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Abstract

Current research on spoken language transla-
tion (SLT) has to confront with the scarcity
of sizeable and publicly available training cor-
pora. This problem hinders the adoption of
neural end-to-end approaches, which represent
the state of the art in the two parent tasks of
SLT: automatic speech recognition and ma-
chine translation. To fill this gap, we cre-
ated MuST-C, a multilingual speech transla-
tion corpus whose size and quality will facili-
tate the training of end-to-end systems for SLT
from English into 8 languages. For each tar-
get language, MuST-C comprises at least 385
hours of audio recordings from English TED
Talks, which are automatically aligned at the
sentence level with their manual transcriptions
and translations. Together with a description
of the corpus creation methodology (scalable
to add new data and cover new languages), we
provide an empirical verification of its quality
and SLT results computed with strong baseline
system on each language direction.

1 Introduction

Besides the increased computing power, the recent
surge of neural end-to-end approaches to natural
language processing tasks has been stoked by the
increased availability of data. For instance, when
supported by sizeable training corpora, the robust-
ness and the strong generalization capabilities of
neural networks led to their dominance over previ-
ous paradigms both in automatic speech recogni-
tion (ASR (Chiu et al., 2018)) and machine trans-
lation (MT (Bojar et al., 2018)).

Compared to its two parent research areas, spo-
ken language translation (SLT) has not shown such
a steady progress yet. Despite recent claims by big
industry players about the effectiveness of end-to-
end learning (Weiss et al., 2017; Jia et al., 2018),
its adoption does not yet represent the mainstream
solution to the SLT task. One of the main obstacles

Corpus Languages Hours
Niehues et al. (2018) En→De 273
Kocabiyikoglu et al. (2018) En→Fr 236
Tohyama et al. (2005) En↔Jp 182

Paulik and Waibel (2009) En→Es 111
Es→En 105

Post et al. (2013) En→Es 38
Stüker et al. (2012) De→En 37
Shimizu et al. (2014) En↔Jp 22
Federmann and Lewis (2017) En↔Jp/Zh 22

Bendazzoli and Sandrelli (2005) En↔It/Es 18It↔Es
Bérard et al. (2016) Fr→En 17
Federmann and Lewis (2016) En↔Fr/De 8
Woldeyohannis et al. (2017) Am→En 7
Godard et al. (2017) Mboshi→Fr 4

Table 1: Publicly available SLT corpora. The two most
recent resources (also known as IWSLT18 and Aug-
mented LibriSpeech) are also the largest ones. Though
considerably smaller, the Fisher and Callhome cor-
pus described in (Post et al., 2013) is among the most
widely used ones in previous research.

to a stable dominance of the end-to-end paradigm
also in this area is the scarcity of training corpora.
While cascade ASR+MT solutions can exploit the
wealth of task-specific data available for each of
the two tasks,1 the situation for end-to-end model
training is much less favourable. As shown in Ta-
ble 1, few publicly available corpora exist, their
language coverage is rather limited and, most im-
portantly, their size is often too small (less than
100 hours of translated audio) for training data-
hungry neural models.2

To circumvent the problem, neural SLT ap-
proaches currently rely on: i) large proprietary
corpora (Jia et al., 2018), ii) multitask learning

1In resource-rich conditions, ASR and MT training often
builds on thousands of hours of transcribed speech and tens
of millions of parallel sentences, respectively.

2Besides the corpora reported in Table 1, several smaller
(< 4 hours) freely-available datasets have been created (e.g.
the IWSLT evaluation campaign development and test sets
from 2010 to 2017 and the Griko-Italian corpus by Boito et al.
(2018)).
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(Weiss et al., 2017; Anastasopoulos and Chiang,
2018; Bérard et al., 2018), iii) encoder/decoder
pre-training (Bansal et al., 2018; Bérard et al.,
2018), iv) synthesized speech data (Bérard et al.,
2016), or v) machine-translated target text data
(Bérard et al., 2018). Though effective, solutions
ii) and iii) assume the availability of ASR and MT
data, which is not always guaranteed (especially in
low-resource language settings). Solutions iv) and
v), instead, rely on training material derived from
sub-optimal automatic data creation/augmentation
procedures. This situation calls for initiatives to-
wards the creation of large, high-quality multilin-
gual corpora suitable to explore end-to-end SLT in
more favorable conditions similar to condition i).
Along this direction, our contributions are:

• A large (∼400 hours of speech per language)
multilingual corpus for SLT from English
into 8 languages (German, Spanish, French,
Italian, Dutch, Portuguese, Romanian and
Russian);

• An empirical verification of its quality;

• ASR, MT and SLT results computed with
strong baseline systems on each language di-
rection.

MuST-C is released under a Creative Com-
mons license, Attribution - Non Commercial - No
Derivatives (CC BY NC ND 4.0 International),
and is freely downloadable at mustc.fbk.eu

2 Corpus Creation Methodology

Must-C was created pursuing high quality as
well as large size, speaker variety (male/female,
native/non-native) and coverage in terms of top-
ics and languages. To achieve these objectives,
similar to (Niehues et al., 2018), we started from
English TED Talks, in which a variety of speak-
ers discuss topics spanning from business to sci-
ence and entertainment. Most importantly, the fact
that TED talks are often manually transcribed and
translated sets ideal conditions for creating an SLT
corpus from high-quality text material. Although
the initial data are similar to those used to build
the IWSLT18 corpus, our methodology is differ-
ent. Inspired by Kocabiyikoglu et al. (2018), it ex-
ploits automatic alignment procedures, first at the
text level (between transcriptions and translations)
and then with the corresponding audio segments.

More in detail, for each target language Li, the
(English-Li) section of MuST-C is created as fol-
lows. First, for all the English talks available from
the TED website,3 we download the videos and
the HTML files containing the manual transcrip-
tions and their translation into Li.4

Then, the plain text transcription and the trans-
lation of each talk are split at the sentence level
based on strong punctuation marks and aligned us-
ing the Gargantua sentence alignment tool (Braune
and Fraser, 2010). This step produces a bilingual
text corpus aligned at the sentence level.

In the third step, the English side of this bilin-
gual corpus is aligned to the corresponding audio
track extracted from the video. This is done using
Gentle,5 an off-the-shelf English forced-aligner
built on the Kaldi ASR toolkit (Povey et al., 2011).

Next, the audio-text alignments are processed
to create a YAML file containing time informa-
tion (i.e. start and duration) for each sentence.
In this processing step, two filters are applied to
weed out potentially noisy segments, or entire
talks, based on the number of words that were
not aligned by Gentle. First, entire talks are dis-
carded if the proportion of unrecognized words is
equal or greater than 15% of the total. This thresh-
old was determined after a manual analysis of 73
talks (those with the highest percentage of unrec-
ognized words). The analysis showed that these
cases are representative of different types of noise
like: i) non-English speech, ii) long silences, iii)
music, non-transcribed songs and videos played
during the talk, and iv) wrong transcriptions (e.g.
captions from other talks in the material down-
loaded from the TED website). The second rule
applies to the single sentences of the talks that
passed the first filter, and removes those in which
none of the words was aligned by Gentle.6

In the last step, the log Mel 40-dimensional
filter-bank features – commonly used as input rep-
resentation for ASR (Graves et al., 2013) and
SLT (Weiss et al., 2017) – are extracted from the

3www.ted.com – dump of April 2018.
4All talks have manual captions, which were also trans-

lated into many languages by volunteers. The language cov-
erage of the translations depends on several factors like the
age of the talk (the old ones often have more translations),
the popularity of its topic and the availability of volunteer
translators for a given language.

5github.com/lowerquality/gentle
6The effectiveness of this filtering criterion was manually

verified on random samples. More aggressive solutions will
be explored for future releases of the corpus.

mustc.fbk.eu
www.ted.com
github.com/lowerquality/gentle
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Tgt #Talk #Sent Hours src w tgt w
De 2,093 234K 408 4.3M 4.0M
Es 2,564 270K 504 5.3M 5.1M
Fr 2,510 280K 492 5.2M 5.4M
It 2,374 258K 465 4.9M 4.6M
Nl 2,267 253K 442 4.7M 4.3M
Pt 2,050 211K 385 4.0M 3.8M
Ro 2,216 240K 432 4.6M 4.3M
Ru 2,498 270K 489 5.1M 4.3M

Table 2: Statistics for each section of MuST-C.

aligned audio using the XNMT tool (Neubig et al.,
2018).7

Table 2 provides basic statistics for the 8 sec-
tions of the MuST-C corpus. Comparing the 4th

column with the numbers reported in Table 1, it
is worth noting that, in terms of hours of tran-
scribed/translated speech, each section is larger
than any existing publicly available SLT resource.

3 Experiments

In this section we present two sets of experiments,
which are respectively aimed to: i) empirically as-
sess the quality of the MuST-C corpus (Section
3.3) and ii) compute baseline ASR, MT, and SLT
results for future comparisons (Section 3.4).

In these experiments, the audio-transcription
alignments of MuST-C are used to train and evalu-
ate ASR models, transcription-translation align-
ments are used for the MT models, and audio-
translation alignments are used for the SLT mod-
els.

3.1 ASR, MT and SLT Models
ASR and SLT. For our experiments in ASR and
SLT we use the same neural architecture. This
setting allows us to use the encoder of the ASR
models to initialize the weights of the SLT en-
coders and achieve a faster convergence (Bansal
et al., 2018). Our SLT architecture is a variant
of the system proposed by Bérard et al. (2018),
which we re-implemented in the fairseq toolkit
(Gehring et al., 2017). The system relies on an
attentional encoder-decoder model that takes in in-
put sequences of audio features and outputs the
target sequence at the character level. The encoder
processes the input with two consecutive fully-
connected layers to expand the size of the rep-
resentation, followed by two 2D strided convolu-

7github.com/neulab/xnmt

tional layers that reduce the sequence length. The
output of the convolutions is then processed by
three stacked LSTMs (Hochreiter and Schmidhu-
ber, 1997). The decoder consists of a two-layered
deep transition (Pascanu et al., 2014) LSTM with
an attention network based on the general soft at-
tention score (Luong et al., 2015). The final output
of the decoder is a function of the concatenation
of the LSTM output, the context vector and the
previous-character embedding.

MT. For the MT experiments we use the open
source version of ModernMT.8 The system is
based on the Transformer (Vaswani et al., 2017)
architecture, which represents the state of the art
in NMT (Bojar et al., 2018). The encoder consists
of a stack of 6 layers, each containing a sequence
of two sub-layers, a self-attention network based
on multi-head attention, and a position-wise feed-
forward layer. The decoder layers have an addi-
tional sub-layer: between the self attention and
the position-wise feed-forward layer they have an
encoder-decoder multi-head attention. All the sub-
layers in both the encoder and decoder are pre-
ceded by layer normalization and are followed by
residual connections.

3.2 Data Processing and Evaluation Metrics
In our experiments, texts are tokenized and punc-
tuation is normalized. Furthermore, the English
texts are lowercased, while the target language
texts are split into characters still preserving the
word boundaries. For MT, we segment the English
words with the BPE algorithm (Sennrich et al.,
2015) using a maximum of 30K merge operations.
The output generation of all models is performed
using beam search with a beam size of 5.

ASR performance is measured with word error
rate (WER) computed on lower-cased, tokenized
texts without punctuation. MT and SLT results are
computed with BLEU (Papineni et al., 2002).

3.3 Experiment 1: Corpus Quality
As observed in Section 2, each section of MuST-
C is larger than any other existing publicly avail-
able SLT corpus. The usefulness of a resource,
however, is not only a matter of size but also
of quality (in this case, the quality of the au-
dio-transcription-translation alignments). For an
empirical verification of this aspect, we experi-
mented with two comparable datasets. One is

8www.modernmt.eu

github.com/neulab/xnmt
www.modernmt.eu
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the TED-derived English-German IWSLT18 cor-
pus (Niehues et al., 2018), which is built following
a pipeline that performs segment extraction and
alignment based on time information (i.e. start
and end position of each segment in the SubRip
Text (SRT) files) instead of text-level alignments.
The other is the English-German subset of MuST-
C derived from the same TED Talks used to build
the IWSLT18 corpus. On one side (MuST-C), the
number of segments, their length, and the over-
all corpus quality depend on text-level alignments.
On the other side (IWSLT18), they depend on
matching time stamps. This strategy, however, has
some drawbacks. First, as pointed out by (Niehues
et al., 2018; Liu et al., 2018; Di Gangi et al., 2018),
the use of time information brings some noise in
the corpus. Second, it often results in utterance-
level alignment (based on speakers’ pauses in the
original audio). Compared to sentence-level align-
ment, this level of granularity can be sub-optimal
during model training (e.g. for MT and SLT, learn-
ing from complete sentences is easier than learn-
ing from phrases). Finally, time information about
the recorded speech is not always available: by-
passing this need would make the method replica-
ble on other data (not only TED-like).

Though initialized with the same set of 1, 619
talks, the two pipelines produce different corpora.
As shown in Table 3, our approach filters out 58
entire talks (∼3.6% of the total) but the final num-
ber of segments, their corresponding audio dura-
tion and their average length (in words) are larger.

Corpus #Talk #Sent Hours src w tgt w
IWSLT18 1,619 176K 280 2.7M 2.5M
MuST-C 1,561 179K 313 3.3M 3.1M

Table 3: Statistics of the English-German corpora cre-
ated by applying the IWSLT18 and MuST-C pipelines
to the same initial set of 1, 619 TED Talks.

Each corpus was divided into training, develop-
ment and test. Development and test contain seg-
ments from randomly selected common talks (i.e.
those preserved by the MuST-C pipeline). Their
size is respectively 2.3K (from 28 talks) and 2.1K
segments (from 26 talks). The test portions were
concatenated to create a balanced test set (4.2K
segments) containing half of the instances from
the IWSLT18 corpus and half from MuST-C. The
remaining material was used to separately train
ASR, MT and SLT models on homogeneous data
from either of the two corpora (i.e. three systems

Training set ASR (↓) MT (↑) SLT (↑)
IWSLT18 42.15 24.90 8.94
MuST-C 32.05 25.46 12.25

Table 4: Performance of ASR, MT and SLT systems
trained with En-De IWSLT18 and MuST-C data.

Tgt ASR (↓) MT (↑) SLT (↑)
De 27.00 28.09 12.93
Es 26.61 34.16 18.20
Fr 25.81 42.23 22.29
It 26.38 30.40 14.95
Nl 26.55 33.43 18.20
Pt 28.00 32.44 17.10
Ro 27.61 28.16 13.35
Ru 26.97 18.30 7.22

Table 5: Baseline ASR, MT and SLT results for each
language direction.

per corpus). All the systems are evaluated on the
common test set.

Table 4 shows that the models trained on MuST-
C data achieve better results on the balanced test
set in all the three tasks. In particular: i) a reduc-
tion of 10.1 WER points in ASR indicates a higher
quality of audio-transcription alignments, ii) a
BLEU increase of 0.56 points in MT indicates a
similar quality for transcription-translation align-
ments, and iii) a BLEU increase of 3.31 points in
SLT indicates a higher quality of audio-translation
alignments. We consider these results as evidence
of the reliability of our corpus creation method-
ology. Being the same for all the language pairs,
we expect this procedure to end up in comparable
quality for all the 8 sections of MuST-C.

3.4 Experiment 2: Baseline Results

We finally present baseline results computed, for
all the three tasks, on each section of MuST-C.
Also for these experiments, development and test
data are created with segments from talks that are
common to all the languages. Their size is respec-
tively 1.4K (from 11 talks) and 2.5K segments
(from 27 talks). The remaining data (of variable
size depending on the language pairs) are used for
training. For the sake of replicability, these splits
are preserved in the released version of MuST-C.

The results in Table 5 lead to the following
observations. First, though not directly compa-
rable since they are computed on different test
sets, English-German results are in line (actually
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higher, since they are produced by models built on
larger training data) with those presented in Sec-
tion 3.3. This indicates that the level of quality ob-
served in the previous experiments with a subset of
the training data is preserved by the whole mate-
rial released for this language pair. Second, look-
ing at the other language pairs, ASR, MT and SLT
results are comparable with the English-German
scores. Besides normal fluctuations in the opti-
mization of the neural models, performance dif-
ferences are coherent with: i) the relative difficulty
of each target language (e.g. Russian is more dif-
ficult due to high inflection) and ii) the variable
quantity of training data available (e.g. French
has the largest training set, see Table 2). Over-
all, these explainable differences suggest that our
corpus creation methodology yields homogeneous
quality for all the languages covered by MuST-C.

4 Conclusion and Future Work

We presented MuST-C, a Multilingual Speech
Translation Corpus built to address the need of re-
sources for training data-hungry neural SLT mod-
els. To the best of our knowledge, to date MuST-
C is the largest publicly available corpus of this
kind. In its current version, it comprises the En-
glish transcription and the translations into 8 tar-
get languages of at least 385 hours of speech (up
to 504) per language. Thanks to a scalable cor-
pus creation procedure initialized with constantly
expanding TED talks data, future extensions will
increase the coverage of the already present target
languages and introduce new ones.

MuST-C is released under a Creative Com-
mons license, Attribution - Non Commercial - No
Derivatives (CC BY NC ND 4.0 International),
and is freely downloadable at mustc.fbk.eu
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