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Abstract
Neural Machine Translation (NMT) systems
are known to degrade when confronted with
noisy data, especially when the system is
trained only on clean data. In this paper, we
show that augmenting training data with sen-
tences containing artificially-introduced gram-
matical errors can make the system more ro-
bust to such errors. In combination with an au-
tomatic grammar error correction system, we
can recover 1.0 BLEU out of 2.4 BLEU lost
due to grammatical errors. We also present a
set of Spanish translations of the JFLEG gram-
mar error correction corpus, which allows for
testing NMT robustness to real grammatical
errors.

1 Introduction

Neural Machine Translation (NMT) is undeniably
a success story: public benchmarks (Bojar et al.,
2016) are dominated by neural systems, and neu-
ral approaches are the de facto option for industrial
systems (Wu et al., 2016; Hassan Awadalla et al.,
2018; Crego et al., 2016; Hieber et al., 2018).
Even under low-resource conditions, neural mod-
els were recently shown to outperform traditional
statistical approaches (Nguyen and Chiang, 2018).

However, there are still several shortcomings
of NMT that need to be addressed: a (non-
exhaustive) list of six challenges is discussed
by Koehn and Knowles (2017), including out-
of-domain testing, rare word handling, the wide-
beam problem, and the large amount of data
needed for learning. An additional challenge is ro-
bustness to noise, both during training and at in-
ference time.

In this paper, we study the effect of a specific
type of noise in NMT: grammatical errors. We pri-
marily focus on errors that are made by non-native

†Equal contribution. Work performed at the University
of Notre Dame.

source-language speakers (as opposed to dialectal
language, SMS or Twitter language). Not only is
this linguistically important, but we believe that it
would potentially have great social impact.

Our contributions are three-fold. First, we con-
firm that NMT is vulnerable to source-side noise
when trained on clean data, losing up to 3.6 BLEU
on our test set. This is consistent with previous
work, yet orthogonal to it, since we use more re-
alistic noise for our experiments. Second, we ex-
plore training methods that can deal with noise,
and show that including noisy synthetic data in the
training data makes NMT more robust to handling
similar types of errors in test data. Combining this
simple method with an automatic grammar cor-
rection system, we find that we can recover 1.5
BLEU. Third, we release Spanish translations of
the JFLEG corpus,1 a standard benchmark for En-
glish Grammar Error Correction (GEC) systems.
We also release all other data and code used in this
paper.

Our additional annotations on both the JFLEG
corpus and the English WMT data will enable the
evaluation of the robustness of NMT systems on
realistic, natural noise: a robust system would ide-
ally produce the same output when presented with
either the original or the noisy source sentence.
We hope that our datasets will become a bench-
mark for noise-robust NMT, because we believe
that deployed systems should also be able to han-
dle source-side noise.

2 Data

We focus on NMT from English to Spanish. We
choose English to be our source-side language be-
cause there exist English corpora annotated with
grammar corrections, which we can use as a

1Freely available at https://bitbucket.com/
antonis/nmt-grammar-noise
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source of natural noise. Moreover, since English
is probably the most commonly spoken non-native
language (Lewis et al., 2009), our work could be
directly applicable to several translation applica-
tions. Our choice of Spanish as a target language
enables us to have access to existing parallel data
and easily create new parallel corpora (see below,
§2.3).

For all experiments, we use the Europarl
English-Spanish dataset (Koehn, 2005) as our
training set. In the synthetic experiments of Sec-
tion §2.2, we use the newstest2012 and new-
stest2013 as dev and test sets, respectively. Fur-
thermore, to test our translation methods on real
grammatical errors, we introduce a new collec-
tion of Spanish translations of the JFLEG cor-
pus (§2.3).

2.1 Grammar Error Correction Corpora
To our knowledge, there are five publicly available
corpora of non-native English that are annotated
with corrections, which have been widely used for
research in Grammar Error Correction (GEC). The
NUS Corpus of Learner English (NUCLE) con-
tains essays written by students at the National
University of Singapore, corrected by two annota-
tors using 27 error codes (Dahlmeier et al., 2013).
It has become the main benchmark for GEC, as
it was used in the CoNLL GEC Shared Tasks
(Ng et al., 2013, 2014). Other corpora include the
Cambridge Learner Corpus First Certificate in En-
glish FCE corpus (Yannakoudakis et al., 2011),
which is only partially public, the Lang-8 corpus
(Tajiri et al., 2012), which was harvested from on-
line corrections, and the AESW 2016 Shared Task
corpus, which contains corrections on texts from
scientific journals.

The last corpus is the JHU FLuency-Extended
GUG corpus (JFLEG) (Napoles et al., 2017). This
corpus covers a wider range of English proficiency
levels on the source side, and its correction anno-
tations include extended fluency edits rather than
just minimal grammatical ones. That way, the cor-
rected sentence is not just grammatical, but also
guaranteed to be fluent.

2.2 Synthetic grammar errors
Ideally, we would train a translation model to
translate grammatically noisy language by train-
ing it on parallel data with grammatically noisy
language. Since, to our knowledge, no such data
exist in the quantities that would be needed, an al-

Error Type Confusion Set

art {a, an, the, ∅}
prep {on, in, at, from, for,

under, over, with, into,
during, until, against,
among, throughout,of, to,
by, about, like, before, af-
ter, since, across, behind,
but, out, up, down, off, ∅}

nn {SG, PL}
sva {3SG, not 3SG, 2SG-Past,

not 2SG-Past}

Table 1: Confusion sets for each grammar error type.
The art and prep sets include an empty token (∅) al-
lowing for insertions and deletions. SG, PL, 2SG, and
3SG stand for singular, plural, second-person and third-
person singular respectively.

ternative is to add synthetic grammatical noise to
clean data. An advantage of this approach is that
controlled introduction of errors allows for fine-
grained analysis.

This is a two-step process, similar to the meth-
ods used in the GEC literature for creating syn-
thetic data based on confusion matrices (Ro-
zovskaya et al., 2014; Rozovskaya and Roth,
2010; Xie et al., 2016; Sperber et al., 2017). First,
we mimic the distribution of errors found in real
data, and then introduce errors by applying rule-
based transformations on automatic parse trees.

The first step involves collecting error statistics
on real data. Conveniently, the NUCLE corpus has
all corrections annotated with 27 error codes. We
focus on five types of errors, with the last four be-
ing the most common in the NUCLE corpus:
• drop: randomly deleting one character from

the sentence.2

• art: article/determiner errors
• prep: preposition errors
• nn: noun number errors
• sva: subject-verb agreement errors
Using the annotated training set of the NUCLE

corpus, we compute error distribution statistics,
resulting in confusion matrices for the cases out-
lined in Table 1. For art and prep errors, we ob-
tain probability distributions that an article, deter-
miner, or preposition is deleted, substituted with
another member of the confusion set, or inserted
in the beginning of a noun phrase. For nn errors,

2This error is not part of the NUCLE error list.
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Dataset
Percentage of Errors

Train Dev Test

sentences 2M 3K 3K
words 55M 74K 73K

drop 100% 100% 100%
art 96.4% 98.4% 99.8%
prep 95.7% 95.9% 98.4%
nn 94.5% 91.0% 98.6%
sva 93.1% 81.9% 82.0%

clean+drop 50% 50% –
clean+art 48.2% 49.1% –
clean+prep 47.8% 47.9% –
clean+nn 47.3% 45.5% –
clean+sva 46.5% 41.0% –

mix-all 79.9% 77.8% –

Table 2: Statistics on the original and synthetic En-Es
datasets. Each (synthetic) sentence has exactly one in-
troduced error, wherever possible. clean+[error] is the
concatenation of the [error] with the original clean
dataset, while mix-all includes six versions of each
training sentence, one without errors and one for each
error.

we obtain the probability of a noun being replaced
with its singular or plural form. For sva errors, the
probability that a present tense verb is replaced
with its third-person-singular (3SG) or not-3SG
form. An additional sva error that we included is
the confusion between the appropriate form for the
verb ‘to be’ in the past tense (‘was’ and ‘were’).

The second step involves applying the noise-
inducing transformations using our collected
statistics as a prior. We obtained parses for each
sentence using the Berkeley parser (Petrov et al.,
2006). The parse tree allows us to identify can-
didate error positions in each sentence (for ex-
ample, the beginning of a noun phrase without
a determiner, were one could be inserted). For
each error type we introduced exactly one error
per sentence, wherever possible, which we be-
lieve matches more realistic scenarios than previ-
ous work. It also allows for controlled analysis of
the behaviour of the NMT system (see Section 4).

For each error and each sentence, we first iden-
tify candidate positions (based on the error type
and the parse tree) and sample one of them based
on the specific error distribution statistics. Then,
we sample and introduce a specific error using the
corresponding probability distribution from the

confusion matrix. (In the case of drop, nn, and sva
errors, we only need to sample the position and
only insert/substitute the corresponding error.) If
no candidate positions are found (for example, a
sentence doesn’t have a verb that can be substi-
tuted to produce a sva error) then the sentence re-
mains unchanged.

Following the above procedure, we added er-
rors in our training, dev, and test set (henceforth
referred to as [error]). Basic statistics on our pro-
duced datasets can be found in Table 2, while ex-
ample sentences are shown in Table 3. Further-
more, we created training and dev sets that mix
clean and noisy data. The clean+[error] training
sets are the concatenation of each [error] with
the clean data, effectively including a clean and a
noisy version of each sentence pair.

We also created a training and dev dataset with
mixed error types, in our attempt to study the ef-
fect of including all noise types during training.
The mix-all dataset includes each training pair six
times: once with the original (clean) sentence as
the source, and once for every possible error. We
experimented with a mixed dataset that included
each training sentence once, with the number of
noisy sentences being proportional to the real error
distributions of the NUCLE dataset, but obtained
results similar to the [error] datasets.

2.3 JFLEG-es: Spanish translations of
JFLEG

The JFLEG corpus consists of a dev and test set
(no training set), with 747 and 754 English sen-
tences, respectively, collected from non-native En-
glish speakers. Each sentence is annotated with
four different corrections, resulting in four (fluent
and grammatical) reference sentences. About 14%
of the sentences do not include any type of error,
with the source and references being equivalent.

We created translations of the JFLEG corpus
that allow us to evaluate how well NMT fares com-
pared to a human translator, when presented with
noisy input. We will refer to the augmented JF-
LEG corpus as JFLEG-es.

Two professional translators were tasked with
producing translations for the dev and the test
set, respectively. The translators were presented
only with the original erroneous sentences; they
did not have access to the correction annotations.
They were asked to produce fluent, grammatical
translations in European Spanish (to match the
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Error Type Example

art

In October , Tymoshenko was sentenced to seven years in prison for entering into
what was reported to be a/*∅ disadvantageous gas deal with Russia.
Its ratification would require ∅/*the 226 votes.
It is a/*the good result, which nevertheless involves a certain risk.

prep

[. . . ] the motion to revoke an article based on/*in which the opposition leader , Yulia
Tymoshenko , was sentenced.
Its ratification would require ∅/*for 226 votes.

nn

Its ratification would require 226 votes/*vote.
The verdict/*verdicts is not yet final ; the court will hear Tymoshenko ’s appeal in
December.

sva

As a rule, Islamists win/*wins in the country; the question is whether they are the
moderate or the radical ones.
This cultural signature accompanies/*accompany the development of Moleskine;

Table 3: Example grammatical errors that were introduced in the En-Es WMT test set.

Spanish used in the Europarl corpus). There exist
cases where a translator might choose to preserve
a source-side error when producing the transla-
tion, such as translation of literary works where
it’s possible that grammar or fluency errors are in-
tentional; however, our translators were explicitly
asked not to do that. The exact instructions were
as follows:

Please translate the following sentences.
Note that some sentences will have
grammatical errors or typos in English.
Don’t try to translate the sentences word
for word (e.g. replicate the error in
Spanish). Instead, try to translate it as if
it was a grammatical sentence, and pro-
duce a fluent grammatical Spanish sen-
tence that captures its meaning.

3 Experiments

In this section, we provide implementation details
and the results of our NMT experiments. For con-
venience, we will refer to each model with the
same name as the dataset it was trained on; e.g.
the mix-all model will refer to the model trained
on the mix-all dataset.

3.1 Implementation Details
All data are tokenized, truecased, and split into
subwords using Byte Pair Encoding (BPE) with
32,000 operations (Sennrich et al., 2016). We filter
the training set to only contain sentences up to 80
words.

Our LSTM models are implemented using
DyNet (Neubig et al., 2017), and our transformer
models using PyTorch (Paszke et al., 2017). The
transformer model uses 6 layers, 8 attention heads,
the dimension for embeddings and positional feed-
forward are 512 and 2048 respectively . The sub-
layer computation sequence follows the guidelines
from Chen et al. (2018). Dropout probability is set
to 0.2 (also in the source embeddings, following
Sperber et al. (2017)). We use the learning rate
schedule in Vaswani et al. (2017) with warm-up
steps of 24000 but only decay the learning rate un-
til it reaches 10−5 as inspired by Chen et al. (2018).
For testing, we select the model with the best per-
formance on the dev set corresponding to the test
set. At inference time, we use a beam size of 4
with length normalization (Wu et al., 2016) with a
weight of 0.6.

3.2 Results

We report the results obtained with the transformer
model, as they were consistently better than the
LSTM one. All the result tables for the LSTM
models can be found in the Appendix.

The performance of our systems on the syn-
thetic WMT test sets, as measured by detokenized
BLEU (Papineni et al., 2002), is summarized in
Table 4. When the system is trained only on clean
data (first row) and tested on noisy data, it un-
surprisingly exhibits degraded performance. We
observe significant drops in the range of 1.0–3.6
BLEU.
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WMT Training Set
En-Es WMT Test Set

clean drop art prep nn sva average ± stdev

clean 33.0 29.6 31.3 32.0 29.3 32.1 31.2 ± 1.5

drop 31 30.2 30.0 30.0 28.3 30.6 30.0 ± 0.9
art 31.2 28.4 30.8 30.2 27.7 30.8 29.8 ± 1.4
prep 30.4 27.8 29.3 30.3 27.4 29.9 29.2 ± 1.3
nn 30.4 27.9 28.9 29.5 29.8 29.8 29.4 ± 0.8
sva 31.2 28.7 30.2 30.3 28.2 30.9 29.9 ± 1.2

clean+drop 32.9 31.4 31.4 31.8 29.5 32.0 31.5 ± 1.2
clean+art 32.7 29.7 31.7 31.7 28.8 32.1 31.1 ± 1.5
clean+prep 32.7 29.6 31.2 32.2 29.0 31.8 31.1 ± 1.5
clean+nn 32.5 29.4 30.7 31.4 31.0 31.6 31.1 ± 1.0
clean+sva 32.5 29.6 31.2 31.5 29.0 31.9 30.9 ± 1.4

mix-all 32.7 30.9 31.4 32.0 30.6 32.0 31.6 ± 0.7

Table 4: BLEU scores on the WMT test set without (clean) and with synthetic grammar errors. The best performing
models for each test set are highlighted. When training and test match (highlighted) we generally observe higher
results. However, including all clean and noisy data in the training set (mix-all) yields the best results across almost
all datasets, with the highest average BLEU and the lowest variance.

The largest drop (more than 3.5 BLEU) is ob-
served with nn errors in the source sentence.
This is not unreasonable: nouns almost always
carry content significant for translation. Especially
when translating into Spanish, a noun number
change can, and apparently does, also affect the
rest of the sentence significantly, for example, by
influencing the conjugation of a subsequent verb.
The second-largest drop (more than 3.0 BLEU
points) is observed in the case of drop errors.
This is also to be expected; typos produce out-
of-vocabulary (OOV) words, which in the case of
BPE are usually segmented to a most likely rarer
subword sequence than the original correct word.

We find that a training regime that includes both
clean and noisy sentences ([clean+error) results
in better systems across the board. Importantly,
these models manage to perform en par with the
clean model on the clean test set. Since the origi-
nal training set is part of the [clean+error training
sets, this behavior is expected. We conclude, thus,
that including the full clean dataset during training
is important for performance on clean data – one
cannot just train on noisy data.

The [clean+error] systems exhibit a notable
pattern: their BLEU scores are generally similar
to the clean system on all test sets, except for the
test set that matches their training set errors (high-
lighted in Table 4), where they generally obtain the
best performance.

The mix-all model is our best system on all
test sets (except drop) and on average. Unlike the
[clean+error] systems, it outperforms the clean
model on all noisy test sets and not only on a spe-
cific one. On average, using the mix-all training
set leads to an improvement of 0.4 BLEU over
the clean model and 0.1 − 0.7 BLEU over the
[clean+error] models. Furthermore, the mix-all
model exchibits the smallest performance standard
deviation of all models, averaging over all test sets.
This is another indication that our system is more
robust to multiple source-side variations. We fur-
ther explore this intuition in Section 4.

On the more realistic JFLEG-es dev and test
sets, we observe same trends but at a smaller scale,
as shown in Table 5. Our mix-all model gener-
ally achieves comparable results when presented
with each of the four reference corrections of the
test set (corX columns). However, when we use
the noisy source sentence as input (No corr col-
umn) our mix-all model obtains 1.4 BLEU im-
provements over the clean model. The difference
between the performance of the models when pre-
sented with clean and noisy input is another indi-
cator for robustness. On the JFLEG-es test set, the
noisy source results in a −3.1 BLEU point drop
for the clean model, while the drop for our mix-
all model is smaller, at −1.7 BLEU points.

In addition, we experimented with using an au-
tomatic error-corrected source as input to our sys-
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JFLEG-es Dev

Training
Manual correction No Auto

cor0 cor1 cor2 cor3 avg. corr. corr.

clean 32.1 31.5 32.5 33.3 32.4 31.1 31.2
mix-all 31.9 31.4 32.2 32.9 32.1 32.2 31.6

JFLEG-es Test

Training
Manual correction No Auto

cor0 cor1 cor2 cor3 avg. corr. corr.

clean 28.4 28.8 29.1 28.2 28.6 26.2 27.0
mix-all 27.7 28.1 28.1 27.5 27.8 26.8 26.7

Table 5: BLEU scores on the JFLEG-es dev and test datasets. Our proposed mix-all model is slightly behind the
clean model on manually corrected input (cor[0–3]). On noisy input (No corr.) the mix-all outperforms the clean
model (26.8 > 26.2). Preprocessing the noisy input with a GEC model (Auto corr.) slightly improves results.

tem (column Auto corr of Table 5). We used
the publicly available JFLEG outputs of the (al-
most) state-of-the-art model of Junczys-Dowmunt
and Grundkiewicz (2016) as inputs to our NMT
system.3 This experiment envisions a pipeline
where the noisy source is first automatically cor-
rected and then translated. As expected, this helps
the clean model (by +1.1 BLEU), but our mix-
all training helps even further (by another +0.8
BLEU). Interestingly, the automatic GEC system
only helps in the test set, while there are no im-
provements in the dev set. Naturally, since au-
tomatic GEC systems are imperfect, the perfor-
mance of this pipeline still lags behind translating
on clean data.

4 Analysis

We attempt an in-depth analysis of the impact of
the different source-side error types on the behav-
ior of our NMT system, when trained on clean data
and tested on the artificial noisy data that we cre-
ated.

Art Errors Table 6 shows the difference of the
BLEU scores obtained on the sentences, broken
down by the type of article error that was intro-
duced. The first observation is that in all cases the
difference is negative, meaning that we get higher
BLEU scores when testing on clean data. Encour-
agingly, there is practically no difference when we
substitute ‘a’ with ‘an’ or ‘an’ with ‘a’; the model

3This model has been recently surpassed by other sys-
tems, e.g. (Junczys-Dowmunt et al., 2018), but their outputs
are not available online.

seems to have learned very similar representations
for the two indefinite articles, and as a result such
an error has no impact on the produced output.
However, we observe larger performance drops
when substituting indefinite articles with the defi-
nite one and vice versa; since the target language
makes the same article distinction as the source
language, any article source error is propagated to
the produced translation.

Prep Errors Due to the large number of prepo-
sitions, we cannot present a full analysis of prepo-
sition errors, but highlights are shown in Table 7.
Deleting a correct preposition or inserting a wrong
one leads to performance drops of 1.2 and 0.8
BLEU points for the cleanmodel, but drops of 0.4
and 0.7 for the mix-all model.

Nn and Sva Errors We found no significant per-
formance difference between the different nn er-
rors. Incorrectly pluralizing a noun has the same
adverse effect as singularizing it, leading to per-
formance reductions of over 4.0 and 3.5 BLEU
points respectively. We observe a similar behavior
with sva errors: each error type leads to roughly
the same performance degradation.

5 Related Work

The effect of noise in NMT was recently stud-
ied by Khayrallah and Koehn (2018), who ex-
plored noisy situations during training due to web-
crawled data. This type of noise includes mis-
aligned, mistranslated, or untranslated sentences
which, when used during training, significantly
degrades the performance of NMT. Unlike our
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Correct Substituted article
article a an the ∅ all

a – 0 −2.0 −2.1 −2.1
an 0 – −5.7 −7.3 −6.3
the −4.1 −2.2 – −1.7 −1.8
∅ −3.1 −3.7 −1.5 – −1.7

all −3.8 −3.4 −1.5 −1.8 −1.7

Table 6: Effect of article substitutions in test data (art)
relative to clean test data (clean), broken down by sub-
stitution type. Different article substitutions have very
different impacts on BLEU; changing an indefinite ar-
ticle to definite is especially damaging.

work, they primarily focus on a setting where the
training set is noisy but the test set is clean.

In addition, Heigold et al. (2018) evaluated
the robustness of word embeddings against word
scrambling noise, and showed that performance
in downstream tasks like POS-tagging and MT
is especially hurt. Sakaguchi et al. (2017a) stud-
ied word scrambling and the Cmabrigde Uin-
ervtisy (Cambridge University) effect, where hu-
mans are able to understand the meaning of sen-
tences with scrambled words, performing word
recognition (word level spelling correction) with
a semi-character RNN system.

Focusing only on character-level NMT models,
Belinkov and Bisk (2018) showed that they exhibit
degraded performance when presented with noisy
test examples (both artificial and natural occurring
noise). In line with our findings, they also showed
that slightly better performance can be achieved by
training on data artificially induced with the same
kind of noise as the test set.

Sperber et al. (2017) proposed a noise-
introduction system reminiscent of WER, based
on insertions, deletions, and substitutions. An
NMT system tested on correct transcriptions
achieves a BLEU score of 55 (4 references), but
tested on the ASR transcriptions it only achieves a
BLEU score of 35.7. By introducing similar noise
in the training data, they were able to make the
NMT system slightly more robust. Interestingly,
they found that the optimal amount of noise on the
training data is smaller than the amount of noise
on the test data.

The notion of linguistically plausible corruption
is also explored by Li et al. (2017), who created
adversarial examples with syntactic and semantic
noise (reordering and word substitutions respec-

Substitution
model BLEU difference
clean mix-all

in→with −6.7 −1.7
on→for −6.0 −0.1
to→on −2.9 −0.5
in→ ∅ −1.8 −1.9
∅→for −1.6 −0.6

∅→any −1.2 −0.4
any→∅ −0.8 −0.7

Table 7: Effect of selected preposition substitutions in
test data (prep) relative to clean test data (clean), for the
clean and mix-all models. The mix-all model handles
most errors more efficiently.

tively). When training with these noisy datasets,
they obtained better performance on several text
classification tasks. Furthermore, in accordance
with our results, their best system is the one that
combines different types of noise.

We present a summary of relevant previous
work in Table 8. Synthetic errors refer to noise in-
troduced according an artificially created distribu-
tion, and natural errors refer to actual errorful text
produced by humans. As for semi-natural, it refers
to either noise introduced according to a distribu-
tion learned from data (as in our work), or to er-
rors that are learned from data but introduced ac-
cording to an artificial distribution (as is part of the
work of Belinkov and Bisk (2018)).

We consider our work to be complementary to
the works of Heigold et al. (2018); Belinkov and
Bisk (2018), and Sperber et al. (2017). However,
there are several important differences:

1. Belinkov and Bisk (2018) and Sperber et al.
(2017) train their NMT systems on fairly
small datasets: 235K (Fr-En), 210K (De-
En), 122K (Cz-En), and 138K sentences (Es-
En) respectively. Even though they use sys-
tems like Nematus (Sennrich et al., 2017) or
XNMT (Neubig et al., 2018) which gener-
ally achieve nearly SOTA results, it is un-
clear whether their results generalize to larger
training data. In contrast, we train our system
on almost 2M sentences.

2. All three systems introduce somewhat un-
realistic amounts of noise in the data. The
natural noise of Belinkov and Bisk (2018)
consists of word substitutions based on
Wikipedia errors or corrected essays (in the
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Work Errors Noise Types NMT level Languages

(Heigold et al., 2018) synthetic character swaps, character
flips, word scrambling

char, BPE De→En

(Sperber et al., 2017) synthetic ASR errors word Es→En

(Belinkov and Bisk, 2018)

synthetic character swap, middle
scramble, full scramble,
keyboard typo

char, BPE Fr,De,Cz→En

semi-natural word substitutions

this work

semi-natural grammar errors: article,
preposition, noun num-
ber, verb agreement

BPE En→Es

natural JFLEG corpus

Table 8: Previous work on evaluating the effect of noise in NMT systems. Character swaps refer to neighboring
character reordering (e.g. noise→nosie), while character flips refer to character substitutions (e.g. noise→noiwe).

Czech case) but they substitute all possible
correct words with their erroneous version,
ending up with datasets with more than 40%
of the tokens being noisy. For that reason,
we refer to it as semi-natural noise in Ta-
ble 8. Meanwhile, Sperber et al. (2017) test
on the outputs of an ASR system that has a
WER of 41.3%. For comparison, in the JF-
LEG datasets, we calculated that only about
3.5%–5% of the tokens are noisy – the aver-
age Levenshtein distance of a corrected refer-
ence and its noisy source is 13 characters.

3. The word scrambling noise, albeit interest-
ing, could not be claimed to be applicable
to realistic scenarios, especially when applied
to all words in a sentence. The solution Be-
linkov and Bisk (2018) suggested and Sper-
ber et al. (2017) discussed is a character- or
spelling-aware model for producing word- or
subword-level embeddings. We suspect that
such a solution would indeed be appropriate
for dealing with typos and other character-
level noise, but not for more general gram-
matical noise. Our method could potentially
be combined with GloVe (Pennington et al.,
2014) or fastText (Bojanowski et al., 2017)
embeddings that can deal with slight spelling
variations, but we leave this for future work.

On the other side, Grammar Error Correction
has been extensively studied, with significant in-
cremental advances made recently by treating
GEC as an MT task: among others, Junczys-
Dowmunt and Grundkiewicz (2016) used phrased-

based MT, Ji et al. (2017) used hybrid character-
word neural sequence-to-sequence systems, Sak-
aguchi et al. (2017b) used reinforcement learn-
ing, and Junczys-Dowmunt et al. (2018) combined
several techniques with NMT to achieve the cur-
rent state-of-the-art. Synthetic errors for training
GEC systems have also been studied and applied
with mixed success (Rozovskaya and Roth, 2010;
Rozovskaya et al., 2014; Xie et al., 2016), while
more recently Xie et al. (2018) used backtransla-
tion techniques to add synthetic noise for GEC.

6 Conclusion

In this work, we studied the effect of grammati-
cal errors in NMT. We not only confirmed previ-
ous findings, but also expanded on them, show-
ing that realistic human-like noise in the form of
specific grammatical errors also leads to degraded
performance. We added synthetic errors on the En-
glish WMT training, dev, and test data (including
dev and test sets for all WMT 18 evaluation pairs),
and have released them along with the scripts nec-
essary for reproducing them. We also produced
Spanish translations of the JFLEG corpus, so that
future NMT systems can be properly evaluated on
real noisy data.
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A Results with LSTM models

Training Set
En-Es WMT Test Set

clean drop art prep nn sva average ± stdev

clean 26.62 24.08 25.35 25.63 23.34 26.06 25.18 ± 1.24
drop 25.10 24.21 24.24 24.00 22.26 19.58 23.23 ± 2.02
art 25.49 23.26 24.78 24.35 22.42 25.59 24.31 ± 1.26
prep 25.49 22.99 24.39 25.22 22.78 25.07 24.32 ± 1.17
nn 25.35 23.04 23.06 24.15 24.73 24.61 24.16 ± 0.94
sva 25.77 23.49 24.68 24.62 23.22 25.41 24.53 ± 1.01

clean+drop 26.45 25.37 25.59 25.59 23.64 25.92 25.43 ± 0.95
clean+art 26.64 24.60 26.35 26.08 23.69 26.48 25.64 ± 1.21
clean+prep 26.60 24.31 25.12 26.30 23.27 26.14 25.29 ± 1.31
clean+nn 26.23 23.86 24.75 25.52 25.20 25.66 25.20 ± 0.82
clean+sva 26.62 24.22 25.49 25.86 23.79 26.24 25.37 ± 1.13

mix-all 26.60 24.90 25.52 25.80 24.68 26.03 25.59 ± 0.72

Table 9: BLEU scores on the WMT test set without (clean) and with synthetic grammar errors using an LSTM
encoder-decoder model.

JFLEG-es Dev

Training
Manual correction No Auto

cor0 cor1 cor2 cor3 avg. corr. corr.

clean 28.3 27.3 28.4 28.2 28.0 27.1 27.7
mix-all 28.2 27.5 28.8 29.1 28.4 27.4 28.2

JFLEG-es Test

Training
Manual correction No Auto

cor0 cor1 cor2 cor3 avg. corr. corr.

clean 24.9 25.1 25.6 25.1 25.2 22.8 23.5
mix-all 24.8 25.0 25.3 25.0 25.0 23.1 24.3

Table 10: BLEU scores on the JFLEG-es dev and test datasets with the LSTM encoder-decoder model.


