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Abstract

We propose a generative model for a sen-

tence that uses two latent variables, with one

intended to represent the syntax of the sen-

tence and the other to represent its semantics.

We show we can achieve better disentangle-

ment between semantic and syntactic repre-

sentations by training with multiple losses, in-

cluding losses that exploit aligned paraphras-

tic sentences and word-order information. We

also investigate the effect of moving from bag-

of-words to recurrent neural network mod-

ules. We evaluate our models as well as sev-

eral popular pretrained embeddings on stan-

dard semantic similarity tasks and novel syn-

tactic similarity tasks. Empirically, we find

that the model with the best performing syn-

tactic and semantic representations also gives

rise to the most disentangled representations.1

1 Introduction

As generative latent variable models, especially

of the continuous variety (Kingma and Welling,

2014; Goodfellow et al., 2014), have become in-

creasingly important in natural language process-

ing (Bowman et al., 2016; Gulrajani et al., 2017),

there has been increased interest in learning mod-

els where the latent representations are disentan-

gled (Hu et al., 2017). Much of the recent NLP

work on learning disentangled representations of

text has focused on disentangling the representa-

tion of attributes such as sentiment from the rep-

resentation of content, typically in an effort to bet-

ter control text generation (Shen et al., 2017; Zhao

et al., 2017; Fu et al., 2018).

In this work, we instead focus on learning sen-

tence representations that disentangle the syntax

and the semantics of a sentence. We are more-

over interested in disentangling these representa-

1Code and data are available at github.com/

mingdachen/disentangle-semantics-syntax

tions not for the purpose of controlling generation,

but for the purpose of calculating semantic or syn-

tactic similarity between sentences (but not both).

To this end, we propose a generative model of a

sentence which makes use of both semantic and

syntactic latent variables, and we evaluate the in-

duced representations on both standard semantic

similarity tasks and on several novel syntactic sim-

ilarity tasks.

We use a deep generative model consisting of

von Mises Fisher (vMF) and Gaussian priors on

the semantic and syntactic latent variables (respec-

tively) and a deep bag-of-words decoder that con-

ditions on these latent variables. Following much

recent work, we learn this model by optimizing

the ELBO with a VAE-like (Kingma and Welling,

2014; Rezende et al., 2014) approach.

Our learned semantic representations are eval-

uated on the SemEval semantic textual similarity

(STS) tasks (Agirre et al., 2012; Cer et al., 2017).

Because there has been less work on evaluating

syntactic representations of sentences, we propose

several new syntactic evaluation tasks, which in-

volve predicting the syntactic analysis of an un-

seen sentence to be the syntactic analysis of its

nearest neighbor (as determined by the latent syn-

tactic representation) in a large set of annotated

sentences.

In order to improve the quality and disentangle-

ment of the learned representations, we incorpo-

rate simple additional losses in our training, which

are designed to force the latent representations to

capture different information. In particular, our se-

mantic multi-task losses make use of aligned para-

phrase data, whereas our syntactic multi-task loss

makes use of word-order information. Addition-

ally, we explore different encoder and decoder ar-

chitectures for learning better syntactic represen-

tations. Experimentally, we find that by training in

this way we are able to force the learned represen-

https://github.com/mingdachen/disentangle-semantics-syntax
https://github.com/mingdachen/disentangle-semantics-syntax
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tations to capture different information (as mea-

sured by the performance gap between the latent

representations on each task). Moreover, we find

that we achieve the best performance on all tasks

when the learned representations are most disen-

tangled.

2 Related Work

There is a growing amount of work on learning in-

terpretable or disentangled latent representations

both in machine learning (Tenenbaum and Free-

man, 2000; Reed et al., 2014; Makhzani et al.,

2015; Mathieu et al., 2016; Higgins et al., 2016;

Chen et al., 2016; Hsu et al., 2017) and in var-

ious NLP applications, including sentence senti-

ment and style transfer (Hu et al., 2017; Shen

et al., 2017; Fu et al., 2018; Zhao et al., 2018,

inter alia), morphological reinflection (Zhou and

Neubig, 2017), semantic parsing (Yin et al., 2018),

text generation (Wiseman et al., 2018), and se-

quence labeling (Chen et al., 2018). Another re-

lated thread of work is text-based variational au-

toencoders (Miao et al., 2016; Bowman et al.,

2016; Serban et al., 2017; Xu and Durrett, 2018).

In terms of syntax and semantics in particular,

there is a rich history of work in analyzing their

interplay in sentences (Jurafsky, 1988; van Valin,

Jr., 2005). We do not intend to claim that the

two can be entirely disentangled in distinct rep-

resentations. Rather, our goal is to propose mod-

ica of knowledge via particular multi-task losses

and measure the extent to which this knowledge

leads learned representations to favor syntactic or

semantic information from a sentence.

There has been prior work with similar goals

for representations of words (Mitchell and Steed-

man, 2015) and bilexical dependencies (Mitchell,

2016), finding that decomposing syntactic and se-

mantic information can lead to improved perfor-

mance on semantic tasks. We find similar trends

in our results, but at the level of sentence represen-

tations. A similar idea has been explored for text

generation (Iyyer et al., 2018), where adversarial

examples are generated by controlling syntax.

Some of our losses use sentential paraphrases,

relating them to work in paraphrase modeling (Wi-

eting et al., 2016; Wieting and Gimpel, 2018).

Deudon (2018) recently proposed a variational

framework for modeling paraphrastic sentences,

but our focus here is on learning disentangled rep-

resentations.

x

z

y

x

Figure 1: Graphical model of VGVAE. Dashed lines in-

dicate inference model. Solid lines indicate generative

model.

As part of our evaluation, we develop novel syn-

tactic similarity tasks for sentence representations

learned without any syntactic supervision. These

evaluations relate to the broad range of work in un-

supervised parsing (Klein and Manning, 2004) and

part-of-speech tagging (Christodoulopoulos et al.,

2010). However, our evaluations differ from pre-

vious evaluations in that we employ k-nearest-

neighbor syntactic analyzers using our syntactic

representations to choose nearest neighbors.

There is a great deal of work on applying multi-

task learning to various NLP tasks (Plank et al.,

2016; Rei, 2017; Augenstein and Søgaard, 2017;

Bollmann et al., 2018, inter alia) and, recently,

as a way of improving the quality or disentangle-

ment of learned representations (Zhao et al., 2017;

Goyal et al., 2017; Du et al., 2018; John et al.,

2018).

3 Proposed Approach

Our goal is to extract the disentangled semantic

and syntactic information from sentence represen-

tations. To achieve this, we introduce the vMF-

Gaussian Variational Autoencoder (VGVAE). As

shown in Figure 1, VGVAE assumes a sentence

is generated by conditioning on two independent

variables: semantic variable y and syntactic vari-

able z. In particular, our model gives rise to the

following joint likelihood

pθ(x, y, z) = pθ(y)pθ(z)pθ(x|y, z)

= pθ(y)pθ(z)

T
∏

t=1

p(xt | y, z),

where xt is the tth word of x, T is the sentence

length, and p(xt|y, z) is given by a softmax over

a vocabulary of size V . Further details on the pa-

rameterization are given below.

To perform inference, we assume a factored

posterior qφ(y, z|x) = qφ(y|x)qφ(z|x), as has

been used in prior work (Zhou and Neubig, 2017;

Chen et al., 2018). Learning of VGVAE maxi-

mizes a lower bound on marginal log-likelihood:
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log pθ(x) ≥ E
y∼qφ(y|x)
z∼qφ(z|x)

[log pθ(x|z, y)

− log
qφ(z|x)

pθ(z)
− log

qφ(y|x)

pθ(y)
]

= E
y∼qφ(y|x)
z∼qφ(z|x)

[log pθ(x|z, y)]−KL(qφ(z|x)‖pθ(z))

−KL(qφ(y|x)‖pθ(y))
def
== ELBO

(1)

3.1 Parameterizations

VGVAE uses two distribution families in defining

the posterior over latent variables, namely, the von

Mises-Fisher (vMF) distribution and the Gaussian

distribution.

vMF Distribution. vMF can be regarded as a

Gaussian distribution on a hypersphere with two

parameters: µ and κ. µ ∈ R
m is a normalized vec-

tor (i.e. ‖µ‖2 = 1 ) defining the mean direction.

κ ∈ R≥0 is often referred to as a concentration

parameter analogous to the variance in a Gaussian

distribution. vMF has been used for modeling sim-

ilarity between two sentences (Guu et al., 2018),

which is particularly suited to our purpose here,

since we will evaluate our semantic representa-

tions in the context of modeling paraphrases (See

Sections 4.1 and 4.2 for more details). Therefore,

we assume qφ(y|x) follows vMF(µα(x), κα(x))
and the prior pθ(y) follows the uniform distribu-

tion vMF(·, 0).
With this choice of prior and posterior distri-

bution, the KL(qφ(y|x)‖pθ(y)) appearing in the

ELBO can be computed in closed-form:

κα
Im/2(κα)

Im/2−1(κα)
+ (m/2− 1) log κα−

(m/2) log(2π)− log Im/2−1(κα)+
m

2
log π + log 2− log Γ(

m

2
),

(2)

where Iv is the modified Bessel function of the

first kind at order v and Γ(·) is the Gamma func-

tion. We follow Davidson et al. (2018) and use an

acceptance-rejection scheme to sample from vMF.

Gaussian Distribution.2 We assume

qφ(z|x) follows a Gaussian distribution

2In preliminary experiments, we observed that using two
distribution families can lead to better performance. This is
presumably because the Gaussian distribution complements
the norm information lost in the vMF distribution.

N (µβ(x), diag(σβ(x))) and that the prior pθ(z)
is N (0, Id), where Id is an d × d identity matrix.

Since we only consider a diagonal covariance ma-

trix, the KL divergence term KL(qφ(z|x)‖pθ(z))
can also be computed efficiently:

1

2
(−

∑

i

log σβi +
∑

i

σβi +
∑

i

µ2
βi − d) (3)

Inference and Generative Models. The infer-

ence models qφ(y|x) and qφ(z|x) are two inde-

pendent word averaging encoders with additional

linear feedforward neural networks for producing

µ(x) and σ(x) (or κ(x)). The generative model

pθ(x|y, z) is a feedforward neural network gθ with

the output being a bag of words. In particular, the

expected output log-probability (the first term in

Eq. 1) is computed as follows:

E
y∼qφ(y|x)
z∼qφ(z|x)

[log pθ(x|y, z)] =

E
y∼qφ(y|x)
z∼qφ(z|x)

[

T
∑

t=1

log
exp gθ([y; z])xt

∑V
j=1 exp gθ([y; z])j

]

Where V is the vocabulary size, [; ] indicates con-

catenation, T is the sentence length and xt is the

index of the t’th word’s word type.

Recurrent Neural Networks. To facilitate bet-

ter learning of syntax, we also consider replac-

ing both the generative and inference models with

RNN-based sequence models, rather than bag-

of-words models. In this setting, the genera-

tive model pθ(x|y, z) is a unidirectional long-short

term memory network (LSTM; Hochreiter and

Schmidhuber, 1997) and a linear feedforward neu-

ral network for predicting the word tokens (shown

in Figure 2). The expected output log-probability

is computed as follows:

E
y∼qφ(y|x)
z∼qφ(z|x)

[log pθ(x|y, z)] =

E
y∼qφ(y|x)
z∼qφ(z|x)

[

T
∑

t=1

log pθ(xt|y, z, x1:t−1)

]

Where V is the vocabulary size, T is the sentence

length and xt is the index of the t’th word’s word

type.

The inference model qφ(y|x) is still a word av-

eraging encoder, but qφ(z|x) is parameterized by
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      encoder

      encoder

Figure 2: Diagram showing LSTM decoder that uses

the semantic variable y and the syntactic variable z.

z encoder z1x1

y encoder y1x1

y encoder y2x2

z encoder z2x2

x1

x2

DPL

Figure 3: Diagram showing the training process when

using the discriminative paraphrase loss (DPL; dotted

lines) and paraphrase reconstruction loss (PRL; dash-

dotted lines). The pair (x1, x2) is a sentential para-

phrase pair, the y’s are the semantic variables corre-

sponding to each x, and the z’s are syntactic variables.

a bidirectional LSTM, where we concatenate the

forward and backward hidden states and then take

the average. The output of the LSTM is then used

as input to a feedforward network with one hidden

layer for producing µ(x) and σ(x) (or κ(x)).

In the following sections, we will introduce sev-

eral losses that will be added into the training of

our base model, which empirically shows the abil-

ity of further disentangling the functionality be-

tween the semantic variable y and the syntactic

variable z.

4 Multi-Task Training

We attempt to improve the quality and disentan-

glement of our semantic and syntactic representa-

tions by introducing additional losses, which en-

courage y to capture semantic information and z
to capture syntactic information. We elaborate on

these losses below.

4.1 Paraphrase Reconstruction Loss

Our first loss is a paraphrase reconstruction loss

(PRL). The key assumption underlying the PRL is

that for a paraphrase pair x1, x2, the semantic in-

formation is equivalent between the two sentences

and only the syntactic information varies. To im-

pose such constraints, PRL is defined as

E
y2∼qφ(y|x2)
z1∼qφ(z|x1)

[− log pθ(x1|y2, z1)]+

E
y1∼qφ(y|x1)
z2∼qφ(z|x2)

[− log pθ(x2|y1, z2)]
(4)

That is, we swap the semantic variables, keep

the syntactic variables, and attempt to reconstruct

the sentences (shown in Figure 3). While instead

of using a multi-task objective we could directly

model paraphrases x1 and x2 as being generated

by the same y (which naturally suggests a product-

of-experts style posterior, as in Wu and Goodman

(2018)), we found that for the purposes of our

downstream tasks training with the multi-task loss

gave superior results.

4.2 Discriminative Paraphrase Loss

Our second loss is a discriminative paraphrase loss

(DPL). The DPL explicitly encourages the similar-

ity of paraphrases x1, x2 to be scored higher than

the dissimilar sentences n1, n2 (i.e., negative sam-

ples; see Sec. 5 for more details) by a given margin

δ. As shown in Figure 3, the similarity function in

this loss only uses the semantic variables in the

sentences. The loss is defined as

max(0, δ − d(x1, x2) + d(x1, n1))+

max(0, δ − d(x1, x2) + d(x2, n2))
(5)

The similarity function we choose is the cosine

similarity between the mean directions of the se-

mantic variables from the two sentences:

d(x1, x2) = cosine(µα(x1), µα(x2)) (6)

4.3 Word Position Loss

It has been observed in previous work that word

order typically contributes little to the modelling

of semantic similarity (Wieting et al., 2016). We

interpret this as evidence that word position infor-

mation is more relevant to syntax than semantics,

at least as evaluated by STS tasks. To guide the

syntactic variable to represent word order, we in-

troduce a word position loss (WPL). Although our
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word averaging encoders only have access to the

bag of words of the input, using this loss can be

viewed as a denoising autoencoder where we have

maximal input noise (i.e., an orderless representa-

tion of the input) and the encoders need to learn to

reconstruct the ordering. For both word averaging

encoders and LSTM encoders, WPL is parameter-

ized by a three-layer feedforward neural network

f(·) with input from the concatenation of the sam-

ples of the syntactic variable z and the embedding

vector ei at input position i; we then attempt to

predict a one-hot vector representing the position

i. More specifically, we define

WPL
def
== E

z∼qφ(z|x)

[

−
∑

i

log softmax(f([ei; z]))i

]

where softmax(·)i indicates the probability at po-

sition i.

5 Training

KL Weight. Following previous work on

VAEs (Higgins et al., 2016; Alemi et al., 2016),

we attach a weight to the KL divergence and tune

it based on development set performance.

Negative Samples. When applying DPL, we se-

lect negative samples based on maximizing cosine

similarity to sentences from a subset of the data.

In particular, we accumulate k mini-batches dur-

ing training, yielding a “mega-batch” S (Wieting

and Gimpel, 2018). Then the negative samples are

selected based on the following criterion:

n1 = argmax
n∈S∧n 6=x2

cosine(µα(x1), µα(n))

where x1, x2 forms the paraphrase pair and the

mega-batch size is fixed to k = 20 for all of our

experiments. Since all of our models are trained

from scratch, we observed some instabilities with

DPL during the initial stages of training. We sus-

pect that this is because the negative samples at

these initial stages are of low quality. To overcome

this issue, DPL is included starting at the second

epoch of training so that the models can have a

warm start.

6 Experiments

6.1 Setup

We subsampled half a million paraphrase pairs

from ParaNMT-50M (Wieting and Gimpel, 2018)

as our training set. We use SemEval semantic tex-

tual similarity (STS) task 2017 (Cer et al., 2017)

as a development set. For semantic similarity

evaluation, we use the STS tasks from 2012 to

2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016)

and the STS benchmark test set (Cer et al., 2017).

For evaluating syntactic similarity, we propose

several evaluations. One uses the gold parse trees

from the Penn Treebank (Marcus et al., 1993), and

the others are based on automatically tagging and

parsing five million paraphrases from ParaNMT-

50M; we describe these tasks in detail below.

For hyperparameters, the dimensions of the la-

tent variables are 50. The dimensions of word em-

beddings are 50. We use cosine similarity as sim-

ilarity metric for all of our experiments. We tune

the weights for PRL and reconstruction loss from

0.1 to 1 in increments of 0.1 based on the devel-

opment set performance. We use one sample from

each latent variable during training. When eval-

uating VGVAE based models on STS tasks, we

use the mean direction of the semantic variable

y, while for syntactic similarity tasks, we use the

mean vector of the syntactic variable z.

6.2 Baselines

Our baselines are a simple word averaging

(WORDAVG) model and bidirectional LSTM aver-

aging (BLSTMAVG) model, both of which have

been shown to be very competitive for model-

ing semantic similarity when trained on para-

phrases (Wieting and Gimpel, 2018). Specifically,

WORDAVG takes the average over the word em-

beddings in the input sequence to obtain the sen-

tence representation. BLSTMAVG uses the av-

eraged hidden states of a bidirectional LSTM as

the sentence representation, where forward and

backward hidden states are concatenated. These

models use 50 dimensional word embeddings and

50 dimensional LSTM hidden vectors per direc-

tion. These baselines are trained with DPL only.

Additionally, we scramble the input sentence for

BLSTMAVG since it has been reported benefi-

cial for its performance in semantic similarity

tasks (Wieting and Gimpel, 2017).

We also benchmark several pretrained embed-

dings on both semantic similarity and syntactic

similarity datasets, including GloVe (Pennington

et al., 2014),3 SkipThought (Kiros et al., 2015),4

3We use 300 dimensional Common Crawl embeddings
available at nlp.stanford.edu/projects/glove

4github.com/ryankiros/skip-thoughts

https://nlp.stanford.edu/projects/glove
https://github.com/ryankiros/skip-thoughts
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semantic var. syntactic var.
bm avg bm avg

GloVe 39.0 48.7 - -
SkipThought 42.1 42.0 - -
InferSent 67.8 61.0 - -
ELMo 57.7 60.3 - -
BERT 4.5 15.0 - -

WORDAVG 71.9 64.8 - -
BLSTMAVG 71.4 64.4 - -

VGVAE 45.5 42.7 40.8 43.2
VGVAE + WPL 51.5 49.3 28.1 31.0
VGVAE + DPL 68.4 58.2 37.8 40.5
VGVAE + PRL 67.9 57.8 29.6 32.7
VGVAE + PRL + WPL 69.8 61.3 23.2 27.9
VGVAE + PRL + DPL 71.2 64.2 31.7 33.9
VGVAE + DPL + WPL 71.0 63.5 24.1 29.0
ALL 72.3 65.1 20.1 24.2
ALL + LSTM enc. 72.5 65.1 16.3 24.5
ALL + LSTM enc. & dec. 72.9 65.5 11.3 19.3

Table 1: Pearson correlation (%) for STS test sets. bm:

STS benchmark test set. avg: the average of Pearson

correlation for each domain in the STS test sets from

2012 to 2016. Results are in bold if they are high-

est in the “semantic variable” columns or lowest in the

“syntactic variable” columns. “ALL” indicates all of

the multi-task losses are used.

InferSent (Conneau et al., 2017),5 ELMo (Peters

et al., 2018),6 and BERT (Devlin et al., 2018).7

For GloVe, we average word embeddings to form

sentence embeddings. For ELMo, we average the

hidden states from three layers and then average

the hidden states across time steps. For BERT, we

use the averaged hidden states from the last atten-

tion block.

7 Results and Analysis

7.1 Semantic Similarity

As shown in Table 1, the semantic and syntactic

variables of our base VGVAE model show simi-

lar performance on the STS test sets. As we be-

gin adding multi-task losses, however, the perfor-

mance of these two variables gradually diverges,

indicating that different information is being cap-

tured in the two variables. More interestingly,

note that when any of the three losses is added

to the base VGVAE model (even the WPL loss

which makes no use of paraphrases), the perfor-

mance of the semantic variable increases and the

performance of the syntactic variable decreases;

5We use model V1 available at github.com/

facebookresearch/InferSent
6We use the original model available at allennlp.

org/elmo
7We use bert-large-uncased available at github.com/

huggingface/pytorch-pretrained-BERT

this suggests that each loss is useful in encourag-

ing the latent variables to learn complementary in-

formation.

Indeed, the trend of additional losses both in-

creasing semantic performance and decreasing

syntactic performance holds even as we use more

than two losses, except for the single case of VG-

VAE + PRL + DPL, where the syntactic perfor-

mance increases slightly. Finally, we see that

when the bag-of-words VGVAE model is used

with all of the multi-task losses (“ALL”), we ob-

serve a large gap between the performance of the

semantic and syntactic latent variables, as well as

strong performance on the STS tasks that outper-

forms all baselines.

Using LSTM modules further strengthens the

disentanglement between the two variables and

leads to even better semantic performance. While

using an LSTM encoder and a bag-of-words de-

coder is difficult to justify from a generative mod-

eling perspective, we include results with this con-

figuration to separate out the contributions of the

LSTM encoder and decoder.

7.2 Syntactic Similarity

So far, we have only confirmed empirically that

the syntactic variable has learned to not capture

semantic information. To investigate what the syn-

tactic variable has captured, we propose several

syntactic similarity tasks.

In particular, we consider using the syntactic la-

tent variable in calculating nearest neighbors for

a 1-nearest-neighbor syntactic parser or part-of-

speech tagger. We use our latent variables to de-

fine the similarity function in these settings and

evaluate the quality of the output parses and tag

sequences using several metrics.

Our first evaluation involves constituency pars-

ing, and we use the standard training and test splits

from the Penn Treebank. We predict a parse tree

for each sentence in the test set by finding its near-

est neighbor in the training set based on the co-

sine similarity of the mean vectors for the syntactic

variables. The parse tree of the nearest neighbor

will then be treated as our prediction for the test

sentence. Since the train and test sentences may

differ in length, standard parse evaluation met-

rics are not applicable, so we use tree edit dis-

tance (Zhang and Shasha, 1989)8 to compute the

distance between two parse tree without consider-

8github.com/timtadh/zhang-shasha

https://github.com/facebookresearch/InferSent
https://github.com/facebookresearch/InferSent
https://allennlp.org/elmo
https://allennlp.org/elmo
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/timtadh/zhang-shasha


2459

Constituent Parsing (TED, ↓) Constituent Parsing (F1, ↑) POS Tagging (%Acc., ↑)

GloVe 120.8 27.3 23.9
SkipThought 99.5 30.9 29.6
InferSent 138.9 28.0 25.1
ELMo 103.8 30.4 27.8
BERT 101.7 28.6 25.4

Random baseline 121.4 19.2 12.9
Upper bound performance 51.6 71.1 62.3

WORDAVG 107.0 25.5 21.4
BLSTMAVG 106.8 25.7 21.6

semantic var. syntactic var. semantic var. syntactic var. semantic var. syntactic var.

VGVAE 109.3 111.4 25.2 25.0 21.1 21.0
VGVAE + WPL 112.3 105.9 24.1 28.2 20.3 24.2
VGVAE + DPL 108.1 110.6 25.1 26.1 21.3 21.8
VGVAE + PRL 111.9 110.9 24.7 26.9 21.0 22.2
VGVAE + DPL + WPL 111.2 105.0 25.1 28.8 21.5 24.6
VGVAE + PRL + DPL 108.0 110.4 25.0 26.2 21.1 22.1
VGVAE + PRL + WPL 109.4 105.1 24.4 28.1 20.6 23.6
ALL 110.0 104.7 25.4 29.3 21.4 25.5
ALL + LSTM enc. 112.0 101.0 25.7 37.3 22.1 34.0
ALL + LSTM enc. & dec. 114.6 100.5 25.3 38.8 21.4 35.7

Table 2: Syntactic similarity evaluations, showing tree edit distance (TED) and labeled F1 score for constituent

parsing, and accuracy (%) for part-of-speech tagging. Numbers are bolded if they are worst in the “semantic

variable” column or best in the “syntactic variable” column. “ALL” indicates all the multi-task losses are used.

ing word tokens.

To better understand the difficulty of this task,

we introduce two baselines. The first randomly

selects a training sentence. We calculate its perfor-

mance by running it ten times and then reporting

the average. We also report the upper bound per-

formance given the training set. Since computing

tree edit distance is time consuming, we subsam-

ple 100 test instances and compute the minimum

tree edit distance for each sampled instance. Thus,

this number can be seen as the approximated upper

bound performance for this task given the training

set.

To use a more standard metric for these syn-

tactic similarity tasks, we must be able to retrieve

training examples with the same number of words

as the sentence we are trying to parse. We ac-

cordingly parse and tag the five million paraphrase

subset of the ParaNMT training data using Stan-

ford CoreNLP (Manning et al., 2014). To form a

test set, we group sentences in terms of sentence

length and subsample 300 sentences for each sen-

tence length. After removing the paraphrases of

the sentences in the test set, we use the rest of

the training set as candidate sentences for nearest

neighbor search, and we restrict nearest neighbors

to have the same sentence length as the sentence

we are attempting to parse or tag, which allows us

to use standard metrics like labeled F1 score and

tagging accuracy for evaluation.

7.2.1 Results

As shown in Table 2, the syntactic variables

and semantic variables demonstrate similar trends

across these three syntactic tasks. Interestingly,

both DPL and PRL help to improve the perfor-

mance of the syntactic variables, even though

these two losses are only imposed on the semantic

variables. We saw an analogous pattern in Table 1,

which again suggests that by pushing the seman-

tic variables to learn information shared by para-

phrastic sentences, we also encourage the syntac-

tic variables to capture complementary syntactic

information. We also find that adding WPL brings

the largest improvement to the syntactic variable,

and keeps the syntactic information carried by the

semantic variables at a relatively low level. Fi-

nally, when adding all three losses, the syntactic

variable shows the strongest performance across

the three tasks.

In addition, we observe that the use of the

LSTM encoder improves syntactic performance

by a large margin and the LSTM decoder improves

further, which suggests that the use of the LSTM

decoder contributes to the amount of syntactic in-

formation represented in the syntactic variable.

Among pretrained representations, Skip-

Thought shows the strongest performance overall

and ELMo has the second best performance in

the last two columns. While InferSent performs

worst in the first column, it gives reasonable

performance for the other two. BERT performs
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Figure 4: Constituency parsing F1 scores and part-of-

speech tagging accuracies by sentence length, for 1-

nearest neighbor parsers based on semantic and syn-

tactic variables, as well as a random baseline and an

oracle nearest neighbor parser (“Best”).

relatively well in the first column but worse in the

other two.

To investigate the performance gap between the

bag-of-words VGVAE and VGVAE with LSTM

modules, in Figure 4 we plot the performance of

our models and baselines as the length of the target

sentence increases. We see that performance in all

settings degrades as the sentences get longer. This

may be due to the fact that the data is much sparser

as sentence length increases (leaving fewer can-

didate nearest neighbors for prediction). We also

see that above 4 words or so the performance gap

between the bag-of-words VGVAE and VGVAE

with LSTM modules becomes more and more ob-

vious. This may be because the bag-of-words en-

coder has a harder time capturing syntactic infor-

mation as sentence length increases. In addition,

there is a slight improvement from using an LSTM

decoder when the sentence length increases be-

yond 12 or so, which suggests that a bag-of-words

decoder may struggle to capture certain parts of

the syntactic information in the sentence, even

when using an LSTM encoder.

7.3 Qualitative Analysis

To qualitatively evaluate our latent variables, we

find (via cosine similarity) nearest neighbor sen-

tences to test set examples in terms of both the

semantic and syntactic representations. We also

find nearest neighbors of words (which we view

as single-word sentences). We discuss the results

of this analysis below.

7.3.1 Lexical Analysis

Table 3 shows word nearest neighbors for both

syntactic and semantic representations. We see

that the most similar words found by the syn-

tactic variable share the same part-of-speech tags

with the query words. For example, “starting”

is close to “getting” and “taking,” even though

these words are not semantically similar. Words

retrieved according to the semantic variable, how-

ever, are more similar semantically, e.g., “begin”

and “starts”. As another example, “times” is sim-

ilar to words that are either related to descriptions

of frequency (e.g., “twice” and “often”) or related

to numbers (e.g., “thousand”, “seven”).

7.3.2 Sentential Analysis

As shown in Table 4, sentences that are similar in

terms of their semantic variables tend to have sim-

ilar semantics. However, sentences that are simi-

lar in terms of their syntactic variables are mostly

semantically unrelated but have similar surface

forms. For example, “you ’re gon na save her

life .” has the same meaning as “you will save

her .” while having a similar syntactic structure

to “you ’re gon na give a speech .” (despite hav-

ing very different meanings). As another exam-

ple, although the semantic variable does not find

a good match for “i have much more colours at

home .”, which can be attributed to the limited

size of candidate sentences, the nearest syntactic

neighbor (“you have a beautiful view from here .”)

has a very similar syntactic structure to the query

sentence.

8 Discussion

In this paper we explored simple methods to dis-

entangle syntax and semantics in latent represen-

tations of sentences. One goal was to measure the

impact of simple decisions on the disentanglement

of both the semantic and syntactic variables, even

when restricting ourselves to simplified bag-of-

words encoders. Due to the constrained nature of

these bag-of-words models, we found that it was

important to use different word embedding spaces

for the semantic and syntactic encoders. In pre-

liminary experiments, we experimented with the

use of the same word embedding space but dis-

tinct feed-forward layers in the two latent vari-

able encoders. However, this setting proved ex-

tremely difficult to achieve a disentanglement be-

tween syntax and semantics. Hence an important

component of disentanglement with these bag-of-

words encoders is the use of different word em-

bedding spaces.
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starting
syntactic: getting heading sitting chasing taking require trying sharing bothering pushing paying
semantic: begin start stopping forward rising wake initial starts goes started again getting beginning

area
syntactic: engines certificate guests bottle responsibility lesson pieces suit bags vessel applications
semantic: sector location zone fields rooms field places yard warehouse seats coordinates territory

considered
syntactic: stable limited odd scary classified concerned awful purple impressive embarrassing jealous
semantic: thought assumed regard reasons wished understood purposes seemed expect guessed meant

jokes
syntactic: gentlemen photos finding baby missile dna parent shop murder science recognition sheriff
semantic: funny humor prize stars cookie paradise dessert worthy smile happiness thrilled ideal kidding

times
syntactic: princess officer wounds plan gang ships feelings user liar elements coincidence degrees pattern
semantic: twice later thousand pages seven every once often decade forgotten series four eight day time

Table 3: Examples of the most similar words to particular query words using syntactic variable (first row) or

semantic variable (second row).

Query Sentence Semantically Similar Syntactically Similar

i have much more colours at home . even if there was food , would n’t it be
at least 300 years old ?

you have a beautiful view from here .

victor had never known darkness like it . he had never experienced such darkness
as this .

you seem like a really nice kid .

this is , uh , too serious . but this is too serious . it is , however , illegal discrimination .

you ’re gon na save her life . you will save her . you ’re gon na give a speech .

we ’ve got to get a move on . come on , we got ta move . you ’ll have to get in there .

and that was usually the highlight of my
day .

i really enjoyed it when i did it . and yet that was not the strangest aspect
of the painting .

we do need to collect our taxes somehow . we have to earn the money we need . now i have to do my job .

this is just such a surprise . oh . this is a surprise . this is just a little gain .

okay . aw , that ’s so romantic . it ’s so romantic ! oh . well , that ’s not good .

we ’re gon na have to do something about
this .

we ’ll have to do something about that . we ’re gon na have to do something
about yours .

Table 4: Examples of most similar sentences to particular query sentences in terms of the semantic variable or the

syntactic variable.

We also conducted experiments using LSTM

encoders and decoders as recurrent neural net-

works are a natural way to capture syntactic in-

formation in a sentence. We found this approach

to give us additional benefits for both disentan-

gling semantics and syntax and achieving better

results overall. Nonetheless, we find it encourag-

ing that even when using bag-of-words encoders,

our multi-task losses are able to achieve a sepa-

ration as measured by our semantic and syntactic

similarity tasks.

9 Conclusion

We proposed a generative model and several losses

for disentangling syntax and semantics in sentence

representations. We also proposed syntactic sim-

ilarity tasks for measuring the amount of disen-

tanglement between semantic and syntactic rep-

resentations. We characterized the effects of the

losses as well as the use of LSTM modules on

both semantic tasks and syntactic tasks. Our mod-

els achieve the best performance across both sets

of similarity tasks when the latent representations

are most disentangled.
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