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Abstract

Training semantic parsers from question-
answer pairs typically involves searching over
an exponentially large space of logical forms,
and an unguided search can easily be misled
by spurious logical forms that coincidentally
evaluate to the correct answer. We propose
a novel iterative training algorithm that alter-
nates between searching for consistent logical
forms and maximizing the marginal likelihood
of the retrieved ones. This training scheme lets
us iteratively train models that provide guid-
ance to subsequent ones to search for logical
forms of increasing complexity, thus dealing
with the problem of spuriousness. We eval-
uate these techniques on two hard datasets:
WIKITABLEQUESTIONS (WTQ) and Cornell
Natural Language Visual Reasoning (NLVR),
and show that our training algorithm outper-
forms the previous best systems, on WTQ in a
comparable setting, and on NLVR with signif-
icantly less supervision.

1 Introduction

Semantic parsing is the task of translating natu-
ral language utterances into machine-executable
meaning representations, often called programs or
logical forms. These logical forms can be exe-
cuted against some representation of the context
in which the utterance occurs, to produce a de-
notation. This setup allows for complex reason-
ing over contextual knowledge, and it has been
successfully used in several natural language un-
derstanding problems such as question answer-
ing (Berant et al., 2013), program synthesis (Yin
and Neubig, 2017) and building natural language
interfaces (Suhr et al., 2018).

Recent work has focused on training seman-
tic parses via weak supervision from denotations
alone (Liang et al., 2011; Berant et al., 2013).
This is because obtaining logical form annotations

is generally expensive (although recent work has
addressed this issue to some extent (Yih et al.,
2016)), and not assuming full supervision lets us
be agnostic about the logical form language. The
second reason is more important in open-domain
semantic parsing tasks where it may not be pos-
sible to arrive at a complete set of operators re-
quired by the task. However, training semantic
parsers with weak supervision requires not only
searching over an exponentially large space of log-
ical forms (Berant et al., 2013; Artzi and Zettle-
moyer, 2013; Pasupat and Liang, 2015; Guu et al.,
2017, inter alia) but also dealing with spurious
logical forms that evaluate to the correct denota-
tion while not being semantically equivalent to the
utterance. For example, if the denotations are bi-
nary, 50% of all syntactically valid logical forms
evaluate to the correct answer, regardless of their
semantics. This problem renders the training sig-
nal extremely noisy, making it hard for the model
to learn anything without some additional guid-
ance during search.

We introduce two innovations to improve learn-
ing from denotations. Firstly, we propose an it-
erative search procedure for gradually increasing
the complexity of candidate logical forms for each
training instance, leading to better training data
and better parsing accuracy. This procedure is im-
plemented via training our model with two inter-
leaving objectives, one that involves searching for
logical forms of limited complexity during train-
ing (online search), and another that maximizes
the marginal likelihood of retrieved logical forms.
Second, we include a notion of coverage over the
question in the search step to guide the training al-
gorithm towards logical forms that not only eval-
uate to the correct denotation, but also have some
connection to the words in the utterance.

We demonstrate the effectiveness of these two
techniques on two difficult reasoning tasks: WIK-
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ITABLEQUESTIONS(WTQ) (Pasupat and Liang,
2015), an open domain task with significant lex-
ical variation, and Cornell Natural Language Vi-
sual Reasoning (NLVR) (Suhr et al., 2017), a
closed domain task with binary denotations, and
thus far less supervision. We show that: 1) in-
terleaving online search and MML over retrieved
logical forms (§4) is a more effective training algo-
rithm than each of those objectives alone; 2) cov-
erage guidance during search (§3) is helpful for
dealing with weak supervision, more so in the case
of NLVR where the supervision is weaker; 3) a
combination of the two techniques yields 44.3%
test accuracy on WTQ, outperforming the previ-
ous best single model in a comparable setting, and
82.9% test accuracy on NLVR, outperforming the
best prior model, which also relies on greater su-
pervision.

2 Background

2.1 Weakly supervised semantic parsing

We formally define semantic parsing in a weakly
supervised setup as follows. Given a dataset where
the ith instance is the triple {xi, wi, di}, represent-
ing a sentence xi, the world wi associated with the
sentence, and the corresponding denotation di, our
goal is to find yi, the translation of xi in an ap-
propriate logical form language (see §5.3), such
that JyiKwi = di; i.e., the execution of yi in world
wi produces the correct denotation di. A seman-
tic parser defines a distribution over logical forms
given an input utterance: p(Y |xi; θ).

2.2 Training algorithms

In this section we describe prior techniques for
training semantic parsers with weak supervision:
maximizing marginal likelihood, and reward-
based methods.

2.2.1 Maximum marginal likelihood
Most work on training semantic parsers from de-
notations maximizes the likelihood of the deno-
tation given the utterance. The semantic pars-
ing model itself defines a distribution over logi-
cal forms, however, not denotations, so this maxi-
mization must be recast as a marginalization over
logical forms that evaluate to the correct denota-
tion:

max
θ

∏
xi,di∈D

∑
yi∈Y |JyiKwi=di

p(yi|xi; θ) (1)

This objective function is called maximum
marginal likelihood (MML). The inner summation
is in general intractable to perform during training,
so it is only approximated.

Most prior work (Berant et al., 2013; Goldman
et al., 2018, inter alia) approximate the intractable
marginalization by summing over logical forms
obtained via beam search during training. This
typically results in frequent search failures early
during training when model parameters are close
to random, and in general may only yield spuri-
ous logical forms in the absence of any guidance.
Since modern semantic parsers typically operate
without a lexicon, new techniques are essential to
provide guidance to the search procedure (Gold-
man et al., 2018).

One way of providing this guidance during
search is to perform some kind of heuristic search
up front to find a set of logical forms that evalu-
ate to the correct denotation, and use those logical
forms to approximate the inner summation (Liang
et al., 2011; Krishnamurthy et al., 2017). The par-
ticulars of the heuristic search can have a large im-
pact on performance; a smaller candidate set has
lower noise, while a larger set makes it more likely
that the correct logical form is in it, and one needs
to strike the right balance. In this paper, we re-
fer to the MML that does search during training
as dynamic MML, and the one that does an offline
search as static MML.

The main benefit of dynamic MML is that it
adapts its training signal over time. As the model
learns, it can increasingly focus its probability
mass on a small set of very likely logical forms.
The main benefit of static MML is that there is no
need to search during training, so there is a con-
sistent training signal even at the start of training,
and it is typically more computationally efficient
than dynamic MML.

2.2.2 Reward-based methods
When training weakly supervised semantic
parsers, it is often desirable to inject some prior
knowledge into the training procedure by defining
arbitrary reward or cost functions. There exists
prior work that use such methods, both in a
reinforcement learning setting (Liang et al., 2017,
2018), and otherwise (Iyyer et al., 2017; Guu
et al., 2017). In our work, we define a customized
cost function that includes a coverage term, and
use a Minimum Bayes Risk (MBR) (Goodman,
1996; Goel and Byrne, 2000; Smith and Eisner,
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2006) training scheme, which we describe in §3.

3 Coverage-guided search

Weakly-supervised training of semantic parsers
relies heavily on lexical cues to guide the initial
stages of learning to good logical forms. Tradi-
tionally, these lexical cues were provided in the
parser’s lexicon. Neural semantic parsers remove
the lexicon, however, and so need another mech-
anism for obtaining these lexical cues. In this
section we introduce the use of coverage to in-
ject lexicon-like information into neural semantic
parsers.

Coverage is a measure of relevance of the candi-
date logical form yi to the input xi, in terms of how
well the productions in yi map to parts of xi. We
use a small manually specified lexicon as a map-
ping from source language to the target language
productions, and define coverage of yi as the num-
ber of productions triggered by the input utterance,
according to the lexicon, that are included in yi.

We use this measure of coverage to augment our
loss function, and train using an MBR based algo-
rithm as follows. We use beam search to train a
model to minimize the expected value of a cost
function C:

min
θ

N∑
i=1

Ep̃(yi|xi;θ)C(xi, yi, wi, di) (2)

where p̃ is a re-normalization1 of the probabilities
assigned to all logical forms on the beam.

We define the cost function C as:

C(xi, yi, wi, di) = λS(yi, xi)+(1−λ)T (yi, wi, di)
(3)

where the function S measures the number of
items that yi is missing from the actions (or gram-
mar production rules) triggered by the input utter-
ance xi given the lexicon; and the function T mea-
sures the consistency of the evaluation of yi in wi,
meaning that it is 0 if JyiKwi = di, or a value e oth-
erwise. We set e as the maximum possible value of
the coverage cost for the corresponding instance,
to make the two costs comparable in magnitude. λ
is a hyperparameter that gives the relative weight
of the coverage cost.

1Note that without this re-normalization, and with a -1/0
cost function based on denotation accuracy, MBR will max-
imize the likelihood of correct logical forms on the beam,
which is equivalent to dynamic MML.

4 Iterative search

In this section we describe the iterative technique
for refining the set of candidate logical forms as-
sociated with each training instance.

As discussed in §2.2, most prior work on
weakly-supervised training of semantic parsers
uses dynamic MML. This is particularly problem-
atic in domains like NLVR, where the supervi-
sion signal is binary—it is very hard for dynamic
MML to bootstrap its way to finding good logi-
cal forms. To solve this problem, we interleave
static MML, which has a consistent supervision
signal from the start of training, with the coverage-
augmented MBR algorithm described in §3.

In order to use static MML, we need an ini-
tial set of candidate logical forms. We obtain
this candidate set using a bounded-length exhaus-
tive search, filtered using heuristics based on the
same lexical mapping used for coverage in §3. A
bounded-length search will not find logical forms
for the entire training data, so we can only use a
subset of the data for initial training. We train a
model to convergence using static MML on these
logical forms, then use that model to initialize
coverage-augmented MBR training. This gives
the model a good starting place for the dynamic
learning algorithm, and the search at training time
can look for logical forms that are longer than
could be found with the bounded-length exhaus-
tive search. We train MBR to convergence, then
use beam search on the MBR model to find a new
set of candidate logical forms for static MML on
the training data. This set of logical forms can
have a greater length than those in the initial set,
because this search uses model scores to not ex-
haustively explore all possible paths, and thus will
likely cover more of the training data. In this way,
we can iteratively improve the candidate logical
forms used for static training, which in turn im-
proves the starting place for the online search al-
gorithm.

Algorithm 1 concretely describes this process.
Decode in the algorithm refers to running a beam
search decoder that returns a set of consistent log-
ical forms (i.e. T = 0) for each of the input ut-
terances. We start off with a seed dataset D0 for
which consistent logical forms are available.

5 Datasets

We will now describe the two datasets we use in
this work to evaluate our methods – Cornell NLVR
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Input : Dataset D = {X,W,D}; and
seed set D0 = {X0, Y 0} such that
X0 ⊂ X and C(x0i , y0i ,Wi, Di) = 0

Output: Model parameters θMBR

Initialize dataset DMML = D0;
while Acc(Ddev) is increasing do

θMML = MML(DMML);
Initialize θMBR = θMML;
Update θMBR = MBR(D; θMBR);
Update DMML = Decode(D; θMBR);

end
Algorithm 1: Iterative coverage-guided search

Figure 1: Example from NLVR dataset showing an ut-
terance associated with two worlds and corresponding
binary denotations. Also shown are the logical form
and the actions triggered by the lexicon from the utter-
ance.

and WIKITABLEQUESTIONS.

5.1 Cornell NLVR

Cornell NLVR is a language-grounding dataset
containing natural language sentences provided
along with synthetically generated visual contexts,
and a label for each sentence-image pair indicating
whether the sentence is true or false in the given
context. Figure 1 shows two example sentence-
image pairs from the dataset (with the same sen-
tence). The dataset also comes with structured rep-
resentations of images, indicating the color, shape,
size, and x- and y-coordinates of each of the ob-
jects in the image. While we show images in Fig-
ure 1 for ease of exposition, we use the structured
representations in this work.

Following the notation introduced in §2.1, xi in
this example is There is a box with only one item

Figure 2: Example from WIKITABLEQUESTIONS
dataset showing an utterance, a world, associated de-
notation, corresponding logical form, and actions trig-
gered by the lexicon.

that is blue. The structured representations asso-
ciated with the two images shown are two of the
worlds (w1

i and w2
i ), in which xi could be evalu-

ated. The corresponding labels are the denotations
d1i and d2i that a translation yi of the sentence xi
is expected to produce, when executed in the two
worlds respectively. That the same sentence oc-
curs with multiple worlds is an important property
of this dataset, and we make use of it by defining
the function T to be 0 only if ∀

wj
i ,d

j
i
JyiKw

j
i = dji .

5.2 WIKITABLEQUESTIONS

WIKITABLEQUESTIONS is a question-answering
dataset where the task requires answering complex
questions in the context of Wikipedia tables. An
example can be seen in Figure 2. Unlike NLVR,
the answers are not binary. They can instead be
cells in the table or the result of numerical or set-
theoretic operations performed on them.

5.3 Logical form languages
For NLVR, we define a typed variable-free func-
tional query language, inspired by the GeoQuery
language (Zelle and Mooney, 1996). Our language
contains six basic types: box (referring to one of
the three gray areas in Figure 1), object (refer-
ring to the circles, triangles and squares in Fig-
ure 1), shape, color, number and boolean.
The constants in our language are color and shape
names, the set of all boxes in an image, and the
set of all objects in an image. The functions in
our language include those for filtering objects and
boxes, and making assertions, a higher order func-
tion for handling negations, and a function for
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querying objects in boxes. This type specifica-
tion of constants and functions gives us a grammar
with 115 productions, of which 101 are terminal
productions (see Appendix A.1 for the complete
set of rules in our grammar). Figure 1 shows an ex-
ample of a complete logical form in our language.

For WTQ, we use the functional query language
used by (Liang et al., 2018) as the logical form lan-
guage. Figure 2 shows an example logical form.

5.4 Lexicons for coverage

The lexicon we use for the coverage measure de-
scribed in §3 contains under 40 rules for each log-
ical form language. They mainly map words and
phrases to constants and unary functions in the tar-
get language. The complete lexicons are shown in
the Appendix. Figures 1 and 2 also show the ac-
tions triggered by the corresponding lexicons for
the utterances shown. We find that small but pre-
cise lexicons are sufficient to guide the search pro-
cess away from spurious logical forms. Moreover,
as shown empirically in §6.4, the model for NLVR
does not learn much without this simple but cru-
cial guidance.

6 Experiments

We evaluate both our contributions on NLVR and
WIKITABLEQUESTIONS.

6.1 Model

In this work, we use a grammar-constrained
encoder-decoder neural semantic parser for our
experiments. Of the many variants of this basic
architecture (see §7), all of which are essentially
seq2seq models with constrained outputs and/or
re-parameterizations, we choose to use the parser
of Krishnamurthy et al. (2017), as it is particu-
larly well-suited to the WIKITABLEQUESTIONS

dataset, which we evaluate on.
The encoder in the model is a bi-directional

recurrent neural network with Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) cells, and the decoder is a grammar-
constrained decoder also with LSTM cells. In-
stead of directly outputting tokens in the logi-
cal form, the decoder outputs production rules
from a CFG-like grammar. These production
rules sequentially build up an abstract syntax tree,
which determines the logical form. The model
also has an entity linking component for produc-
ing table entities in the logical forms; this com-

ponent is only applicable to WIKITABLEQUES-
TIONS, and we remove it when running experi-
ments on NLVR. The particulars of the model are
not the focus of this work, so we refer the reader
to the original paper for more details.

In addition, we slightly modify the constrained
decoding architecture from (Krishnamurthy et al.,
2017) to bias the predicted actions towards those
that would decrease the value of S(yi, xi). This is
done using a coverage vector, vSi for each training
instance that keeps track of the production rules
triggered by xi, and gets updated whenever one of
those desired productions is produced by the de-
coder. That is, vSi is a vector of 1s and 0s, with
1s indicating the triggered productions that are yet
to be produced by the decoder. This is similar to
the idea of checklists used by Kiddon et al. (2016).
The decoder in the original architecture scores out-
put actions at each time step by computing a dot
product of the predicted action representation with
the embeddings of each of the actions. We add a
weighted sum of all the actions that are yet to pro-
duced:

sai = ea.(pi + γ ∗ vSi .E) (4)

where sai is the score of action a at time step i, ea

is the embedding of that action, pi is the predicted
action representation, E is the set of embeddings
of all the actions, and γ is a learned parameter for
regularizing the bias towards yet-to-be produced
triggered actions.

6.2 Experimental setup

NLVR We use the standard train-dev-test split
for NLVR, containing 12409, 988 and 989
sentence-image pairs respectively. NLVR con-
tains most of the sentences occurring in multiple
worlds (with an average of 3.9 worlds per sen-
tence). We set the word embedding and action
embedding sizes to 50, and the hidden layer size of
both the encoder and the decoder to 30. We initial-
ized all the parameters, including the word and ac-
tion embeddings using Glorot uniform initializa-
tion (Glorot and Bengio, 2010). We found that us-
ing pretrained word representations did not help.
We added a dropout (Srivastava et al., 2014) of
0.2 on the outputs of the encoder and the decoder
and before predicting the next action, set the beam
size to 10 both during training and at test time, and
trained the model using ADAM (Kingma and Ba,
2014) with a learning rate of 0.001. All the hyper-
parameters are tuned on the validation set.



2674

WIKITABLEQUESTIONS This dataset comes
with five different cross-validation folds of train-
ing data, each containing a different 80/20 split for
training and development. We first show results
aggregated from all five folds in §6.3, and then
show results from controlled experiments on fold
1. We replicated the model presented in Krishna-
murthy et al. (2017), and only changed the training
algorithm and the language used. We used a beam
size of 20 for MBR during training and decoding,
and 10 for MML during decoding, and trained the
model using Stochastic Gradient Descent (Kiefer
et al., 1952) with a learning rate of 0.1, all of which
are tuned on the validation sets.

Specifics of iterative search For our iterative
search algorithm, we obtain an initial set of can-
didate logical forms in both domains by exhaus-
tively searching to a depth of 102. During search
we retrieve the logical forms that lead to the cor-
rect denotations in all the corresponding worlds,
and sort them based on their coverage cost using
the coverage lexicon described in §5.4, and choose
the top-k3. At each iteration of the search step
in our iterative training algorithm, we increase the
maximum depth of our search with a step-size of
2, finding more complex logical forms and cover-
ing a larger proportion of the training data. While
exhaustive search is prohibitively expensive be-
yond a fixed number of steps, our training process
that uses beam search based approximation can go
deeper.

Implementation We implemented our
model and training algorithms within the
AllenNLP (Gardner et al., 2018) toolkit.
The code and models are publicly available
at https://github.com/allenai/
iterative-search-semparse.

6.3 Main results

WIKITABLEQUESTIONS Table 1 compares
the performance of a single model trained us-
ing Iterative Search, with that of previously pub-
lished single models. We excluded ensemble mod-
els since there are differences in the way ensem-
bles are built for this task in previous work, ei-
ther in terms of size or how the individual mod-
els were chosen. We show both best and aver-

2It was prohibitively expensive to search beyond depth of
10.

3k is a hyperparameter that is chosen on the dev set at
each iteration in iterative search, and is typically 10 or 20

Approach Dev Test

Pasupat and Liang (2015) 37.0 37.1
Neelakantan et al. (2017) 34.1 34.2
Haug et al. (2018) - 34.8
Zhang et al. (2017) 40.4 43.7
Liang et al. (2018) (MAPO) (avg.) 42.3 43.1
Liang et al. (2018) (MAPO) (best) 42.7 43.8
Iterative Search (avg.) 42.1 43.9
Iterative Search (best) 43.1 44.3

Table 1: Comparison of single model performances of
Iterative Search with previously reported single model
performances

Algorithm Dev acc. Test acc.

MAPO 42.1 42.7

Static MML 40.0 42.2
Iterative MML 42.5 43.1
Iterative Search 43.0 43.8

Table 2: Comparison of iterative search with static
MML, iterative MML, and the previous best result
from (Liang et al., 2018), all trained on the official split
1 of WIKITABLEQUESTIONS and tested on the official
test set.

age (over 5 folds) single model performance from
Liang et al. (2018) (Memory Augmented Policy
Optimization). The best model was chosen based
on performance on the development set. Our sin-
gle model performances are computed in the same
way. Note that Liang et al. (2018) also use a lexi-
con similar to ours to prune the seed set of logical
forms used to initialize their memory buffer.

In Table 2, we compare the performance of our
iterative search algorithm with three baselines: 1)
Static MML, as described in §2.2.1 trained on the
candidate set of logical forms obtained through
the heuristic search technique described in §6.2;
2) Iterative MML, also an iterative technique but
unlike iterative search, we skip MBR and iter-
atively train static MML models while increas-
ing the number of decoding steps; and 3) MAPO
(Liang et al., 2018), the current best published sys-
tem on WTQ. All four algorithms are trained and
evaluated on the first fold, use the same language,
and the bottom three use the same model and the
same set of logical forms used to train static MML.

https://github.com/allenai/iterative-search-semparse
https://github.com/allenai/iterative-search-semparse
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NLVR In Table 3, we show a comparison of
the performance of our iterative coverage-guided
search algorithm with the previously published ap-
proaches for NLVR. The first two rows correspond
to models that are not semantic parsers. This
shows that semantic parsing is a promising direc-
tion for this task. The closest work to ours is the
weakly supervised parser built by (Goldman et al.,
2018). They build a lexicon similar to ours for
mapping surface forms in input sentences to ab-
stract clusters. But in addition to defining a lex-
icon, they also manually annotate complete sen-
tences in this abstract space, and use those annota-
tions to perform data augmentation for training a
supervised parser, which is then used to initialize a
weakly supervised parser. They also explicitly use
the abstractions to augment the beam during de-
coding using caching, and a separately-trained dis-
criminative re-ranker to re-order the logical forms
on the beam. As a discriminative re-ranker is or-
thogonal to our contributions, we show their re-
sults with and without it, with “Abs. Sup.” being
more comparable to our work. Our model, which
uses no data augmentation, no caching during de-
coding, and no discriminative re-ranker, outper-
forms their variant without reranking on the pub-
lic test set, and outperforms their best model on
the hidden test set, achieving a new state-of-the-
art result on this dataset.

6.4 Effect of coverage-guided search

To evaluate the contribution of coverage-guided
search, we compare the the performance of the
NLVR parser in two different settings: with and
without coverage guidance in the cost function.
We also compare the performance of the parser in
the two settings, when initialized with parameters
from an MML model trained to maximize the like-
lihood of the set of logical forms obtained from
exhaustive search. Table 4 shows the results of
this comparison. We measure accuracy and con-
sistency of all four models on the publicly avail-
able test set, using the official evaluation script.
Consistency here refers to the percentage of logi-
cal forms that produce the correct denotation in all
the corresponding worlds, and is hence a stricter
metric than accuracy. The cost weight (λ in Equa-
tion 3) was tuned based on validation set perfor-
mance for the runs with coverage, and we found
that λ = 0.4 worked best.

It can be seen that both with and without ini-

tialization, coverage guidance helps by a big mar-
gin, with the gap being even more prominent in
the case where there is no initialization. When
there is neither coverage guidance nor a good ini-
tialization, the model does not learn much from
unguided search and get a test accuracy not much
higher than the majority baseline of 56.2%.

We found that coverage guidance was not as
useful for WTQ. The average value of the best per-
forming λ was around 0.2, and higher values nei-
ther helped nor hurt performance.

6.5 Effect of iterative search

To evaluate the effect of iterative search, we
present the accuracy numbers from the search (S)
and maximization (M) steps from different itera-
tions in Tables 5 and 6, showing results on NLVR
and WTQ, respectively. Additionally, we also
show number of decoding steps used at each it-
erations, and the percentage of sentences in the
training data for which we were able to obtain
consistent logical forms from the S step, the set
that was used in the M step of the same iteration.
It can be seen in both tables that a better MML
model gives a better initialization for MBR, and
a better MBR model results in a larger set of ut-
terances for which we can retrieve consistent log-
ical forms, thus improving the subsequent MML
model. The improvement for NLVR is more pro-
nounced (a gain of 21% absolute) than for WTQ
(a gain of 3% absolute), likely because the initial
exhaustive search provides a much higher percent-
age of spurious logical forms for NLVR, and thus
the starting place is relatively worse.

Complexity of Logical Forms We analyzed the
logical forms produced by our iterative search al-
gorithm at different iterations to see how they dif-
fer. As expected, for NLVR, allowing greater
depths lets the parser explore more complex logi-
cal forms. Table 7 shows examples from the vali-
dation set that indicate this trend.

7 Related Work

Most of the early methods used for training se-
mantic parsers required the training data to come
with annotated logical forms (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005). The pri-
mary limitation of such methods is that manually
producing these logical forms is expensive, mak-
ing it hard to scale these methods across domains.
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Dev. Test-P Test-H
Approach Acc. Cons. Acc. Cons. Acc. Cons.

MaxEnt (Suhr et al., 2017) 68.0 - 67.7 - 67.8 -
BiATT-Pointer (Tan and Bansal, 2018) 74.6 - 73.9 - 71.8 -
Abs. Sup. (Goldman et al., 2018) 84.3 66.3 81.7 60.1 - -
Abs. Sup. + ReRank (Goldman et al., 2018) 85.7 67.4 84.0 65.0 82.5 63.9
Iterative Search 85.4 64.8 82.4 61.3 82.9 64.3

Table 3: Comparison of our approach with previously published approaches. We show accuracy and consistency
on the development set, and public (Test-P) and hidden (Test-H) test sets.

No coverage + coverage
Acc. Cons. Acc. Cons.

No init. 56.4 12.0 73.9 43.6
MML init. 77.7 51.1 80.7 56.4

Table 4: Effect of coverage guidance on NLVR parsers
trained with and without initialization from an MML
model. Metrics shown are accuracy and consistency on
the public test set.

Iter. Length % cov. Step Dev. Acc

0 10 51 M 64.0

1 12 65
S 81.6
M 76.5

2 14 65
S 82.7
M 81.8

3 16 73
S 85.4
M 83.1

4 18 75
S 84.7
M 81.2

Table 5: Effect of iterative search (S) and maximization
(M) on NLVR. % cov. is the percentage of training data
for which the S step retrieves consistent logical forms.

Iter. Length % cov. Step Dev. Acc

0 10 83.3 M 40.0

1 12 70.2
S 42.5
M 42.5

2 14 71.3
S 43.1
M 42.7

3 16 71.0
S 42.8
M 42.5

4 18 71.0
S 43.0
M 42.7

Table 6: Iterative search on WIKITABLEQUESTIONS.
M and S refer to Maximization and Search steps.

More recent research has focused on training se-
mantic parsers with weak supervision (Liang et al.,
2011; Berant et al., 2013), or trying to automat-
ically infer logical forms from denotations (Pa-
supat and Liang, 2016). However, matching the
performance of a fully supervised semantic parser
with only weak supervision remains a significant
challenge (Yih et al., 2016).

The main contributions of this work deal with
training semantic parsers with weak supervision,
and we gave a detailed discussion of related train-
ing methods in §2.2.

We evaluate our contributions on the NLVR and
WIKITABLEQUESTIONS datasets. Other work
that evaluates on on these datasets include Gold-
man et al. (2018), Tan and Bansal (2018), Nee-
lakantan et al. (2017), Krishnamurthy et al. (2017),
Haug et al. (2018), and (Liang et al., 2018). These
prior works generally present modeling contri-
butions that are orthogonal (and in some cases
complementary) to the contributions of this paper.
There has also been a lot of recent work on neural
semantic parsing, most of which is also orthogo-
nal to (and could probably benefit from) our con-
tributions (Dong and Lapata, 2016; Jia and Liang,
2016; Yin and Neubig, 2017; Krishnamurthy et al.,
2017; Rabinovich et al., 2017). Recent attempts
at dealing with the problem of spuriousness in-
clude Misra et al. (2018) and Guu et al. (2017).

Coverage has recently been used in machine
translation (Tu et al., 2016) and summarization
(See et al., 2017). There have also been many
methods that use coverage-like mechanisms to
give lexical cues to semantic parsers. Goldman
et al. (2018)’s abstract examples is the most recent
and related work, but the idea is also related to lex-
icons in pre-neural semantic parsers (Kwiatkowski
et al., 2011).
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0
There is a tower with four blocks
(box exists (member count equals all boxes 4))

1
Atleast one black triangle is not touching the edge
(object exists (black (triangle ((negate filter touch wall) all objects))))

2
There is a yellow block as the top of a tower with exactly three blocks.
(object exists (yellow (top (object in box (member count equals all boxes 3)))))

3
The tower with three blocks has a yellow block over a black block
(object count greater equals (yellow (above (black (object in box
(member count equals all boxes 3))))) 1)

Table 7: Complexity of logical forms produced at different iterations, from iteration 0 to iteration 3; each logical
form could not be produced at the previous iterations

8 Conclusion

We have presented a new technique for training
semantic parsers with weak supervision. Our key
insights are that lexical cues are crucial for guid-
ing search during the early stages of training, and
that the particulars of the approximate marginal-
ization in maximum marginal likelihood have a
large impact on performance. To address the first
issue, we used a simple coverage mechanism for
including lexicon-like information in neural se-
mantic parsers that do not have lexicons. For the
second issue, we developed an iterative procedure
that alternates between statically-computed and
dynamically-computed training signals. Together
these two contributions greatly improve seman-
tic parsing performance, leading to new state-of-
the-art results on NLVR and WIKITABLEQUES-
TIONS. As these contributions are to the learn-
ing algorithm, they are broadly applicable to many
models trained with weak supervision. One poten-
tial future work direction is investigating whether
they extend to other structured prediction prob-
lems beyond semantic parsing.
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A Logical form language and lexicon for
NLVR

Basic Types: bool (t), box (b), object
(o), shape (s), color (c), number (n)

In the grammar and lexicon that follow we use the
following placeholders,

quantifier ∈ {any,all,none}
comparator ∈ {equals,not equals,

lesser,lesser equals,

greater,greater equals}
color ∈ {yellow,blue,black}
shape ∈ {square,triangle,circle}
size ∈ {big,medium,small}
location ∈ {above,below,top,left,
right,bottom,corner,wall}

number ∈ {1...9}

A.1 Grammar
Constants
b -> all_boxes
c -> color_black,

color_blue, color_yellow
n -> 1, 2, ..., 9
o -> all_objects
s -> shape_circle,

shape_square, shape_triangle

Object filtering functions
<o,o> -> [location], [color],
[shape], [size], same_color,
same_shape, touch_object,
touch_bottom, touch_top,
touch_left, touch_right,
touch_corner, touch_wall,

Box filtering functions
<b,<s,b>> ->

member_shape_[quantifier]_equals
<b,<c,b>> ->

member_color_[quantifier]_equals
<b,<n,b>> ->

member_count_[comparator]
member_color_count_[comparator],
member_shape_count_[comparator]

<b,b> -> member_color_different,
member_color_same,
member_shape_different,
member_shape_same

Assertion functions

<b,t> -> box_exists
<o,t> -> object_exists
<b,<n,t>> -> box_count_[comparator]
<o,<c,t>> ->

object_color_[quantifier]_equals
<o,<s,t>> ->

object_shape_[quantifier]_equals
<o,<n,t>> ->

object_color_count_[comparator],
object_shape_count_[comparator],
object_count_[comparator]

Other functions

<b,o> -> object_in_box
<<o,o>,<o,o>> -> negate_filter

A.2 Lexicon for NLVR

there is a box→ box exists
there is a [other]→ object exists
box . . . [color]→ color [color]
box . . . [shape]→ shape [shape]
not→ negate filter
contains→ object in box
touch . . . [location]→ touch [location]
[location]→ [location]
[shape]→ [shape]
[color]→ [color]
[size]→ [size]
[number]→ [number]

B Logical form language and lexicon for
WIKITABLEQUESTIONS

We use the language from Liang et al. (2018). For
coverage, in addition to triggering productions for
numbers, and column names and cell strings in the
table, we use the following lexicon for coverage.
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B.1 Lexicon for WIKITABLEQUESTIONS

at least→ filter≥
[greater|larger|more] than→ filter≥
at most→ filter≤
no [greater|larger|more] than→ filter≤
[next|below|after]→ next
[previous|above|before]→ previous
[first|top]→ top
[last|bottom]→ bottom
same→ same as
total→ sum
difference→ diff
average→ average
[least|smallest|lowest|smallest]→ argmin
[most|longest|highest|largest]→ argmax
[what|when] . . . [last|least]→ min
[what|when] . . . [first|most]→ max
how many→ count


