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Abstract

Meaning conflation deficiency is one of the
main limiting factors of word representations
which, given their widespread use at the core
of many NLP systems, can lead to inaccu-
rate semantic understanding of the input text
and inevitably hamper the performance. Sense
representations target this problem. How-
ever, their potential impact has rarely been in-
vestigated in downstream NLP applications.
Through a set of experiments on a state-of-
the-art reverse dictionary system based on neu-
ral networks, we show that a simple adjust-
ment aimed at addressing the meaning con-
flation deficiency can lead to substantial im-
provements.

1 Meaning Conflation Deficiency

Words are often the most fine-grained meaning
bearing components of NLP systems. As a stan-
dard practise, particularly for neural models, the
input text is treated as a sequence of words and
each word in the sequence is represent with a
dense distributional representation (word embed-
ding). Importantly, this setting ignores the fact that
a word can be polysemous, i.e., it can take multi-
ple (possibly unrelated) meanings. Representing
a word with all its possible meanings as a sin-
gle point (vector) in the embedding space, the so-
called meaning conflation deficiency (Camacho-
Collados and Pilehvar, 2018), can hinder system’s
semantic effectiveness.

To address this deficiency, many techniques
have been put forward over the past few years,
the most prominent of which is sense repre-
sentation or multi-prototype embedding (Schütze,
1998; Reisinger and Mooney, 2010). However, as
a general trend, these representations are usually
evaluated either on generic benchmarks, such as
word similarity, or on sense-centered tasks such

as Word Sense Disambiguation, leaving their po-
tential impact on downstream word-based systems
unknown. In this paper, we provide an analy-
sis to highlight the importance of addressing the
meaning conflation deficiency. Specifically, we
show how distinguishing different meanings of a
word can facilitate a more accurate semantic un-
derstanding of a state-of-the-art reverse dictionary
system, reflected by substantial improvements in
recall and generalisation power.

2 Reverse Dictionary

Reverse dictionary, conceptual dictionary, or con-
cept lookup is the task of returning a word given
its description or definition (Brown and McNeill,
1966; Zock and Bilac, 2004). For example, given
“a crystal of snow”, the system has to return the
word snowflake. The task is closely related to
the “tip of the tongue” problem where an individ-
ual recalls some general features about a word but
cannot retrieve that from memory. Therefore, a re-
verse dictionary system can be particularly useful
to writers and translators when they cannot recall a
word in time or are unsure how to express an idea
they want to convey.

2.1 Evaluation framework

Our experiments are based on the reverse dictio-
nary model of Hill et al. (2016) which leverages a
standard neural architecture in order to map dictio-
nary definitions to representations of the words de-
fined by those definitions. Specifically, they pro-
posed two neural architectures for mapping the
definition of word t to its word embedding et.
Let Dt be the sequence of words in t’s definition,
i.e., Dt = {w1, w2, . . . , wn}, with their corre-
sponding embeddings {v1,v2, . . . ,vn}. The two
models differ in the way they process Dt. In the
bag-of-words (BoW) model, Dt is taken as a bag
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of words, i.e., the representation of the defini-
tion is encoded by adding the word embeddings
of all its content words, i.e.,

∑n
i=1 vi. The model

learns, using a fully-connected layer, a matrix for
transforming the encoded representation to the tar-
get word’s embedding et. The BoW model is
not sensitive to the order of words in Dt. This
might be crucial for an accurate semantic under-
standing. The Recurrent Neural Network (RNN)
model alleviates this issue by encoding the input
sequence using an LSTM architecture (Hochreiter
and Schmidhuber, 1997). Similarly to the BoW
model, a dense layer maps the encoded represen-
tation to the target word’s embedding.

In both cases, the goal is to map a given defini-
tion to the corresponding target word’s embedding
et, computed using Word2vec (Mikolov et al.,
2013) and independently from the training of the
main model. Two cost functions were tested: (1)
the cosine distance between the estimated point
in the target space (êt) and et, and (2) the rank
loss which contrast the choice of et with a random
choice for a randomly-selected word from the vo-
cabulary other than t.

The reverse dictionary system takes advantage
of a standard architecture which has proven ef-
fective in various NLP tasks. However, similarly
to many other word-based models, the system ig-
nores that the same word can have multiple (po-
tentially unrelated) meanings. In fact, it tries to
map multiple definitions, with different seman-
tics, to the same point in the target space. For in-
stance, the three semantically unrelated definitions
of crane: “lifts and moves heavy objects”, “large
long-necked wading bird”, and “a small constella-
tion in the southern hemisphere” will have similar
semantic interpretation by the system. This word-
level meaning conflation can hamper the ability of
the system in learning an accurate mapping func-
tion. In what follows in this paper, we will il-
lustrate how a simple sense level distinction can
facilitate a more accurate semantic understanding
for the reverse dictionary system, hence leading to
significant performance improvements.

2.2 Sense Integration

Let t be an ambiguous word with three meanings;
hence, three distinct definitionsDt1 , Dt2 , and Dt3 .
The original model of Hill et al. (2016) maps all
these definitions to et. We mitigate the mean-
ing conflation deficiency through a sense-specific

mapping function that obtains distinct interpre-
tations for individual definition, hence mapping
them to different points in the target space: st1 ,
st2 , and st3 . Specifically, in our experiments we
leveraged DeConf (Pilehvar and Collier, 2016).
DeConf is a WordNet-based sense representation
technique which receives a set of pre-trained word
embeddings and generates embeddings for indi-
vidual word senses in the same semantic space,
hence generating a combined space of words and
word senses.

DeConf performs a set of random walks on
WordNet’s semantic network and extracts for each
sense a set of sense biasing words Bs. A sense bi-
asing word for the ith meaning of a target word t is
a semantically related word to that specific sense
of the word (sti). For each word sense in WordNet
we obtain the corresponding Bs. Then, the embed-
ding for a specific word sense s is computed as:

s = || ew + α
∑
b∈Bs

exp(−δi) eb||, (1)

where δ is a decay parameter and ew is the embed-
ding of corresponding lemma of sense s. In our
experiments, as for word embeddings we used the
300-dimensional Word2vec embeddings, trained
on the Google News corpus.1 The same set was
used as input to DeConf. As a result of this pro-
cess, around 207K additional word senses were in-
troduced in the space for the 155K unique words
in WordNet 3.0.

2.2.1 Supersenses
It is widely acknowledged that sense distinctions
in WordNet inventory are too fine-grained for most
NLP applications (Hovy et al., 2013). For in-
stance, for the noun star, WordNet 3.0 lists eight
senses, among which two celestial body senses (as
an “astronomical object” and that “visible, as a
point of light, from the Earth”), and three person
senses (“skillful person”, “lead actor”, and “per-
forming artist”). This fine level of sense distinc-
tion is often more than that required by the tar-
get downstream application (Rüd et al., 2011; Sev-
eryn et al., 2013; Flekova and Gurevych, 2016).
In our experiments, we used WordNet’s lexicog-
rapher files (lexnames2) in order to reduce sense
granularity. Created by the curators of WordNet

1https://code.google.com/archive/p/
word2vec/

2https://wordnet.princeton.edu/man/
lexnames.5WN.html

 https://code.google.com/archive/p/word2vec/
 https://code.google.com/archive/p/word2vec/
https://wordnet.princeton.edu/man/lexnames.5WN.html
https://wordnet.princeton.edu/man/lexnames.5WN.html
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WN-seen WN-unseen Concept Mapping

top-10 top-100 top-10 top-100 top-10 top-100

Supersense
RNN

cosine 0.656 0.824 0.150 0.310 0.230 0.480
ranking 0.694 0.836 0.162 0.352 0.335 0.630

BoW
cosine 0.642 0.820 0.250 0.416 0.280 0.590
ranking 0.706 0.872 0.310 0.474 0.390 0.735

Sense
RNN

cosine 0.742 0.854 0.164 0.336 0.275 0.505
ranking 0.668 0.840 0.180 0.372 0.325 0.615

BoW
cosine 0.678 0.826 0.290 0.456 0.300 0.620
ranking 0.692 0.848 0.292 0.470 0.380 0.735

Word
RNN

cosine 0.462 0.652 0.056 0.162 0.215 0.400
ranking 0.534 0.728 0.086 0.188 0.190 0.475

BoW
cosine 0.446 0.652 0.136 0.264 0.175 0.465
ranking 0.562 0.740 0.160 0.292 0.320 0.600

Baseline - - 0.104 0.346 0.054 0.158 0.065 0.300

Table 1: Accuracy performance (@10/100) of the original (word-based) reverse dictionary system and its sense-
and supersense-based improvements on different datasets. See Section 2.1 for system configurations.

during its development, these files organize Word-
Net synsets into 45 groups (such as food, ani-
mal, event, and emotion) according to their syn-
tactic and logical properties. These groupings
are usually referred to as supersenses. Using su-
persenses, the celestial and person meanings of
star are grouped into two main groups. A super-
sense embedding ess in our experiments is sim-
ply computed as a normalized average (centroid)
of its contained sense embeddings, i.e., ess =
||
∑

s∈ss es||. This reduces the average number of
senses for polysemous words in WordNet from 2.9
to 1.8.

3 Experiments

We carried out evaluations on the three reverse
dictionary datasets created by Hill et al. (2016):
WordNet definitions and “single-sentence descrip-
tions” written for a set of frequent words (concept
mapping). They proposed two different versions
of the WordNet dataset: WN-seen, in which a test
instance is already observed during training, and
WN-unseen, in which test instances are excluded
from the training data. The former dataset is tar-
geted at evaluating the ability of the system to re-
call a previously encoded information.

We experimented with three variants of the re-
verse dictionary system: the original word-based
model and the two proposed sense-based variants,

based on WordNet senses and supersenses.3

Table 1 reports accuracy performance for four
different configurations of the system (BoW and
RNN definition composition and cosine and rank-
ing loss; cf. Section 2.1) on the three datasets. In
the last row, we also report results for the unsu-
pervised baseline of Hill et al. (2016) which adds
the embedding of words in the input definition and
finds the nearest embedding in the target space.

Results reported in the Table clearly highlight
that addressing the meaning conflation deficiency
in the system has led to significant performance
improvements (word vs. sense and supersense set-
tings). This is observed consistently across all the
three datasets and for both sense-based models.
The better semantic understanding of the system is
reflected by its better recall of seen test instances
(WN-seen) and better generalisation to unseen
and out-of-domain data (WN-unseen and concept
mapping). The absolute top-10 accuracy improve-
ments of the ranking-BoW supersense model over
the best corresponding word-based configurations
are: 14.4% (WN-seen), 15% (WN-unseen), and
7% (concept mapping).

Among the two proposed systems, supersenses
prove to be more effective, suggesting that the
fine-grained sense distinctions in WordNet might
not be necessary for an accurate reverse dic-

3The experiments are based on the implementation avail-
able at https://github.com/fh295/DefGen2.

https://github.com/fh295/DefGen2
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tionary mapping, corroborating previous findings
(Flekova and Gurevych, 2016). Our results are
also in line with the findings of Hill et al. (2016)
that the reverse dictionary system performs best
with the bag-of-words (BoW) input encoding and
the ranking loss. One of the fundamental dif-
ferences between the two input encodings lies in
their sensitiveness to order: RNNs are sensitive to
the order of words in a given sequence whereas
permuting words in the sequence does not alter
BoW’s encoding. Hill et al. (2016) suggested that
it is often possible to retrieve a concept even if the
words in its corresponding definition are shuffled.
This can partly explain the strikingly good relative
performance of the BoW model.

4 Analysis

During our analysis of system outputs, we ob-
served many examples in which the word-based
model was unable to retrieve an ambiguous word
since the definition was referring to one of its
less frequent meanings. For instance, the word
dressing might refer to different concepts such as
“getting dressed” or “savory dressing for salads”.
Having a conflated understanding of dressing, the
word-based model was unable to retrieve the salad
meaning.

dressing savory dressings for salads; basically of two
kinds: either the thin french or vinaigrette type or the
creamy mayonnaise type

word: mayonnaise, marinade, sauce
sense: dressing, mayonnaise, mayo
baseline: or, either, type

Other similar examples include infrequent
senses of party, defined as “an organization to gain
political power”, and partition, defined as “a ver-
tical structure that divides or separates”. In both
cases, the sense-based model improves the orig-
inal word-based one, in which the system is un-
able to retrieve the intended word. Numerous such
examples were observed during our analysis of
the results, highlighting the important limitation of
word-based models for their inherent bias towards
more frequent usages.

Moreover, as a side benefit, sense embeddings
provide parts of speech distinction, unlike com-
mon pre-trained word embeddings which conflate
all parts of speech to a single token. For instance,
the word-based model is unable to recall the nom-
inal bear because it has a conflated understanding

of the word which includes all its senses, particu-
larly the dominant verb meaning.4

bear massive plantigrade carnivorous or omnivorous
mammals with long shaggy coats and strong claws

word: critter, rabbit, squirrel, wolf
sense: bear, mustelid, bruin
baseline: carnivorous, omnivorous.

The same applies to the “open land” meaning of
common, which is a less frequent (nominal) mean-
ing of the word which is usually used as an adjec-
tive for concepts such as “ordinary” or “usual”.

common a piece of open land for recreational use in an
urban area

word: park, plaza, entryway, courtway
sense: park, green, common
baseline: for, area, in, recreational

Additionally, word embeddings are insensi-
tive to fine-grained semantic distinctions, such as
antonymy, due to their construction nature. How-
ever, the sense representations used in our ex-
periments (DeConf) were constructed by exploit-
ing the knowledge encoded in WordNet. Hence,
they benefit from the rich semantic and ontologi-
cal knowledge provided by the resource (such as
relation types). Some of the improvements can be
attributed to this property of sense embeddings.

unanticipated not anticipated

word: unavoidable, inevitable, plausible
sense: unforeseen, unanticipated, unpredicted
baseline: not, anticipated, expected

However, there are cases in which the word-
based model provided more accurate results. For
instance:

service work done by one person or group that benefits
another

word: service, caring
sense: organisation, dependant, programme

Our analysis showed that most of these er-
rors were due to fine-grained sense distinctions in
WordNet or obscure meanings. For instance, one
of the senses5 of organisation is semantically re-

4In our analysis, we found that improvements are mostly
due to addressing semantic conflation rather than ambiguities
in parts of speech.

5The 6th sense of organisation in WordNet 3.0, defined
as “the activity or result of distributing or disposing persons
or things properly or methodically”.
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lated (also close in WordNet’s graph) to the mean-
ing of service in the example. This would sug-
gest the need for more accurate sense representa-
tions and highlight the fact that the fine-granularity
of senses should be better adjusted to the under-
lying task. Moreover, it corroborates our finding
that the coarse-grained supersenses are more suit-
able in the task of reverse dictionary mapping. We
leave the experiments with other sense representa-
tion techniques to future work.

5 Related work

Sense representations address the meaning confla-
tion deficiency of their word-based counterparts
by computing distinct representations for individ-
ual meanings of words, usually referred to as word
senses. Sense distinctions might be given by an
external sense inventory, such as WordNet (Fell-
baum, 1998). An inventory-based sense represen-
tation technique exploits the knowledge encoded
in the resource to construct representations (Rothe
and Schütze, 2015; Jauhar et al., 2015; Pilehvar
and Collier, 2016). Alternatively, senses can be
automatically induced in an unsupervised manner
by analyzing the diversity of contexts in which
a word appears (Schütze, 1998; Reisinger and
Mooney, 2010; Huang et al., 2012; Neelakantan
et al., 2014; Guo et al., 2014; Šuster et al., 2016).

Regardless of how senses are obtained, the in-
tegration of sense representations into NLP sys-
tems is not a straightforward process. Hence, they
have often been evaluated on artificial tasks such
as word similarity. This is also due to lack of suit-
able evaluation benchmarks for sense representa-
tion techniques. Pilehvar and Camacho-Collados
(2019) recently proposed a dataset, The Word-in-
Context (WiC), which provides a challenging, yet
reliable, benchmark for the purpose.

Few attempts have been made at the integration
of sense representation into downstream applica-
tions. Li and Jurafsky (2015) experimented with
unsupervised sense representations in tasks such
as part-of-speech tagging and named entity recog-
nition, with mixed results. Also related to our
work are the proposals of Flekova and Gurevych
(2016) and Pilehvar et al. (2017) to disambiguate
the input text and replace word embeddings with
sense embeddings for the intended senses. Our re-
sults for supersenses corroborates the findings of
Pilehvar et al. (2017) who found reducing fine-
granularity of senses beneficial to some settings.

A more recent branch of research investigates
the construction of dynamic word embeddings that
can adapt according to the context in which they
appear (Peters et al., 2018; Devlin et al., 2018).
One of the objectives of this research has been
to bypass the integration difficulties of sense rep-
resentations into downstream models. These so-
called contextualised word embeddings can eas-
ily be replaced with conventional static word em-
beddings in neural-based NLP systems. This in-
tegration has proven beneficial to a wide range
of NLP applications. Pilehvar and Camacho-
Collados (2019) carried out an analysis on the
sense distinguishing capability of contextualised
embeddings, showing that, despite their successful
application to downstream applications, these em-
beddings are not very powerful in capturing dis-
tinct meanings of words.

6 Conclusions

We provided an analysis on the impact of address-
ing the meaning conflation deficiency of word em-
beddings on the performance of a downstream
NLP application, i.e., reverse dictionary mapping.
Through a set of experiments we showed that a
simple migration from words to senses can sig-
nificantly improve the ability of the system in se-
mantic understanding, leading to consistent per-
formance boost. In future work, we plan to eval-
uate sense integration in other NLP applications,
such as Machine Translation, in the light of (Liu
et al., 2018), and question answering.
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José Camacho-Collados and Mohammad Taher Pile-
hvar. 2018. From word to sense embeddings: A sur-
vey on vector representations of meaning. Journal
of Artificial Intelligence Research 63:743–788.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR abs/1810.04805.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Database. MIT Press, Cambridge, MA.

Lucie Flekova and Iryna Gurevych. 2016. Supersense
embeddings: A unified model for supersense inter-
pretation, prediction, and utilization. In Proceed-
ings of the 54th Annual Meeting of the Association



2156

for Computational Linguistics (Volume 1: Long Pa-
pers). Berlin, Germany, pages 2029–2041.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Learning sense-specific word embed-
dings by exploiting bilingual resources. In COL-
ING. pages 497–507.

Felix Hill, KyungHyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand
phrases by embedding the dictionary. Transactions
of the Association for Computational Linguistics
4:17–30.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Eduard H. Hovy, Roberto Navigli, and Simone Paolo
Ponzetto. 2013. Collaboratively built semi-
structured content and Artificial Intelligence: The
story so far. Artificial Intelligence 194:2–27.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of ACL. Jeju Island, Ko-
rea, pages 873–882.

Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy.
2015. Ontologically grounded multi-sense repre-
sentation learning for semantic vector space models.
In Proceedings of NAACL. Denver, Colorado, pages
683–693.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
In Proceedings of EMNLP. Lisbon, Portugal, pages
683–693.

Frederick Liu, Han Lu, and Graham Neubig. 2018.
Handling Homographs in Neural Machine Transla-
tion. In Proceedings of NAACL. New Orleans, LA,
USA.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of EMNLP.
Doha, Qatar, pages 1059–1069.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,
C. Clark, K. Lee, and L. Zettlemoyer. 2018. Deep
contextualized word representations. In Proceed-
ings of NAACL. New Orleans, LA, USA.

Mohammad Taher Pilehvar and Jose Camacho-
Collados. 2019. WiC: the word-in-context dataset
for evaluating context-sensitive meaning representa-
tions. In Proceedings of NAACL-HLT .

Mohammad Taher Pilehvar, Jose Camacho-Collados,
Roberto Navigli, and Nigel Collier. 2017. Towards
a seamless integration of word senses into down-
stream nlp applications. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). pages
1857–1869.

Mohammad Taher Pilehvar and Nigel Collier. 2016.
De-conflated semantic representations. In Proceed-
ings of EMNLP. Austin, TX, pages 1680–1690.

Joseph Reisinger and Raymond J. Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Proceedings of ACL. pages 109–117.

Sascha Rothe and Hinrich Schütze. 2015. Autoex-
tend: Extending word embeddings to embeddings
for synsets and lexemes. In Proceedings of ACL.
Beijing, China, pages 1793–1803.
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