
Proceedings of NAACL-HLT 2019, pages 1847–1857
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

1847

A Study of Latent Structured Prediction Approaches to
Passage Reranking

Iryna Haponchyk
DISI, University of Trento

38123 Povo (TN), Italy
iryna.haponchyk@unitn.it

Alessandro Moschitti∗
Amazon

Manhattan Beach, CA, USA
amosch@amazon.com

Abstract

The structured output framework provides a
helpful tool for learning to rank problems.
In this paper, we propose a structured out-
put approach which regards rankings as latent
variables. Our approach addresses the com-
plex optimization of Mean Average Precision
(MAP) ranking metric. We provide an infer-
ence procedure to find the max-violating rank-
ing based on the decomposition of the corre-
sponding loss. The results of our experiments
on WikiQA and TREC13 datasets show that
our reranking based on structured prediction is
a promising research direction.

1 Introduction

The current state-of-the-art learning approaches
for answer sentence reranking in question answer-
ing (QA) are mostly based on learning pairwise
ranking signals or simple binary classification (rel-
evant versus irrelevant labels). Intuitively, global
information over a rank should improve the ranker
accuracy. Thus, there have been promising at-
tempts to learn global ranking functions which en-
compass the signals of all the candidates for a
given query (Chapelle et al., 2007; Weston and
Blitzer, 2012; Le et al., 2018). These works em-
ploy the structured output learning framework to
represent a ranking as a structured object, with re-
spect to which it is possible to directly optimize a
ranking measure.

Direct optimization of the target ranking mea-
sures is affordable when they are factorizable, e.g.,
the structural SVM of Chapelle et al. (2007) makes
use of the factorization properties of the Normal-
ized Discounted Cumulative Gain (NDCG) rank-
ing score. In contrast, MAP is rather complex
making its treatment harder. Yue et al. (2007)

∗Most of this work was carried out before joining Ama-
zon.

could still find an exact solution to the hinge-loss
relaxation of Average Precision (AP) for the struc-
tural SVM approach. It is found for the partic-
ular case of a combined feature mapping of in-
puts and structured outputs. Such a mapping ac-
counts for respective orderings of the pairs of can-
didate items, where one item is relevant and the
other is not, without explicitly encoding the or-
der of all the items in the rank. Encoding such
order (Chapelle et al., 2007; Weston and Blitzer,
2012), i.e., adding yet more complexity to the
structural feature space, might lead to intractabil-
ity of the previous exact max-violating inference
with respect to MAP. Furthermore, the feature rep-
resentation of the gold standard rankings, which
could be many for a given candidate list of items,
is not unique anymore.

In this work, we study the effect of using
structured ranking representations (Chapelle et al.,
2007) within the large-margin structured predic-
tion framework versus direct MAP optimization
on the most representative task of QA, i.e., pas-
sage reranking. To make two ends meet, we have
to tackle the above two issues, i.e., i) intractabil-
ity of the max-violating inference with respect to
MAP, and ii) multiplicity of the ground truths.

Regarding the latter, it should be noted that
different rankings can correspond to optimal per-
formance, thus, Chapelle et al. (2007) select one
among all possible correct rankings at random to
build the ground truth for training. Weston and
Blitzer (2012) bypass the necessity of comparison
to a complete ranking during training and sample
the candidate pairs. In this work, we show how
this issue can be seamlessly circumvent using the
latent structured prediction formulation.

For optimizing MAP, we derive a strict decom-
position of the loss corresponding to AP and pro-
pose an approximate method for inference of the
max-violating constraint with respect to it. More

1848

specifically, we provide two structured output ap-
proaches optimizing the MAP metric based on La-
tent Structured Perceptron (LSP) (Sun et al., 2009;
Fernandes et al., 2014) and Latent Structural SVM
(LSSVM) (Yu and Joachims, 2009) algorithms.

We compare LSP and LSSVM using our MAP
optimization strategy on WikiQA (Yang et al.,
2015) and TREC13 (Wang et al., 2007) datasets
against an SVM classifier and SVMmap – the
structural approach of Yue et al. (2007). All the
models use state-of-the-art traditional feature vec-
tors for the task. Our experiments on WikiQA
dataset show a large improvement of our structural
approaches over the SVM baseline, i.e., more than
7 absolute points in MAP, MRR and Precision@1.

However, we acknowledge the fact that neural
models can produce better representations, which
can lead to a superior performance. Thus, to collo-
cate our results in a more general setting, we also
carried out experiments using the embeddings of
questions and passages, produced by an accurate
Convolutional Neural Network (CNN) for passage
reranking. In this setting, the structured output
models approach the state of the art, confirming
the positive impact of our models, which may also
be used to train neural networks.

2 Related work

The work related to our approach can be divided
in two research areas: (i) structured prediction for
reranking problems and (ii) passage reranking in
question answering systems.

Structured prediction Seminal work on large-
margin structured prediction is by Tsochantaridis
et al. (2004), which enables the optimization of
multivariate loss functions, exploiting structural
dependencies within complex output variables.
Chapelle et al. (2007) devise an approach based
on the structural SVM, which enables direct opti-
mization of the NDCG ranking measure. Le et al.
(2018) facilitate the optimization of a range of
ranking measures, within a unified structured out-
put formulation. However, they do not provide any
solution for MAP. Weston and Blitzer (2012) opti-
mize a retrieval AUC loss, which decomposes into
pairwise decision variables.

The approach most similar to ours is SVMmap

by Yue et al. (2007), who provide a structural so-
lution for optimizing MAP. They find exactly the
max-violating ranking structure with respect to AP
within the structural hinge loss formulation. This

is done for the case when a ranking is represented
by aggregating pairwise outputs between all the
relevant and all the irrelevant items in the rank.
Our approach is an alternative to this technique,
providing an approximate max-violating inference
with respect to AP for a more general case of the
ranking represenation.
Passage Reranking Most representative
pre-neural networks work for answer selec-
tion/passage reranking is from Wang et al. (2007),
who used quasi-synchronous grammar to model
relations between a question and a candidate
answer with syntactic transformations. Heilman
and Smith (2010) and Wang and Manning (2010)
applied Tree Edit Distance (TED) to learn the
match between question and passage. Yao et al.
(2013) applied linear chain CRFs with features
derived from TED. Yih et al. (2013) used lexical
semantics to build a word-alignment model.

Most recently, Deep Neural Networks (DNNs)
have shown to be more competitive. DNN can
learn relational patterns between a question (Q)
and its passage (P) in a variety of ways, e.g., (i)
by using a Q-to-P transformation matrix and sim-
ple Q-to-P similarity features (Yu et al., 2014; Sev-
eryn and Moschitti, 2015), (ii) by relying on RNN
and LSTM architectures (Wang and Nyberg, 2015;
Shen et al., 2017), (iii) by employing attention
components (Yin et al., 2016; Shen et al., 2017;
Wang et al., 2016a), (iv) by decomposing input
into similarity and dissimilarity matches (Wang
et al., 2016b) or (v) by comparing-aggregating
matching results (Wang and Jiang, 2017; Bian
et al., 2017).

Since our baselines, SVM and SVMmap, as well
as our proposed models, LSP and LSSVM, do
not apply such transformations, they may perform
lower than the state of the art. Thus, we will
use the embedding vectors generated by a CNN
to show that they can achieve the state-of-the-art
accuracy.

3 Structured prediction for ranking

In this section, we provide the task formulation
with an introduction of structured prediction algo-
rithms.

3.1 Task formulation

We have training examples of the form {(xi, yi)},
where xi = (qi, Di), qi is a query, Di = {dji}

Ni
j=1

is a list of candidate items corresponding to qi and

1849

Ni is the number of candidates. yi = {yji : yji ∈
{0, 1}}Ni

j=1 is a vector of gold item labels, label
yji corresponding to item dji , taking value of 1 for
relevant (good or positive) items and 0 – for ir-
relevant (bad or negative). The task is to learn to
predict, for each example xi, a ranking of its items
r(xi) = r(qi, Di), such that the relevant items, dji
with gold labels yji = 1, are always at top posi-
tions in r(qi, Di). Finally, r(xi) = {rj}Ni

j=1 is a
permutation of Di. In the following, we omit the
example index i for simplification of the notation.

3.2 Structured prediction
Generally, structured output approaches aim at
linking structured input and output patterns. More
formally, in a linear case, such algorithms learn
a scoring function f : X × Y → R, f(x,y) =
w · Ψ(x,y), where Ψ(x,y) is a combined fea-
ture mapping of input variablesX and output vari-
ables Y . The predicted structure is derived as
ŷ = argmax

y∈Y
f(x,y). Online structured pre-

diction approaches, e.g., the structured percep-
tron by Collins (2002), are based on gradient de-
scent updates of the model on the current pre-
dicted structure ŷ against the correct structure
y∗ : w ← w + Ψ(x,y∗) − Ψ(x, ŷ). The large-
margin perceptron variants augment the inference
with the structural loss (Fernandes and Brefeld,
2011): ŷ = argmax

y∈Y
f(x,y) + ∆(y∗,y). When

exhaustive search over Y is impossible, the prob-
lem can still be solved if the loss ∆ and the scoring
function f(x,y) are decomposable over the sub-
parts of the structure y and there exists an efficient
procedure for finding the argmax using such a de-
composition.

3.3 Structured prediction for ranking
The structured prediction framework for ranking
(Chapelle et al., 2007; Le et al., 2018) considers
a joint feature representation of an input example
x together with an output ranking r: Ψ(x, r) =
Ψ(q,D, r), which factorizes over the individual
feature representations of items with respect to the
query, weighted relatively to the item positions j
in the rank:

Ψ(x, r) = Ψ(q,D, r) =

N∑
j=1

vjψ(q, rj). (1)

The typically used weighting schema, v, im-
plies non-increasing weights associated with the

positions j: v1 ≥ v2 ≥ ... ≥ vN ≥ 0, where
the importance decreases gradually from the top
to the bottom of the ranking. Inferring a ranking
corresponding to a linear model w, i.e., finding

argmax
r∈R(x)

w ·Ψ(x, r) (2)

among all possible rankings, R(x) = R(q,D),
simply reduces to ordering the items by scores
w · ψ(q, d), since vj are fixed.

As the correct ranking r∗ for an example x is
often not unique, Chapelle et al. (2007) select one
of the correct rankings at random as a gold label
during training. This evidently biases the training
towards such ground truths.

3.4 Latent structured prediction

The above problem can be alleviated using a la-
tent structured prediction framework. We describe
now the general idea of latent variables, and af-
ter that we introduce our approach, in which, we
implement this idea for ranking tasks.

Latent variables h are auxiliary structures
which are not fully observed in the training data
(Yu and Joachims, 2009). The training examples
are extended with h – (x,y,h), and the learning is
shifted to the spaceH of latent output structures h.
Normally, each h corresponds to one y, while the
opposite is not the case. The problem of multiplic-
ity of the ground truths h is overcome by finding
the best h explaining the gold y∗:

h∗ = argmax
h∈H(x,y∗)

w ·Ψ(x,h), (3)

using the current model weights w at each itera-
tion of the training, and h∗ used as gold labels.

4 Our learning approach

In the following, we describe the two classical
steps in structured prediction, i.e., learning and in-
ference. Regarding inference, we show our new
approximation of MAP.

4.1 Learning

We deal with a non fully observed case as the
ground truth ranking labels r we intend to learn are
not given in the input data. The case suits perfectly
the latent structural formulation (Sec. 3.4), where
r can be regarded as latent variables h. Consider

1850

the following latent structural large-margin objec-
tive (Yu and Joachims, 2009), in terms of the struc-
tured ranking variables:

min
w

[1
2
||w||2 + C

n∑
i=1

max
r∈R(xi)

[∆(yi, r)+

+ w ·Ψ(xi, r)]− C
n∑

i=1

max
r∈R(xi,yi)

w ·Ψ(xi, r)
]
,

(4)

in which the upper bound on the training loss ∆ in-
volves (i) finding the max-violating ranking struc-
ture, r̂i, over the set R(xi) of all possible rankings
for the example xi, under the first max, and (ii)
the current ground truth ranking structure, r∗i , over
the set R(xi, yi) of all rankings that comply with
the gold label yi, under the second max.

We adapt the loss-augmented LSP algo-
rithm (Fernandes and Brefeld, 2011) for ranking.
LSP is essentially a gradient descent operated on
the objective in Eq. 4 with a gradient taken with re-
spect to the example variable. The pseudocode of
our adaptation of the algorithm is shown in Alg. 1.

Iterating over the training examples (xi, yi), the
algorithm, for each example, first finds the max-
violating r̂i with respect to a ranking loss ∆(yi, r),
over the set R(xi) for the example xi (Line 5). ∆
can represent any arbitrary ranking loss. In this
work, we instantiate ∆ with the loss correspond-
ing to the MAP ranking metric. Sec. 4.2 describes
the procedure we use here for the max-violating
inference with respect to it.

If the max-violating ranking r̂i is erroneous
(Line 6), the algorithm updates the model w. In
Line 7, the current ground truth ranking structure
– the best correct r∗i corresponding to the current
model weights wt – is found. The search here is
restricted to the set R(xi, yi) of all correct rank-
ings of the example xi, i.e., those at which good
items take top positions and bad – bottom posi-
tions. Thus, the operation is reduced to simple or-
dering of the good and bad items (separately) by
weights, and putting the former to the top, and the
latter – to the bottom of the resulting ranking. This
step corresponds exactly to imputing latent vari-
ables, described by Eq. 3, in the general latent for-
mulation. In Line 8, we update the weights w us-
ing the structural feature representations (defined
by Eq. 1) of the two ranking outputs, the current
ground truth r∗i and the max-violating r̂i.

1C here is a loss scaling parameter.

Algorithm 1 Latent Structured Perceptron for
Ranking
1: Input: X = {(xi, yi)}ni=1, w, C1, T
2: w0 ← w; t← 0
3: repeat
4: for i = 1, ..., n do
5: r̂i ← argmax

r∈R(xi)

wt ·Ψ(xi, r) + C ×∆(yi, r)

6: if ∆(yi, r̂i) > 0 then
7: r∗i ← argmax

r∈R(xi,yi)

wt ·Ψ(xi, r)

8: wt+1 ← wt + Ψ(xi, r
∗
i)−Ψ(xi, r̂i)

9: end if
10: t← t + 1
11: end for
12: until t < nT

13: w← 1
t

t∑
i=1

wi

return w

Likewise, we adapt the Latent Structural SVM
(LSSVM) algorithm (Yu and Joachims, 2009) for
ranking. We employ also LSSVM in our experi-
ments for its generalization guarantees. The only
minor difference from the LSP adaptation is that,
in the LSSVM adaptation, we consider only the
top items in the joint feature representation in

Eq. 1, i.e., Ψ(x, r) =

P∑
j=1

vjψ(q, rj), where P is

the number of good/positive items in the candidate
list D of the example x. This is relevant only at
the training phase and only for the updates of the
model; for the max-violating inference, still all the
items at all N positions participate. By doing so,
we help LSSVM to keep the balance between pos-
itive and negative items. The test phase inference
(respective to Eq. 2), for both LSP and LSSVM,
consists only in ordering of all the items by their
weight with respect to the model.

Weston and Blitzer (2012) adopt the same struc-
tural feature representation of Eq. 1 for ranking,
however, in the latent embedding space. They
do online SGD updates in correspondence to the
positive-negative item pairs, and not on the whole
rank, which relates to the way we proceed with
LSSVM. In their case, this is due to the impossibil-
ity of the global inference (their model is also aug-
mented with the structural component describing
item-item interactions) and the scale of the task
(they do ranking for recommendation domain).
However, they perform a cascade-like inference of
the rank which is scattered over the iterations.

1851

4.2 Max-violating inference
Our target is to optimize the MAP ranking met-
ric. Thus, in training, we intend to minimize the
following loss on structural examples which is the
inverse of the average precision (AP): ∆ap(y, r) =
1 − AP (y, r). AP is a global measure, non-
decomposable in a strict sense over the position
variables, so that to enable iterative exact infer-
ence. Here, we propose a method for approximate
inference with respect to ∆ap, which is efficient
and enables exact local search.

Let us denote by P = |{d|y(d) = 1}| the num-
ber of good/positive items in the candidate list D,
and by I+j = I[y(rj)=1] and I−j = I[y(rj)6=1] the in-
dicator functions that the item at position j in r is
good and not good (positive and negative), respec-
tively. Then,

AP (y, r) =
1

P

N∑
j=1

1

j
I+j

j∑
k=1

I+k .

We can have a strict decomposition of ∆ap over
the negative items. We rewrite the AP formula as
follows:

AP (y, r) =
1

P

N∑
j=1

1

j
I+j (

j−1∑
k=1

I+k + I+j) =

1

P

N∑
j=1

1

j
I+j (

j−1∑
k=1

I+k + 1).

Here, I+j inside the parentheses becomes 1 in the
right-hand side because I+j ∗ I

+
j = I+j . Then,

∆ap(y, r) = 1− 1

P

N∑
j=1

1

j
I+j (

j−1∑
k=1

I+k + 1) =

1

P
(P −

N∑
j=1

1

j
I+j (

j−1∑
k=1

I+k + 1)) =

1

P

N∑
j=1

1

j
I+j (j − 1−

j−1∑
k=1

I+k) =

1

P

N∑
j=1

1

j
I+j

j−1∑
k=1

(1− I+k) =
1

P

N∑
j=1

I+j
j

j−1∑
k=1

I−k =

1

P

N−1∑
j=1

I−j

N∑
k=j+1

I+k
k
.

(5)

According to the last line of Eq. 5, ∆ap de-
composes into a sum of quantities lj(y, r) =

1

P

N∑
k=j+1

I+k
k

over all positions j with negative

items (those activating I−j) except for the last po-
sition N .

Note that I−j lj(y, r) gives the loss at position
j considering the correct items below position
j in the ranking. Therefore, we can use it for
a bottom-up (max-violating) inference procedure,
which first finds the best candidate item to be put
at the lowest position of the rank and proceeds fill-
ing the positions in the ascending order. Specif-
ically, we start with the last N th position of the
rank and put there the minimum weighted item:

r̂N = argmin
d∈D

vNw · ψ(q, d). (6)

According to the decomposition in Eq. 5, loss is
always 0 at position N . At each of the following
steps j, r̂N−j =

= argmin
d∈D\{r̂N−k}j−1

k=0

vN−jw·ψ(q, d)+I−N−jlN−j(y, r̂).

(7)
Note that the loss part, I−N−jlN−j(y, r̂), in the
above formula will be invariant for all the negative
items remained in the candidate list, as well as it is
for all the positive ones (equal to 0). Thus, r̂N−j

is essentially the argmin taken over only two can-
didate items fromD\{r̂N−k}j−1k=0: one is the posi-
tive item with the minimal weight w ·ψ(q, d), and
the other, respectively, is the minimal weighted
negative one. It is sufficient then to sort indepen-
dently the positive and the negative items, in the
beginning of the whole procedure, in the increas-
ing order of their weights w · ψ(q, d). Argmin’s
in equations 6 and 7 are then to be taken over the
first items of the two sorted lists, which have not
been selected at previous steps. This goes in line
with the observation of Yue et al. (2007), that the
max-violating ranking output r̂ is an interleaving
of such two sorted lists, which turns true also for
our choice of the structural joint feature represen-
tation Ψ(x, r) in Eq. 1. However, the exact al-
gorithm for max-violating inference of Yue et al.
(2007) cannot be applied in our case, since our Ψ,
due to distinctive contributions of items at differ-
ent rank positions scaled with vj weights, does not
satisfy its conditions for an arbitrary choice of vj .

Since, in our loss decomposition, the position-
wise components are not independent of the deci-
sions for the other positions, using a greedy pro-
cedure does not find a global optimum, but finds

1852

a local optimum with respect to the loss exactly.
Namely, an item chosen at each step is optimal
with respect to the partial rank constructed at the
previous steps of the inference procedure.

Regarding the running time complexity of our
greedy inference procedure, it is bounded by the
complexity of the sort operation, O(N logN), for
the candidate lists of size N . In comparison, the
worst case complexity of the exact inference in
SVMmap by Yue et al. (2007) isO(N2). In several
cases, as shown by our experiments, doing inexact
inference produces also higher MAP values com-
pared to SVMmap.

5 Experiments

In our experiments, we compare the proposed
structural ranking approach with the classification
and structural baselines.

5.1 Setup

The setup reports on data, large margin models,
CNN and measures we use in our experiments.
WikiQA We use only examples with at least one
correct and at least one incorrect answer candidate
(Yang et al., 2015) both for training and evalua-
tion. This corresponds to 857 examples for train-
ing from train set, 237 – for testing from test, and
122 – for validation from development (dev.) set.
TREC13 We apply the same evaluation strategy
as above on TREC13 dataset (Wang et al., 2007),
however, for training, we limit to 10 the number of
answer candidates for each question. This gives us
970 training examples, 65 examples for validation,
and 68 test examples.

5.1.1 Large margin methods
We implement our structural ranking approach de-
scribed in Sec. 3.3 using both LSP and LSSVM2

algorithms, denoting the resulting models LSP-AP
and LSSVM-AP, respectively.

We compare the models to an SVM baseline us-
ing the same feature set for the pairs, (q, di), and
a polynomial kernel. We consider also a couple
of structural baselines: (i) the standard LSP model
(Sun et al., 2009), without loss-augmented infer-
ence, which we use in order to explore the impact
of optimizing the target evaluation measure. This
model still follows Alg. 1, however, the difference
is that instead of finding the max-violating r̂i in

2www.cs.cornell.edu/˜cnyu/latentssvm/

Line 5, it finds the following max-scoring:

r̂i ← argmax
r∈R(xi)

wt ·Ψ(xi, r).

And another structural baseline is (ii) SVMmap

3 (Yue et al., 2007) – a structural SVM approach
affording exact max-violating inference with re-
spect to AP.
Features In our study, we use two feature set-
tings: (i) simple textual similarity features – the
setting by Barrón-Cedeño et al. (2016), i.e., co-
sine similarity over the text pair, the similarity
based on the PTK score, longest common sub-
string/subsequence measure, Jaccard similarity,
word containment measure, greedy string tiling,
ESA similarity based on Explicit Semantic Analy-
sis (ESA), and (ii) powerful features coming from
the embeddings trained with the state-of-the-art
neural networks (Tymoshenko et al., 2017).
Parametrization We use the following weight-
ing schema for the ranking structures: vj = 1

j , in
LSP, LSP-AP, and LSSVM-AP. LSP-AP requires
specifying a loss scaling parameter C. In LSSVM
and SVMmap, C is the standard trade-off between
regularization and training error. In all the three
models, we select C on dev. set from the values
{1, 10, 100, 1000, 2000, 5000}. The max number
of epochs, T , is set to 100, for both LSP and LSP-
AP. We apply weight averaging in the LSP models.
We derive the best number, Tbest, with respect to
the MAP score on dev. set. The baseline SVM is
trained with polynomial kernels of degree 3.
Cross-validation On TREC13, which has a very
small test set we apply cross-validation. On Wik-
iQA, we obtain results on the official test set as
well as applying cross-validation. We employ
disjoint cross-validation as in Tymoshenko et al.
(2017). For each approach, we train 5 models
on the training set following the traditional 5-fold
cross-validation strategy. We split dev. and test
sets in 5 subsets each, and use ith dev. subset to
tune the parameters of the models trained on the
ith fold, and ith test subset – to test them. We re-
port the results averaged over 5 test subsets.

5.1.2 Convolutional Neural Networks
We borrowed the CNN embeddings of ques-
tions and answer passages produced by the neural
model for passage reranking of Tymoshenko et al.
(2017); Severyn and Moschitti (2015)4.

3http://projects.yisongyue.com/svmmap/
4Several other neural models provide superior accuracy

but replicating their results is challenging as shown by

1853

DEV.
MAP MRR P@1

SVM 63.37 64.37 50.00
LSP 68.98 69.93 55.74
SVMmap 66.15 67.17 51.64
LSP-AP 69.41 69.95 54.92
LSSVM-AP 68.67 69.29 54.92
LSP-AP∗ 69.51 70.14 54.10
LSSVM-AP∗ 67.48 68.47 51.64

TEST
MAP MRR P@1

SVM 54.67 55.90 39.66
LSP 64.35 65.98 48.95
SVMmap 61.50 63.10 46.84
LSP-AP 64.50 66.25 49.37
LSSVM-AP 62.39 63.78 46.84
LSP-AP∗ 63.65 65.48 48.52
LSSVM-AP∗ 63.74 65.08 47.26

Table 1: Experimental results on WikiQA.

The neural model by Tymoshenko et al. (2017)
includes (i) two sentence encoders that map input
questions qi and answer passages dji into fixed size
m-dimensional vectors φ(qi) and φ(dji) using a
convolutional operation followed by a max pool-
ing layer, and (ii) a feed forward neural network
that computes the similarity between the two sen-
tences in the input. The sentence vectors of a ques-
tion and a passage, φ(qi) and φ(dji), are concate-
nated together and given in input, at stage (ii), to a
standard NN architechture, constituted by a non-
linear hidden layer and a sigmoid output layer,
which optimizes binary cross-entropy loss.

Note that we use exactly the concatenated
question-passage sentence vectors (CNN embed-
dings) from stage (i) of the above model as fea-
tures in SVM and the structured output models:
ψ(q, d) = [φ(q), φ(d)].
Evaluation metrics We report Mean Average Pre-
cision (MAP), Mean Reciprocal Rank (MRR) and
Prec@1 (P@1).

5.2 Comparative analysis on WikiQA dataset
We first report the results using standard similarity
features in all of our models. Then, we show the
outcome of our models when fed with embeddings
produced by the CNN.

5.2.1 Results with textual similarity features
In Tab. 1, we provide the results of our latent struc-
tural approaches optimizing MAP in comparison

Reimers and Gurevych (2017); Crane (2018). Thus, we rely
on the model that is easily replicable and achieves competi-
tive results.

0 20 40 60 80 100
67

68

69

of epochs, T

M
A

P

LSP LSP-AP LSP-AP∗

Figure 1: LSP curves on dev. set over the training
epochs.

to SVM, LSP, and SVMmap models on WikiQA
dataset. LSSVM-AP and LSP-AP are better than
the SVM classifier baseline by roughly 8 and 10
points, respectively, in terms of MAP metric on the
test set. It should be noted that SVM uses kernels,
while LSSVM and LSP are simple linear models.
Moreover, for SVM, we also had to limit the num-
ber of candidates to 10 for each query to make the
positive/negative example rate more balanced.

The baseline LSP model (without augmented
loss optimization) performs surprisingly well in
this setting. It lacks only 0.15 of a MAP point on
test set as compared to the highest scoring LSP-
AP model. However, as LSP does not optimize
the ranking measure directly, it may result un-
stable. We verified this hypothesis by exploring
the performance of the two LSP models (with our
loss and without) on dev. set, plotting the learning
curves over the training epochs, T . Fig. 1 shows
that the LSP-AP curve is distinctly superior to that
of LSP only in the beginning of training, before
epoch 17. We further verify this issue in cross-
validation experiments in Sec. 5.2.3.

LSSVM-AP outperforms the structural base-
line SVMmap. The latter targets direct optimiza-
tion of MAP, and it clearly outperforms the SVM
classifier. However, it is worse than the stan-
dard perceptron model, LSP, which does not op-
timize MAP. This suggests a higher appropriate-
ness of the structural feature representation for
rankings in Eq. 1. Indeed, it encodes the real
positioning of items within a ranking (using po-
sitional weights vi), compared to that used by
SVMmap, agnostic to it and considering only pair-
wise relevant/irrelevant relative placements among

1854

the items.
Finally, in the last lines of Dev. and Test sub-

parts of Tab. 1, we report the results of the models
denoted with ∗. In these model variants, we per-
form exact search for the max-violating ranking r̂
with respect to ∆AP over the structural hypothesis
space R(x), e.g., in Line 5 of Alg. 1, instead of
our approximate inference procedure in Sec. 4.2.

In the current setting, exhaustive search over
all possible rankings is reduced to an inference
procedure, which inspects all interleavings of the
two sorted lists, of positive and negative items, as
pointed out in Sec. 4.2. In addition to the sort-
ing complexity, this operation needs to traverse
through a subset R′ of ranking structures r, R′ ⊂
R(x), where |R′| is estimated by the binomial co-
efficient

(
N

N−P
)
, which, for fixed P , grows poly-

nomially as O(NP). Recall that N is a total num-
ber of items in the candidate list D, among which
P items are positive. In the context of WikiQA
dataset, this is affordable, since the candidate lists
Di of the training examples are relatively short.

This way, LSSVM-AP∗ adds around 1.3 of a
MAP point to its result using our approximate in-
ference. LSP-AP∗’s best number of epochs on
dev., Tbest, gives a nearly identical result on the
test set in terms of MAP. However, its scores are
lower compared to those of LSP-AP.

Fig. 1 illustrates a clear advantage of the direct
optimization of AP using exact inference, which
results in the best curve on dev. for LSP-AP∗, sta-
bilizing to its highest values on the interval be-
tween epochs 55 and 85. Still such a level of accu-
racy is nearly reachable by LSP-AP, although ac-
tually achieved at a very narrow interval (see the
spike around epoch 5), while LSP’s curve lies al-
most always lower. In future, we would like to
study the impact of the loss approximation onto
the convergence speed of the structural algorithms.

The LSP models in the current setting do not
reveal a clear correlation between dev. and test re-
sults in Tab. 1, which might (i) signal of insuffi-
cient generalization power of LSP, and (ii) suggest
that the effect of direct loss optimization can be
reached by carefully selecting the epoch’s number
parameter, T , in the considered feature space. The
test set results of LSSVM in terms of MAP instead
conform appropriately to the optimized loss func-
tion (using approximate versus exact inference) in
the large-margin objective in Eq. 4. This should
be due to a better generalization capability of the

DEV.
MAP MRR P@1

SVM 70.66 70.89 58.20
LSP 67.65 67.70 52.46
SVMmap 72.77 73.55 63.11
CNN 71.73 72.04 59.84
LSP-AP 70.67 70.50 56.56
LSSVM-AP 71.27 71.85 59.84
LSP-AP∗ 73.67 74.55 64.75
LSSVM-AP∗ 71.88 72.18 60.66

TEST
MAP MRR P@1

SVM 65.00 66.70 53.16
LSP 65.28 66.76 52.32
SVMmap 66.91 68.63 54.85
CNN 68.73 70.34 56.12
LSP-AP 64.23 65.56 50.21
LSSVM-AP 67.62 69.24 55.70
LSP-AP∗ 65.74 67.51 52.32
LSSVM-AP∗ 67.93 69.73 56.54

Table 2: Models on WikiQA trained on CNN embed-
dings.

SVM solver.

5.2.2 Results using neural network
embeddings

In these experiments, we used the CNN embed-
dings, described in Sec. 5.1.2, as features in all
of the models. This setting allows us to examine
the performance of the models in a more complex
and richer feature space, at the level of the state-
of-the-art performance. It can also be seen as a
coarse way to ”neuralize” the structural ranking
approaches.

The results of all the models are shown in
Tab. 2. As before, we note the relative inconsis-
tency of the performance of the LSP models be-
tween dev. and test sets. The non-loss-augmented
structured perceptron, LSP, is the weakest of the
models on dev. set, while on test it is better than
LSP-AP by around 1 point in terms of MAP. It
only slightly outperforms now the baseline SVM,
which benefited greatly from using the embed-
dings. Recall, however, that the baseline SVM is
trained with kernels. LSP-AP∗, reaching consid-
erably higher scores than the rest of the models,
including CNN, on dev., is better than LSP by no
more than 0.5 of a MAP point.

LSSVM is in general more robust and con-
sistent as with similarity features. Although
SVMmap outperforms it on dev., LSSVM-AP is
better on test in each of the three metrics. LSSVM-
AP∗ with exact inference further improves the re-
sults of LSSVM-AP. It outperforms SVMmap by

1855

more than 1 point in terms of MAP.
It should be noted that the embeddings that we

use were trained in a classification setting, thus,
giving an additional advantage to the classifica-
tion models, e.g., the relative improvement of the
baseline SVM when passing to embeddings is the
highest among the models. Nonetheless, LSSVM
approaches closest of all to CNN, with the variant
of the model with exact search showing P@1 su-
perior to that of CNN. This suggests that the struc-
tural ranking approaches are of decent capacity,
and that the optimal solution lies in regions feasi-
ble to the structural linear model, considering also
the high results of LSP-AP* on dev. set. This is
despite the fact that, in contrast to CNN, which
trains on the whole training set, we omit examples
with only negative and only positive candidates
(Sec. 5.1). Exploiting the information from such
examples (subject to additional enhancement of
our approach, as it would currently perform a zero
update on them in Line 8 of Alg. 1 due to equal
max-violated and ground truth rankings) might ad-
vance the performance. Thus, good features make
our models competitive with the state of the art.

5.2.3 Cross-validation experiments
In Tab. 3, we repeat the main experiments in
the cross-validation setting, using the similarity
features. On average, LSSVM-AP outperforms
SVMmap in terms of MAP and MRR, as in the
standard setting, however, having relatively higher
variance across the folds. The LSP models sustain
their superiority using the similarity features also
in cross-validation, with LSP-AP scoring the best
across the models and with the least variance.

5.3 Experiments on TREC13 dataset

The results of our cross-validation experiments on
TREC13 are depicted in Tab. 4. LSP-AP slightly
improves over the baseline models in terms of
MAP. The baseline LSP this time deviates the least
over the folds and reaches better P@1 among all
the models. LSSVM-AP instead underperforms in
this experiment, which might be for the reason of
shortage of the data for validation.

It is also true that in this work, by fixing the
weighting schema v, we limited our study to one
particular case of a structural ranking representa-
tion. However, finding an appropriate structural
feature space, e.g., to the extent enabled by tuning
the positional weights vj for the particular appli-
cation, can be potentially beneficial.

MAP MRR P@1

SVM 55.20±3.60 56.68±3.33 39.69±5.27
LSP 64.27±2.52 65.63±2.62 48.10±4.32
SVMmap 60.88±2.57 62.27±2.78 45.18±4.19
LSP-AP 64.47±2.48 65.88±2.17 48.95±4.19
LSSVM-AP 62.00±4.97 63.39±4.59 44.79±8.06

Table 3: Cross-validation results on WikiQA.

MAP MRR P@1

SVM 71.68±4.19 82.41±3.40 70.83±5.73
LSP 71.67±2.54 82.54±1.94 72.08±4.28
SVMmap 71.85±3.69 81.97±2.91 69.17±5.49
LSP-AP 72.53±5.29 82.85±3.84 71.01±8.57
LSSVM-AP 70.96±4.74 80.97±2.70 69.17±5.49

Table 4: Cross-validation results on TREC13.

6 Conclusions

In this paper, we proposed new structured pre-
diction algorithms for ranking problems. In par-
ticular, we designed (i) a new loss function that
leads to the direct optimization of MAP; and (ii)
two new algorithms, based on LSP and LSSVM
solvers, to optimize it. The comparative results
on the benchmarks for passage reranking, WikiQA
and TREC13, demonstrate an improvement of
LSP-AP over the standard SVM classifier, which
is particularly large in the case of WikiQA. LSP
without any loss augmentation can achieve good
performance, as well, subject to accurate tuning of
the epoch number parameter. In the same setting,
LSSVM-AP is comparable to SVMmap baseline.

Finally, we used CNN embeddings as more ex-
pressive features in our models. We found that (i)
linear models can benefit from them; (ii) LSSVM-
AP is more robust than the LSP models to the use
of a complex representation; and (iii) traditional
max margin methods may not be on par with neu-
ral networks on tasks, such as WikiQA, however
providing them with right features (embeddings)
can make them approach the performance of neu-
ral models. This suggests an interesting research
line on using our structural models and loss func-
tion optimizing MAP in neural models.

Acknowledgments

We would like to thank the anonymous reviewers
for their competent and useful suggestions. Many
thanks to Kateryna Tymoshenko and Daniele
Bonadiman for kindly providing us with the CNN
embeddings for our experiments.

1856

References
Alberto Barrón-Cedeño, Giovanni Da San Martino,

Shafiq Joty, Alessandro Moschitti, Fahad A. Al
Obaidli, Salvatore Romeo, Kateryna Tymoshenko,
and Antonio Uva. 2016. ConvKN at SemEval-2016
Task 3: Answer and question selection for question
answering on Arabic and English fora. In Proceed-
ings of the 10th International Workshop on Seman-
tic Evaluation, SemEval ’16, pages 896–903, San
Diego, California, USA.

Weijie Bian, Si Li, Zhao Yang, Guang Chen, and
Zhiqing Lin. 2017. A Compare-Aggregate Model
with Dynamic-Clip Attention for Answer Selection.
In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM
’17, pages 1987–1990, New York, NY, USA. ACM.

Olivier Chapelle, Quoc V. Le, and Alex Smola. 2007.
Large margin optimization of ranking measures. In
NIPS Workshop: Machine Learning for Web Search.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of the ACL-02 Conference on Empirical Methods in
Natural Language Processing - Volume 10, EMNLP
’02, pages 1–8, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Matt Crane. 2018. Questionable answers in question
answering research: Reproducibility and variability
of published results. TACL, 6:241–252.

Eraldo R. Fernandes and Ulf Brefeld. 2011. Learn-
ing from partially annotated sequences. In Machine
Learning and Knowledge Discovery in Databases,
pages 407–422, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Eraldo Rezende Fernandes, Cı́cero Nogueira dos San-
tos, and Ruy Luiz Milidiú. 2014. Latent trees for
coreference resolution. Computational Linguistics,
40(4):801–835.

Michael Heilman and Noah A. Smith. 2010. Tree edit
models for recognizing textual entailments, para-
phrases, and answers to questions. In NAACL.

Quoc V. Le, Alex Smola, Olivier Chapelle, and
Choon Hui Teo. 2018. Optimization of ranking
measures. Journal of Machine Learning Research.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
338–348. Association for Computational Linguis-
tics.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to Rank Short Text Pairs with Convolu-
tional Deep Neural Networks. In Proceedings of the

38th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR ’15, pages 373–382, New York, NY, USA.
ACM.

Gehui Shen, Yunlun Yang, and Zhi-Hong Deng. 2017.
Inter-Weighted Alignment Network for Sentence
Pair Modeling. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1179–1189. Association for Com-
putational Linguistics.

Xu Sun, Takuya Matsuzaki, Daisuke Okanohara, and
Jun’ichi Tsujii. 2009. Latent variable perceptron al-
gorithm for structured classification. In Proceedings
of the 21st International Jont Conference on Artifi-
cal Intelligence, IJCAI’09, pages 1236–1242, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. 2004. Support vec-
tor machine learning for interdependent and struc-
tured output spaces. In Proceedings of the Twenty-
first International Conference on Machine Learning,
ICML ’04, pages 104–, New York, NY, USA. ACM.

Kateryna Tymoshenko, Daniele Bonadiman, and
Alessandro Moschitti. 2017. Ranking kernels for
structures and embeddings: A hybrid preference and
classification model. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 897–902. Association for
Computational Linguistics.

Bingning Wang, Kang Liu, and Jun Zhao. 2016a. In-
ner Attention based Recurrent Neural Networks for
Answer Selection. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1288–
1297.

Di Wang and Eric Nyberg. 2015. A Long Short-Term
Memory Model for Answer Sentence Selection in
Question Answering. Proceedings ACL 2015, pages
707–712.

Mengqiu Wang and Christopher D. Manning. 2010.
Probabilistic tree-edit models with structured latent
variables for textual entailment and question answer-
ing. In ACL.

Mengqiu Wang, Noah A Smith, and Teruko Mita-
mura. 2007. What is the jeopardy model? a quasi-
synchronous grammar for qa. In EMNLP-CoNLL.

Shuohang Wang and Jing Jiang. 2017. A compare-
aggregate model for matching text sequences. ICLR.

Zhiguo Wang, Haitao Mi, and Abraham Ittycheriah.
2016b. Sentence Similarity Learning by Lexical
Decomposition and Composition. In Proceedings
of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Pa-
pers, pages 1340–1349, Osaka, Japan. The COLING
2016 Organizing Committee.

1857

Janson Weston and John Blitzer. 2012. Latent struc-
tured ranking. In Conference on Uncertainty in Ar-
tificial Intelligence.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2013–2018, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Xuchen Yao, Benjamin Van Durme, Peter Clark, and
Chris Callison-Burch. 2013. Answer extraction as
sequence tagging with tree edit distance. In NAACL.

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and
Andrzej Pastusiak. 2013. Question answering us-
ing enhanced lexical semantic models. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1744–1753, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2016. ABCNN: Attention-Based
Convolutional Neural Network for Modeling Sen-
tence Pairs. Transactions of the Association for
Computational Linguistics, 4:259–272.

Chun-Nam John Yu and Thorsten Joachims. 2009.
Learning structural svms with latent variables. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML ’09, pages
1169–1176, New York, NY, USA. ACM.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep Learning for Answer
Sentence Selection. NIPS Deep Learning and Rep-
resentation Learning Workshop.

Yisong Yue, Thomas Finley, Filip Radlinski, and
Thorsten Joachims. 2007. A support vector method
for optimizing average precision. In Proceedings of
the 30th Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’07, pages 271–278, New York,
NY, USA. ACM.

