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Abstract

Incremental domain adaptation, in which a
system learns from the correct output for each
input immediately after making its predic-
tion for that input, can dramatically improve
system performance for interactive machine
translation. Users of interactive systems are
sensitive to the speed of adaptation and how
often a system repeats mistakes, despite be-
ing corrected. Adaptation is most commonly
assessed using corpus-level BLEU- or TER-
derived metrics that do not explicitly take
adaptation speed into account. We find that
these metrics often do not capture immediate
adaptation effects, such as zero-shot and one-
shot learning of domain-specific lexical items.
To this end, we propose new metrics that di-
rectly evaluate immediate adaptation perfor-
mance for machine translation. We use these
metrics to choose the most suitable adaptation
method from a range of different adaptation
techniques for neural machine translation sys-
tems.

1 Introduction

Incremental domain adaptation, or online adap-
tation, has been shown to improve statistical
machine translation and especially neural ma-
chine translation (NMT) systems significantly
(Turchi et al., 2017; Karimova et al., 2018)
(inter-alia). The natural use case is a computer-
aided translation (CAT) scenario, where a user
and a machine translation system collaborate
to translate a document. Each user translation
is immediately used as a new training example
to adapt the machine translation system to the
specific document.

Adaptation techniques for MT are typically
evaluated by their corpus translation quality, but
such evaluations may not capture prominent as-
pects of the user experience in a collaborative

translation scenario. This paper focuses on di-
rectly measuring the speed of lexical acquisition
for in-domain vocabulary. To that end, we propose
three related metrics that are designed to reflect the
responsiveness of adaptation.

An ideal system would immediately acquire in-
domain lexical items upon observing their transla-
tions. Moreover, one might expect a neural system
to generalize from one corrected translation to re-
lated terms. Once a user translates “bank” to Ger-
man “Bank” (institution) instead of “Ufer” (shore)
in a document, the system should also correctly
translate “banks” to “Banken” instead of “Ufer”
(the plural is identical to the singular in German)
in future sentences. We measure both one-shot vo-
cabulary acquisition for terms that have appeared
once in a previous target sentence, as well as zero-
shot vocabulary acquisition for terms that have not
previously appeared.

Our experimental evaluation shows some
surprising results. Methods that appear to have
comparable performance using corpus quality
metrics such as BLEU can differ substantially in
zero-shot and one-shot vocabulary acquisition. In
addition, we find that fine-tuning a neural model
tends to improve one-shot vocabulary recall while
degrading zero-shot vocabulary recall.

We evaluate several adaptation techniques on a
range of online adaptation datasets. Fine tuning
applied to all parameters in the NMT model max-
imizes one-shot acquisition, but shows a worri-
some degradation in zero-shot recall. By contrast,
fine tuning with group lasso regularization, a tech-
nique recently proposed to improve the space effi-
ciency of adapted models (Wuebker et al., 2018),
achieves an appealing balance of zero-shot and
one-shot vocabulary acquisition as well as high
corpus-level translation quality.
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2 Measuring Immediate Adaptation

2.1 Motivation

For interactive, adaptive machine translation sys-
tems, perceived adaptation performance is a cru-
cial property: An error in the machine transla-
tion output which needs to be corrected multiple
times can cause frustration, and thus may com-
promise acceptance of the MT system by human
users. A class of errors that are particularly salient
are lexical choice errors for domain-specific lex-
ical items. In the extreme, NMT systems using
subword modeling (Sennrich et al., 2015) can gen-
erate “hallucinated” words—words that do not ex-
ist in the target language—which are especially
irritating for users (Lee et al., 2018; Koehn and
Knowles, 2017). Users of adaptive MT have a
reasonable expectation that in-domain vocabulary
will be translated correctly after the translation of
a term or some related term has been corrected
manually.

Arguably, more subtle errors, referring to syn-
tax, word order or more general semantics are
less of a focus for immediate adaptation, as these
types of errors are also harder to pinpoint and thus
to evaluate1 (Bentivogli et al., 2016). Traditional
metrics for evaluating machine translation outputs,
e.g. BLEU and TER, in essence try to measure the
similarity of a hypothesized translation to one or
more reference translations, taking the full string
into account.

Due to significant improvements in MT quality
with neural models (Bentivogli et al., 2016) (inter-
alia), more specialized metrics, evaluating certain
desired behaviors of systems become more useful
for specific tasks. For example, Wuebker et al.
(2016) show, that NMT models, while being bet-
ter in most respects, still fall short in the handling
of content words in comparison with phrase-based
MT. This observation is also supported by Ben-
tivogli et al. (2016), who show smaller gains for
NMT for translation of nouns, an important cate-
gory of content words.

Another reason to isolate vocabulary acquisi-
tion as an evaluation criterion is that interac-
tive translation often employs local adaptation via
prefix-decoding (Knowles and Koehn, 2016; Wue-
bker et al., 2016), which can allow the system
to recover syntactic structure or resolve local am-

1Some practitioners observed that these subtle errors be-
come harder to spot due the improved fluency of NMT sys-
tems (Burchardt, 2017).

biguities when given a prefix, but may still suf-
fer from poor handling of unknown or domain-
specific vocabulary.

In this work, we therefore focus on translation
performance with respect to content words, setting
word order and other aspects aside.

2.2 Metrics

We propose three metrics: one to directly mea-
sure one-shot vocabulary acquisition, one to mea-
sure zero-shot vocabulary acquisition, and one to
measure both. In all three, we measure the recall
of target-language content words so that the met-
rics can be computed automatically by compar-
ing translation hypotheses to reference translations
without the use of models or word alignments2.

We define content words as those words that
are not included in a fixed stopword list, as used
for example in query simplification for informa-
tion retrieval. Such lists are typically compiled
manually and are available for many languages.3

For western languages, content words are mostly
nouns, main verbs, adjectives or adverbs.

For the i-th pair of source sentence and refer-
ence translation, i = 1, . . . , |G|, of an ordered test
corpus G, we define two setsR0,i andR1,i that are
a subset of the whole set of unique4 content words
(i.e. types) of the reference translation for i. R0,i

includes a word if its first occurrence in the test set
is in the i-th reference of G, and R1,i if its second
occurrence in the test set is in the i-th reference of
G. The union R0,i ∪ R1,i includes content words
occurring for either the first or second time.

To measure zero-shot adaptation in a given hy-
pothesisHi, also represented as a set of its content
words, we propose to evaluate the number of word
types that were immediately translated correctly:

R0 =
|Hi ∩R0,i|
|R0,i|

.

To measure one-shot adaptation, where the sys-
tem correctly produces a content word after ob-

2In each of the data sets considered in this work, the aver-
age number of occurrences of content words ranges between
1.01 and 1.11 per sentence. We find this sufficiently close
to 1 to evaluate in a bag-of-words fashion and not consider
alignments.

3For German we used the list available here:
https://github.com/stopwords-iso.

4All proposed metrics operate on the set-level, without
clipping (Papineni et al., 2002) or alignment (Banerjee and
Lavie, 2005; Kothur et al., 2018), as we have found this sim-
plification effective.
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Reference Hypothesis R0 R1 R0+1

1. The [dog] [bites] the [lady] A [terrier] [bites] the [person] 1/3 0/0 1/3
2. The [man] [bites] the [dog] The [dog] [bites] the [man] 1/1 2/2 3/3

Total 2/4 2/2 4/6

Figure 1: Example for calculating R0, R1, and R0+1 on a corpus of two sentences. Content words are written in
brackets, the corpus-level score is given below the per-segment scores. In the example, the denominator for R1 is
2 due to the two repeated words dog and bites in the reference.

serving it exactly once, we propose:

R1 =
|Hi ∩R1,i|
|R1,i|

.

This principle can be extended to define metrics
Rk, k > 1 to allow more “slack” in the adaptation,
but we leave that investigation to future work.

Finally, we define a metric that measures both
zero- and one-shot adaptation:

R0+1 =
|Hi ∩ [R0,i ∪R1,i] |
|R0,i ∪R1,i|

.

All metrics can either be calculated for single
sentences as described above, or for a full test cor-
pus by summing over all sentences, e.g. for R0:∑|G|

i=1 |Hi ∩R0,i|∑|G|
i=1 |R0,i|

.

Figure 1 gives an example calculation of all
three metrics across a two-sentence corpus.

3 Related Work

An important line of related work is concerned
with estimating the potential adaptability of a sys-
tem given a source text only, the so-called repeti-
tion rate (Cettolo et al., 2014). The metric is in-
spired by BLEU, and uses a sliding window over
the source text to count singleton N -grams.

The modus operandi for our metrics is most
similar to HTER (Snover et al., 2006), since we are
also assuming a single, targeted reference transla-
tion5 for evaluation.

The introduction of NMT brought more aspects
of translation quality evaluation into focus, such as
discourse-level evaluation (Bawden et al., 2017),
or very fine-grained evaluation of specific aspects
of the translations (Bentivogli et al., 2016), high-
lighting the differences between phrase-based and
NMT systems.

5A reference translation which was produced from post-
editing output of the to-be-evaluated MT system.

Online adaptation for (neural) machine transla-
tion has been thoroughly explored using BLEU
(Turchi et al., 2017), simulated keystroke and
mouse action ratio (Barrachina et al., 2009) for
effort estimation (Peris and Casacuberta, 2018),
word prediction accuracy (Wuebker et al., 2016),
and user studies (Denkowski et al., 2014; Kari-
mova et al., 2018) (all inter-alia). In (Simianer
et al., 2016) immediate adaptation for hierarchi-
cal phrase-based MT is specifically investigated,
but they also evaluate their systems using human-
targeted BLEU and TER.

Regularization for segment-wise continued
training in NMT has been explored by Khayrallah
et al. (2018) by means of knowledge distillation,
and with the group lasso by Wuebker et al. (2018),
as used in this paper.

Most relevant to our work, in the context of
document-level adaptation, Kothur et al. (2018)
calculate accuracy for novel words based on an
automatic word alignment. However, they do not
focus on zero- and one-shot matches, but instead
aggregate counts over the full corpus.

4 Online Adaptation

NMT systems can be readily adapted by fine-
tuning (also called continued training) with the
same cross-entropy loss (L) as used for training
the parameters of the baseline system, which also
serves as the starting point for adaptation (Lu-
ong and Manning, 2015). Following Turchi et al.
(2017), we perform learning from each example i
using (stochastic) gradient descent, using the cur-
rent source xi and reference translation yi as a
batch of size 1:

θi ← θi−1 − γ∇L(θi−1, xi, yi). (1)

Evaluation is carried out using simulated post-
editing (Hardt and Elming, 2010), first translat-
ing the source using the model with parame-
ters θi−1, before performing the update described
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above with the now revealed reference translation.
The machine translation system effectively only
trains for a single iteration for any given data set.

The naı̈ve approach, updating all parameters θ
of the NMT model, while being effective, can be
infeasible in certain settings6, since tens of mil-
lions of parameters are updated depending on the
respective model. While some areas of a typi-
cal NMT model can be stored in a sparse fash-
ion without loss (source- and target embeddings),
large parts of the model cannot. We denote this
type of adaptation as full.

A light-weight alternative to adaptation of the
full parameter set is to introduce a second bias
term in the final output layer of the NMT model,
which is trained in isolation, freezing the rest
of the model (Michel and Neubig, 2018). This
merely introduces a vector in the size of the output
vocabulary. This method is referred to as bias.

Another alternative is freezing parts of the
model (Thompson et al., 2018), for example de-
termining a subset of parameters by performance
on a held-out set (Wuebker et al., 2018). In our ex-
periments we use two systems using this method,
fixed and top, the former being a pre-determined
fixed selection of parameters, and the latter be-
ing the topmost encoder and decoder layers in the
Transformer NMT model (Vaswani et al., 2017).

Finally, a data-driven alternative to the fixed
freezing method was introduced to NMT by Wue-
bker et al. (2018), implementing tensor-wise `1/`2
group lasso regularization, allowing the learning
procedure to select a fixed number of parameters
after each update. This setup is referred to as
lasso.

5 Experiments

5.1 Neural Machine Translation Systems
We adapt an English→German NMT system
based on the Transformer architecture trained with
an in-house NMT framework on about 100M
bilingual sentence pairs. The model has six lay-
ers in the encoder, three layers in the decoder,
each with eight attention heads with dimensional-
ity 256, distinct input and output embeddings, and
vocabulary sizes of around 40,000. The vocabu-
laries are generated with byte-pair encoding (Sen-
nrich et al., 2015). For adaptation we use a learn-
ing rate γ of 10−2 (for the bias adaptation a learn-

6For example in setups where a large number of these
adapted models need to be stored and transferred.

Method BLEU SBLEU TER

baseline 40.3 49.3 45.2

bias 40.4 49.5 45.0
full 47.0 55.9 44.0
lasso 46.3 54.3 42.6
fixed 47.1 55.5 41.0
top 43.2 54.0 49.5

Table 1: Results on the Autodesk test set for tradi-
tional MT quality metrics. SBLEU refers to an average
of sentence-wise BLEU scores as described by Nakov
et al. (2012). The best result in each column is denoted
with bold font.

ing rate of 1.0 is used), no dropout, and no label-
smoothing. We use a tensor-wise `2 normalization
to 1.0 for all gradients (gradient clipping). Up-
dates for a sentence pair are repeated until the per-
plexity on that sentence pair is ≤ 2.0, for a max-
imum of three repetitions. The fixed adaptation
scheme, which involves selecting a subset of pa-
rameters on held-out data following Wuebker et al.
(2018), uses about two million parameters exclud-
ing all embedding matrices, in addition to poten-
tially the full source embeddings, but in practice
this is limited to about 1M parameters. The top
scheme only adapts the top layers for both en-
coder and decoder. For the lasso adaptation, we al-
low 1M parameters excluding the embeddings, for
which we allow 1M parameters in total selected
from all embedding matrices. This scheme also
always includes the previously described second
bias term in the final output layer.

Since the proposed metrics operate on words,
the machine translation outputs are first converted
to full-form words using sentencepiece (Kudo and
Richardson, 2018), then tokenized and truecased
with the tokenizer and truecaser distributed with
the Moses toolkit (Koehn et al., 2007).

5.2 Results

Tables 1 and 2 show the performance of differ-
ent adaptation techniques on the Autodesk dataset
(Zhechev, 2012), a public post-editing software
domain dataset for which incremental adaptation
is known to provide large gains for corpus-level
metrics. BLEU, sentence BLEU, and TER scores
(Table 1) are similar for full adaptation, sparse
adaptation with group lasso, and adaptation of a
fixed subset of parameters. However (in Table 2),
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Method R0 R1 R0+1

baseline 39.3 44.9 41.0

bias 39.3 45.3 41.1
full 35.8 55.0 41.6
lasso 40.3 48.6 42.8
fixed 35.8 52.3 40.8
top 35.6 50.3 40.0

Table 2: Results on the Autodesk test set for the pro-
posed metrics R0, R1, and R0+1.

lasso substantially outperforms the other methods
in zero-shot (R0), and combined zero- and one-
shot recall of content words (R0+1).

Zero-shot recall is considerably degraded rela-
tive to the non-adapted baseline for both full and
adaptation of a fixed subset of tensors (fixed and
top). That is, terms never observed before dur-
ing online training are translated correctly less of-
ten than they would be with an unadapted system,
despite the data set’s consistent domain. These
approaches trade off long-term gains in BLEU
and high one-shot recall for low zero-shot recall,
which could be frustrating for users who may per-
ceive the degradation in quality for terms appear-
ing for the first time in a document. The lasso
technique is the only one that shows an improve-
ment in R0 over the baseline. However, lasso has
considerably lower one-shot recall compared to
the other adaptation methods, implying that it of-
ten must observe a translated term more than once
to acquire it.

Appendix A shows similar experiments for sev-
eral other datasets.

5.3 Analysis

For a better understanding of the results described
in the previous section, we conduct an analysis
varying the units of the proposed metrics, while
focusing on full and lasso adaptation.

For the first variant, only truly novel words are
taken into account, i.e. words in the test set that do
not appear in the training data. Results for these
experiments are depicted in Table 3. It is appar-
ent that the findings of Table 2 are confirmed, and
that relative differences are amplified. This can be
explained by the reduced number of total occur-
rences considered, which is only 310 words in this
data set. It is also important to note that all of these

Method R0 R1 R0+1

baseline 27.1 40.7 29.9

full 26.1 63.0 33.8
lasso 31.9 53.1 36.3

Table 3: Results on Autodesk data calculating the met-
rics only for truly novel content words, i.e. ones that do
not occur in the training data.

Method R0 R1 R0+1

baseline 44.1 48.1 45.5

full 40.4 54.6 45.4
lasso 43.7 51.7 46.5

Table 4: Results on Autodesk data calculating the met-
rics with subwords.

words are made up of known subwords7, since our
NMT system does not include a copying mecha-
nism and is thus constrained to the target vocabu-
lary.

Further results using the raw subword output8

of the MT systems are depicted in Table 4: R0
for the lasso method is degraded only slightly be-
low the baseline (-1%, compared to +2% for the
regular metric), the findings for R1 and R0+1 re-
main the same as observed before. Compared to
the results for novel words this indicates that the
improvement in terms of R0 for lasso mostly come
from learning new combinations of subwords.

A discussion of the adaptation behavior over
time, with exemplified differences between the
metrics, can be found in Appendix B.

6 Conclusions

To summarize: In some cases, the strong gains in
corpus-level translation quality achieved by fine
tuning an NMT model come at the expense of
zero-shot recall of content words. This concern-
ing impact of adaptation could affect practical user
experience. Existing regularization methods miti-
gate this effect to some degree, but there may be
more effective techniques for immediate adapta-
tion that have yet to be developed.

The proposed metrics R0, R1, and R0+1 are
useful for measuring immediate adaptation perfor-
mance, which is crucial in adaptive CAT systems.

7The test set does not contain any unknown characters.
8Note that this includes all tokens, not just parts of content

words.
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A Additional Results

Table 5 contains results for additional
English→German datasets, namely patents
(Wäschle and Riezler, 2012) (Patent), transcribed
public speeches (Cettolo et al., 2012) (TED),
and two proprietary user data sets, one from the
financial domain (User 1) and the other being
technical documentation (User 2). The same
pattern is observed in almost all cases: lasso
outperforms the other adaptation techniques in
zero-shot recall (R0) and combined recall (R0+1),
while full has the highest one-shot recall (R1) on
two out of five test sets, being close runner-up to
lasso on all others. Overall however, we observe
that zero-shot recall R0 is degraded by adaptation,
while one-shot recall is improved. We also find
that adaptation with the light-weight bias method
often does not deviate much from the baseline. In
contrast, the results for the traditional MT metrics
are predominantly positive. For adaptation, the

lasso method provides the best tradeoff in terms of
performance throughout the considered metrics.

B Learning Curves

We are also interested in the behavior of the adap-
tation methods over time. To this end, in Figure 2,
we plot the difference in cumulative scores9 of two
adapted systems (full and lasso) to the baseline for
the proposed metrics as well as the BLEU score.

As evident from comparing the curves for
BLEU and R0, the BLEU score and the proposed
metric give disparate signals for this data. Specif-
ically, there are two distinct dips in the curves for
R0 (as well as R0+1) and BLEU:

1. The degradation in R0 around segment 800
is due to significant noise in segment 774,
which has a strong impact on the adapted
systems, while the baseline system is not af-
fected. The full system’s score drops by
about 50% at segment 775 (i.e. after adap-
tation) relative to the cumulative score differ-
ence at the previous segment and never re-
covers after that.

2. The dip in the BLEU score at segment 752,
observable for both adapted systems, depict-
ing a relative degradation of about 10%, is
due to a pathological repetition of a single
character in the output of the adapted MT
systems for this segment, which has a large
impact on the score.

The dip observed with R0 is also noticeable in
BLEU, but much less pronounced at 4% relative
for full and 2% relative for lasso. The dip in BLEU
on the other hand is not noticeable with R0, R1, or
R0+1.

9For each sentence i in the data set, the metrics for all
systems are calculated up to the ith sentence. The difference
for the adapted systems is then calculated by subtracting the
baseline score.
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User 1 BLEU SBLEU TER R0+1 R0 R1

baseline 35.7 55.2 52.4 44.3 42.8 50.3
bias 8 6 -4 -5 -5 -4
full 36 18 -22 -4 -7 6

lasso 38 18 -23 1 -1 8
fixed 34 18 -22 -6 -9 4

top 29 16 -17 -5 -8 4

User 2 BLEU SBLEU TER R0+1 R0 R1

baseline 35.5 56.2 51.0 43.6 41.0 51.2
bias 0 0 0 0 0 -1
full 0 5 5 -3 -5 4

lasso 6 6 -6 2 0 7
fixed -5 4 13 -4 -7 1

top -3 3 4 -5 -7 -2

Autodesk BLEU SBLEU TER R0+1 R0 R1

baseline 40.3 49.3 45.2 41.0 39.3 44.9
bias 0 0 0 0 0 1
full 17 13 -3 1 -9 22

lasso 15 10 -6 4 3 8
fixed 17 13 -9 0 -9 16

top 7 10 10 -2 -9 12

TED BLEU SBLEU TER R0+1 R0 R1

baseline 25.9 56.0 54.2 42.6 39.5 53.2
bias 1 0 0 0 0 0
full 0 1 1 -3 -6 3

lasso 4 2 -2 -1 -3 4
fixed -3 0 4 -4 -7 2

top -6 0 9 -2 -5 5

Patent BLEU SBLEU TER R0+1 R0 R1

baseline 53.5 62.1 31.7 51.8 49.7 57.3
bias 2 1 -2 0 0 0
full 3 2 -2 -2 -5 7

lasso 4 2 -4 0 -2 5
fixed 2 1 1 -4 -7 4

top 2 1 -1 -3 -5 2

Table 5: BLEU, sentence-wise BLEU, TER, R0+1, R0, and R1 metrics for a number of data sets, comparing
different adaptation methods as described in Section 4. Baseline results are given as absolute scores, results for
adaptation are given as relative differences. Best viewed in color.
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(c) R0+1
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Figure 2: Differences in cumulative scores for R0 (top left), R1 (top right), R0+1 (bottom left), and BLEU (bottom
right) to the baseline system on the Autodesk test set for full and lasso adaptation. The peculiarities discussed in
the running text are marked by solid vertical lines (at x = 751 and x = 774).


