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Abstract

Most research in reading comprehension has
focused on answering questions based on in-
dividual documents or even single paragraphs.
We introduce a neural model which integrates
and reasons relying on information spread
within documents and across multiple docu-
ments. We frame it as an inference problem on
a graph. Mentions of entities are nodes of this
graph while edges encode relations between
different mentions (e.g., within- and cross-
document coreference). Graph convolutional
networks (GCNs) are applied to these graphs
and trained to perform multi-step reasoning.
Our Entity-GCN method is scalable and com-
pact, and it achieves state-of-the-art results on
a multi-document question answering dataset,
WIKIHOP (Welbl et al., 2018).

1 Introduction

The long-standing goal of natural language under-
standing is the development of systems which can
acquire knowledge from text collections. Fresh in-
terest in reading comprehension tasks was sparked
by the availability of large-scale datasets, such as
SQuAD (Rajpurkar et al., 2016) and CNN/Daily
Mail (Hermann et al., 2015), enabling end-to-end
training of neural models (Seo et al., 2016; Xiong
et al., 2016; Shen et al., 2017). These systems,
given a text and a question, need to answer the
query relying on the given document. Recently,
it has been observed that most questions in these
datasets do not require reasoning across the doc-
ument, but they can be answered relying on in-
formation contained in a single sentence (Weis-
senborn et al., 2017). The last generation of
large-scale reading comprehension datasets, such
as a NarrativeQA (Kocisky et al., 2018), Trivi-
aQA (Joshi et al., 2017), and RACE (Lai et al.,
2017), have been created in such a way as to ad-
dress this shortcoming and to ensure that systems

query: country Thorildsplan 
candidates: {Denmark, Finland, Sweden, Italy, ...} 
answer: Sweden 

Thorildsplan is a small park in Kristineberg in  
Stockholm, named in 1925 after the writer [..]

Stockholm is the capital of Sweden  
and the most populous city in [..]

Figure 1: A sample from WIKIHOP where multi-step
reasoning and information combination from different
documents is necessary to infer the correct answer.

relying only on local information cannot achieve
competitive performance.

Even though these new datasets are challeng-
ing and require reasoning within documents, many
question answering and search applications re-
quire aggregation of information across multiple
documents. The WIKIHOP dataset (Welbl et al.,
2018) was explicitly created to facilitate the devel-
opment of systems dealing with these scenarios.
Each example in WIKIHOP consists of a collec-
tion of documents, a query and a set of candidate
answers (Figure 1). Though there is no guaran-
tee that a question cannot be answered by relying
just on a single sentence, the authors ensure that it
is answerable using a chain of reasoning crossing
document boundaries.

Though an important practical problem, the
multi-hop setting has so far received little at-
tention. The methods reported by Welbl et al.
(2018) approach the task by merely concatenat-
ing all documents into a single long text and train-
ing a standard RNN-based reading comprehen-
sion model, namely, BiDAF (Seo et al., 2016)
and FastQA (Weissenborn et al., 2017). Docu-
ment concatenation in this setting is also used in
Weaver (Raison et al., 2018) and MHPGM (Bauer
et al., 2018). The only published paper which
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goes beyond concatenation is due to Dhingra
et al. (2018), where they augment RNNs with
jump-links corresponding to co-reference edges.
Though these edges provide a structural bias, the
RNN states are still tasked with passing the infor-
mation across the document and performing multi-
hop reasoning.

Instead, we frame question answering as an
inference problem on a graph representing the
document collection. Nodes in this graph corre-
spond to named entities in a document whereas
edges encode relations between them (e.g., cross-
and within-document coreference links or simply
co-occurrence in a document). We assume that
reasoning chains can be captured by propagat-
ing local contextual information along edges in
this graph using a graph convolutional network
(GCN) (Kipf and Welling, 2017).

The multi-document setting imposes scalabil-
ity challenges. In realistic scenarios, a system
needs to learn to answer a query for a given col-
lection (e.g., Wikipedia or a domain-specific set
of documents). In such scenarios one cannot af-
ford to run expensive document encoders (e.g.,
RNN or transformer-like self-attention (Vaswani
et al., 2017)), unless the computation can be pre-
processed both at train and test time. Even if
(similarly to WIKIHOP creators) one considers a
coarse-to-fine approach, where a set of potentially
relevant documents is provided, re-encoding them
in a query-specific way remains the bottleneck. In
contrast to other proposed methods (e.g., (Dhingra
et al., 2018; Raison et al., 2018; Seo et al., 2016)),
we avoid training expensive document encoders.

In our approach, only a small query encoder,
the GCN layers and a simple feed-forward an-
swer selection component are learned. Instead
of training RNN encoders, we use contextualized
embeddings (ELMo) to obtain initial (local) rep-
resentations of nodes. This implies that only a
lightweight computation has to be performed on-
line, both at train and test time, whereas the rest
is preprocessed. Even in the somewhat contrived
WIKIHOP setting, where fairly small sets of can-
didates are provided, the model is at least 5 times
faster to train than BiDAF.1 Interestingly, when
we substitute ELMo with simple pre-trained word
embeddings, Entity-GCN still performs on par

1When compared to the ‘small’ and hence fast BiDAF
model reported in Welbl et al. (2018), which is 25% less ac-
curate than our Entity-GCN. Larger RNN models are prob-
lematic also because of GPU memory constraints.

with many techniques that use expensive question-
aware recurrent document encoders.

Despite not using recurrent document encoders,
the full Entity-GCN model achieves over 2% im-
provement over the best previously-published re-
sults. As our model is efficient, we also reported
results of an ensemble which brings further 3.6%
of improvement and only 3% below the human
performance reported by Welbl et al. (2018). Our
contributions can be summarized as follows:

• we present a novel approach for multi-hop
QA that relies on a (pre-trained) document
encoder and information propagation across
multiple documents using graph neural net-
works;

• we provide an efficient training technique
which relies on a slower offline and a faster
on-line computation that does not require ex-
pensive document processing;

• we empirically show that our algorithm is ef-
fective, presenting an improvement over pre-
vious results.

2 Method

In this section we explain our method. We first
introduce the dataset we focus on, WIKIHOP

by Welbl et al. (2018), as well as the task ab-
straction. We then present the building blocks that
make up our Entity-GCN model, namely, an en-
tity graph used to relate mentions to entities within
and across documents, a document encoder used
to obtain representations of mentions in context,
and a relational graph convolutional network that
propagates information through the entity graph.

2.1 Dataset and Task Abstraction

Data The WIKIHOP dataset comprises of tuples
〈q, Sq, Cq, a

?〉 where: q is a query/question, Sq is
a set of supporting documents, Cq is a set of candi-
date answers (all of which are entities mentioned
in Sq), and a? ∈ Cq is the entity that correctly
answers the question. WIKIHOP is assembled as-
suming that there exists a corpus and a knowledge
base (KB) related to each other. The KB contains
triples 〈s, r, o〉 where s is a subject entity, o an ob-
ject entity, and r a unidirectional relation between
them. Welbl et al. (2018) used WIKIPEDIA as cor-
pus and WIKIDATA (Vrandečić, 2012) as KB. The
KB is only used for constructing WIKIHOP: Welbl
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et al. (2018) retrieved the supporting documents
Sq from the corpus looking at mentions of subject
and object entities in the text. Note that the set Sq
(not the KB) is provided to the QA system, and not
all of the supporting documents are relevant for the
query but some of them act as distractors. Queries,
on the other hand, are not expressed in natural lan-
guage, but instead consist of tuples 〈s, r, ?〉 where
the object entity is unknown and it has to be in-
ferred by reading the support documents. There-
fore, answering a query corresponds to finding the
entity a? that is the object of a tuple in the KB with
subject s and relation r among the provided set of
candidate answers Cq.

Task The goal is to learn a model that can iden-
tify the correct answer a? from the set of support-
ing documents Sq. To that end, we exploit the
available supervision to train a neural network that
computes scores for candidates inCq. We estimate
the parameters of the architecture by maximizing
the likelihood of observations. For prediction, we
then output the candidate that achieves the high-
est probability. In the following, we present our
model discussing the design decisions that enable
multi-step reasoning and an efficient computation.

2.2 Reasoning on an Entity Graph

Entity graph In an offline step, we organize the
content of each training instance in a graph con-
necting mentions of candidate answers within and
across supporting documents. For a given query
q = 〈s, r, ?〉, we identify mentions in Sq of the en-
tities in Cq∪{s} and create one node per mention.
This process is based on the following heuristic:

1. we consider mentions spans in Sq exactly
matching an element of Cq ∪ {s}. Admit-
tedly, this is a rather simple strategy which
may suffer from low recall.

2. we use predictions from a coreference reso-
lution system to add mentions of elements in
Cq ∪ {s} beyond exact matching (including
both noun phrases and anaphoric pronouns).
In particular, we use the end-to-end corefer-
ence resolution by Lee et al. (2017).

3. we discard mentions which are ambiguously
resolved to multiple coreference chains; this
may sacrifice recall, but avoids propagating
ambiguity.

Figure 2: Supporting documents (dashed ellipses) or-
ganized as a graph where nodes are mentions of ei-
ther candidate entities or query entities. Nodes with the
same color indicates they refer to the same entity (ex-
act match, coreference or both). Nodes are connected
by three simple relations: one indicating co-occurrence
in the same document (solid edges), another connect-
ing mentions that exactly match (dashed edges), and a
third one indicating a coreference (bold-red line).

To each node vi, we associate a continuous an-
notation xi ∈ RD which represents an entity in
the context where it was mentioned (details in Sec-
tion 2.3). We then proceed to connect these men-
tions i) if they co-occur within the same document
(we will refer to this as DOC-BASED edges), ii)
if the pair of named entity mentions is identical
(MATCH edges—these may connect nodes across
and within documents), or iii) if they are in the
same coreference chain, as predicted by the exter-
nal coreference system (COREF edges). Note that
MATCH edges when connecting mentions in the
same document are mostly included in the set of
edges predicted by the coreference system. Hav-
ing the two types of edges lets us distinguish be-
tween less reliable edges provided by the coref-
erence system and more reliable (but also more
sparse) edges given by the exact-match heuristic.
We treat these three types of connections as three
different types of relations. See Figure 2 for an
illustration. In addition to that, and to prevent hav-
ing disconnected graphs, we add a fourth type of
relation (COMPLEMENT edge) between any two
nodes that are not connected with any of the other
relations. We can think of these edges as those
in the complement set of the entity graph with re-
spect to a fully connected graph.

Multi-step reasoning Our model then ap-
proaches multi-step reasoning by transforming
node representations (Section 2.3 for details)
with a differentiable message passing algorithm
that propagates information through the entity
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graph. The algorithm is parameterized by
a graph convolutional network (GCN) (Kipf
and Welling, 2017), in particular, we employ
relational-GCNs (Schlichtkrull et al., 2018), an ex-
tended version that accommodates edges of differ-
ent types. In Section 2.4 we describe the propaga-
tion rule.

Each step of the algorithm (also referred to as
a hop) updates all node representations in parallel.
In particular, a node is updated as a function of
messages from its direct neighbours, and a mes-
sage is possibly specific to a certain relation. At
the end of the first step, every node is aware of ev-
ery other node it connects directly to. Besides, the
neighbourhood of a node may include mentions
of the same entity as well as others (e.g., same-
document relation), and these mentions may have
occurred in different documents. Taking this idea
recursively, each further step of the algorithm al-
lows a node to indirectly interact with nodes al-
ready known to their neighbours. After L layers of
R-GCN, information has been propagated through
paths connecting up to L+ 1 nodes.

We start with node representations {h(0)
i }Ni=1,

and transform them by applying L layers of R-
GCN obtaining {h(L)

i }Ni=1. Together with a rep-
resentation q of the query, we define a distribution
over candidate answers and we train maximizing
the likelihood of observations. The probability of
selecting a candidate c ∈ Cq as an answer is then

P (c|q, Cq, Sq) ∝ exp

(
max
i∈Mc

fo([q,h
(L)
i ])

)
,

(1)
where fo is a parameterized affine transforma-
tion, and Mc is the set of node indices such that
i ∈ Mc only if node vi is a mention of c. The
max operator in Equation 1 is necessary to select
the node with highest predicted probability since a
candidate answer is realized in multiple locations
via different nodes.

2.3 Node Annotations
Keeping in mind we want an efficient model, we
encode words in supporting documents and in the
query using only a pre-trained model for contex-
tualized word representations rather than training
our own encoder. Specifically, we use ELMo2 (Pe-
ters et al., 2018), a pre-trained bi-directional lan-

2The use of ELMo is an implementation choice, and, in
principle, any other contextual pre-trained model could be
used (Radford et al., 2018; Devlin et al., 2018).

guage model that relies on character-based input
representation. ELMo representations, differently
from other pre-trained word-based models (e.g.,
word2vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014)), are contextualized since
each token representation depends on the entire
text excerpt (i.e., the whole sentence).

We choose not to fine tune nor propagate gradi-
ents through the ELMo architecture, as it would
have defied the goal of not having specialized
RNN encoders. In the experiments, we will also
ablate the use of ELMo showing how our model
behaves using non-contextualized word represen-
tations (we use GloVe).

Documents pre-processing ELMo encodings
are used to produce a set of representations
{xi}Ni=1, where xi ∈ RD denotes the ith candidate
mention in context. Note that these representa-
tions do not depend on the query yet and no train-
able model was used to process the documents so
far, that is, we use ELMo as a fixed pre-trained en-
coder. Therefore, we can pre-compute representa-
tion of mentions once and store them for later use.

Query-dependent mention encodings ELMo
encodings are used to produce a query represen-
tation q ∈ RK as well. Here, q is a concatena-
tion of the final outputs from a bidirectional RNN
layer trained to re-encode ELMo representations
of words in the query. The vector q is used to com-
pute a query-dependent representation of mentions
{x̂i}Ni=1 as well as to compute a probability distri-
bution over candidates (as in Equation 1). Query-
dependent mention encodings x̂i = fx(q,xi) are
generated by a trainable function fx which is pa-
rameterized by a feed-forward neural network.

2.4 Entity Relational Graph Convolutional
Network

Our model uses a gated version of the original
R-GCN propagation rule. At the first layer, all
hidden node representation are initialized with the
query-aware encodings h

(0)
i = x̂i. Then, at each

layer 0 ≤ ` ≤ L, the update message u
(`)
i to the

ith node is a sum of a transformation fs of the cur-
rent node representation h

(`)
i and transformations

of its neighbours:

u
(`)
i = fs(h

(`)
i ) +

1

|Ni|
∑
j∈Ni

∑
r∈Rij

fr(h
(`)
j ) , (2)



2310

where Ni is the set of indices of nodes neighbour-
ing the ith node,Rij is the set of edge annotations
between i and j, and fr is a parametrized func-
tion specific to an edge type r ∈ R. Recall the
available relations from Section 2.2, namely,R =
{DOC-BASED, MATCH, COREF, COMPLEMENT}.

A gating mechanism regulates how much of the
update message propagates to the next step. This
provides the model a way to prevent completely
overwriting past information. Indeed, if all neces-
sary information to answer a question is present at
a layer which is not the last, then the model should
learn to stop using neighbouring information for
the next steps. Gate levels are computed as

a
(`)
i = σ

(
fa

(
[u

(`)
i ,h

(`)
i ]
))

, (3)

where σ(·) is the sigmoid function and fa a
parametrized transformation. Ultimately, the up-
dated representation is a gated combination of the
previous representation and a non-linear transfor-
mation of the update message:

h
(`+1)
i = φ(u

(`)
i )�a

(`)
i +h

(`)
i � (1−a

(`)
i ) , (4)

where φ(·) is any nonlinear function (we used
tanh) and � stands for element-wise multiplica-
tion. All transformations f∗ are affine and they are
not layer-dependent (since we would like to use
as few parameters as possible to decrease model
complexity promoting efficiency and scalability).

3 Experiments

In this section, we compare our method against re-
cent work as well as preforming an ablation study
using the WIKIHOP dataset (Welbl et al., 2018).
See Appendix A in the supplementary material for
a description of the hyper-parameters of our model
and training details.

WIKIHOP We use WIKIHOP for training, val-
idation/development and test. The test set is not
publicly available and therefore we measure per-
formance on the validation set in almost all ex-
periments. WIKIHOP has 43,738/ 5,129/ 2,451
query-documents samples in the training, valida-
tion and test sets respectively for a total of 51,318
samples. Authors constructed the dataset as de-
scribed in Section 2.1 selecting samples with a
graph traversal up to a maximum chain length of
3 documents (see Table 1 for additional dataset
statistics). WIKIHOP comes in two versions, a

Min Max Avg. Median

# candidates 2 79 19.8 14
# documents 3 63 13.7 11
# tokens/doc. 4 2,046 100.4 91

Table 1: WIKIHOP dataset statistics from Welbl et al.
(2018): number of candidates and documents per sam-
ple and document length.

standard (unmasked) one and a masked one. The
masked version was created by the authors to test
whether methods are able to learn lexical abstrac-
tion. In this version, all candidates and all men-
tions of them in the support documents are re-
placed by random but consistent placeholder to-
kens. Thus, in the masked version, mentions are
always referred to via unambiguous surface forms.
We do not use coreference systems in the masked
version as they rely crucially on lexical realization
of mentions and cannot operate on masked tokens.

3.1 Comparison

In this experiment, we compare our Enitity-
GCN against recent prior work on the same
task. We present test and development re-
sults (when present) for both versions of the
dataset in Table 2. From Welbl et al. (2018),
we list an oracle based on human performance
as well as two standard reading comprehension
models, namely BiDAF (Seo et al., 2016) and
FastQA (Weissenborn et al., 2017). We also com-
pare against Coref-GRU (Dhingra et al., 2018),
MHPGM (Bauer et al., 2018), and Weaver (Rai-
son et al., 2018). Additionally, we include results
of MHQA-GRN (Song et al., 2018), from a recent
arXiv preprint describing concurrent work. They
jointly train graph neural networks and recurrent
encoders. We report single runs of our two best
single models and an ensemble one on the un-
masked test set (recall that the test set is not pub-
licly available and the task organizers only report
unmasked results) as well as both versions of the
validation set.

Entity-GCN (best single model without coref-
erence edges) outperforms all previous work by
over 2% points. We additionally re-ran BiDAF
baseline to compare training time: when using a
single Titan X GPU, BiDAF and Entity-GCN pro-
cess 12.5 and 57.8 document sets per second, re-
spectively. Note that Welbl et al. (2018) had to
use BiDAF with very small state dimensionalities
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Model Unmasked Masked
Test Dev Test Dev

Human (Welbl et al., 2018) 74.1 – – –
FastQA (Welbl et al., 2018) 25.7 – 35.8 –
BiDAF (Welbl et al., 2018) 42.9 – 54.5 –
Coref-GRU (Dhingra et al., 2018) 59.3 56.0 – –
MHPGM (Bauer et al., 2018) – 58.2 – –
Weaver / Jenga (Raison et al., 2018) 65.3 64.1 – –
MHQA-GRN (Song et al., 2018) 65.4 62.8 – –

Entity-GCN without coreference (single model) 67.6 64.8 – 70.5
Entity-GCN with coreference (single model) 66.4 65.3 – –
Entity-GCN* (ensemble 5 models) 71.2 68.5 – 71.6

Table 2: Accuracy of different models on WIKIHOP closed test set and public validation set. Our Entity-GCN
outperforms recent prior work without learning any language model to process the input but relying on a pre-
trained one (ELMo – without fine-tunning it) and applying R-GCN to reason among entities in the text. * with
coreference for unmasked dataset and without coreference for the masked one.

(20), and smaller batch size due to the scalabil-
ity issues (both memory and computation costs).
We compare applying the same reductions.3 Even-
tually, we also report an ensemble of 5 indepen-
dently trained models. All models are trained on
the same dataset splits with different weight ini-
tializations. The ensemble prediction is obtained

as argmax
c

5∏
i=1

Pi(c|q, Cq, Sq) from each model.

3.2 Ablation Study

To help determine the sources of improvements,
we perform an ablation study using the publicly
available validation set (see Table 3). We per-
form two groups of ablation, one on the embed-
ding layer, to study the effect of ELMo, and one
on the edges, to study how different relations af-
fect the overall model performance.

Embedding ablation We argue that ELMo is
crucial, since we do not rely on any other context
encoder. However, it is interesting to explore how
our R-GCN performs without it. Therefore, in this
experiment, we replace the deep contextualized
embeddings of both the query and the nodes with
GloVe (Pennington et al., 2014) vectors (insensi-
tive to context). Since we do not have any compo-
nent in our model that processes the documents,
we expect a drop in performance. In other words,
in this ablation our model tries to answer questions

3Besides, we could not run any other method we com-
pare with combined with ELMo without reducing the dimen-
sionality further or having to implement a distributed version.

without reading the context at all. For example, in
Figure 1, our model would be aware that “Stock-
holm” and “Sweden” appear in the same document
but any context words, including the ones encod-
ing relations (e.g., “is the capital of”) will be hid-
den. Besides, in the masked case all mentions be-
come ‘unknown’ tokens with GloVe and therefore
the predictions are equivalent to a random guess.
Once the strong pre-trained encoder is out of the
way, we also ablate the use of our R-GCN com-
ponent, thus completely depriving the model from
inductive biases that aim at multi-hop reasoning.

The first important observation is that replacing
ELMo by GloVe (GloVe with R-GCN in Table 3)
still yields a competitive system that ranks far
above baselines from (Welbl et al., 2018) and even
above the Coref-GRU of Dhingra et al. (2018), in
terms of accuracy on (unmasked) validation set.
The second important observation is that if we
then remove R-GCN (GloVe w/o R-GCN in Ta-
ble 3), we lose 8.0 points. That is, the R-GCN
component pushes the model to perform above
Coref-GRU still without accessing context, but
rather by updating mention representations based
on their relation to other ones. These results high-
light the impact of our R-GCN component.

Graph edges ablation In this experiment we in-
vestigate the effect of the different relations avail-
able in the entity graph and processed by the R-
GCN module. We start off by testing our stronger
encoder (i.e., ELMo) in absence of edges connect-
ing mentions in the supporting documents (i.e., us-
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Model unmasked masked

full (ensemble) 68.5 71.6
full (single) 65.1 ± 0.11 70.4 ± 0.12

GloVe with R-GCN 59.2 11.1
GloVe w/o R-GCN 51.2 11.6

No R-GCN 62.4 63.2
No relation types 62.7 63.9
No DOC-BASED 62.9 65.8
No MATCH 64.3 67.4
No COREF 64.8 –
No COMPLEMENT 64.1 70.3
Induced edges 61.5 56.4

Table 3: Ablation study on WIKIHOP validation set.
The full model is our Entity-GCN with all of its com-
ponents and other rows indicate models trained without
a component of interest. We also report baselines using
GloVe instead of ELMo with and without R-GCN. For
the full model we report mean±1 std over 5 runs.

ing only self-loops – No R-GCN in Table 3). The
results suggest that WIKIPHOP genuinely requires
multihop inference, as our best model is 6.1% and
8.4% more accurate than this local model, in un-
masked and masked settings, respectively.4 How-
ever, it also shows that ELMo representations cap-
ture predictive context features, without being ex-
plicitly trained for the task. It confirms that our
goal of getting away with training expensive doc-
ument encoders is a realistic one.

We then inspect our model’s effectiveness in
making use of the structure encoded in the graph.
We start naively by fully-connecting all nodes
within and across documents without distinguish-
ing edges by type (No relation types in Table 3).
We observe only marginal improvements with re-
spect to ELMo alone (No R-GCN in Table 3) in
both the unmasked and masked setting suggest-
ing that a GCN operating over a naive entity graph
would not add much to this task and a more infor-
mative graph construction and/or a more sophisti-
cated parameterization is indeed needed.

Next, we ablate each type of relations inde-
pendently, that is, we either remove connections
of mentions that co-occur in the same docu-
ment (DOC-BASED), connections between men-
tions matching exactly (MATCH), or edges pre-
dicted by the coreference system (COREF). The

4Recall that all models in the ensemble use the same lo-
cal representations, ELMo.

first thing to note is that the model makes better
use of DOC-BASED connections than MATCH or
COREF connections. This is mostly because i) the
majority of the connections are indeed between
mentions in the same document, and ii) without
connecting mentions within the same document
we remove important information since the model
is unaware they appear closely in the document.
Secondly, we notice that coreference links and
complement edges seem to play a more marginal
role. Though it may be surprising for coreference
edges, recall that the MATCH heuristic already cap-
tures the easiest coreference cases, and for the rest
the out-of-domain coreference system may not be
reliable. Still, modelling all these different rela-
tions together gives our Entity-GCN a clear advan-
tage. This is our best system evaluating on the de-
velopment. Since Entity-GCN seems to gain little
advantage using the coreference system, we report
test results both with and without using it. Surpris-
ingly, with coreference, we observe performance
degradation on the test set. It is likely that the test
documents are harder for the coreference system.5

We do perform one last ablation, namely, we re-
place our heuristic for assigning edges and their
labels by a model component that predicts them.
The last row of Table 3 (Induced edges) shows
model performance when edges are not predeter-
mined but predicted. For this experiment, we use a
bilinear function fe(x̂i, x̂j) = σ

(
x̂>i Wex̂j

)
that

predicts the importance of a single edge connect-
ing two nodes i, j using the query-dependent rep-
resentation of mentions (see Section 2.3). The
performance drops below ‘No R-GCN’ suggesting
that it cannot learn these dependencies on its own.

Most results are stronger for the masked set-
tings even though we do not apply the coreference
resolution system in this setting due to masking.
It is not surprising as coreferred mentions are la-
beled with the same identifier in the masked ver-
sion, even if their original surface forms did not
match (Welbl et al. (2018) used WIKIPEDIA links
for masking). Indeed, in the masked version, an
entity is always referred to via the same unique
surface form (e.g., MASK1) within and across doc-
uments. In the unmasked setting, on the other
hand, mentions to an entity may differ (e.g., “US”
vs “United States”) and they might not be retrieved
by the coreference system we are employing, mak-

5Since the test set is hidden from us, we cannot analyze
this difference further.
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Relation Accuracy P@2 P@5 Avg. |Cq| Supports

overall (ensemble) 68.5 81.0 94.1 20.4 ± 16.6 5129
overall (single model) 65.3 79.7 92.9 20.4 ± 16.6 5129

3 best
member of political party 85.5 95.7 98.6 5.4 ± 2.4 70
record label 83.0 93.6 99.3 12.4 ± 6.1 283
publisher 81.5 96.3 100.0 9.6 ± 5.1 54

3 worst
place of birth 51.0 67.2 86.8 27.2 ± 14.5 309
place of death 50.0 67.3 89.1 25.1 ± 14.3 159
inception 29.9 53.2 83.1 21.9 ± 11.0 77

Table 4: Accuracy and precision at K (P@K in the table) analysis overall and per query type. Avg. |Cq| indicates
the average number of candidates with one standard deviation.

ing the task harder for all models. Therefore, as we
rely mostly on exact matching when constructing
our graph for the masked case, we are more effec-
tive in recovering coreference links on the masked
rather than unmasked version.6

4 Error Analysis

In this section we provide an error analysis for
our best single model predictions. First of all, we
look at which type of questions our model per-
forms well or poorly. There are more than 150
query types in the validation set but we filtered
the three with the best and with the worst accu-
racy that have at least 50 supporting documents
and at least 5 candidates. We show results in Ta-
ble 4. We observe that questions regarding places
(birth and death) are considered harder for Entity-
GCN. We then inspect samples where our model
fails while assigning highest likelihood and no-
ticed two principal sources of failure i) a mismatch
between what is written in WIKIPEDIA and what is
annotated in WIKIDATA, and ii) a different degree
of granularity (e.g., born in “London” vs “UK”
could be considered both correct by a human but
not when measuring accuracy). See Table 6 in the
supplement material for some reported samples.

Secondly, we study how the model performance
degrades when the input graph is large. In particu-
lar, we observe a negative Pearson’s correlation (-
0.687) between accuracy and the number of candi-
date answers. However, the performance does not
decrease steeply. The distribution of the number of
candidates in the dataset peaks at 5 and has an av-
erage of approximately 20. Therefore, the model

6Though other systems do not explicitly link matching
mentions, they similarly benefit from masking (e.g., masks
essentially single out spans that contain candidate answers).

does not see many samples where there are a large
number of candidate entities during training. Dif-
ferently, we notice that as the number of nodes in
the graph increases, the model performance drops
but more gently (negative but closer to zero Pear-
son’s correlation). This is important as document
sets can be large in practical applications. See Fig-
ure 3 in the supplemental material for plots.

5 Related Work

In previous work, BiDAF (Seo et al., 2016),
FastQA (Weissenborn et al., 2017), Coref-
GRU (Dhingra et al., 2018), MHPGM (Bauer
et al., 2018), and Weaver / Jenga (Raison et al.,
2018) have been applied to multi-document ques-
tion answering. The first two mainly focus on sin-
gle document QA and Welbl et al. (2018) adapted
both of them to work with WIKIHOP. They pro-
cess each instance of the dataset by concatenat-
ing all d ∈ Sq in a random order adding doc-
ument separator tokens. They trained using the
first answer mention in the concatenated document
and evaluating exact match at test time. Coref-
GRU, similarly to us, encodes relations between
entity mentions in the document. Instead of us-
ing graph neural network layers, as we do, they
augment RNNs with jump links corresponding to
pairs of corefereed mentions. MHPGM uses a
multi-attention mechanism in combination with
external commonsense relations to perform mul-
tiple hops of reasoning. Weaver is a deep co-
encoding model that uses several alternating bi-
LSTMs to process the concatenated documents
and the query.

Graph neural networks have been shown suc-
cessful on a number of NLP tasks (Marcheggiani
and Titov, 2017; Bastings et al., 2017; Zhang et al.,
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2018a), including those involving document level
modeling (Peng et al., 2017). They have also been
applied in the context of asking questions about
knowledge contained in a knowledge base (Zhang
et al., 2018b). In Schlichtkrull et al. (2018), GCNs
are used to capture reasoning chains in a knowl-
edge base. Our work and unpublished concurrent
work by Song et al. (2018) are the first to study
graph neural networks in the context of multi-
document QA. Besides differences in the architec-
ture, Song et al. (2018) propose to train a combi-
nation of a graph recurrent network and an RNN
encoder. We do not train any RNN document en-
coders in this work.

6 Conclusion

We designed a graph neural network that oper-
ates over a compact graph representation of a set
of documents where nodes are mentions to en-
tities and edges signal relations such as within
and cross-document coreference. The model
learns to answer questions by gathering evidence
from different documents via a differentiable mes-
sage passing algorithm that updates node repre-
sentations based on their neighbourhood. Our
model outperforms published results where abla-
tions show substantial evidence in favour of multi-
step reasoning. Moreover, we make the model fast
by using pre-trained (contextual) embeddings.
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A Implementation and Experiments
Details

A.1 Architecture
See table 5 for an outline of Entity-GCN architec-
tural detail. Here the computational steps

1. ELMo embeddings are a concatenation of
three 1024-dimensional vectors resulting in
3072-dimensional input vectors {xi}Ni=1.

2. For the query representation q, we apply 2
bi-LSTM layers of 256 and 128 hidden units
to its ELMo vectors. The concatenation of
the forward and backward states results in a
256-dimensional question representation.

3. ELMo embeddings of candidates are pro-
jected to 256-dimensional vectors, concate-
nated to the q, and further transformed with
a two layers MLP of 1024 and 512 hidden
units in 512-dimensional query aware entity
representations {x̂i}Ni=1 ∈ R512.

4. All transformations f∗ in R-GCN-layers are
affine and they do maintain the input and out-
put dimensionality of node representations
the same (512-dimensional).

5. Eventually, a 2-layers MLP with [256, 128]
hidden units takes the concatenation between
{h(L)

i }Ni=1 and q to predict the probability
that a candidate node vi may be the answer
to the query q (see Equation 1).

During preliminary trials, we experimented
with different numbers of R-GCN-layers (in the
range 1-7). We observed that with WIKIHOP, for
L ≥ 3 models reach essentially the same perfor-
mance, but more layers increase the time required
to train them. Besides, we observed that the gating
mechanism learns to keep more and more informa-
tion from the past at each layer making unneces-
sary to have more layers than required.

A.2 Training Details
We train our models with a batch size of 32
for at most 20 epochs using the Adam opti-
mizer (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.999 and a learning rate of 10−4. To help
against overfitting, we employ dropout (drop rate
∈ 0, 0.1, 0.15, 0.2, 0.25) (Srivastava et al., 2014)
and early-stopping on validation accuracy. We re-
port the best results of each experiment based on
accuracy on validation set.

B Error Analysis

In Table 6, we report three samples from WIKI-
HOP development set where out Entity-GCN fails.
In particular, we show two instances where our
model presents high confidence on the answer,
and one where is not. We commented these sam-
ples explaining why our model might fail in these
cases.

C Ablation Study

In Figure 3, we show how the model performance
goes when the input graph is large. In particular,
how Entity-GCN performs as the number of can-
didate answers or the number of nodes increases.
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(a) Candidates set size (x-axis) and accuracy (y-axis). Pear-
son’s correlation of −0.687 (p < 10−7).
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(b) Nodes set size (x-axis) and accuracy (y-axis). Pearson’s
correlation of −0.385 (p < 10−7).

Figure 3: Accuracy (blue) of our best single model
with respect to the candidate set size (on the top) and
nodes set size (on the bottom) on the validation set. Re-
scaled data distributions (orange) per number of candi-
date (top) and nodes (bottom). Dashed lines indicate
average accuracy.
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Input - q, {vi}Ni=1

query ELMo 3072-dim candidates ELMo 3072-dim

2 layers bi-LSTM [256, 128]-dim 1 layer FF 256-dim

concatenation 512-dim

2 layer FF [1024, 512]-dim: : {x̂i}Ni=1

3 layers R-GCN 512-dim each (shared parameters)

concatenation with q 768-dim

3 layers FF [256,128,1]-dim

Output - probabilities over Cq

Table 5: Model architecture.

ID WH dev 2257 Gold answer 2003 (p = 14.1)

Query inception (of) Derrty Entertainment Predicted answer 2000 (p = 15.8)

Support 1 Derrty Entertainment is a record label founded by [...]. The first album released under
Derrty Entertainment was Nelly ’s Country Grammar.

Support 2 Country Grammar is the debut single by American rapper Nelly. The song was pro-
duced by Jason Epperson. It was released in 2000, [...]

(a) In this example, the model predicts the answer correctly. However, there is a mismatch between what is written in
WIKIPEDIA and what is annotated in WIKIDATA. In WIKIHOP, answers are generated with WIKIDATA.

ID WH dev 2401 Gold answer Adolph Zukor (p = 7.1e−4%)

Query producer (of) Forbidden Paradise Predicted answer Jesse L. Lask (p = 99.9%)

Support 1 Forbidden Paradise is a [...] drama film produced by Famous Players-Lasky [...]

Support 2 Famous Players-Lasky Corporation was [...] from the merger of Adolph Zukor’s Fa-
mous Players Film Company [..] and the Jesse L. Lasky Feature Play Company.

(b) In this sample, there is ambiguity between two entities since both are correct answers reading the passages but only one is
marked as correct. The model fails assigning very high probability to only on one of them.

ID WH dev 3030 Gold answer Scania (p = 0.029%)

Query place of birth (of) Erik Penser Predicted answer Eslöv (p = 97.3%)

Support 1 Nils Wilhelm Erik Penser (born August 22, 1942, in Eslöv, Skåne) is a Swedish [...]

Support 2 Skåne County, sometimes referred to as “ Scania County ” in English, is the [...]

(c) In this sample, there is ambiguity between two entities since the city Eslöv is located in the Scania County (English name
of Skåne County). The model assigning high probability to the city and it cannot select the county.

Table 6: Samples from WIKIHOP set where Entity-GCN fails. p indicates the predicted likelihood.


