
Proceedings of NAACL-HLT 2019, pages 3207–3215
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

3207

Segmentation-free Compositional n-gram Embedding

Geewook Kim and Kazuki Fukui and Hidetoshi Shimodaira
Department of Systems Science, Graduate School of Informatics, Kyoto University

Mathematical Statistics Team, RIKEN Center for Advanced Intelligence Project
{geewook, k.fukui}@sys.i.kyoto-u.ac.jp, shimo@i.kyoto-u.ac.jp

Abstract

We propose a new type of representation learn-
ing method that models words, phrases and
sentences seamlessly. Our method does not
depend on word segmentation and any human-
annotated resources (e.g., word dictionaries),
yet it is very effective for noisy corpora writ-
ten in unsegmented languages such as Chinese
and Japanese. The main idea of our method
is to ignore word boundaries completely (i.e.,
segmentation-free), and construct representa-
tions for all character n-grams in a raw cor-
pus with embeddings of compositional sub-n-
grams. Although the idea is simple, our exper-
iments on various benchmarks and real-world
datasets show the efficacy of our proposal.

1 Introduction

Most existing word embedding models (Mikolov
et al., 2013; Pennington et al., 2014; Bojanowski
et al., 2017) take a sequence of words as their in-
put. Therefore, the conventional models are de-
pendent on word segmentation (Yang et al., 2017;
Shao et al., 2018), which is a process of convert-
ing a raw corpus (i.e., a sequence of characters)
into a sequence of segmented character n-grams.
After the segmentation, the segmented charac-
ter n-grams are assumed to be words, and each
word’s representation is constructed from distri-
bution of neighbour words that co-occur together
across the estimated word boundaries. However,
in practice, this kind of approach has several prob-
lems. First, word segmentation is difficult espe-
cially when texts in a corpus are noisy or unseg-
mented (Saito et al., 2014; Kim et al., 2018). For
example, word segmentation on social network
service (SNS) corpora, such as Twitter, is a chal-
lenging task since it tends to include many mis-
spellings, informal words, neologisms, and even
emoticons. This problem becomes more severe
in unsegmented languages, such as Chinese and

Japanese, whose word boundaries are not explic-
itly indicated. Second, word segmentation has am-
biguities (Luo et al., 2002; Li et al., 2003). For
example, a compound word 線形代数学 (linear
algebra) can be seen as a single word or sequence
of words, such as線形|代数学 (linear | algebra).

Word segmentation errors negatively influence
subsequent processes (Xu et al., 2004). For exam-
ple, we may lose some words in training corpora,
leading to a larger Out-Of-Vocabulary (OOV)
rate (Sun et al., 2005). Moreover, segmentation
errors, such as segmentingきのう (yesterday) as
き|のう (tree | brain), produce false co-occurrence
information. This problem is crucial for most ex-
isting word embedding methods as they are based
on distributional hypothesis (Harris, 1954), which
can be summarized as: “a word is characterized
by the company it keeps” (Firth, 1957).

To enhance word segmentation, some recent
works (Junyi, 2013; Sato, 2015; Jeon, 2016) made
rich resources publicly available. However, main-
taining them up-to-date is difficult and it is infea-
sible for them to cover all types of words. To
avoid the negative impacts of word segmentation
errors, Oshikiri (2017) proposed a word embed-
ding method called segmentation-free word em-
bedding (sembei). The key idea of sembei is
to directly embed frequent character n-grams from
a raw corpus without conducting word segmenta-
tion. However, most of the frequent n-grams are
non-words (Kim et al., 2018), and hence sembei
still suffers from the OOV problems. The fun-
damental problem also lies in its extension (Kim
et al., 2018), although it uses external resources to
reduce the number of OOV. To handle OOV prob-
lems, Bojanowski et al. (2017) proposed a novel
compositional word embedding method with sub-
word modeling, called subword-information skip-
gram (sisg). The key idea of sisg is to ex-
tend the notion of vocabulary to include subwords,
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Figure 1: A Japanese tweet with manual segmenta-
tion. (a) is the segmentation result of a widely-used
word segmenter which conventional word embedding
methods are dependent on. (b) and (c) show the em-
bedding targets and their co-occurrence information to
be considered in our proposed method scne on the
boundaries of 数|学 and 学|勉. Unlike conventional
word embedding methods, scne considers all possible
character n-grams on all boundaries (e.g.,線|形,形|代,
代|数, · · · ) in the raw corpus without segmentation.

namely, substrings of words, for enriching the rep-
resentations of words by the embeddings of its
subwords. In sisg, the embeddings of OOV (or
unseen) words are computed from the embedings
of their subwords. However, sisg requires word
segmentation as a prepossessing step, and the way
of collecting co-occurrence information is depen-
dent on the results of explicit word segmentation.

For solving the issues of word segmentation and
OOV, we propose a simple but effective unsuper-
vised representation learning method for words,
phrases and sentences, called segmentation-free
compositional n-gram embedding (scne). The
key idea of scne is to train embeddings of char-
acter n-grams to compose representations of all
character n-grams in a raw corpus, and it enables
treating all words, phrases and sentences seam-
lessly (see Figure 1 for an illustrative explanation).
Our experimental results on a range of datasets
suggest that scne can compute high-quality rep-
resentations for words and sentences although it
does not consider any word boundaries and is not
dependent on any human annotated resources.

2 Segmentation-free Compositional
n-gram Embedding (scne)

Our method scne successfully combines a sub-
word model (Zhang et al., 2015; Wieting et al.,
2016; Bojanowski et al., 2017; Zhao et al., 2018)
with an idea of character n-gram embedding (Os-
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Figure 2: A graphical illustration of the proposed
model trying to compute a representation for a char-
acter n-gram x(i,j). The co-occurrence of x(i,j) and
its neighbouring context n-grams are used to train em-
beddings of compositional n-grams.

hikiri, 2017; Kim et al., 2018). In scne, the vec-
tor representation of a target character n-gram is
defined as follows. Let x1x2 · · ·xN be a raw un-
segmented corpus of N characters. For a range
i, i + 1, . . . , j specified by index t = (i, j), 1 ≤
i ≤ j ≤ N , we denote the substring xixi+1 · · ·xj
as x(i,j) or xt. In a training phase, scne first
counts frequency of character n-grams in the raw
corpus to construct n-gram set V by collectingM -
most frequent n-grams with n ≤ nmax, where
M and nmax are hyperparameters. For any target
character n-gram x(i,j) = xixi+1 · · ·xj in the cor-
pus, scne constructs its representation vx(i,j)

∈
Rd by summing the embeddings of its sub-n-
grams as follows:

vx(i,j)
=

∑
s∈S(x(i,j))

zs,

where S(x(i,j)) = {x(i′,j′) ∈ V | i ≤ i′ ≤ j′ ≤
j} consists of all sub-n-grams of target x(i,j), and
the embeddings of sub-n-grams zs ∈ Rd, s ∈ V
are model parameters to be learned. The objective
of scne is similar to that of Mikolov et al. (2013),

∑
t∈D

 ∑
c∈C(t)

log σ
(
v>xt

uxc

)
+

k∑
s̃∼Pneg

log σ
(
−v>xt

us̃

),
where σ(x) = 1

1+exp(−x) , D = {(i, j) | 1 ≤ i ≤
j ≤ N, j − i + 1 ≤ ntarget}, and C((i, j)) =
{(i′, j′) | x(i′,j′) ∈ V, j′ = i− 1 or i′ = j+1}. D
is the set of indexes of all possible target n-grams
in the raw corpus with n ≤ ntarget, where ntarget
is a hyperparameter. C(t) is the set of indexes of
contexts of the target xt, that is, all character n-
grams in V that are adjacent to the target (see Fig-
ures 1 and 2). The negative sampling distribution
Pneg of s̃ ∈ V is proportional to its frequency in
the corpus. The model parameters zs, us̃ ∈ Rd,
s, s̃ ∈ V , are learned by maximizing the objective.
We set ntarget = nmax in our experiments.



3209

�	��
������
(We wrote a paper)

�

�	

	

	�

� � 
 �

�

�
 ���


� ����
: (frequent) n-grams in the vocabulary

�� ���

��

Figure 3: An example of a frequent n-gram lattice.

Although we examine frequent n-grams for
simplicity, incorporating supervised word bound-
ary information or byte pair encoding into the con-
struction of compositional n-gram set would be an
interesting future work (Kim et al., 2018; Sennrich
et al., 2016; Heinzerling and Strube, 2018).

2.1 Comparison to Oshikiri (2017)

To avoid the problems of word segmentation,
Oshikiri (2017) proposed segmentation-free word
embedding (sembei) (Oshikiri, 2017) that con-
siders the M -most frequent character n-grams as
individual words. Then, a frequent n-gram lat-
tice is constructed, which is similar to a word
lattice used in morphological analysis (see Fig-
ure 3). Finally, the pairs of adjacent n-grams in
the lattice are considered as target-context pairs
and they are fed to existing word embedding meth-
ods, e.g., skipgram (Mikolov et al., 2013). Al-
though sembei is simple, the frequent n-gram
vocabulary tends to include a vast amount of non-
words (Kim et al., 2018). Furthermore, its vocab-
ulary size is limited toM , hence, sembei can not
avoid the undesirable issue of OOV. The proposed
scne avoids these problems by taking all possi-
ble character n-grams as embedding targets. Note
that the target-context pairs of sembei are fully
contained in those of scne (see Figure 1).

2.2 Comparison to Kim et al. (2018)

To overcome the problem of OOV in sembei,
Kim et al. (2018) proposed an extension of
sembei called word-like n-gram embedding
(wne). In wne, the n-gram vocabulary is fil-
tered to have more vaild words by taking advan-
tage of a supervised probabilistic word segmenter.
Although wne reduce the number of non-words,
there is still the problem of OOV since its vocabu-
lary size is limited. In addition, wne is dependent
on word segmenter while scne does not.

2.3 Comparison to Bojanowski et al. (2017)
To deal with OOV words as well as rare words,
Bojanowski et al. (2017) proposed subword infor-
mation skip-gram (sisg) that enriches word em-
beddings with the representations of its subwords,
i.e., sub-character n-grams of words. In sisg, a
vector representation of a target word is encoded
as the sum of the embeddings of its subwords.
For instance, subwords of length n = 3 of the
word where are extracted as <wh, whe, her,
ere, re>, where “<”,“>” are special symbols
added to the original word to represent its left and
right word boundaries. Then, a vector representa-
tion of where is encoded as the sum of the embed-
dings of these subwords and that of the special se-
quence <where>, which corresponds to the orig-
inal word itself. Although sisg is powerful, it
requires the information of word boundaries as its
input, that is, semantic units need to be specified
when encoding targets. Therefore, it cannot be di-
rectly applied to unsegmented languages. Unlike
sisg, scne does not require such information.
The proposed scne is much simpler, but due to its
simpleness, the embedding target of scne should
contains many non-words, which seems to be a
problem (see Figure 1). However, our experimen-
tal results show that scne successfully captures
the semantics of words and even sentences for un-
segmented languages without using any knowl-
edge of word boundaries (see Section 3).

3 Experiments

In this section, we perform two intrinsic and two
extrinsic tasks at both word and sentence level,
focusing on unsegmented languages. The imple-
mentation of our method is available on GitHub1.

3.1 Common Settings
Baselines: We use skipgram (Mikolov et al.,
2013), sisg (Bojanowski et al., 2017) and
sembei (Oshikiri, 2017) as word embedding
baselines. For sentence embedding, we first test
simple baselines obtained by averaging the word
vectors over a word-segmented sentence. In ad-
dition, we examine several recent successful sen-
tence embedding methods, pv-dbow, pv-dm (Le
and Mikolov, 2014) and sent2vec (Pagliardini
et al., 2018) in an extrinsic task. Note that both
scne and sembei have embeddings of frequent
character n-grams as their model parameters, but

1www.github.com/kdrl/SCNE
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Figure 4: Word (left) and sentence (right) similarity
tasks on portions of Chinese Wikipedia corpus.

the differences come from training strategies, such
as embedding targets and the way of collecting co-
occurrence information (see Section 2.1 for more
details). For contrasting scne with sembei, we
also propose a variant of sembei (denoted by
sembei-sum) as one of baselines, which com-
poses word and sentence embeddings by simply
summing up the embeddings of their sub-n-grams
which are learned by sembei.
Hyperparameters Tuning: To see the effect
of rich resources for the segmentation-dependent
baselines, we employ widely-used word seg-
menter with two settings: Using only a basic dic-
tionary (basic) or using a rich dictionary together
(rich). The dimension of embeddings is 200, the
number of epochs is 10 and the number of nega-
tive samples is 10 for all the methods. The n-gram
vocabulary size M = 2 × 106 is used for sisg,
sembei and scne. The other hyperparameters,
such as learning rate and nmax, are carefully ad-
justed via a grid search in the validation set. In
the word similarity task, 2-fold cross validation
is used for evaluation. In the sentence similarity
task, we use the provided validation set. In the
downstream tasks, vector representations are com-
bined with a supervised logistic regression classi-
fier. We repeat training and testing of the classifier
10 times, while the prepared dataset is randomly
split into train (60%) and test (40%) sets at each
time, and the hyperparameters are tuned by 3-fold
cross validation in the train set. We adopt mean ac-
curacy as the evaluation metric. See Appendix A.1
for more experimental details.

3.2 Word and Sentence Similarity

We measure the ability of models to capture se-
mantic similarity for words and sentences in Chi-
nese; see Appendix A.2 for the experiment in

skipgramrich sisgrich sembei sembei-sum scne

Wiki. 51.0 59.2 49.0 48.6 62.2
SNS 41.3 47.0 38.9 41.5 60.0

Diff. -9.7 -12.2 -10.1 -7.1 -2.2

Table 1: Spearman rank correlations of the word sim-
ilarity task on two different Chinese corpora. Best
scores are boldface and 2nd best scores are underlined.

Japanese. Given a set of word pairs, or sen-
tence pairs, and their human annotated similarity
scores, we calculated Spearman’s rank correlation
between the cosine similarities of the embeddings
and the scores. We use the dataset of Jin and Wu
(2012) and Wang et al. (2017) for Chinese word
and sentence similarity respectively. Note that the
conventional models, such as skipgram, cannot
provide the embeddings for OOV words, while the
compositional models, such as sisg and scne,
can compute the embeddings by using their sub-
word modeling. In order to show comparable re-
sults, we use the null vector for these OOV words
following Bojanowski et al. (2017).
Results: To see the effect of training corpus size,
we train all models on portions of Wikipedia2.
The results are shown in Figure 4. As it can be
seen, the proposed scne is competitive with or
outperforms the baselines for both word and sen-
tence similarity tasks. Moreover, it is worth noting
that scne provides high-quality representations
even when the size of training corpus is small,
which is crucial for practical real-world settings
where rich data is not available. For a next ex-
periment to see the effect of noisiness of train-
ing corpus, we test both noisy SNS corpus and
the Wikipedia corpus3 of the same size. The re-
sults are reported in Table 1. As it can be seen,
the performance of segmentation-dependent meth-
ods (skipgram, sisg) are decreased greatly by
the noisiness of the corpus, while scne degrades
only marginally. The other two segmentation-free
methods (sembei, sembei-sum) performed
poorly. This shows the efficacy of our method in
the noisy texts. On the other hand, in preliminary
experiments on English (not shown), scne did not
get better results than our segmentation-dependent
baselines and it will be a future work to incorpo-
rate easily obtainable word boundary information
into scne for segmented languages.

2We use 10, 50, 100, 300MB of Wikipedia from the head.
3We use 100MB of Sina Weibo posts for Chinese SNS

corpus and 100MB of Chinese Wikipedia corpus.
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Wikipedia corpora Noisy SNS corpora

Chinese Japanese Korean Chinese Japanese Korean

All Intersec. All Intersec. All Intersec. All Intersec. All Intersec. All Intersec.

skipgrambasic 8.9 (11) 81.0 7.8 (10) 75.7 11.5 (15) 77.1 2.9 (5) 58.2 2.9 (7) 41.4 2.4 (7) 35.4
skipgramrich 9.5 (12) 81.0 16.7 (20) 75.8 11.9 (15) 76.9 3.0 (5) 58.2 4.1 (9) 40.9 2.5 (7) 34.2
sisgbasic 79.2 (100) 82.3 72.2 (100) 75.7 72.2 (100) 76.2 71.0 (100) 64.8 67.1 (100) 46.9 63.4 (100) 39.8
sisgrich 79.5 (100) 82.2 73.3 (100) 74.7 72.4 (100) 76.6 70.8 (100) 64.9 67.5 (100) 46.0 63.3 (100) 37.7
sembei 21.8 (25) 79.0 18.2 (23) 70.1 14.2 (19) 41.8 4.5 (7) 59.6 4.9 (10) 41.9 5.0 (13) 33.7
sembei-sum 76.8 (100) 74.2 69.9 (100) 61.3 66.3 (100) 56.0 72.3 (100) 56.4 66.3 (100) 40.7 64.3 (100) 34.8
scne (Proposed) 79.8 (100) 81.5 73.9 (100) 74.0 73.2 (100) 73.9 74.9 (100) 65.0 68.1 (100) 47.6 65.3 (100) 38.2

Table 2: Noun category prediction accuracies (higher is better) and coverages [%] (in parentheses, higher is better).

Segmentation-free Chinese Japanese Korean

pv-dbowbasic 82.84 85.24 84.16
pv-dbowrich 83.47 85.55 84.80
pv-dmbasic 76.96 80.67 66.35
pv-dmrich 77.94 81.37 67.32
sent2vecbasic 85.09 87.12 82.31
sent2vecrich 85.39 87.20 82.34
skipgrambasic 85.79 86.76 84.06
skipgramrich 85.77 87.16 84.48
sisgbasic 85.67 87.22 84.34
sisgrich 85.04 87.25 84.35
sembei-sum X 83.41 80.80 74.98
scnenmax=8 X 87.07 87.42 84.15
scnenmax=16 X 87.76 88.03 86.74

Table 3: Sentiment classification accuracies [%].

3.3 Noun Category Prediction

As a word-level downstream task, we conduct a
noun category prediction on Chinese, Japanese
and Korean4. Most settings are the same as those
of Oshikiri (2017). Noun words and their semantic
categories are extracted from Wikidata (Vrandečić
and Krötzsch, 2014) with a predetermined seman-
tic category set5, and the classifier is trained to
predict the semantic category of words from the
learned word representations, where unseen words
are skipped in training and treated as errors in test-
ing. To see the effect of the noisiness of corpora,
both noisy SNS corpus and Wikipedia corpus of
the same size are examined as training corpora6.
Results: The results are reported in Table 2. Since
the set of covered nouns (i.e., non-OOV words)
depends on the methods, we calculate accuracies
in two ways for a fair comparison: Using all the
nouns and using the intersection of the covered
nouns. scne achieved the highest accuracies in
all the settings when using all the nouns, and also

4Although Korean has spacing, word boundaries are not
obviously determined by space.

5{food, song, music band name, manga, fictional charac-
ter name, television series, drama, chemical compound, dis-
ease, taxon, city, island, country, year, business enterprise,
public company, profession, university, language, book}

6For each language, we use 100MB of Wikipedia and
SNS data as training corpora. For the SNS data, we use Sina
Weibo for Chinese and Twitter for the rest.

performed well when using the intersection of the
covered nouns, especially for the noisy corpora.

3.4 Sentiment Analysis

As a sentence-level evaluation, we perform senti-
ment analysis on movie review data. We use 101k,
56k and 200k movie reviews and their scores re-
spectively from Chinese, Japanese and Korean
movie review websites (see Appendix A.1.6 for
more details). Each review is labeled as positive
or negative by its rating score. Sentence embed-
ding models are trained using the whole movie re-
views as training corpus. Among the reviews, 5k
positive and 5k negative reviews are randomly se-
lected, and the selected reviews are used to train
and test the classifiers as explained in Section 3.1.
Results: The results are reported in Table 3. The
accuracies show that scne is also very effective in
the sentence-level application. In this experiment,
we observe that the larger nmax contributes to the
performance improvement in sentence-level appli-
cation by allowing our model to capture composed
representations for longer phrases or sentences.

4 Conclusion

We proposed a simple yet effective unsupervised
method to acquire general-purpose vector repre-
sentations of words, phrases and sentences seam-
lessly, which is especially useful for languages
whose word boundaries are not obvious, i.e., un-
segmented languages. Although our method does
not rely on any manually annotated resources or
word segmenter, our extensive experiments show
that our method outperforms the conventional ap-
proaches that depend on such resources.
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A Appendices

A.1 Experimental Details
A.1.1 Hyperparameters Tuning
For skipgram, we performed a grid search over
(h, γ) ∈ {1, 5, 10}×{0.01, 0.025}, where h is the
size of context window and γ is the initial learning
rate. For sisg, we performed a grid search over
(h, γ, nmin, nmax) ∈ {1, 5, 10}× {0.01, 0.025}×
{1, 3} × {4, 8, 12}, where h is the size of con-
text window, γ is the initial learning rate, nmin

is the minimum length of character n-gram and
nmax is the maximum length of character n-gram.
For pv-dbow, pv-dm and sent2vec, we per-
formed a grid search over (h, γ) ∈ {5, 10} ×
{0.01, 0.05, 0.1, 0.2, 0.5}, where h is the size of

context window and γ is the initial learning rate.
For sembei and scne, we used the initial learn-
ing rate 0.01 and nmin = 1. The maximum length
of n-gram to consider nmax is grid searched over
{4, 6, 8} in the word and sentence similarity tasks.
In the noun category prediction task, we used
nmax = 8 for sembei and the nmax of scne is
grid searched over {4, 6, 8}. For sentiment analy-
sis task, we tested both nmax = 8 and nmax = 16
for sembei and scne to see the effect of large
nmax. After carefully monitoring the loss curve
and the performance in the word and sentence
similarity tasks, we set the number of epochs 10
for all methods. In preliminary experiments, we
also tested the number of epochs 20 for the word-
segmentation-dependent baselines but there were
no significant differences. In the two supervised
downstream tasks, the learned vector representa-
tions are combined with the logistic regression
classifier. The parameterC, which is the inverse of
regularization strength of the classifier, is adjusted
via a grid search over C ∈ {0.1, 0.5, 1, 5, 10}.
Again, as explained in the main paper, the hyper-
paramters are grid searched on the determined val-
idation set for all experiments.

A.1.2 Implementations

Here we provide the list of implementations
of baselines which are used in our experi-
ments. For skipgram7, sisg8, sembei9, and
sent2vec10, we use the official implementa-
tions provided by the authors. Meanwhile, as for
pv-dbow and pv-dm, we employ a widely-used
implementation of Gensim library11.

A.1.3 Word Segmenters and Word
Dictionaries for Unsegmented
Languages

Below we list the word segmentation tools and
word dictionaries which are used in our experi-
ments. We employed a widely-used word segmen-
tation tool for each language.

For Chinese language, we used jieba12 with its

7https://code.google.com/archive/p/
word2vec/

8https://github.com/facebookresearch/
fastText

9https://github.com/oshikiri/
w2v-sembei

10https://github.com/epfml/sent2vec
11https://radimrehurek.com/gensim/

models/doc2vec.html
12https://github.com/fxsjy/jieba
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default dictionary13 or with an extended dictio-
nary14, which fully supports both traditional and
simplified Chinese characters.

For Japanese, we used MeCab15 with its default
dictionary called IPADIC15 along with specially
designed neologisms-extended dictionary called
mecab-ipadic-NEologd16. Note that, because
this extended dictionary mecab-ipadic-NEologd is
specially designed to include many neologisms,
there is a significant word coverage improvement
by using this word dictionary as it can be seen in
the Japanese noun category prediction task in the
main paper.

For Korean, we used mecab-ko17 with its de-
fault dictionary called mecab-ko-dic18 along with
another extended dictionary called NIADic19.

A.1.4 Training Corpora

We prepared Wikipedia corpora and SNS corpora
for Chinese, Japanese and Korean for our exper-
iments. For the Wikipedia corpora, we used the
first 10, 50, 100, 200 and 300MB of texts from the
publicly available Wikipedia dumps20. The texts
are extracted by using WikiExtractor tool21. For
Chinese SNS corpus, we used 100MB of Leiden
Weibo Corpus (van Esch, 2012) from the head.
For Japanese and Korean SNS corpora, we col-
lected Japanese and Korean tweets using Twitter
Streaming API. We removed usernames and URLs
from the SNS corpora. There were many informal
words, emoticons and misspellings in the SNS cor-
pora. We preserved them without preprocessing to
see the effect of the noisiness of training corpora
in our experiments.

A.1.5 Preprocess of Wikidata

For the noun category prediction task, we ex-
tracted noun words and their semantic categories
from Wikidata (Vrandečić and Krötzsch, 2014)

13https://github.com/fxsjy/jieba/blob/
master/jieba/dict.txt

14https://github.com/fxsjy/jieba/blob/
master/extra_dict/dict.txt.big

15http://taku910.github.io/mecab/
16https://github.com/neologd/

mecab-ipadic-neologd
17https://bitbucket.org/eunjeon/

mecab-ko
18https://bitbucket.org/eunjeon/

mecab-ko-dic
19https://github.com/haven-jeon/NIADic
20https://dumps.wikimedia.org/
21https://github.com/attardi/

wikiextractor

skipgramrich sisgrich sembei sembei-sum scne

Wiki. 8.3 15.4 4.0 9.3 24.1
SNS 5.3 12.7 2.8 9.3 23.0

Diff. -3.0 -2.7 -1.2 -0.0 -1.1

Table 4: Spearman rank correlations of the word simi-
larity task on two different Japanese corpora.

following Oshikiri (2017). We determined the se-
mantic category set used in our experiments as
follows: First, we collected Wikidata objects that
have Chinese, Japanese, Korean and English la-
bels. Next, we sorted the categories by the number
of noun words, and removed categories (e.g., Wiki-
media category or Wikimedia template) that do not
represent any semantic category. We also removed
out several categories that contain too many noun
words (e.g., human) or too few noun words (e.g.,
academic discipline). Since there were several du-
plicated labels for different Wikidata objects, the
number of nouns for each language is slightly dif-
ferent. Each category has at least 0.1k words and
no more than 5k words. The numbers of extracted
noun words that are used in our experiments were
22,468, 22,396 and 22,298 for Chinese, Japanese
and Korean, respectively.

A.1.6 Movie Review Datasets
In the main paper, three movie review datasets
are used to evaluate the quality of sentence
embeddings. We used 101,114, 55,837 and
200,000 movie reviews and their rating scores
from Yahoo奇摩電影22, Yahoo!映画23 and Naver
Movies24 for Chinese, Japanese and Korean, re-
spectively.

A.2 Additional Experiment on Japanese

In this section, we show the results of Japanese
word similarity experiments. We use the datasets
of Sakaizawa and Komachi (2018). It con-
tains 4427 pairs of words with human similarity
scores. We omit sentence similarity task since
there is no public widely-used benchmark dataset
for Japanese yet. Following the main paper, given
a set of word pairs and their human annotated sim-
ilarity scores, we calculated Spearman’s rank cor-
relation between the cosine similarities of the em-
beddings and the human scores. We use 2-fold

22https://github.com/fychao/
ChineseMovieReviews

23https://github.com/dennybritz/
sentiment-analysis/tree/master/data

24https://github.com/e9t/nsmc
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cross validation for hyperparameters tuning. The
same grid search is performed as explained in Sec-
tion A.1.1. To see the effect of the noisiness of
training corpora, we use two Japanese corpora,
100MB of Wikipedia corpus and 100MB of noisy
SNS corpus (Twitter), which are also used in the
Japanese noun category prediction task in the main
paper. As seen in Table 4, the experiment results
for Japanese are similar to those of Chinese in the
main paper.


