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Abstract

We propose a new automatic evaluation met-
ric for machine translation. Our proposed met-
ric is obtained by adjusting the Earth Mover’s
Distance (EMD) to the evaluation task. The
EMD measure is used to obtain the distance
between two probability distributions con-
sisting of some signatures having a feature
and a weight. We use word embeddings,
sentence-level tf · idf , and cosine similarity
between two word embeddings, respectively,
as the features, weight, and the distance be-
tween two features. Results show that our
proposed metric can evaluate machine trans-
lation based on word meaning. Moreover,
for distance, cosine similarity and word po-
sition information are used to address word-
order differences. We designate this met-
ric as Word Embedding-based automatic MT
evaluation using Word Position Information
(WE WPI). A meta-evaluation using WMT16
metrics shared task set indicates that our
WE WPI achieves the highest correlation with
human judgment among several representative
metrics.

1 Introduction

Recent advances in neural machine translation
(NMT) (Sutskever et al., 2014; Luong et al.,
2015) are remarkable. Results based on hu-
man evaluation have demonstrated that NMT out-
performs statistical machine translations signifi-
cantly (Chiang, 2005; Tufiş and Ceauşu, 2009).
The NMT achieved especially high performance
in terms of fluency. However, it tends to gener-
ate more omission errors than statistical machine
translations generate. Unfortunately, it is diffi-

cult for automatic evaluation metrics to evaluate
outputs with omission errors because those errors
are not included as non-match words between the
translation and reference. For such cases, the word
embedding-based automatic MT evaluation met-
ric, which is based on word position information,
is effective.

Various automatic evaluation metrics have been
proposed for machine translation, but none is suf-
ficient for NMT. Actually, BLEU (Papineni et al.,
2002) is the representative metric based on n-
gram matching. Unfortunately, because it is
a surface-level metric, it is difficult to address
word meaning during evaluation for MT out-
puts. The word-embedding-based distance mea-
sure for document (Kusner et al., 2016) and the
word-alignment-based automatic evaluation met-
ric using word embedding (Matsuo et al., 2017)
are effective to address word meanings. Never-
theless, they can only ineffectively accommodate
word order differences between the translation and
reference.

Given those circumstances, a new metric with
word embedding-based automatic MT evalua-
tion metric using word position information is
proposed in which the evaluation score is ob-
tained by adjusting the Earth Mover’s Distance
(EMD) (Rubner et al., 1998, 2000) to the eval-
uation task. The EMD measure represents the
distance between two probability distributions.
Moreover, the EMD distance is obtained based
on a signature consisting of the feature and the
weight, and the distance between two features.
The feature, weight, and distance must therefore
be defined to adjust EMD to the evaluation task.
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In our proposed metric, the word embeddings and
the sentence-level tf · idf respectively denote the
feature and the weight. Consequently, our pro-
posed metric can produce an evaluation based on
the word meaning. Moreover, our proposed met-
ric uses word position information in the distance
between two word embeddings. The distance is
obtained using cosine similarity and the difference
of word position between the translation and refer-
ence. Results demonstrate that our proposed met-
ric can evaluate translations also considering word
order differences. We designate this new metric as
Word Embedding-based automatic MT evaluation
using Word Position Information (WE WPI).

The experimentally obtained results based on
the WMT16 metrics shared task (Bojar et al.,
2016) demonstrated that our WE WPI
achieves the highest correlation with human
judgment among several metrics: BLEU,
METEOR (Banerjee and Lavie, 2005), IM-
PACT (Echizen-ya and Araki, 2007), and
RIBES (Isozaki et al., 2010). Moreover, the
correlation of WE WPI is better than that of
WE WPI without word position information
(WE). Results therefore confirmed the effective-
ness of WE WPI using word position information.

2 Related Work

Kusner et al. (2016) proposed the Word Mover’s
Distance (WMD) as a distance measure using
word embedding and word alignment. This mea-
sure obtains the distance between two documents
adjusting EMD to a document. However, it cannot
accommodate differences of word order between
the translation and reference. Matsuo et al. (2017)
also proposed a word-alignment-based automatic
evaluation metric using word embeddings for
segment-level evaluation. As described in that pa-
per, Maximum Alignment Similarity (MAS) was
found to have higher correlation with human eval-
uation than BLEU for European-to-English, which
has similar grammar structures. For Japanese-to-
English, which has different grammar structures,
Average Alignment Similarity (AAS) showed bet-
ter correlation with human evaluation than other
metrics. However, neither MAS nor AAS uses
word position information. Therefore, neither can
sufficiently accommodate word order differences.
Actually, WE WPI uses not only the word align-
ment but also word position information.

One system, DREEM (Chen and Guo, 2015),

learns distributed word representations from a
neural network model and from distributed sen-
tence representations computed with a recursive
autoencoder. Moreover, it uses a penalty based
on translation and reference lengths. By contrast,
the WE WPI system specifically examines the dif-
ference between the word positions of the transla-
tion and reference, not the difference of lengths
between the translation and reference. Therefore,
it can sufficiently accommodate word order differ-
ences. Moreover, it can evaluate the translation
efficiently using word embeddings of target lan-
guages without requiring large amounts of data or
learning time. Our WE WPI requires no learn-
ing of bilingual knowledge or a relation between
translation and reference. It needs only a model of
word embeddings in advance to apply EMD to the
automatic MT evaluation task.

In a non-trained evaluation metric, MEANT
2.0 (Lo, 2017; Bojar et al., 2017) uses a distri-
butional word vector model to evaluate lexical
semantic similarity and shallow semantic parses
to evaluate structural semantic similarity between
the translation and reference. It is a new ver-
sion of MEANT (Lo and Wu, 2011), which is a
non-ensemble and untrained metric. Moreover,
MEANT 2.0 - nosrl is a subversion of MEANT
2.0 to evaluate the translation for any output lan-
guage by removing the dependence on semantic
parsers for semantic role labeling (SRL). In that
case, phrasal similarity is calculated using n-gram
lexical similarities. However, MEANT 2.0 se-
ries do not specifically examine the position of
each word in the translation and reference. Re-
sults show that it is difficult to deal sufficiently
with language pairs for which the grammar differs.
In WE WPI, the evaluation score is calculated us-
ing the relative difference between the positions of
each word in the translation and reference. There-
fore, WE WPI can evaluate translations dealing
with word order in languages pairs for which the
grammar differs.

3 Word Embedding-Based Automatic
Evaluation Metric with Word Position
Information (WE WPI)

3.1 The Earth Mover’s Distance (EMD)
3.1.1 Definitions
As described herein, we propose WE WPI as the
automatic MT evaluation metric obtained by ad-
justing the Earth Mover’s Distance (EMD) to the
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Figure 1: Outline of EMD.

automatic MT evaluation task. First, we describe
EMD. Figure 1 depicts an outline of EMD.

In Figure 1, two probability distributions are
presented respectively as P and Q. The P and
Q consist of some Pi and Qj , which are the re-
spective signatures. Each signature consists of a
feature (i.e., pi in Pi and qj in Qj) and a weight
(i.e., wpi in Pi and wqj in Qj). Therefore, two
probability distributions P and Q are defined re-
spectively as P = {(p1, wp1)...(pm, wpm)} and
Q = {(q1, wq1)...(qn, wqn)}. Moreover, dij rep-
resents the distance between two features pi and
qj .

The goal of EMD is to obtain total flow F =
[fij ] that minimizes the overall cost from the per-
spective of a transportation problem. In that case,
the overall cost is defined as Eq. (1).

WORK(P,Q, F ) =
m∑
i=1

n∑
j=1

dijfij (1)

Moreover, four constraints are defined for fij ,
which is the transportation amount in the trans-
portation problem, to find minimum F as the fol-
lowing Eqs. (2)–(5):

fij ≥ 0 1 < i < m, 1 < j < n (2)

n∑
j=1

fij < wpi 1 < i < m (3)

m∑
i=1

fij < wqj 1 < j < n (4)

m∑
i=1

n∑
j=1

fij = min

 m∑
i=1

wpi ,
n∑

j=1

wqj

 (5)

Constraint (2) shows that each amount of
weight fij is transported only in the direction from
signature Pi to signature Qj to be nonnegative.
In Constraint (3), the amount of weight which is
supplied from Pi (i.e.,

∑n
j=1 fij) does not exceed

wpi , which is the weight of Pi. Moreover, in Con-
straint (4), the amount of weight which Qj re-
ceives (i.e.,

∑m
i=1 fij) does not exceed wqj , which

is the weight of Qj . Finally, the total amount of
weight is equal to the weight of the lighter distri-
bution in Constraint (5). In Eqs. (1)–(5), m shows
the number of signatures in P ; n shows the num-
ber of signatures in Q.

The EMD is defined as shown below.

EMD(P,Q) =
min(WORK(P,Q, F ))∑m

i=1

∑n
j=1 fij

(6)

In Eq. (6), the min(WORK(P,Q, F )) is nor-
malized by the minimum amount of work of Eq.
(5).

3.1.2 Computing EMD

P1 P2 P3 P4

p1 wp1 p2 wp2 p3 wp3 p4 wp4

(1,5) 0.6 (5,5) 0.6 (1,1) 0.6 (5,1) 0.6

Table 1: Examples of signatures of P .

Q1 Q2 Q3

q1 wq1 q2 wq2 q3 wq3

(2,3) 0.8 (4,3) 0.8 (3,2) 0.8

Table 2: Examples of signatures of Q.

Figure 2: Example of EMD calculation.

We describe the computation of EMD us-
ing two probability distributions P and Q in
two-dimensional surface. Tables 1 and 2 respec-
tively present the examples of P and Q signatures.
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Figure 3: Example of word alignment by WE WPI.

In Tables 1 and 2, all features pi and qj corre-
spond to the coordinate (x, y) of two-dimensional
surface.

Figure 2 depicts an example of an EMD calcu-
lation based on the signatures in Tables 1 and 2.
In Figure 2, the green arrow indicates the amount
of weight fij . All fij are transported only in the
direction from Pi to Qj according to Constraint
(2). In each signature Pi,

∑n
j=1 fij does not ex-

ceed wpi by Constraint (3). For example, in P3,∑3
j=1 f3j is 0.6 (=0.2+0.0+0.4). It does not ex-

ceed 0.6, which is the weight of P3. Moreover,
in each signature Qj ,

∑m
i=1 fij does not exceed

wqj according to Constraint (4). For example, in
Q1,

∑4
i=1 fi1 is 0.8 (=0.6+0.0+0.2+0.0). It does

not exceed 0.8, which corresponds to the weight of
Q1. The total amount of weight by

∑m
i=1

∑n
j=1 fij

is 2.4. It is equal to 2.4 by
∑m

i=1wpi or 2.4 by∑n
j=1wqj . Therefore, this example of Figure 2

conforms to Constraint (5).
Moreover, the distance between two features is

necessary to obtain EMD. When the Euclidean
distance is used as the calculation of distance in
this example, 2.236 (=

√
12 + 22) is obtained as

d11, d22, d31, d33, d42, and d43, and other dis-
tances are 3.606 (=

√
22 + 32) in Figure 2. As a re-

sult, 5.366 (=2.236 × (0.6+0.6+0.2+0.4+0.2+0.4))
is obtained as the value of EMD by two probability
distributions P and Q in Tables 1 and 2.

We obtain WE WPI adjusting EMD to the au-
tomatic MT evaluation task. Details of application
of EMD to WE WPI are presented in 3.2.2.

3.2 New Automatic MT Evaluation Metric:
WE WPI

3.2.1 Word Alignment using Position
Information

For the application of EMD to automatic MT eval-
uation, we use word alignment results. Word
alignment is done using cosine similarity based
on word embeddings and the relative difference
between the word positions in the translation
and reference. In that case, WE WPI obtains

align score using Eqs. (7) and (8) presented be-
low.

align score

= cos sim(ti, rj)× (1.0− pos inf(Ti, Rj)) (7)

pos inf(Ti, Rj) =

∣∣∣∣pos(Ti)

m
− pos(Rj)

n

∣∣∣∣ (8)

In Eq. (7), ti and rj respectively represent the
word embeddings of word Ti in the translation and
word Rj in the reference. The cos sim(ti, rj)
denotes the cosine similarity between ti and rj .
Moreover, pos inf(Ti, Rj) represents the relative
difference between the position of word Ti in the
translation and the position of word Rj in the ref-
erence. It is defined as Eq. (8). In Eq. (8),
pos(Ti) and pos(Rj) respectively denote the po-
sitions of word Ti in the translation and word
Rj in the reference. Actually, m and n respec-
tively denote the word numbers in the transla-
tion and reference. The pos inf(Ti, Rj) becomes
larger as the relative difference between pos(Ti)
and pos(Rj) becomes larger . Therefore, (1.0 −
pos inf(Ti, Rj)) is used as the negative weight
for cos sim(ti, rj). The ranges of cos sim(ti, rj)
and pos inf(Ti, Rj) are both 0.0-1.0. Figure 3
depicts an example of word alignment using Eqs.
(7) and (8).

The WE WPI calculates align score between a
word in the translation and all words in reference.
Based on those results, the word with the highest
align score in the reference is selected as the cor-
responding word to the word in the translation. In
Figure 3, the align score between “that” in the
translation and “you” in the reference is the high-
est (i.e., 0.478) among the align score between
“that” in the translation and all words in the ref-
erence. However, it is lower than the align score
0.833 between “you” in the translation and “you”
in the reference. Therefore, the word which cor-
responds to “that” in the translation cannot be ob-
tained in the reference. Similarly, the word which
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reference
Are there topics you want to get the world talking about ?

Are 0.017 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
there 1.0 0.033 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
topics 1.0 1.0 0.049 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
that 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

trans- you 1.0 1.0 1.0 0.154 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
lation think 1.0 1.0 1.0 1.0 0.456 1.0 1.0 1.0 1.0 1.0 1.0 1.0

should 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
discuss 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.555 1.0 1.0
world 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.139 1.0 1.0 1.0

? 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 3: Distance matrix incorporating translation and reference.

corresponds to “should” in the translation cannot
be obtained in the reference.

In contrast, “discuss” in the translation cor-
responds to “talking” in the reference using
pos inf(Ti, Rj) of Eq. (8) although “discuss” in
the translation corresponds to “topics” in the refer-
ence when (1.0− pos inf(Ti, Rj)) is not used in
Eq. (7) (i.e., align score = cos sim(ti, rj)). The
0.477, which is the cos sim between “discuss”
in the translation and “topics” in the reference, is
greater than 0.460, which is the cos sim between
“discuss” in the translation and “talking” in the
reference. Here, pos inf(Ti, Rj) between “dis-
cuss” in the translation and “talking” in the refer-
ence is 0.033 (

∣∣∣ 8
10 − 10

12

∣∣∣). That between “discuss”
in the translation and “topics” in the reference is
0.550 (

∣∣∣ 8
10 − 3

12

∣∣∣). Consequently, the align score

of “discuss” in the translation and “talking” in the
reference is 0.445 (0.460×(1.0−0.033)). That of
“discuss” in the translation and “topics” in the ref-
erence is 0.215 (0.477× (1.0− 0.550)) using Eq.
(7). The WE WPI can select “talking” in the ref-
erence as the corresponding word for “discuss” in
the translation using pos inf(Ti, Rj). The use of
pos inf(Ti, Rj) is effective for the correct word
alignment.

3.2.2 Adjustment of EMD to the Automatic
MT Evaluation Metric

We obtain WE WPI as new automatic MT evalua-
tion metrics by adjusting EMD to the automatic
MT evaluation task. In WE WPI, the variables
P and Q in Figure 1 respectively correspond to
a translation T and reference R. Moreover, the
features (i.e., pi and qj in Figure 1), the weight
(i.e., wpi and wqj in Figure 1), and distance (i.e.,
dij in Figure 1) are required as parameters to ad-
just EMD to the automatic MT evaluation task.
As described herein, we use the word embeddings
as features and the sentence-level tf · idf as the

weight. The weight definition is presented in Eq.
(9) below.

w = tf ×
(
log

N

df
+ 1.0

)
(9)

In Eq. (9), tf denotes the appearance frequency
of a word in a translation or reference. In addition,
df represents the number of sentences in which the
word appears in all translations or references. In
addition, N is the total number of translations or
references. Actually, WE WPI distinguishes the
function word and the content word using Eq. (9).
Furthermore, wti of the word in the translation and
wri of the word in the reference by Eq. (9) are
normalized respectively using the following Eqs.
(10) and (11).

w̃ti =
wti∑m
i=1wti

(10)

w̃rj =
wrj∑n
j=1wrj

(11)

The dependence of w in Eq. (9) by difference
of dataset can be kept to the minimum by normal-
izing Eqs. (10) and (11). Moreover, we define
distance dij , which is ascertained from the result
of the word alignment described in 3.2.1. The dij
is obtained using the following Eq. (12):

dij =


1.0− cos sim(ti, rj)

×e−pos inf(Ti,Rj)

if Ti corresponds to Rj

1.0 if Ti does not correspond to Rj

(12)
In Eq. (12), 1.0 − cos sim(ti, rj) ×

e−pos inf(Ti,Rj) is used as dij when word Ti in
the translation corresponds to word Rj in the
reference by the word alignment result. The
pos inf(Ti, Rj) is obtained by Eq. (8). Here,
ti and rj respectively correspond to the word em-
beddings of the words in the translation and refer-
ence. The e−pos inf(Ti,Rj) represents the penalty
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cs-en de-en fi-en ro-en ru-en tr-en
Human RR DA RR DA RR DA RR DA RR DA RR DA
Systems 6 6 10 10 9 9 7 7 10 10 8 8

mtevalBLEU .992 .989 .905 .808 .858 .864 .899 .840 .962 .837 .899 .895
METEOR .995 .991 .935 .887 .952 .963 .934 .909 .987 .930 .965 .980
IMPACT .997 .990 .925 .841 .908 .915 .903 .819 .962 .840 .952 .959
RIBES .995 .990 .948 .891 .894 .901 .954 .794 .972 .864 .850 .868

MEANT 2.0 (Lo, 2017) .989 .990 .947 .950 .953 .966 .940 .946 .990 .959 .980 .990
MEANT 2.0 - nosrl .985 .988 .928 .942 .969 .979 .917 .930 .984 .958 .978 .987

WE .986 .976 .918 .903 .954 .963 .885 .884 .989 .938 .976 .991
WE WPI .991 .980 .958 .927 .955 .957 .919 .877 .991 .926 .977 .993

Table 4: Absolute Pearson correlation of to-English system-level metric with human assessment variants: RR,
standard WMT relative ranking; DA, direct assessment of translation adequacy.

en-cs en-de en-fi en-ro en-ru en-tr
Human RR DA RR DA RR DA RR DA RR DA RR DA
Systems 10 15 13 12 12 12 8

mtevalBLEU .968 - .752 - .868 - .897 - .835 .838 .745 -
METEOR .960 - .631 - .939 - .873 - .868 .879 .800 -
IMPACT .978 - .719 - .924 - .911 - .874 .879 .844 -
RIBES .968 - .742 - .949 - .910 - .895 .904 .883 -

MEANT 2.0 (Lo, 2017) - - .540 - - - - - - - - -
MEANT 2.0 - norsrl .967 - .541 - .902 - .868 - .925 .946 .933 -

WE .962 - .609 - .925 - .878 - .899 .910 .930 -
WE WPI .967 - .780 - .931 - .917 - .914 .923 .944 -

Table 5: Absolute Pearson correlation of out-of-English system-level metric with human assessment variants: RR,
standard WMT relative ranking; DA, direct assessment of translation adequacy.

to cos sim(ti, rj) because it becomes smaller as
pos inf(Ti, Rj) becomes larger. As a result, dij
becomes large when the relative difference be-
tween the position of word Ti in the translation
and the position of word Rj in the reference (i.e.,
pos inf(Ti, Rj)) is large. The dij by Eq. (12) is
1.0 when word Ti does not correspond to word Rj .
Finally, the range of dij becomes 0.0-1.0.

Moreover, the WE WPI generates the distance
matrix using dij in Eq. (12). Table 3 presents the
distance matrix between the translation “Are there
topics that you think should discuss world?” and
the reference “Are there topics you want to get the
world talking about?” in Figure 3. In Table 3,
the bold typeface represents the distance between
the two aligned words. The distance matrix using
Eq. (12) is effective because it is not influenced
by the words which are not aligned between the
translation and reference.

The WE WPI obtains the evaluation score by
word embedding, sentence-level tf · idf , and the
distance matrix based on Eq. (12). The evaluation
score of WE WPI is obtained as Eq. (13).

WE WPI(T,R) = 1.0−min(WORK(T,R, F ))∑m
i=1

∑n
j=1 fij

(13)
In that equation, the range of

min(WORK(T,R,F ))∑m

i=1

∑n

j=1
fij

becomes 0.0-1.0 using

the weights normalized by Eqs. (10) and (11).
Near 0.0, the distance between T and R is small.
However, in the automatic MT evaluation metrics,
the score is close to 1.0 when the evaluation
for the translation is generally high. Therefore,
we obtain WE WPI by taking the value of
min(WORK(T,R,F ))∑m

i=1

∑n

j=1
fij

from 1.0. As a result, in

between the translation “Are there topics that you
think should discuss world?” and the reference
“Are there topics you want to get the world talking
about?”, 0.608 is obtained as the score using Eq.
(13).

The WE WPI can evaluate the translation based
on the meanings of words using word embedding.
Moreover, it can deal with the word order using the
relative difference between the positions of words
in the translation and the reference.

4 Experiments

4.1 Experiment Data and Procedure

We conducted evaluation experiments to confirm
the effectiveness of WE WPI. The “new-
stest2016” set, which is the main test set
in WMT16 metrics shared task (Bojar et al.,
2016), was used. The script is available at
http://www.statmt.org/wmt16/results.html.
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cs-en de-en fi-en ro-en ru-en tr-en
Human RR DA RR DA RR DA RR DA RR DA RR DA

♯ Assessments 70k 12k 15k 12k 19k 14k 11k 12k 18k 13k 7k 13k
♯ Translations 8.6k 560 2.4k 560 4.6k 560 2.2k 560 4.7k 560 2.2k 560
Correlation τ r τ r τ r τ r τ r τ r
sentBLEU .284 .557 .368 .484 .265 .448 .272 .499 .330 .502 .245 .532
METEOR .391 .636 .393 .500 .351 .539 .297 .578 .370 .541 .334 .604
IMPACT .338 .624 .342 .535 .301 .510 .248 .531 .309 .541 .282 .602
RIBES .254 .530 .288 .415 .237 .372 .176 .375 .240 .401 .213 .336

MEANT 2.0 (Lo, 2017) .355 .674 .414 .539 .453 .510 .345 .607 .401 .535 .373 .588
MEANT 2.0 - nosrl .347 .672 .411 .522 .438 .484 .338 .587 .400 .540 .364 .577

WE .372 .617 .395 .472 .365 .517 .316 .545 .362 .523 .346 .572
WE WPI .387 .649 .417 .548 .361 .540 .308 .555 .371 .555 .347 .625

Table 6: Segment-level metric results for to-English language pairs with absolute values of correlation coefficients
reported for all metrics: correlation of segment-level metric scores with human assessment variants, where τ are
official results computed similarly to Kendall’s τ and over standard WMT relative ranking (RR) human assess-
ments; r are Pearson correlation coefficients of metric scores with direct assessment (DA) of absolute translation
adequacy.

en-cs en-de en-fi en-ro en-ru en-tr
Human RR DA RR DA RR DA RR DA RR DA RR DA

♯ Assessments 118k - 35k - 31k - 7k - 21k 20k 7k -
♯ Translations 12.9k - 6.2k - 4.1k - 1.9k - 6.0k - 3.0k -
Correlation τ r τ r τ r τ r τ r τ r
sentBLEU .223 - .269 - .145 - .171 - .283 .557 .171 -
METEOR .245 - .268 - .189 - .177 - .309 .600 .207 -
IMPACT .240 - .263 - .170 - .180 - .297 .609 .231 -
RIBES .139 - .188 - .057 - .101 - .206 .442 .153 -

WE .359 - .347 - .360 - .285 - .427 .625 .336 -
WE WPI .352 - .371 - .357 - .283 - .424 .652 .370 -

Table 7: Segment-level metric results for out-of-English language pairs with the absolute values of correlation
coefficients reported for all metrics: absolute correlation of segment-level metric scores with human assessment
variants, where τ are official results computed similarly to Kendall’s τ and over standard WMT relative ranking
(RR) human assessments; r are Pearson correlation coefficients of metric scores with direct assessment (DA) of
absolute translation adequacy.

Therefore, we can readily obtain the correlation
coefficient between the metrics and human
judgments in WMT16 metrics shared task. The
WMT16 metrics task includes English paired with
Czech, German, Finnish, Romanian, Russian,
and Turkish. For all translations, references and
scores by human judgment in these language pairs
are obtained from the url described above.

For these experiments, we used different au-
tomatic MT evaluation metrics for comparison
with our WE WPI: BLEU, METEOR, IMPACT,
RIBES, and WE. Here, IMPACT and RIBES,
which are surface-based metrics, are effective for
language pairs with greatly different word order,
such as English and Japanese. In addition, WE
is an automatic MT evaluation metric that does
not perform word alignment. It uses only dij =
1.0 − cos sim(ti, rj) as the dij of Eq. (12) in
the WE WPI. In both WE and WE WPI, the word
vectors for seven languages (i.e., English, Czech,
German, Finnish, Romanian, Russian, and Turk-

ish) were obtained using fastText (Grave et al.,
2018).

4.2 Experiment Results and Discussion
Tables 4 and 5 respectively present the correlation
coefficient of to-English and out-of-English at the
system level. Tables 6 and 7 respectively present
the correlation coefficients of to-English and out-
of-English at the segment level.

In Tables 4–7, RR represents the correlation
based on the relative ranking by human judg-
ment to 5 translations at a time. The bold
typeface shows the highest correlation coeffi-
cient among all correlation coefficients of met-
rics. Moreover, the coefficients of MEANT 2.0
described in (Lo, 2017) are added to Tables 4–
6. Here, WE WPI achieves the highest correla-
tion with human judgment in Table 5, DA in Ta-
ble 6, and Table 7. Especially, the correlation
coefficients of WE WPI are high with language
pairs for which the grammar differs (i.e., English-
to-German (en-de), German-to-English (de-en),
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Figure 4: To-English system-level metric significance test of results for human assessment variants, where DA
denotes the direct assessment of translation adequacy. Green cells show a significant increase in correlation with
human assessment for the metric in a given row over the metric in a given column according to the Williams test.

Figure 5: To-English system-level metric significance test of results for human assessment variants, where RR
denotes the standard WMT relative ranking for the translation task system only. Green cells show a significant
increase in correlation with human assessment for the metric in a given row over the metric in a given column
according to the Williams test.

Figure 6: English-to-Russian system-level metric sig-
nificance test of results for human assessment variants,
where DA denotes direct assessment of translation ade-
quacy. Green cells show a significant increase in corre-
lation with human assessment for the metric in a given
row over the metric in a given column according to the
Williams test.

English-to-Turkish (en-tr), and Turkish-to-English
(tr-en)). Therefore, the WE WPI is effective with
such language pairs because it uses word position
information.

Moreover, we investigated the significance of
WE WPI results and those of other metrics ex-
cept those of MEANT 2.0 and MEANT 2.0 -
nosrl. As described herein, Williams significance
test (Williams, 1959) was used to assess differ-
ences in dependent correlations. Figures 4–9

present significance test results for every com-
peting pair of metrics, including those of our
WE WPI. However, the language pairs for which
significant differences could not be obtained in
any competing pair of metrics are excluded from
Figures 4–9 (i.e., cs-en and fi-en in Figure 4, cs-en,
fi-en and ro-en in Figure 5, en-cs in Figure 7).

In Figures 4–9, green cells signify that the met-
ric shows significant difference from other met-
rics with 95% or greater confidence. Results
demonstrated that our WE WPI yielded signifi-
cantly different results among metrics. Particu-
larly, WE WPI was found to have significantly
better results than those of WE at the segment
level, as shown in Figures 8 and 9. This particular
result demonstrates that the word position infor-
mation in WE WPI is effective for segment-level
evaluation.

Moreover, WE WPI does not need much time to
calculate the scores described in 3.2.2. However,
it takes time to calculate tf · idf of words and to
change the surface-level words to the word vec-
tors. It is efficient to calculate tf · idf of all words
in the translations and references, and to extract
the word vectors, which correspond to the words
in the translations and references, from the fast-
Text models in advance.
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Figure 7: Out-of-English system-level metric significance test of results for human assessment variants, where RR
denotes the standard WMT relative ranking for translation task system only. Green cells show a significant increase
in correlation with human assessment for the metric in a given row over the metric in a given column according to
the Williams test.

Figure 8: To-English segment-level metric significance test of results for human assessment variants, where DA
denotes direct assessment of translation adequacy. Green cells show marked benefits obtained with the metric in a
given row over the metric in a given column according to the Williams test.

Figure 9: English-to-Russian segment-level metric sig-
nificance test of results for human assessment variants,
where DA denotes direct assessment of translation ade-
quacy: green cells show marked benefits obtained with
the metric in a given row over the metric in a given
column according to the Williams test.

5 Conclusion

As described herein, we proposed WE WPI as a
new automatic MT evaluation metric. It produces
an evaluation based on the meanings of words us-

ing word embedding. Moreover, it can accommo-
date word-order differences. Evaluation experi-
ments demonstrated that our WE WPI obtains the
highest correlation with human judgments among
several representative metrics in language pairs
for which the grammar differs, and demonstrated
that it is significantly better than other metrics at
segment-level evaluation.

Our future work will improve WE WPI to ob-
tain high-quality evaluation scores in combination
with other metrics. We will conduct evaluation ex-
periments using various data. Moreover, we will
use WE WPI to improve NMT quality. For in-
stance, WE WPI can be used easily in Minimum
Risk Training (MRT) (Shen et al., 2016), which
minimizes the expected loss on the training data.
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