
Proceedings of NAACL-HLT 2019, pages 2857–2861
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

2857

Predicting Malware Attributes from Cybersecurity Texts

Arpita Roy1, Youngja Park2, Shimei Pan1

1University of Maryland, Baltimore County
Baltimore, Maryland, USA

{arpita2, shimei}@umbc.edu
2IBM T. J. Watson Research Center
Yorktown Heights, New York, USA
young park@us.ibm.com

Abstract

Text analytics is a useful tool for studying mal-
ware behavior and tracking emerging threats.
The task of automated malware attribute iden-
tification based on cybersecurity texts is very
challenging due to a large number of malware
attribute labels and a small number of training
instances. In this paper, we propose a novel
feature learning method to leverage diverse
knowledge sources such as small amount of
human annotations, unlabeled text and speci-
fications about malware attribute labels. Our
evaluation has demonstrated the effectiveness
of our method over the state-of-the-art mal-
ware attribute prediction systems.

1 Introduction

Securing computer systems has become a neces-
sity for both organizations and individuals, as
many cyber attacks result in devastating conse-
quences. An outbreak of the WannaCry ran-
somware in 2017 affected more than 200,000 com-
puters across 150 countries, with total damages
ranging from hundreds of millions to billions of
dollars (Berr, 2017). Detection of malware often
relies on an understanding of the characteristics
of malware behavior. To establish a standard for
unambiguously characterizing malware, MAEC
(Malware Attribute Enumeration and Characteri-
zation), a community-based project organized by
MITRE, has specified a set of standard malware
attributes (Kirillov et al., 2011). Based on MAEC,
the actions of a malware can be categorized by
four attributes: ActionName, Capability, Strategi-
cObjectives and TacticalObjectives. ActionName
specifies the actions taken by a malware. For
example, “delete file” is a malware action that

deletes existing files from affected systems. Capa-
bility defines the general capabilities of a malware.
For example, “anti-removal” is a malware capabil-
ity that prevents itself from being removed from
a system. StrategicObjectives and TacticalObjec-
tives are subcategories of Capability to capture
more details. For example, a malware can have
a StrategicObjective of “staging data for exfiltra-
tion” and a TacticalObjective of “moving data to
a staging server”. In total, MAEC specified 211
ActionNames, 20 Capabilities, 65 StrategicObjec-
tives, and 148 TacticalObjectives.

The goal of this research is to automatically as-
sign malware attribute labels based on cybersecu-
rity texts. The task is challenging. The system
needs to assign a large number of labels (444 in
total). However, it is difficult to obtain sufficient
training examples for each label since malware
attribute labeling requires extensive cybersecurity
knowledge and only domain experts can do this re-
liably. Given a large number of possible labels and
a small number of training examples, typical su-
pervised text classification techniques do not work
well. In this work, we focus on incorporating addi-
tional knowledge sources to improve feature learn-
ing. The main contributions of this work include

1. Develop a novel malware attribute predic-
tion system with the state of the art perfor-
mance to automatically characterize malware
behavior based on cybersecurity text.

2. Propose a novel Word Annotation Embed-
ding (WAE) algorithm to encode diverse
information from heterogeneous knowledge
sources such as human annotations, raw texts
and MAEC specifications.

2858

3. Since WAE generates embeddings for both
words and malware attribute labels, we con-
struct high-quality predicting features based
on both types of embeddings.

2 Related Work

Cybersecurity researchers have recently recog-
nized the benefits of leveraging information ex-
tracted from security documents. Most prior work
utilizing NLP for cybersecurity has focused on pri-
vacy policy analysis and Android security (Peng
et al., 2012; Pandita et al., 2013; Qu et al., 2014;
Slavin et al., 2016; Zhu and Dumitras, 2016).
These systems aim to map written policies and the
actual permission requests from Android applica-
tions and assess the risk level of these applications.

Lim et al. (2017) represents the first major effort
to apply NLP techniques for general text-based
malware behavior analysis. It processes reports
by cybersecurity companies (e.g., FireEye, IBM
X-Force, Symantec and Trend Micro) on malware
or campaigns associated with Advanced Persistent
Threat (APT) groups (Blanda and Westcott, 2018)
and assign attributes to identified malware actions.
They use word unigrams as predicting features.
SVM and Naive Bayes are used to build classifiers
for attribute label prediction.

To extend this effort, SemEval organized a
shared task (called SecureNLP) on semantic anal-
ysis for cybersecurity texts. It adopted the same
dataset and task definitions as (Lim et al., 2017).
There are four subtasks in SemEval SecureNLP:
(1) identifying sentences containing malware ac-
tions from APT reports; (2) identifying “Mal-
ware Action”, “Subject of Action”, “Object of Ac-
tion” and “Modifier of Action”in the identified
sentences; (3) identifying four relations,“Subject-
Action”, “Action-Object”, “Modifier-Action” and
“Action-Modifier” in identified sentences; (4) as-
signing attribute labels to each identified action
based on the MAEC specification. Figure 1 shows
an annotated example for these tasks. This paper
describes our approach to solve subtask 4. The in-
put to our system includes all the sentences iden-
tified in subtask 1 with additional labels for the
entities identified in subtask 2. Each training and
testing instance used in SemEval SecureNLP only
contains a single malware action.

Figure 1: Annotated sentence fragment for SemEval
shared task.

3 System Overview

Figure 2 shows the high-level system architecture.
First, we augment all the raw APT reports with an-
notations to encode the knowledge from both the
training data and MAEC. This allows us to design
a unified representation for both types of knowl-
edge. The annotated texts are then used by WAE to
simultaneously learn embeddings for both words
and malware attribute labels. The learned word
and attribute label embeddings are then used to
construct high qualify prediction features. Finally,
we employ supervised machine learning to predict
malware attribute labels. We build four classifiers,
one for each malware attribute. Each classifier per-
forms n+1-way classification, where n is the num-
ber of possible labels for each attribute and 1 is
for ‘no value’ when the value of an attribute is not
conveyed in the text.

4 Annotation Generation

To annotate text with additional information, the
first step is to map each attribute label to a set of
keywords based on both MAEC and the human an-
notations in the training data.
Identify Keywords from MAEC: Figure 3 shows
a snippet of the MAEC specification. Each mal-
ware attribute label in MAEC includes a descrip-
tion and a few keywords. The malware action 004
in Figure 3 has a name ‘emulate driver’, a descrip-
tion ‘specify the defined action of emulating an
existing driver on a system’ and two keywords:
‘driver’ and ‘emulate’. Since the keywords carry
the most essential information about a malware at-

Figure 2: System Architecture

2859

Figure 3: A Snippet of the MAEC Specification

tribute label, we link each label with these key-
words (e.g., ActionName004: ‘driver’, ‘emulate’).
Identify Keywords from Training Data: Since
a malware attribute label in the training data is at
the sentence level, to extract keywords for each at-
tribute label, we extract all the sentences associ-
ated with the same label and consider them one
document. To select the most relevant keywords,
we only keep those conveying “Malware Action”,
“Subject of Action”, or “Object of Action” (which
were identified in subtask 2).
Keywords Ranking: For the same attribute label,
we merge the keywords from MAEC and those
from the training data to form a single document.
We then use TF-IDF scores to select the most in-
formative keywords to differentiate these labels.
In our experiments, we use the top 25 keywords
based on their TF-IDF scores.
Text Annotation Generation Finally, for all the
APT documents, we annotate the text with mal-
ware attribute labels. Specifically, for any word in
the APT documents, if it is a keyword associated
with K different labels, we annotate the word with
K attribute labels.

5 Word Annotation Embedding (WAE)

Similar to word embedding (Mikolov et al., 2013),
we want to learn features that capture the semantic
relations between words. In addition, to facilitate
attribute classification, we want to capture the se-
mantic relations between words and their labels.
Specifically, we want the words and their attribute
labels to be close to each other in the embedding
space and the embeddings of different labels to be
far away from each other.

To achieve the goals, we developed a novel
Word Annotation Embedding method. As shown
in Figure 4, the target word is used to predict
not only its context words but also its labels.
To further strengthen their relations, the labels
of the target word are also used to predict the
target word. Specifically, given a sequence of
T words (W1,..,Wt,...,WT) and their annotations
((A1,1,...,A1,M1),...,(AT,1,...,AT,MT

)), the objec-

Figure 4: Architecture of WAE Model

tive of the WAE model is to maximize the aver-
age log probability shown in Equation 1, where C
is the size of the context window, Wt is the target
word, Wt+j is a context word, Mt is number of
annotations Wt has and At,k is the k-th annotation
of Wt.

1

T

T∑
t=1

(∑
−C≤j≤C,j 6=0

logP (Wt+j |Wt)

+
∑

0≤k≤Mt

(logP (At,k|Wt) + logP (Wt|At,k))
) (1)

Label-aware Negative Sampling: Negative
sampling (Mikolov et al., 2013) was introduced
as an approximation method in word2vec to im-
prove the efficiency of model training. Previously,
negative samples were selected either randomly or
based on popularity. The method, however, is in-
sensitive to class labels. Here, we propose a new
annotation-aware negative sampling method to (1)
keep different annotations apart in the embedding
space and (2) to keep words associated with dif-
ferent labels apart, in addition to bringing words
and their associated labels closer to each other via
positive samples. To achieve this, WAE randomly
selects (1) a word as a negative sample if it does
not share the same annotations as the target word;
(2) an attribute label as a negative sample if it is
not the same as the labels of the target word.

6 Feature Generation and Classification

We construct six sets of features to train the clas-
sifiers.
(S1) WAEW+Sim: Assume the average word
embeddings for a given data instance generated by
WAE is WEwae, and the malware attribute label

2860

Models ActionName Capability StratObj TactObj
(B1) (Lim et al., 2017) 0.33 0.41 0.27 0.22
(B2) Word2vec 0.40 0.57 0.41 0.36
(B3) Word2vec+Cap NA NA 0.41 0.39
(S1) WAEW +Sim 0.44 0.61 0.43 0.41
(S2) w.WAEW +Sim 0.46 0.62 0.44 0.43
(S3) WAEW +WAEL+Sim 0.45 0.63 0.46 0.43
(S4) w.WAEW +WAEL+Sim 0.45 0.63 0.45 0.43
(s5) WAEW +WAEL+Sim+Cap NA NA 0.47 0.45
(S6) w.WAEW +WAEL+Sim+Cap NA NA 0.47 0.45
∆1 : over (Lim et al., 2017) ↑39% (p < 0.05) ↑54% (p < 0.05) ↑74%(p < 0.05) ↑105% (p < 0.05)
∆2 : over word2vec ↑15% (p < 0.05) ↑11%(p < 0.05) ↑15%(p < 0.05) ↑25%(p < 0.05)
∆3 : over word2vec+Cap NA NA ↑15% (p < 0.05) ↑15%(p < 0.05)

Table 1: Evaluation Results. B1-B3 are the three baselines. S1-S6 are our models with six different sets of
predicting features. ∆1-∆3 are the improvements of our best models over the three baselines.

embedding learned by WAE is LabelEi for each
label i. For each LabelEi, we compute SIMi,
which is the cosine similarity between WEwae

and LabelEi. WAEW+Sim is the concatenation
of WEwae and all the SIMi. For example, to pre-
dict ActionName, the model will include 100 word
embedding features learned by WAE plus 211 sim-
ilarity features, one for each ActionNames.
(S2) w.WAEW+Sim: This feature set is similar
to WAEW+Sim except when computing WEwae,
we assign twice as much weight for a word with a
label as one without a label. The intuition is words
with labels are important keywords based on either
MAEC or the training data.
(S3) WAEW+WAEL+Sim: It is similar to
WAEW+Sim except we also include the average
embeddings of attribute labels associated with the
instance.
(S4) w.WAEW+WAEL+Sim: This is the
weighted version of (S3).
(S5) WAEW+WAEL+Sim+Cap: Since the la-
bel of StrategicObjective and TacticalObjective
depends on the label of Capability, we added the
capability label in the feature set. We use a 1-hot
vector with 20 elements to encode a Capability
label. We use the ground truth and the predicted
label of Capability during training and testing re-
spectively.
(S6) w.WAEW+WAEL+Sim+Cap: This is the
weighted version of (S5)

7 Experiments

7.1 Dataset

The dataset used in the experiments was provided
as a part of the SemEval shared task. It contains
456 APT reports (Blanda and Westcott, 2018), 39

of them were annotated by humans. Among them,
2975 sentences contain malware actions, which
are the data instances used in this study. The an-
notated data are very sparse. Out of the 444 at-
tribute labels, 190 labels do not appear in the la-
beled data. For the remaining 254 attribute labels,
92 labels occur less than five times, and 50 labels
occur only once. In our experiments, we used the
raw text in all the APT reports to train WAE. There
are 16423 unique tokens and a total of 2544645 to-
kens in the dataset. We trained both word2vec and
WAE with context window size 5 and 100 dimen-
sion vectors. The 39 annotated documents were
divided into a training set (23 documents), a val-
idation set (8 documents) and a test set (8 docu-
ments). Only the training dataset was used to gen-
erate annotations for WAE.

7.2 Evaluation Results

For classification, we tried both SVM and neural
network-based models such as multilayer percep-
tron. After experimenting with different model pa-
rameters, we found that the best SVM model with
a linear kernel performed slightly better than the
best neural network models. We speculate that
this might be because SVM is less likely to overfit
when the training data are sparse. Table 1 shows
the average F-scores over 5 runs by the SVM mod-
els on the test data. We compare our models with
three baseline systems: (B1) (Lim et al., 2017),
(B2) word2vec and (B3) word2vec + cap. Among
them, (B1) represents the best published results
on the same dataset. (B2) and (B3) are all the
comparable models with embeddings learned by
word2vec.

As shown in Table 1, all our models outper-
formed all the baseline systems. The improve-

2861

ment over the word2vec model is 15%, 11%,
15% and 25% respectively, and, the improve-
ment over (Lim et al., 2017), a previous state
of the art, is 39%, 54%, 74% and 105% respec-
tively. The improvement over Word2vec + Cap
is 15% and 15% respectively for StrategicObjec-
tive and TechnicalObjective. We also conducted
t-tests to verify the significance of the improve-
ments. The t-test results confirmed that our mod-
els significantly outperformed the baseline models
with p<0.05. Moreover, the value of ”Capability”
seems to help the prediction of StrategicObjective
and TechnicalObjective.

8 Conclusion

In this paper, we present a novel method to predict
malware attribute labels from cybersecurity text.
Given a large number of attribute labels and lim-
ited training data, we propose a new feature learn-
ing method to incorporate knowledge from diverse
knowledge sources such as raw text, MAEC spec-
ifications and human annotations. We tested our
system using the SemEval shared task data and our
evaluation demonstrates that the features learned
by our models are much more effective than an
existing state of the art as well as embedding fea-
tures learned by word2vec. Our investigation has
highlighted the importance of incorporating di-
verse knowledge sources in complex classification
tasks when human annotations are sparse.

References

Jonathan Berr. 2017. ”wannacry” ransomware attack
losses could reach $4 billion. CBSNews.

Kiran Blanda and David Westcott. 2018. Aptnotes.
https://github.com/aptnotes/.

Ivan Kirillov, Desiree Beck, Penny Chase, and Robert
Martin. 2011. Malware attribute enumeration and
characterization.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Chen Hui Ong. 2017. Malwaretextdb: A database
for annotated malware articles. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics, pages 1557–1567.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Rahul Pandita, Xusheng Xiao, Wei Yang, William
Enck, and Tao Xie. 2013. Whyper: Towards au-
tomating risk assessment of mobile applications. In
USENIX Security Symposium, volume 2013.

Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li,
Yuan Qi, Rahul Potharaju, Cristina Nita-Rotaru, and
Ian Molloy. 2012. Using probabilistic generative
models for ranking risks of android apps. In Pro-
ceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12.

Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan
Chen, Tiantian Zhu, and Zhong Chen. 2014. Au-
tocog: Measuring the description-to-permission fi-
delity in android applications. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 1354–1365.
ACM.

Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hos-
seini, James Hester, Ram Krishnan, Jaspreet Bhatia,
Travis D Breaux, and Jianwei Niu. 2016. Toward a
framework for detecting privacy policy violations in
android application code. In Proceedings of the 38th
International Conference on Software Engineering,
pages 25–36. ACM.

Ziyun Zhu and Tudor Dumitras. 2016. Featuresmith:
Automatically engineering features for malware de-
tection by mining the security literature. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), pages
767–778. ACM.

https://github.com/aptnotes/

