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Abstract
Because large, human-annotated datasets suf-
fer from labeling errors, it is crucial to be
able to train deep neural networks in the pres-
ence of label noise. While training image
classification models with label noise have re-
ceived much attention, training text classifica-
tion models have not. In this paper, we pro-
pose an approach to training deep networks
that is robust to label noise. This approach in-
troduces a non-linear processing layer (noise
model) that models the statistics of the la-
bel noise into a convolutional neural network
(CNN) architecture. The noise model and the
CNN weights are learned jointly from noisy
training data, which prevents the model from
overfitting to erroneous labels. Through ex-
tensive experiments on several text classifica-
tion datasets, we show that this approach en-
ables the CNN to learn better sentence repre-
sentations and is robust even to extreme label
noise. We find that proper initialization and
regularization of this noise model is critical.
Further, by contrast to results focusing on large
batch sizes for mitigating label noise for image
classification, we find that altering the batch
size does not have much effect on classifica-
tion performance.

1 Introduction

Deep Neural Networks (DNNs) have led to sig-
nificant advances in the fields of computer vi-
sion (He et al., 2016), speech processing (Graves
et al., 2013) and natural language processing
(Kim, 2014; Young et al., 2018; Devlin et al.,
2018). To be effective, supervised DNNs rely on
large amounts of carefully labeled training data.
However, it is not always realistic to assume that
example labels are clean. Humans make mistakes
and, depending on the complexity of the task,
there may be disagreement even among expert la-
belers. Further, samples drawn from the class con-
ditional densities with overlapping supports gives

rise to the label noise in training datasets. To sup-
port noisy labels in data, we need new training
methods that can be used to train DNNs directly
from the corrupted labels to significantly reduce
human labeling efforts. Zhu and Wu (2004) per-
form an extensive study on the effect of label noise
on classification performance of a classifier and
find that noise in input features is less important
than noise in training labels.

In this work, we add a noise model layer on
top of our target model to account for label noise
in the training set, following (Jindal et al., 2016;
Sukhbaatar et al., 2014). We provide extensive
experiments on several text classification datasets
with artificially injected label noise. We study the
effect of two different types of label noise; Uni-
form label flipping (Uni), where a clean label is
swapped with another label sampled uniformly at
random; and Random label flipping (Rand) where
a clean label is swapped with another label from
the given number of labels sampled randomly over
a unit simplex.

We also study the effect of different initializa-
tion, regularization, and batch sizes when training
with noisy labels. We observe that proper initial-
ization and regularization helps the noise model
learn to be robust to even extreme amounts of
noise. Finally, we use low-dimensional projec-
tions of the features of the training examples to
understand the effectiveness of the noise model.

The rest of the paper is organized as follows.
Section 2 discusses the various approaches in lit-
erature to handle label noise. In Section 3, we
describe the problem statement along with the
proposed approach. We describe the experimen-
tal setup and datasets in Section 4. We empiri-
cally evaluate the performance of the proposed ap-
proach along with the discussion in Section 5 and
finally conclude our work in Section 6.
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2 Related Work

Learning from label noise is a widely studied
problem in the classical machine learning set-
ting. Earlier works (Brodley and Friedl, 1999;
Rebbapragada and Brodley, 2007; Manwani and
Sastry, 2013) consider learning from noisy labels
for a wide range of classifiers including SVMs
(Natarajan et al., 2013) and fisher discriminants
(Lawrence, 2001). Traditional approaches handle
label noise by detecting and eliminating the cor-
rupted labels. More details about these approaches
can be found in (Frénay and Verleysen, 2014).

Recently, DNNs have made huge gains in
performance over traditional methods on large
datasets with very clean labels. However large
real-world datasets often contain label errors. A
number of works have attempted to address this
problem of learning from corrupted labels for
DNNs. These approaches can be divided into two
categories; attempts to mitigate the effect of label
noise using auxiliary clean data, and attempts to
learn directly from the noisy labels.

Presence of auxiliary clean data: This line
of research exploits a small, clean dataset to cor-
rect the corrupted labels. For instance, Li et al.
(2017) learn a teacher network with clean data to
re-weight a noisy label with a soft label in the loss
function. Similarly, Veit et al. (2017) use the clean
data as a label correction network. One can use
this auxiliary source of information to do infer-
ence over latent clean labels (Vahdat, 2017). Fur-
ther, Yao et al. (2018) models the auxiliary trust-
worthiness of noisy image labels to alleviate the
effect of label noise. Though these methods show
very promising results, the absence of clean data
in some situations might hinder the applicability
of these methods.

Learning directly from noisy labels: This re-
search directly learns from the noisy labels by
designing a robust loss function, or by model-
ing the latent labels. For instance, Reed et al.
(2014), apply bootstrapping to the loss function
to have consistent label prediction for similar im-
ages. Similarly, Joulin et al. (2016) alleviate the
label noise effect by adequately weighting the loss
function using the sample number. Jiang et al.
(2017) propose a sequential meta-learning model
that takes in a sequence of loss values and outputs
the weights for the labels. Ghosh et al. (2017) fur-
ther explores the conditions on loss functions such
that the loss function is noise tolerant.

A number of approaches learn the transition
from latent labels to the noisy labels. For example,
Mnih and Hinton (2012) propose a noise adapta-
tion framework for symmetric label noise. Based
on this work, several other works (Sukhbaatar
et al., 2014; Jindal et al., 2016; Patrini et al., 2017;
Han et al., 2018) account for the label noise by
learning a noisy layer on top of a DNN where the
learned transition matrix represents the label flip
probabilities. Similarly, Xiao et al. (2015) propose
a probabilistic image conditioned noise model.
Azadi et al. (2015) proposed an image regulariza-
tion technique to detect and discard the noisy la-
beled images. Other approaches include building
two parallel classifiers (Misra et al., 2016) where
one classifier deals with image recognition and the
other classifier models humans reporting bias.

All of these approaches have targeted image
classification. In this work, we propose a frame-
work for learning from noisy labels for text clas-
sification using a DNN architecture. Similar to
(Sukhbaatar et al., 2014; Jindal et al., 2016; Patrini
et al., 2017), we append a non-linear processing
layer on top of this architecture to model the la-
bel noise. This layer helps the base architecture to
learn better representations, even in the presence
of label noise. We empirically show that, for bet-
ter classification performance, the knowledge of
noise transition matrix is not needed. Instead, the
process forces the DNN to learn better sentence
representations.

3 Problem Statement

In a supervised text classification setting where
xi ∈ Rd is a d-dimensional word embedding of
the ith word in a sentence of length l (padded
wherever necessary), we represent the sample as
a temporal embedding matrix X ∈ Rd×l which
belongs to one of the K classes. Let the noise-free
training set be denoted by

D = {(X1, y1), (X2, y2), · · · , (Xn, yn)},

where yi ∈ {1, . . . ,K} represents the category of
ith sample, n is the total number of training sam-
ples, and there is an unknown joint distribution
p(X, y) on the sample/label pairs. This temporal
representation of a sample X is fed as input to a
classifier on the training set D with sample cat-
egories y. However, as mentioned in Section 2,
we cannot access the true noise-free samples la-
bels and instead, observe noisy labels corrupted
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by an unknown noise distribution. Let this noisy
training set be denoted by

D′ = {(X1, y
′
1), (X2, y

′
2), · · · , (Xn, y

′
n)},

where y′i represents the corrupted label for the sen-
tence Xi. In this work, we suppose the label noise
is class-conditional, where the noisy label y′i de-
pends only on the true label yi, but not on the input
Xi or any other labels yj or y′j . Under this model,
the label noise is characterized by the conditional
distribution

p(y′ = i|y = j) = Φij ,

which we describe via the K × K column-
stochastic matrix Φij , parameterized by a matrix
Q = {Φij}.

In our experiments, we artificially inject label
noise into the training and validation sets. We
fix the noise distribution Φij and, for a training
sample, we generate a noisy label by drawing i.i.d
from this noise distribution Φij . However, we do
not alter the test labels.

Though the proposed approach works for any
noise distribution, for this study, we focus on two
different types of label flip distributions. We use
a noise model parameterized by the overall proba-
bility of a label error, denoted by 0 ≤ p ≤ 1. For a
noise level p, we set the noise distribution matrix

Φ = (1− p)I +
p

K
IIK , (1)

and we call it Uniform label flip noise model.
Here, I represents the identity matrix and II de-
notes the all-ones matrix. Similarly, we describe
the random label flip noise model as

Φ = (1− p)I + p∆, (2)

where I is the identity matrix, and ∆ is a matrix
with zeros along the diagonal and remaining en-
tries of each column are drawn uniformly and in-
dependently from theK−1-dimensional unit sim-
plex. The label error probability for each class is
p, while the probability distribution within the er-
roneous classes is drawn uniformly at random.

Our objective is to train a classifier on the noisy
labeled sample categories on the training set D′
such that it jointly makes accurate predictions of
the true label y and learns the noise transition ma-
trix simultaneously, given X. For the noisy dataset
D′, it is straightforward to train a classifier that

predicts the noisy labels using conditional distri-
bution for the noisy labeled input sentence X:

p(y′ = ŷ′|X) =
∑
i

(
p(y′ = ŷ′|y = ŷi)

p(y = ŷi|X)
)
. (3)

One can learn the classifier associated with p(y′ =
ŷ′|x) via standard training on the noisy set D′. To
predict the clean labels by learning the conditional
distribution p(y = ŷi|x) requires more effort, as
we cannot extract the “clean” classifier from the
noisy classifier when the label noise distribution is
unknown.

3.1 Proposed Framework

We refer to the DNN model without the final layer
as the base model or network without noise model
(WoNM). This model, along with the non-linear
layer, is trained via back-propagation on the noisy
training dataset. The non-linear processing layer
in the noise model transforms the base model out-
puts to match the noisy labels during the forward
pass better and presents the denoised labels to
the base model during the backward pass. The
noise layer is parameterized by a square matrix
Ψ ∈ RK×K). At test time, we remove this learned
noise model and use the output of the base model
as final predictions.

We refer to the base model parameters as Θ.
The base model outputs a probability distribu-
tion over the number of K categories denoted as
p (y = ŷi|X; Θ)∀i ∈ {1, 2, · · · ,K}. During the
forward pass the noise model transforms this out-
put to obtain the noisy labels as

p
(
y′|X; Θ,Ψ

)
= σ (Ψ× p (y|X; Θ)) , (4)

where σ(·) represents the usual softmax operator.
Note that both the equations (3) and (4) compute
the probability distribution over noisy labels – our
noise model does not learn a noise transition ma-
trix. However, we assert that the knowledge of ex-
act noise statistics is neither necessary nor suffi-
cient for the better prediction results.

We learn the base model parameters Θ and the
noise model parameters Ψ by maximizing the log
likelihood (4) over all of the training samples,
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minimizing the cross-entropy loss:

L(Θ,Ψ;D′) = − 1

n

n∑
i=1

log
[
p
(
y′|Xi; Θ,Ψ

)]
= − 1

n

n∑
i=1

log [σ (Ψ× p (y|Xi; Θ))]yi

(5)

Similar to (Sukhbaatar et al., 2014), we initial-
ize the noise model weights to the identity ma-
trix. Since DNNs have high capacity, we may
encounter the situation when the base model it-
self absorbs all the label noise and, thus, the noise
model does not learn anything at all. In order to
avoid this situation, and to prevent overfitting, we
apply l2 regularization to the noise model. How-
ever, we want the noise model to overfit the la-
bel noise. In the experiment section, we observe
that with proper regularization and weight initial-
ization the noise model absorbs most of the label
noise. Finally, we train the entire network accord-
ing to the following loss function:

L = − 1

n

n∑
i=1

log [σ (Ψ× p (y|Xi; Θ))]yi

+
1

2
λ||Ψ||22. (6)

Here, λ is a tuning parameter and we validate
the value of λ by repeating the experiment mul-
tiple times with multiple λ values over different
datasets and choose the one with better classifica-
tion performance on the validation set for the re-
spective datasets. A value of λ = 0.01 works best.

4 Datasets and Experimental Setup

In this section, we empirically evaluate the per-
formance of the proposed approach for text clas-
sification and compare our results with the other
methods.

4.1 General Setting
In all the experiments, we use a publicly-
available deep learning library Baseline – a fast
model development tool for NLP tasks (Pres-
sel et al., 2018). For all the different datasets,
we choose a commonly-used, high-performance
model from (Kim, 2014) as a base model. To
examine the robustness of the proposed ap-
proach, we intentionally flip the class labels
with 0% to 70% label noise, in other words:

Te
xt

D
at

a

Dataset K L N T Type
SST-2 2 19 76961 1821 Balanced
TREC 6 10 5000 500 Not Balanced
AG-News 4 38 110K 10K Balanced
DBpedia 14 29 504K 70K Balanced

Table 1: Summary of text classification datasets; K:
denotes the number of classes, L: represents the aver-
age length of sentence, N: denotes the number of train-
ing samples, T: represents the number of test samples,
Type: describes whether the dataset is balanced.

p ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, and
observe the effect of different types of label flip-
ping, such as uniform (Uni) and random (Rand)
label flipping, along with instance-dependent la-
bel noise. For all the experiments, we use early
stopping based on validation set accuracy where
the class labels in validation are also corrupted.

We indicate the performance of a standard deep
network Without Noise model (WoNM) on the
noisy label dataset. We also plot the results for
the stacked Noise Model Without Regularization
(NMWoRegu) and stacked Noise Model With Reg-
ularization (NMwRegu). Unless otherwise stated,
in all the deep networks with the stacked noise
model, we initialize the noise layer parameters as
an identity matrix. We further analyze the effect of
the noise layer initialization on the overall perfor-
mance. We define TDwRegu as the stacked noise
model with regularization, initialized with true in-
jected noise distribution and RandwRegu as the
stacked noise model with regularization, initial-
ized randomly. We run all experiments five times
and report the mean accuracy.

4.2 Datasets
Here, we describe all the text classification
datasets used to evaluate the performance of the
proposed approach. The base model architecture
is the same for all datasets. For each set, we tune
the number of filter windows and filter lengths us-
ing the development set. Along with the descrip-
tion, we also provide the hyper-parameters we se-
lected for each. Table 1 summarizes the basic
statistic of the datasets.

1. SST-21 (Socher et al., 2011): Stanford Sen-
timent Treebank dataset for predicting the
sentiment of movie reviews. The classifica-
tion task involves detecting positive or neg-
ative reviews. Using the base model with

1http://nlp.stanford.edu/sentiment/

http://nlp.stanford.edu/sentiment/
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SS
T-

2

Batch Size 50 100
Label Flips Random Random

Noise% Clean Labels 10 20 30 40 45 47 50 0 10 20 30 40 45 47 50
WoNM 87.27% 83.29% 79.08% 73.42% 64.03% 58.1% 54.73% 49.7% 86.53% 81.44% 75.58% 71.88% 63.39% 57.12% 55.81% 52.32%
TDwRegu01 86.88% 85.37% 84.92% 83.29% 78.53% 74.01% 51.95% 49.5% 86.88% 84.88% 85.08% 82.41% 76.09% 70.10% 58.98% 49.86%
NMWoRegu 87.28% 86.2% 84.07% 81.29% 70.42% 62.27% 55.76% 48.42% 86.66% 84.72% 83.03% 78.2% 66.65% 61.32% 57.11% 52.24%
NMwRegu001 86.08% 85.01% 83.82% 81.97% 73.18% 62.18% 55.63% 48.87% 86.51% 85.26% 84.37% 81.05% 69.54% 60.89% 56.8% 51.6%
NMwRegu01 87.78% 86.04% 85.04% 82.7% 77.43% 66.96% 61.5% 49.08% 86.33% 85.17% 85.10% 81.9% 76.2% 65.47% 58.92% 52.46%

T
R

E
C

Batch Size 10
Label Flips Uniform Random

Noise% Clean data 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
WoNM 92.8% 87.6% 83.6% 75.87% 67.27% 57.4% 46.27% 42.8% 92.8% 85.93% 82.2% 74.0% 68.4% 53.53% 48.2% 31.47%
TDwRegu01 50.87% 45.33% 45.4% 36.33% 25.87% 28.33% 16.87% 16.87% 50.87% 56.4% 36.8% 24.0% 25.47% 22.6% 18.8% 22.6%
NMWoRegu 92.33% 88.07% 84.67% 76.4% 68.47% 58.4% 50.07% 41.33% 92.07% 85.87% 84.27% 72.47% 66.53% 50.13% 44.6% 33.0%
NMwRegu001 92.47% 90.53% 88.07% 81.6% 73.47% 64.07% 55.87% 43.67% 92.4% 88.53% 86.4% 77.2% 67.67% 54.67% 47.93% 34.87%
NMwRegu01 92.73% 90.8% 89.53% 88.67% 84.93% 79.67% 69.67% 52.4% 92.7% 90.33% 90.6% 86.47% 83.07% 70.93% 65.2% 33.4%

Batch Size 50
Label Flips Uniform Random

Noise% Clean Labels 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
WoNM 92.8% 87.27% 83.07% 75.00% 69.13% 61.53% 50.13% 39.8% 92.8% 86.00% 81.2% 76.2% 64.07% 52.4% 47.4% 34.13%
TDwRegu01 55.73% 50.4% 44.73% 39.6% 22.27% 25.67% 14.93% 21.00% 55.73% 45% 44.93% 27.73% 27.87% 22.6% 17.87% 22.6%
NMWoRegu 92.6% 87.73% 83.33% 76.33% 70.67% 56.8% 48.2% 39.67% 92.60% 85.27% 83.00% 73.6% 65.8% 50.4% 45.93% 30.73%
NMwRegu001 92.53% 90.73% 87.20% 82.53% 73.93% 65.07% 52.87% 44.60% 92.53% 88.% 87.2% 79.07% 71.2% 51.67% 49.00% 33.40%
NMwRegu01 92.53% 91.33% 90.27% 88.47% 83.87% 77.87% 68.73% 55.67% 92.53% 90.00% 90.2% 85.93% 82.6% 71.4% 67.33% 37.53%

A
G

-N
ew

s

Batch Size 100
Label Flips Uniform Random

Noise% Clean Labels 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
WoNM 92.31% 89.96% 87.42% 84.55% 79.96% 75.42% 68.78% 59.94% 92.31% 89.71% 86.11% 79.05% 76.04% 65.09% 45.79% 38.12%
TDwRegu01 92.47% 92.25% 92.15% 92.04% 84.87% 77.56% 63.13% 47.83% 92.68% 92.09% 91.99% 61.81% 62.44% 70.26% 24.99% 38.12%
NMWoRegu 91.94% 91.89% 91.21% 90.51% 89.29% 88.02% 86.25% 79.88% 91.97% 91.79% 91.00% 90.04% 88.82% 86.49% 77.66% 43.01%
NMwRegu001 92.47% 92.21% 91.82% 91.21% 90.71% 89.61% 88.43% 85.32% 92.62% 92.14% 91.5% 91.07% 90.2% 88.68% 64.01% 55.11%
NMwRegu01 92.55% 92.23% 92.2% 91.98% 91.7% 91.23% 90.54% 89.78% 92.57% 92.23% 91.96% 91.69% 91.13% 90.77% 76.64% 62.04%

Batch Size 1024
Label Flips Uniform Random

Noise% Clean Labels 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
WoNM 92.42% 89.77% 87.04% 84.07% 79.77% 74.54% 67.59% 59.41% 92.29% 89.47% 85.78% 80.51% 75.99% 65.55% 45.50% 39.75%
TDwRegu01 92.61% 92.37% 92.18% 92.07% 84.92% 62.74% 63.43% 47.59% 92.54% 92.34% 91.82% 53.81% 69.04% 48.88% 25.05% 46.9%
NMWoRegu 92.16% 91.51% 90.80% 89.58% 85.58% 79.96% 70.79% 62.89% 92.22% 91.61% 90.33% 86.92% 82.61% 71.49% 48.96% 39.96%
NMwRegu001 92.4% 92.13% 91.88% 91.46% 90.14% 89.07% 86.96% 80.94% 92.54% 91.87% 91.38% 90.42% 99.18% 86.78% 75.74% 50.11%
NMwRegu01 92.66% 92.2% 92.29% 92.09% 91.7% 91.24% 90.72% 89.88% 92.57% 92.11% 91.99% 91.57% 91.2% 90.5% 77.93% 61.12%

D
B

pe
di

a

Batch Size 512
Label Flips Uniform Random

Noise% Clean Labels 30 50 70 75 80 85 90 0 30 50 70 75 80 85 90
WoNM 99.01% 95.19% 89.59% 74.01% 67.73% 57.87% 47.48% 34.01% 99.01% 94.72% 86.08% 62.87% 53.13% 40.78% 26.6% 12.42%
NMWoRegu 98.93% 95.07% 90.2% 78.32% 73.65% 66.24% 54.24% 40.9% 98.93% 93.55% 84.53% 25.96% 54.84% 42.96% 29.25% 12.97%
NMwRegu001 99.04% 98.94% 98.81% 98.61% 98.52% 98.33% 98.13% 97.53% 99.04% 98.93% 98.82% 98.62% 98.48% 98.33% 89.00% 11.36%
NMwRegu01 99.01% 98.89% 98.71% 98.45% 98.32% 98.10% 97.76% 97.15% 98.92% 99.01% 98.88% 98.72% 98.10% 97.67% 38.62% 16.27%

Batch Size 1024
Label Flips Uniform Random

Noise% Clean Labels 30 50 70 75 80 85 90 0 30 50 70 75 80 85 90
WoNM 98.96% 97.93% 96.47% 90.49% 68.07% 59.78% 48.06% 55.29% 98.96% 94.75% 86.36% 63.75% 53.39% 40.87% 26.18% 11.9%
NMWoRegu 98.87% 97.37% 95.71% 89.54% 72.79% 66.49% 55.27 60.7% 98.87% 93.96% 85.6% 44.85% 54.32% 42.21% 28.63% 12.51%
NMwRegu001 98.97% 98.9% 98.79% 98.53% 98.50% 98.32% 98.19% 97.27% 98.97% 98.83% 98.51% 98.1% 98.49% 98.32% 83.79% 10.51%
NMwRegu01 98.92% 98.79% 98.58% 98.26% 98.32% 98.09% 97.79% 96.54% 98.92% 98.88% 98.72% 98.35% 98.12% 97.72% 33.10% 15.94%

Table 2: Test performance for different text classification datasets

clean labels we obtain classification accuracy
of 87.27%. For this dataset, the base model
network architecture consists of an input and
embedding layer + [3, 4, 5] feature windows
with 100 feature maps each and dropout rate
0.5 with batch size 50.

2. TREC2 (Voorhees and Tice, 1999): A ques-
tion classification dataset consisting of fact
based questions divided into broad seman-
tic categories. We use a six-class version
of TREC dataset. For this dataset, the base
model network architecture consists of an in-
put and embedding layer + [3] one feature
windows with 100 feature maps and dropout
rate 0.5 with batch size 10.

2http://cogcomp.cs.illinois.edu/Data/
QA/QC/

3. Ag-News3 (Zhang et al., 2015): A large-
scale, four-class topic classification dataset.
It contains approx 110K training samples.
For this dataset, the base model network ar-
chitecture consists of Input layer + Embed-
ding layer + [3, 4, 5] feature windows with
200 feature maps and dropout rate 0.5 with
batch size 100.

4. DBpedia3 (Zhang et al., 2015): A large scale
14-class topic classification dataset contain-
ing 36K training samples per category. For
this dataset, the base model network archi-
tecture consists of Input layer + Embedding
layer + [1, 2, 3, 4, 5, 7] feature windows with
400 feature maps each and dropout rate 0.5
with batch size 1024.

3http://www.di.unipi.it/˜gulli/AG_
corpus_of_news_articles.html

http://cogcomp.cs.illinois.edu/Data/QA/QC/
http://cogcomp.cs.illinois.edu/Data/QA/QC/
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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For all the datasets, we use Rectified Linear
Units (ReLU) and fix the base model architec-
ture. We use early stopping on dev. sets for
all the datasets. We run all the experiments 5
times and report the average classification accu-
racy in Table 2. We train all the networks end-
to-end via stochastic gradient descent over shuf-
fled mini-batches with the Adadelta update rule
(Zeiler, 2012) except for the DBpedia, where we
use SGD. In order to improve base model per-
formance, we initialize the word embedding layer
with the publicly available word2vec word vectors
(Mikolov et al., 2013) for all the datasets except
for DBpedia, where we use GloVe embeddings
(Pennington et al., 2014).

(a) (b)

(c) (d)

(e) (f)

Figure 1: AG-News Dataset: a) Input random label
noise; (b-f) learned weight matrix learned by different
noise models.

5 Results and Discussion

We evaluate the performance of our model in Ta-
ble 2 for each datasets in the presence of uniform
and random label noise and compare the perfor-
mance with the base model (WoNM) as our base-
line. For all datasets, the proposed approach is sig-
nificantly better than the baseline for both random
and uniform label noise. For all datasets, we ob-
serve a gain of approximately 30% w.r.t the base-
line in the presence of extreme label noise. We
do observe a drop in classification accuracy as we

increase the percentage of label noise but even at
the extreme label noise our method outperformed
the baseline method. Interestingly, if we assume
an oracle to determine prior knowledge of true
noise distribution (TDwRegu01), it does not nec-
essarily improve classification performance, espe-
cially for multi-class classification problems. For
binary classification, using the SST-2 dataset, we
did observe that the noise model initialized with
the true noise distribution works better than all the
other models. In addition to this, we also observe a
slight performance gain for the proposed approach
over the baseline with clean labels – perhaps due
to label noise inherent in the datasets.

5.1 Effect of Different Regularizers

The NMwRegu01 performs better in all cases for
both types of label noise. We plot the weight ma-
trix learned by all the noise models in all the noise
regimes. For brevity, we only plot the weight ma-
trix for AG-News datasets with 30% label noise
in Fig.1. We find that l2 regularization diffuses
the diagonal weight elements and learns more
smoothed off-diagonal elements which resemble
the corresponding input label noise distribution in
Fig. 1d. This also means that, without regulariza-
tion, the noise model has less ability to diffuse the
diagonal elements which leads to poor classifica-
tion performance. Therefore, we use a regularizer
(l2) to diffuse the diagonal entries.

In some cases, especially for low label noise,
we find the l2 regularization with a small penalty
works better than a large penalty since, for low la-
bel noise, learning a less diffuse noise is beneficial.
The proposed approach scales to a large number of
label categories, as evident from the experiments
on DBpedia dataset in the last row of Table .2.

(a) Classification accuracy (b) Noise model norm

Figure 2: Effect of noise model initialization scaling on
the classification performance
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(a) TREC [Uniform] (b) AG-News [Uniform] (c) DBpedia [Uniform]

(d) TREC [Random] (e) AG-News [Random] (f) DBpedia [Random]

Figure 3: Effect of batch size on label noise classification for different datasets. [Best viewed in color]

5.2 Effect of Different Scaling Factors on
Noise Layer Initialization

We initialize the noise model weights as identity
matrices with gain equal to the number of classes
(gain = K) for all experiments. We observe the
effect of different gain values on the overall per-
formance of the proposed network in Fig. 2 where
on x-axis we vary the scaling factor – a function
of number of classes in the dataset. We plot the
classification performance for the DBpedia dataset
with 50% random noise. For each noise model
in Fig. 2a, we find that setting the gain to K
works best and any other gain results in poor per-
formance.

In Fig. 2b we plot the Frobenius norm of the
learned noise model weights with respect to the
different gain values. We find that, using the high
gain initialization, the model learns a high noise
model norm, resulting in poor classification per-
formance. This finding provides support to the
claim in (Liao et al., 2018) that “higher layer norm
leads to highest test errors.”

5.3 Effect of Batch Size

We also observe the effect of different batch sizes
on performance as described in (Rolnick et al.,
2017). For all datasets, we do observe small per-
formance gains for highly non-uniform noisy la-
bels, for instance 70%, in Fig. 3 row 2. However,
for uniform label flips, we do not observe perfor-

TRB TRPr
Data(N%) WoNM Noisy True NMwRegu01 Noisy True
SST2 (40%) 70.24 70.95 79.24 82.32 73.90 83.25
AG (70%) 59.70 52.44 79.18 90.33 86.27 89.4
AG (60%) 83.25 68.8 88.28 90.45 87.77 90.78
TREC (40%) 66.80 63.4 79.0 73.40 69.6 83.2
TREC (20%) 83.6 80.0 86.0 87.40 83.6 90.0

Table 3: SVM Classification

mance gains with increasing batch size.

5.4 Instance Dependent Label Noise

We further investigate the performance of the pro-
posed approach on instance-dependent label noise
by flipping each class labels with different noise
percentages as shown in Fig. 4a. For brevity, we
present results on AG-News dataset in Fig. 4. On
this type of label noise, the performance of the
proposed approach is far better than the baseline
with a performance improvement of ∼ 6%. The
noise model learned by the proposed approach is
shown in Fig. 4b and we show the normalized
weight matrix in Fig. 4c. We observe that the
learned noise model is able to capture the input
label noise statistics and is highly correlated to the
input noise distribution with Pearson Correlation
Coefficient 0.988.

5.5 Understanding Noise Model

In order to further understand the noise model,
we first train the base model and the proposed
model on noisy labels. Afterward, we collect
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(a) (b) (c)

Figure 4: AG-News Dataset: a) input instance dependent label noise; b) learned weight matrix by proposed ap-
proach; c) column normalization of (b).

Iteration 0 Iteration 5 Iteration 10 Iteration 18

(a) Proposed model

Iteration 0 Iteration 5 Iteration 10 Iteration 18

(b) No noise model stacked

Figure 5: t-SNE visualization of the last layer activations of a base network before softmax for TREC Dataset with
50% corrupted labels; First row in (a) when the corresponding true labels are superimposed on the t-SNE data
points; Second row in (a) when the noisy labels are superimposed onto the t-SNE data points. [Best viewed in
color]

the last fully-connected layer’s activations for all
the training samples and treat them as the learned
feature representation of the input sentence. We
get two different sets of feature representations,
one corresponding to the base model (TRB), and
the other corresponding to the proposed model
(TRPr). Given these learned feature representa-

tions – the artificially injected noisy labels and the
true labels of the training data – we learn two dif-
ferent SVMs for each model, with and without
noise. For the base model, for both SVMs, we
use TRB representation as inputs and train the first
SVM with the true labels as targets and the second
SVM with the unreliable labels as targets. Simi-
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larly, we train two SVMs for the proposed model.
After training, we evaluate the performance of all
the learned SVMs on clean test data in Table 3,
where the 1st column represents the corresponding
model performance, “Noisy” and “True” column
represents the SVM performance when trained on
noisy and clean labels, respectively. We run these
experiments for different datasets with different
label noise.

The SVM, trained on TRB and noisy labels, is
very close to the base model performance (3). This
suggests that the base model is just fitting the noisy
labels. On the other hand, when we train an SVM
on the TRPr representations with true labels as tar-
gets, the SVM achieves the proposed model per-
formance. This means that the proposed approach
helps the base model to learn better feature repre-
sentations even with the noisy targets, which sug-
gest that this noise model is learning a label de-
noising operator.

We analyze the representation of training sam-
ples in feature domain by plotting the t-SNE em-
beddings (Van Der Maaten, 2014) of the TRB and
TRPr. For brevity, we plot the t-SNE visualiza-
tions for TREC dataset with 50% label noise in
Fig. 5 .

For each network, we show two different t-SNE
plots. For example in Fig. 5a we plot two rows of
t-SNE embeddings for the proposed model. In the
first row of Fig. 5a, each training sample is rep-
resented by its corresponding true label, while in
the second row (the noisy label plot) each training
sample is represented by its corresponding noisy
label. We observe that, as the learning process pro-
gresses, the noise model helps the base model to
cluster the training samples in the feature domain.
With each iteration, we can see the formation of
clusters in Row 1. However, in Row 2, when the
noisy labels are superimposed, the clusters are not
well separated. This means that the noise model
denoises the labels and presents the true labels to
the base network to learn.

In Fig. 5b, we plot two rows of t-SNE embed-
dings of the TRB representations. It seems that
the network directly learns the noisy labels. This
provides further evidence to support (Zhang et al.,
2016)’s finding that the deep network memorizes
data without knowing of true labels. In Row 2 of
Fig. 5b, we can observe that the network learns
noisy features representations which can be well
clustered according to given noisy labels.

6 Conclusion

In this work, we propose a framework to enable
a DNN to learn better sentence representations in
the presence of label noise for text classification
tasks. To model the label noise, we append a non-
linear noise model on top of the standard DNN ar-
chitecture. With proper initialization and regular-
ization, the noise model is able to absorb most of
the label noise and helps the base model to learn
better sentence representations.

Acknowledgments

We thank the anonymous reviewers for their de-
tailed and insightful comments. We would also
like to thank Patrick Haffner, Sagnik Ray Choud-
hury, Yanjie Zhao and Amy Hemmeter for their
valuable discussions with us during the course of
this research.

References
Samaneh Azadi, Jiashi Feng, Stefanie Jegelka, and

Trevor Darrell. 2015. Auxiliary image regulariza-
tion for deep cnns with noisy labels. arXiv preprint
arXiv:1511.07069.

Carla E Brodley and Mark A Friedl. 1999. Identifying
mislabeled training data. Journal of artificial intel-
ligence research, 11:131–167.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Benoı̂t Frénay and Michel Verleysen. 2014. Classifica-
tion in the presence of label noise: a survey. IEEE
transactions on neural networks and learning sys-
tems, 25(5):845–869.

Aritra Ghosh, Himanshu Kumar, and PS Sastry. 2017.
Robust loss functions under label noise for deep neu-
ral networks. In AAAI, pages 1919–1925.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on, pages 6645–6649. IEEE.

Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou,
Ivor Tsang, Ya Zhang, and Masashi Sugiyama.
2018. Masking: A new perspective of noisy super-
vision. arXiv preprint arXiv:1805.08193.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.



3255

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li,
and Li Fei-Fei. 2017. Mentornet: Regularizing very
deep neural networks on corrupted labels. arXiv
preprint arXiv:1712.05055.

Ishan Jindal, Matthew Nokleby, and Xuewen Chen.
2016. Learning deep networks from noisy la-
bels with dropout regularization. In Data Mining
(ICDM), 2016 IEEE 16th International Conference
on, pages 967–972. IEEE.

Armand Joulin, Laurens van der Maaten, Allan Jabri,
and Nicolas Vasilache. 2016. Learning visual fea-
tures from large weakly supervised data. In Euro-
pean Conference on Computer Vision, pages 67–84.
Springer.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Neil D Lawrence. 2001. Estimating a kernel fisher dis-
criminant in the presence of label noise. In ICML.
Citeseer.

Yuncheng Li, Jianchao Yang, Yale Song, Liangliang
Cao, Jiebo Luo, and Li-Jia Li. 2017. Learning from
noisy labels with distillation. In ICCV, pages 1928–
1936.

Qianli Liao, Brando Miranda, Andrzej Banburski, Jack
Hidary, and Tomaso Poggio. 2018. A surprising lin-
ear relationship predicts test performance in deep
networks. arXiv preprint arXiv:1807.09659.

Naresh Manwani and PS Sastry. 2013. Noise tolerance
under risk minimization. IEEE transactions on cy-
bernetics, 43(3):1146–1151.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Ishan Misra, C Lawrence Zitnick, Margaret Mitchell,
and Ross Girshick. 2016. Seeing through the human
reporting bias: Visual classifiers from noisy human-
centric labels. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 2930–2939.

Volodymyr Mnih and Geoffrey E Hinton. 2012. Learn-
ing to label aerial images from noisy data. In Pro-
ceedings of the 29th International conference on ma-
chine learning (ICML-12), pages 567–574.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K
Ravikumar, and Ambuj Tewari. 2013. Learning with
noisy labels. In Advances in neural information pro-
cessing systems, pages 1196–1204.

Giorgio Patrini, Alessandro Rozza, Aditya Kr-
ishna Menon, Richard Nock, and Lizhen Qu. 2017.
Making deep neural networks robust to label noise:

A loss correction approach. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 1944–1952.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Daniel Pressel, Sagnik Ray Choudhury, Brian Lester,
Yanjie Zhao, and Matt Barta. 2018. Baseline: A
library for rapid modeling, experimentation and de-
velopment of deep learning algorithms targeting nlp.
In Proceedings of Workshop for NLP Open Source
Software (NLP-OSS), pages 34–40. Association for
Computational Linguistics.

Umaa Rebbapragada and Carla E Brodley. 2007. Class
noise mitigation through instance weighting. In
European Conference on Machine Learning, pages
708–715. Springer.

Scott Reed, Honglak Lee, Dragomir Anguelov, Chris-
tian Szegedy, Dumitru Erhan, and Andrew Rabi-
novich. 2014. Training deep neural networks on
noisy labels with bootstrapping. arXiv preprint
arXiv:1412.6596.

David Rolnick, Andreas Veit, Serge Belongie, and Nir
Shavit. 2017. Deep learning is robust to massive la-
bel noise. arXiv preprint arXiv:1705.10694.

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
conference on empirical methods in natural lan-
guage processing, pages 151–161. Association for
Computational Linguistics.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri,
Lubomir Bourdev, and Rob Fergus. 2014. Train-
ing convolutional networks with noisy labels. arXiv
preprint arXiv:1406.2080.

Arash Vahdat. 2017. Toward robustness against la-
bel noise in training deep discriminative neural net-
works. In Advances in Neural Information Process-
ing Systems, pages 5596–5605.

Laurens Van Der Maaten. 2014. Accelerating t-sne us-
ing tree-based algorithms. The Journal of Machine
Learning Research, 15(1):3221–3245.

Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin,
Abhinav Gupta, and Serge J Belongie. 2017. Learn-
ing from noisy large-scale datasets with minimal su-
pervision. In CVPR, pages 6575–6583.

Ellen M Voorhees and Dawn M Tice. 1999. The trec-8
question answering track evaluation. In TREC, vol-
ume 1999, page 82.

http://aclweb.org/anthology/W18-2506
http://aclweb.org/anthology/W18-2506
http://aclweb.org/anthology/W18-2506


3256

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xi-
aogang Wang. 2015. Learning from massive noisy
labeled data for image classification. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2691–2699.

Jiangchao Yao, Jiajie Wang, Ivor W Tsang, Ya Zhang,
Jun Sun, Chengqi Zhang, and Rui Zhang. 2018.
Deep learning from noisy image labels with quality
embedding. IEEE Transactions on Image Process-
ing.

Tom Young, Devamanyu Hazarika, Soujanya Poria,
and Erik Cambria. 2018. Recent trends in deep
learning based natural language processing. IEEE
Computational Intelligence Magazine, 13(3):55–75.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Ben-
jamin Recht, and Oriol Vinyals. 2016. Understand-
ing deep learning requires rethinking generalization.
arXiv preprint arXiv:1611.03530.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Xingquan Zhu and Xindong Wu. 2004. Class noise
vs. attribute noise: A quantitative study. Artificial
Intelligence Review, 22(3):177–210.


