMo (Peters et al., 2018). Different lay-
ers in such a system are useful for different tasks,
and this effect could be understood in terms of the
gradual divergence between the layers and their re-
spective convergence to representations geared to-
ward a single task.
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Figure 10: SVCCA correlation scores between LM and
yt+1 tag predictor. Dotted lines use models trained on
randomly shuffled the data. Dashed lines use GMB do-
main test data.

Figure 11: SVCCA correlation scores between LM and
yt tagger. Dotted lines use models trained on randomly
shuffled the data. Dashed lines use GMB domain test
data.


