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Abstract

How can we measure whether a natural lan-
guage generation system produces both high
quality and diverse outputs? Human evalu-
ation captures quality but not diversity, as it
does not catch models that simply plagiarize
from the training set. On the other hand, sta-
tistical evaluation (i.e., perplexity) captures di-
versity but not quality, as models that occa-
sionally emit low quality samples would be in-
sufficiently penalized. In this paper, we pro-
pose a unified framework which evaluates both
diversity and quality, based on the optimal er-
ror rate of predicting whether a sentence is
human- or machine-generated. We demon-
strate that this error rate can be efficiently es-
timated by combining human and statistical
evaluation, using an evaluation metric which
we call HUSE. On summarization and chit-
chat dialogue, we show that (i) HUSE detects
diversity defects which fool pure human evalu-
ation and that (ii) techniques such as annealing
for improving quality actually decrease HUSE
due to decreased diversity.

1 Introduction

Generating text is a core part of many NLP tasks
such as image captioning (Lin et al., 2014), open-
domain dialogue (Sordoni et al., 2015), story gen-
eration (Roemmele, 2016), and summarization
(Nallapati et al., 2016). However, proper evalu-
ation of natural language generation has proven
difficult (Liu et al., 2016; Novikova et al., 2017;
Chaganty et al., 2018). A good evaluation metric
should not only capture the quality of generation,
but also the diversity of generation, which is es-
pecially crucial for creative, open-ended tasks like
dialogue or story generation.

Human evaluation, which is often viewed as the
gold standard evaluation, captures quality but fails
to capture diversity. As an example, for language
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Figure 1: HUSE is twice the classification error of dis-
tinguishing reference and generated text based on hu-
man judgment scores and model probabilities. HUSE
identifies samples with defects in quality (Sharon has
stroke . . .) and diversity (Cleared coach facing . . .).

modeling, a model that directly plagiarizes sen-
tences from the training set would pass the hu-
man quality bar but would have zero generaliza-
tion ability and thus have inadequate diversity. On
the other hand, statistical evaluation—i.e., per-
plexity on a reference test set—captures diversity,
as it ensures a model must assign reasonable prob-
ability to novel sentences, but perplexity provides
an inadequate measure of quality (Theis et al.,
2015). For example, modifying a perfect model by
removing its ability to generate even a single test
sentence results in infinite perplexity even though
the model is still near-perfect. Automatic metrics
such as BLEU (Papineni et al., 2002) and ROUGE
(Lin and Rey, 2004) capture quality better than
perplexity but still correlate poorly with human
evaluation and fail to capture diversity (Novikova
et al., 2017; Chaganty et al., 2018).

Existing approaches to combining statistical
and human evaluation have been ad-hoc, lead-
ing to misleading performance measures. A com-
mon approach is to measure diversity through the
perplexity of a probabilistic model and quality
through human evaluation on beam-searched out-
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puts. This gives the illusion that a single model is
high-quality and diverse, while the reality is that it
shows we can have either a diverse model (when
sampling from the distribution used to compute
perplexity) or a high-quality model (when beam-
searching).

In this paper, we define the idealized evaluation
metric as twice the error of the optimal discrimi-
nator for classifying sentences as coming from the
reference distribution or the model (Section 2). If
a model generates gibberish (low quality), the op-
timal discriminator can classify these accurately as
coming from the model. If the reference distribu-
tion contains sentences the model cannot generate
(low diversity), the optimal discriminator can clas-
sify these accurately as coming from the reference.

Unfortunately, the optimal discriminator is un-
available. Human discriminators cannot capture
diversity effectively, and learned discriminators—
e.g., from a Generative Adversarial Network
(Goodfellow et al., 2014) or one trained on human
judgments (Lowe et al., 2017)—are too unreliable
to use for rigorous evaluation.

Our key result (Section 3) is based on the obser-
vation that the optimal classifier depends only on
two numbers: the probability of a sentence under
the model and the probability under the reference
distribution. The former can be computed directly
from the model, and we show that the latter can
be well-approximated by human judgment scores.
The resulting two-dimensional space is illustrated
in Figure 1. We apply a simple k-nearest neigh-
bor classifier in this space and define Human Uni-
fied with Statistical Evaluation (HUSE) as twice
the leave-one-out error of this classifier.

We apply HUSE to four natural language gen-
eration tasks (Section 5): language modeling,
chitchat dialogue, story generation, and summa-
rization. First, we show that human evaluation
alone is insufficient to discriminate model genera-
tions from the references, leading to inflated esti-
mates of model performance. In contrast, HUSE is
able to reveal deficiencies of current models. We
also show that common techniques for improv-
ing sample quality such as annealing actually in-
crease distinguishability between the model and
reference due to losses in diversity.

2 Optimal Discriminator

Consider a natural language generation task where
the model is given a context x (e.g., a dialogue his-

tory) drawn from some prior p(x) and must output
a distribution over possible sentences pmodel(y |
x). We define an idealized evaluation metric based
on whether pmodel is close to a reference distri-
bution pref, which is generally human-generated.1

Specifically, consider a random variable y drawn
from either the reference or the model based on an
indicator z ∼ Bernoulli

(
1
2

)
:

y | x, z ∼

{
pref(y | x) if z = 1

pmodel(y | x) if z = 0.
(1)

Define L∗ to be twice the lowest possible error
over any discriminator f that attempts to deter-
mine z based on x and y:

L∗
def
= 2 inf

f
P[f(x, y) 6= z]. (2)

L∗ measures similarity between pmodel and pref; it
is 0 if pmodel and pref are disjoint and 1 if they are
identical.2

Obstacles. Unfortunately, L∗ is unattainable be-
cause it requires computing the optimal discrim-
inator. In the spirit of the Turing Test, we could
consider using the error rate of a human dis-
criminator fhum instead, often considered the gold
standard for evaluation. However, while humans
might have knowledge of pref, they do not have full
knowledge of pmodel and thus would have difficul-
ties determining which sentences a model cannot
generate.

As a concrete example, suppose pref placed a
uniform distribution over some set S. Without
knowledge of pmodel the most sensible discrimina-
tor is to predict z = 1 (reference) when y ∈ S.
This discriminator achieves the same classification
error of 0.5 for both the perfect model pmodel =
pref and one which can only return a single y ∈ S.
We could try to reveal pmodel to humans by show-
ing multiple samples simultaneously, but this is
expensive and, as we will later see, unnecessary.

Another option is to learn f over an expressive
class of functions such as neural networks on data

1 While some tasks only care about quality and thus only
require pmodel to place mass on some high quality y, we de-
mand that pmodel places mass on all high quality y as given by
pref. This diversity is important for open-ended tasks such as
dialogue or story generation. Also note that pref need not be
the human distribution, or match the training distribution. It
can be defined as the distribution given by experts.

2 Note that L∗ is a linear function of the to-
tal variational divergence: ‖pmodel − pref‖TV

def
=∑

x,y p(x) |pmodel(y | x)− pref(y | x)| = 1 − L∗. See
Appendix A.1 for details.
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sampled from pmodel and pref. This is analogous to
learning the discriminator in a Generative Adver-
sarial Network (GAN) (Goodfellow et al., 2014)
or learning an evaluation metric from human judg-
ments (Lowe et al., 2017). However, as (x, y) are
high-dimensional objects, training a good classi-
fier is extremely difficult (and perhaps not signif-
icantly easier than solving the original generation
problem). Indeed, learned evaluation metrics do
not generalize very well (Lowe et al., 2017; Cha-
ganty et al., 2018). Unlike these approaches which
seek to replace human evaluation, our focus will
instead be on combining human and automatic sta-
tistical evaluation to estimate the optimal classifier
error.

3 Human Unified with Statistical
Evaluation (HUSE)

Our key result is that the optimal discriminator de-
pends on (x, y) only through a two-dimensional
sufficient statistic (Section 3.1), motivating an ap-
proximation which we call HUSE (Section 3.2).

For any feature map φ that maps (x, y) to
φ(x, y) ∈ Rd, define the evaluation score L(φ) to
be twice the error rate of the optimal discriminator
that depends on (x, y) only through φ:

L(φ)
def
= 2 inf

f
P[f(φ(x, y)) 6= z]. (3)

Note that the evaluation score L(φ) given by
a feature map φ optimizes over all functions that
depend on φ (3). Thus, the more information φ
contains, the lower L(φ) is. This has two impli-
cations: First, any feature map φ yields an (opti-
mistic) upper bound on L∗ (2), meaning that L(φ)
might be able detect when a model is poor but can-
not certify that it is good. Second, adding features
to φ can only improve this bound.

3.1 Two features suffice
Let us consider the following two-dimensional
feature map:

φopt(x, y)
def
= [pref(y | x), pmodel(y | x)] . (4)

From the arguments above, it is clear that
L(φopt) ≥ L∗, but perhaps more surprisingly, we
actually have equality:

Proposition 1. The two-dimensional feature map
φopt achieves the optimal discriminator score:
L(φopt) = L∗.

Proof We compute the true posterior over z
given x, y. Since p(z = 1) = p(z = 0) = 1

2 ,
p(y | x, z = 1) = pref(y | x) and p(y | x, z =
0) = pmodel(y | x), by Bayes’ rule:

p(z = 1 | x, y) = pref(y | x)
pref(y | x) + pmodel(y | x)

.

The optimal discriminator simply predicts z = 1
if pref(y | x) > pmodel(y | x) and z = 0 otherwise.
In other words, the decision boundary is given by
φopt(x, y)1 > φopt(x, y)2.

More generally, we can obtain this equality with a
wider class of φ. It will hold exactly for any in-
vertible transformation of φopt (Appendix Corol-
lary 1), and approximately for any φ which has
high mutual information with φopt (Appendix The-
orem 1). This means that we can substitute pref
with noisy, possibly un-normalized estimates and
still obtain accurate estimates of L∗.

3.2 HUSE features
While we can directly compute pmodel(y | x) for
many probabilistic models, pref(y | x) is unattain-
able, so L(φopt) is not computable. However, the
wisdom of the crowds (Surowiecki, 2004; Ungar
et al., 2012) suggests that pooling together the
judgments of many humans can often produce sur-
prisingly reliable estimates of real-world probabil-
ities such as pref(y | x), even if no individual hu-
man is particularly reliable. With this motivation,
we ask Amazon Mechanical Turk workers to rate a
sentence from 1–5 based on how “typical” it is as
a way to estimate pref(y | x). (see Appendix A.3
for more details). We define HJ(x, y) to be the av-
erage response over 20 crowdworkers. Figure 2
shows that for a language modeling task on the
Reddit corpus,3 HJ(x, y) strongly correlates with
the actual log-frequency of y in the corpus. The
high correlation suggests that human judgments
HJ(x, y) are a good surrogate for log pref.

In addition, we found that rather than using
the model probability pmodel(y | x) directly as
a feature, normalizing by sentence length len(y)
yielded lower (tighter) scores. We therefore define
the HUSE features as follows:

φhuse(x, y)
def
=

[
log pmodel(y | x)

len(y)
,HJ(x, y)

]
,

(5)
3We used the Reddit corpus due to crowdworker famil-

iarity, corpus size, and short average sentence length, which
results in a wide range of sentence frequencies.
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Figure 2: On the Reddit corpus, human judgment (HJ)
of the “typicality” of a sentence y correlates strongly
(r = 0.92) with its frequency in the corpus, suggesting
that HJ is a good surrogate for log pref. Error bars at the
90% confidence interval.

and define the (population) HUSE score as
L(φhuse).

3.3 Guarantees derived from HUSE
We now show that the HUSE score satisfies two
nice properties: (i) HUSE does at least as well as
human evaluation and (ii) a low HUSE score is
sufficient to show that a model is far from the ref-
erence distribution.

To show (i), consider a feature map that only in-
cludes human evaluation: φhj(x, y)

def
= [HJ(x, y)].

Because φhuse also incorporates human evaluation,
L(φhuse) is always tighter (lower) than the human
discriminator error L(φhj):

Proposition 1 (Relationship between HUSE, hu-
man evaluation, and optimal scores).

L(φhj) ≥ L(φhuse) ≥ L∗. (6)

Furthermore, the main difference between
L(φhuse) and L∗ is that the former uses HJ(x, y)
and the latter uses pref. But as we argued using
Figure 2, HJ(x, y) is strongly correlated with pref,
and good approximations to pref provide approxi-
mation guarantees for L(φhuse) (Appendix Theo-
rem 1).

4 Evaluating models with HUSE

In this section, we show how we can estimate the
error rate L(φ) from finite data (Section 4.1). We
then show how the HUSE estimate (L̂(φhuse)) can
be decomposed into a score that measures qual-
ity (HUSE-Q) and a score that measures diver-
sity (HUSE-D), which allows us to study quality-
diversity tradeoffs (Section 4.2).

4.1 Learning a discriminator

For any feature map φ, we show how to produce
an estimate of L(φ). Fix n contexts x1, . . . , xn.
First, we draw n examples y1, . . . , yn from the ref-
erence distribution pref(y | x), which are usually
human-generated sentences from a test set. We
also draw n examples y′1, . . . , y

′
n from the model

pmodel(y | x) we wish to evaluate. Next, for each
of the 2n examples (x, y), we compute the feature
map φ(x, y), which might involve evaluating the
model probability pmodel(y | x) as well as collect-
ing human judgments HJ(x, y) from crowdwork-
ers.

Finally, we compute the leave-one-out error of
a classifier that tries to predict whether a given ex-
ample (x, y) comes from the reference distribution
(z = 1) or the model (z = 0).

The classification problems for HUSE are two-
dimensional, which allows us to accurately esti-
mate error rates using a k-nearest neighbors clas-
sifier. We opt to use nearest neighbors classifiers
as they are simple, require no training, and can
asymptotically capture arbitrary continuous deci-
sion boundaries. Specifically, we set k = 16 and
define neighbors using L2 distances over the fea-
ture vectors φ(x, y) scaled componentwise to have
unit variance. The overall procedure for comput-
ing the estimate L̂(φ) is formally defined in Algo-
rithm 1.

Algorithm 1 Estimating error rates under φ

Require: Feature map φ, number of neighbors k
Contexts x1, . . . , xn
Reference outputs y1, . . . , yn
Model outputs y′1, . . . , y

′
n

1: Construct dataset:

D =

n⋃
i=1

{(φ(xi, yi), 1), (φ(xi, y′i), 0)}

2: L̂(φ)
def
= leave-one-out error of k-NN on D

4.2 Quality-diversity decomposition

We now define the (empirical) HUSE score using
the feature map φhuse:

HUSE def
= L̂(φhuse). (7)

We define the quality component of HUSE
(HUSE-Q) similarly using human judgments
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alone:

HUSE-Q def
= L̂(φhj). (8)

Since humans can detect quality defects in
a model, any increase in error from removing
pmodel must come from a model’s lack of diver-
sity. Therefore, we define the diversity component
(HUSE-D) as follows:

HUSE-D def
= 1 + HUSE− HUSE-Q, (9)

which implies the decomposition (1−HUSE-D)+
(1− HUSE-Q) = 1− HUSE. As long as the dis-
criminators are non-degenerate (obtaining better
performance than chance and HUSE > HUSE-Q),
all scores are contained in [0, 1]. Here, HUSE-D =
1 implies that the model suffers no diversity de-
fects, while HUSE-D = 0 indicates that the exam-
ples could be discriminated perfectly due to a lack
of diversity.

5 Experiments

5.1 Experimental setup

We use HUSE to evaluate three different types of
single-sentence natural language generation tasks:
(i) unconditional and high entropy (language mod-
eling); (ii) conditional and high entropy (story
generation, chit-chat dialogue); and (iii) condi-
tional and low entropy (summarization). We show
that HUSE provides a direct and interpretable
measure of diversity on high-entropy tasks, while
also serving as a useful model diagnostic on low-
entropy ones.

The four tasks along with the datasets and mod-
els are as follows:

• Summarization: Giganews story to head-
line dataset and the pre-trained model from
Gehrmann et al. (2018). The dataset con-
sists of 3.8 million news story-headline pairs.
Examples from this dataset are shown in Ta-
ble 2.

• Story generation: Last sentence generation
for ROC stories (Mostafazadeh et al., 2016)
consisting of 96,198 examples of partially
written four-sentence stories as input, and a
single sentence which completes the story as
the target. We use a standard OpenNMT
model with global attention (Klein et al.,
2017).

Q
uality (H

U
SE-Q

)
Diversity (HUSE-D)

Figure 3: Tradeoffs between HUSE-D and HUSE-Q.
Points are models and color indicates task. Neural
models (circle) generate using temperature annealing
(point labels indicate temperature). Models closer to
the top right are superior, and gray diagonal lines in-
dicate equivalent HUSE. A shaded region for a task
indicates models which are strictly dominated (worse
HUSE with the same HUSE-D-HUSE-Q proportion).
Annealing can trade-off between diversity and quality
but cannot easily increase the underlying model perfor-
mance (HUSE).

• Language modeling: One billion word
benchmark pre-trained language model from
Jozefowicz et al. (2016). The task consists
of generating a single sentence from the one
billion word newswire text distribution.

• Chit-chat dialogue: Two-turn chit-chat di-
alogue dataset consisting of 37.3 million
comment-response pairs from Reddit (Ap-
pendix A.4). Comments are generally short
(5–15 tokens) and cover a single topic (e.g.
given “wow how did i not notice that”, the re-
sponse is “you were focusing on other things
its understandable”). We train a convolu-
tional model using fairseq (Gehring et al.,
2017).

For all the tasks, we train neural models and
evaluate their diversity-quality tradeoffs as we
change the decoding scheme for generation. Our
primary evaluation concerns diversity trade-offs
involving temperature annealing which is a gen-
eration technique applicable to any probabilis-
tic model that generates words sequentially. In
temperature annealed models, we sample a word
w proportional to p1/t(w) where p is the model
probability of w given previous words and t is
the temperature parameter. We excluded beam
search since it qualitatively behaves similarly to
temperature annealing with low temperatures and
HUSE ≈ 0 due to beam search being extremely
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Score
Summarization Story generation Chit-chat dialogue LM
t = 1.0 t = 0.7 t = 1.0 Retrieval t = 1.0 t = 0.7 t = 1.0

HUSE 0.53 0.26 0.06 0.00 0.56 0.49 0.86
HUSE-Q 0.58 0.92 0.15 0.47 0.56 0.92 0.88
HUSE-D 0.95 0.34 0.91 0.53 1.00 0.57 1.02

Table 1: Performance achieved by the best models on the four tasks, as measured by overall goodness-of-fit
(HUSE), sample quality (HUSE-Q) and diversity (HUSE-D). The scale for HUSE and HUSE-Q ranges from 0.0
(completely distinguishable from reference) to 1.0 (indistinguishable from reference) where the implied classifica-
tion error is HUSE/2. HUSE-D may exceed 1.0 with small sample sizes when HUSE-Q > HUSE.

under diverse.
As a non-neural baseline, we also consider re-

trieval based models based on Apache solr on
a few tasks. For this approach, we retrieve the
single most relevant response from the training
set using the BM25 similarity metric on inputs.
Such models are known to perform well in tasks
with complex outputs such as program generation
(Hayati et al., 2018; Hashimoto et al., 2018) and
style transfer (Li et al., 2018).

For cost reasons, we did not measure certain
combinations of task and generation mechanisms.
We did not measure retrieval for chit-chat dia-
logue, as we observed its outputs were lower qual-
ity than a low-temperature neural model. We also
did not anneal language models, as the generation
quality from the language model was already high,
and our goal was to show that they achieved high
HUSE. Our set of measurements, while not com-
prehensive, generally covers the available quality-
diversity tradeoffs for conditional tasks.

Finally, we collect human judgments HJ(x, y)
as per Section 4.1 where we query 20 Amazon
Mechanical Turk crowdworkers for typicality rat-
ings on 100 reference and 100 model sentences.
Since our models generate UNK (unknown and
out-of-vocabulary) tokens, we instructed crowd-
workers to treat UNK tokens as rare, but appro-
priate words for the context.

5.2 Overall results

The HUSE scores across the four tasks vary
widely. Table 1 shows that single-sentence lan-
guage models are nearly indistinguishable, with
HUSE = 0.86 and implied discriminator error of
43%.

In contrast, both summarization and dialogue
are highly distinguishable (HUSE ≈ 0.5) with rel-
atively low quality when sampled from t = 1.0.
Human evaluation alone (HUSE-Q) would sug-

gest that using temperature annealing (t = 0.7) to
emphasize high-probability outputs substantially
improves the model (HUSE-Q goes from 0.58 to
0.92 for summarization and 0.56 to 0.92 for dia-
logue). However, we find that this increase in sam-
ple quality comes at the cost of diversity (HUSE-D
goes from 0.95 to 0.34 for summarization and 1.0
to 0.57 for dialogue). Examining the achievable
HUSE and diversity tradeoffs in Figure 3 shows
that mechanisms such as annealing which improve
sample quality actually degrade HUSE due to se-
vere losses in diversity.

We find that all generation schemes and models
are inadequate for story generation on ROC sto-
ries. The original model (t = 1.0) is very easily
distinguishable by a human (HUSE-Q = 0.15),
corresponding to a discriminator error of 7%. The
retrieval models can improve this to HUSE-Q =
0.47, but this comes at the expense of diversity.

Finally, we observe that directly sampling from
the model (t = 1.0) is always diverse. This
suggests that human evaluation is an appropriate
evaluation for generation systems that are directly
sampled (rather than beam-searched).

5.3 Model error analysis with HUSE

Since HUSE is estimated from a two-dimensional
classification problem, we can directly visualize
the classification problem to understand defects in
both model quality and diversity.

Figure 4 shows both reference points
φhuse(xi, yi) (blue squares) and model points
φhuse(xi, y

′
i) (red circles) for the summarization

task. The shaded areas indicate the decision
boundary of the 16-nearest neighbor classifier.

At temperature t = 1.0, we find that the clas-
sification boundary is mostly horizontal, implying
that human judgment alone can distinguish model
outputs from references. There is a cluster of sen-
tences with high HJ and high pmodel which are es-
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T=1.0 T=0.9 T=0.7

Figure 4: The two-dimensional classification problem in Algorithm 1 on the summarization task with different
softmax temperatures (three panels). Each point represents a reference sentence φhuse(xi, yi) or model-generated
sentence φhuse(xi, y

′
i). The color denotes the source of the sentence (z), shading is the classification confidence of

the nearest neighbor classifier.

sentially indistinguishable. Examining the sam-
ples in this top-right region reveals that these are
news stories with short headlines such as “Nadal
pulls out of Sydney International” which can be
reliably generated even at t = 1.0. However,
the model frequently generates low quality sam-
ples that can easily be distinguished such as “two
new vaccines in the poor countries were effective
against go-it-alone study says” (Table 2).

At lower temperatures of t = 0.9 and t = 0.7,
the boundary shifts towards becoming diagonal.
Although the distribution is no longer directly sep-
arable on human judgment, the two distributions
are clearly separable with the inclusion of pmodel.

Using Figure 4, we can identify individual ex-
amples which were correctly and incorrectly clas-
sified based on pmodel and HJ. Table 2 shows ex-
amples of both quality failures and diversity fail-
ures identified by HUSE. For example, the “di-
versity failure” table shows that the summarization
model (t = 0.7) has an extremely low probability
of generating some reference sentences (“NFL’s
bills shake up front office”) and is thus under-
diverse. Closer examination of the model shows
that the probability of generating “front office”
is low, since it is an unusual way to refer to the
president and general manager. Improving these
models on the diversity failures will require that
the model understand more subtle paraphrases.
We can also identify model successes, where the
model outputs are indistinguishable from the ref-
erence in terms of quality (“Agassi bows out of
Australian Open after injury”), and the model as-
signs high probability to the reference (“Agassi
withdraws from Australian Open”).

Figure 5: Estimates of HUSE are robust to small test
set size, but generally require ≈ 20 crowdworker mea-
surements for each example.

5.4 HUSE stability
Since HUSE depends on human crowdworker an-
notations, one might ask if it is possible to reduce
either the number of annotated examples, or num-
ber of distinct crowdworkers for each example.
We show that for low-quality models, substantially
fewer annotations are needed.

Figure 5 shows the result of subsampling our
original data of 200 sentences and 20 crowdwork-
ers and estimating HUSE. First, we find that us-
ing 50 test set examples (Figure 5, left) is of-
ten sufficient to give accurate estimates of HUSE.
Next, we find that the necessary number of crowd-
workers per example depends heavily on the task.
Easily distinguishable tasks (story generation), re-
quire only 10 crowdworkers, while less distin-
guishable tasks (summarization) require more than
20 crowdworkers to obtain accurate estimates.

6 Related work

The current state of NLG evaluation. Existing
approaches to NLG evaluation use a hodgepodge
mix of quality and diversity measures. Out of the
26 NLG papers at ACL 2018, six perform only hu-
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Quality failure log pmodel HJ

Context: Two new vaccines have been shown effective against rotavirus, which is responsible for a
half-million infant deaths in poor countries each year, research studies published Wednes-
day said.

Model Two new vaccines in the poor countries were effective against go-it-alone study says -2.3 2.6

Reference New vaccines for key <UNK> virus shown effective -4.0 4.3

Diversity failure
Context: The Buffalo Bills sacked Tom Donahoe as president and general manager on Wednesday,

fulfilling expectations of a shake-up after another failure to make the National Football
League playoffs.

Model Bills sack <UNK> as president GM and general manager -0.9 4.3

Reference NFL’s Bills shake up front office. -5.1 4.3

Model is indistinguishable
Context: US veteran and eight-time Grand Slam winner Andre Agassi has withdrawn from this

month’s Australian Open due to a nagging ankle injury, his management team announced
Thursday.

Model Agassi bows out of Australian Open after injury. -1.4 5.3

Reference Agassi withdraws from Australian Open. -0.3 4.9

Table 2: Example reference and model outputs (capitalization added for readability) corresponding to Figure 4
(summarization task) that were shown to crowdworkers (left column). Crowdworkers were shown samples from
the model (including the <UNK> token) and returned human judgments (right column). Using human judgments
and the model probability, we can identify several types of failures. Quality failures are examples that are classified
by human judgment. Diversity failures are examples that are classified by model probabilities. Finally some
examples are not easily classified, as they have similar human judgment and model probability scores.

man evaluation, fourteen measure human evalua-
tion and a diversity metric such as perplexity or
n-gram diversity, and six do not evaluate using hu-
man judgments.

While perplexity and n-gram counts can in
principle evaluate diversity, their practical imple-
mentations suffer from serious drawbacks. When
human evaluation and perplexity are both eval-
uated, they are almost always done on separate
models—human evaluations are done on beam-
searched output, while perplexity is computed on
the softmax outputs. This makes it appear as if the
models can simultaneously generate high quality
outputs while also being diverse, when in fact they
can only be one at a time based on whether they
sample or run beam search.

On the other hand, n-gram diversity was pro-
posed by Li et al. (2016) to identify models with
the generic utterance problem where models re-
peat phrases such as ‘I don’t know’. Unfortu-
nately, n-gram diversity is computed across con-
texts by counting the number of unique n-grams
generated, and so does not measure a model’s abil-
ity to generate multiple valid utterances at any sin-
gle context. In particular, a model which only
outputs a single memorized utterance per context

(e.g., via memorization or retrieval) can still have
high n-gram diversity as long as the memorized
sentences differ across contexts.

Finally, all existing diversity measures are com-
puted separately from human evaluation. This
results in two incomparable evaluation metrics,
which prevent us from reasoning about tradeoffs
between diversity and quality. In contrast, HUSE
allows us to make precise statements about the
tradeoffs between model quality and diversity be-
cause it is a single metric which decomposes into
diversity and quality terms.

Related evaluations of diversity. The impor-
tance of diverse responses has previously been ac-
knowledged for summarization (Nenkova et al.,
2007) and information retrieval (Clarke et al.,
2008). Our work differs in considering a single
evaluation measure that captures quality and di-
versity applicable to any generation task.

Automated metrics based on n-gram overlap
such as BLEU, METEOR, ROUGE (Papineni
et al., 2002; Lavie and Denkowski, 2009; Lin and
Rey, 2004) work well for machine translation but
do not generalize well to domains with a diverse
spectrum of correct responses. While variants
(Sun and Zhou, 2012; Galley et al., 2015; Shima
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and Mitamura, 2011) have adapted such metrics
to high entropy generative environments, they are
still significantly inferior to the human judgments
they attempt to mimic.

Caccia et al. (2018) recently examined the di-
versity and quality tradeoffs for different language
model architectures on synthetic datasets. How-
ever, as their approach relies on measuring log-
likelihoods under both the model and reference
distributions, it cannot be applied to real data
where pref is unavailable. Our main conceptual
contribution overcomes this by showing that HJ is
an acceptable proxy for pref.

Sajjadi et al. (2018) also examines diversity and
quality (which they call precision and recall) in
the context of generative image models. How-
ever, they rely on assuming that pref and pmodel
can be estimated accurately using the Fréchet
Inception Distance (FID) (Heusel et al., 2017).
HUSE avoids such assumptions and instead di-
rectly leverages human judgments, resulting in a
simple and reliable metric more suitable for use as
a gold-standard.

Estimating optimal classification error. Eval-
uating a model by estimating its optimal classifi-
cation error has been considered by several earlier
works (Olsson et al., 2018; Kannan and Vinyals,
2016; Li et al., 2017; Bruni and Fernandez, 2017;
Bowman et al., 2016). However, these meth-
ods have focused on classifying sentences directly,
which is quite challenging to do reliably. Exist-
ing adversarial evaluation methods do not yet re-
liably outperform human classification (Kannan
and Vinyals, 2016; Bruni and Fernandez, 2017).
We propose the use of both human evaluation and
model probabilities as part of the adversarial eval-
uation framework, and demonstrate that the re-
sulting classifier reliably outperforms humans and
captures both the sample quality and diversity of a
model.

Distributional divergence estimation. Our
proposed evaluation metric is closely related to
the total variation distance which has been studied
extensively in the distribution testing literature.
It is known that total variation distance estimates
have pessimistic minimax estimation rates in
high dimensions (Balakrishnan and Wasserman,
2017). Our work overcomes this by utilizing
pmodel and an estimate of pref. Other approaches to
distributional testing include the maximum mean

discrepancy (MMD) and Wasserstein distances,
but these approaches require knowledge of a
ground truth metric or kernel space (Tolstikhin
et al., 2016; Singh et al., 2018). Although such
divergences are easier to estimate than the total
variation distance from samples, the implied con-
vergence rates are still too slow to be practically
useful.

7 Discussion

In this paper, we demonstrate that the current gold
standard of human evaluation does not penalize
under-diverse models. To remedy this, we pro-
pose HUSE, a general purpose evaluation strat-
egy which can be applied to any model for which
we can calculate a model’s sampling probabilities.
HUSE is an upper bound on the optimal classifica-
tion error of distinguishing reference and model-
generated text, and never does worse than human
classification. HUSE leverages both model proba-
bilities and human judgments, ensuring that mod-
els which do well on the metric are both high-
quality and diverse.

Our work can be viewed as a “superhuman ver-
sion” of the classic Turing Test (Turing, 1950).
Instead of relying on just a human classifier, we
approximate the optimal classifier, which can uti-
lize information about the model in addition to the
reference. We also modify the classification prob-
lem and seek to identify whether a sample comes
from a (potentially superhuman) reference distri-
bution, rather than the human distribution. These
two changes lead to tractable, rigorous estimators
which can quantify tradeoffs between model qual-
ity and diversity on a wide range of generation
tasks.
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A Appendix

A.1 Relationship between total variation
distance and optimal discriminator error

This is a standard result, replicated here for com-
pleteness:

Proposition 2. The total variation distance is re-
lated to the optimal discriminator error as fol-
lows: ‖pmodel − pref‖TV = 1− L∗.

Proof Fix any x. Define ay
def
= pref(y | x) and

by
def
= pmodel(y | x). Let S def

= {y : ay < by}
be the y where the pmodel assigns higher proba-
bility than pref, and define A def

=
∑

y∈S ay and

B
def
=
∑

y∈S by be the aggregated probabilities.
On S, the optimal discriminator should return z =
0 (model). This is an error when z = 1, which
occurs with probability 1

2A. Analogously, on the
complement of S, the error probability (when z =
0) is 1

2(1−B). The total contribution to L∗ is thus
A+ (1−B). The rest follows from algebra:

‖pmodel − pref‖TV =
1

2
‖pmodel − pref‖1 (10)

=
1

2
[(B −A) + (1−A)− (1−B)] (11)

= B −A = (1− L∗). (12)

A.2 Approximation error from φ features
Theorem 1. Let L∗ and L(φ) be the optimal clas-
sification error and optimal error under feature
map φ respectively. Then,

L∗ ≤ L(φ) ≤ L∗ + 2(1− 2−I)

where I def
= I(Zopt;φopt(X,Y ) | φ(X,Y )) is the

conditional mutual information in bits and Zopt is
the prediction of the optimal classifier.

Proof The lower bound falls out of the defini-
tion of L∗. To prove the upper bound, a variant
of the entropy lower bound by Feder and Merhav
(Feder and Merhav, 1994) shows that the error rate
for predicting Zopt, via the optimal f(φ(X,Y ))
follows

P (f(φ(X,Y )) 6= Zopt)

≤ 1− 2I(Zopt;φ(X,Y ))−H(Zopt). (13)

Now expand the mutual information using the
chain rule

I(Zopt;φ(X,Y )) = I(Zopt;φopt(X,Y ), φ(X,Y ))

− I(Zopt;φopt(X,Y ) | φ(X,Y ))

= −I(Zopt;φopt(X,Y ) | φ(X,Y )) +H(Zopt).

The last line follows from the fact that Zopt is a de-
terministic function of φopt (Proposition 1). Sub-
stituting this into the inequality gives the bound,

P (f(φ(X,Y )) 6= Zopt) ≤ 1− 2−I

with I = I(Zopt;φopt(X,Y ) | φ(X,Y )).
Finally, note that Zopt incurs L∗/2 er-

ror, and we disagree with Zopt at most a
P (f(φ(X,Y )) 6= Zopt) fraction of time.
Assuming that we get every one of these dis-
agreements wrong gives an upper bound of
L∗/2 + P (f(φ(X,Y )) 6= Zopt) on L(φ)/2.

A straightforward corollary is that whenever
φ is an invertible function of φopt, the condi-
tional mutual information is zero, and therefore
the above inequalities become an equality.

Corollary 1. Whenever φ is an invertible function
of φopt, L(φ) = L∗.

A.3 Amazon Mechanical Turk for human
judgments

In order to show that HUSE can be reliably es-
timated even with simple crowdsourcing tech-
niques, we used a single uniform task design
where we asked Amazon Mechanical Turk work-
ers to rate the typicality of a sentence from 0–5.
We defined 0 as invalid (grammatically or factu-
ally incorrect) and 5 as ‘very typical’. HJ(x, y)
is defined as the average score that crowdwork-
ers assign to a response y given the context x.
We did not perform substantial filtering or quali-
fication checks beyond HIT acceptance rate (HIT
Approval rate greater than 95 percent and number
of HITs approved greater than 50 and location is
USA). We constructed each HIT to be 25 exam-
ples, and paid one dollar per HIT.

We observe that measuring many replicates is
sufficient to get low-variance estimates of HJ. For
classification tasks where the model is straight-
forward to identify from references (such as story
generation) we require five to ten replicates, while
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Figure 6: Amazon Mechanical Turk survey design for eliciting human judgment scores HJ in the summarization
task.

for hard tasks such as summarization at least
twenty replicates are needed (Section 5.4). Man-
ual inspection suggests that up to 20% of the col-
lected data are low-quality but that this noise is un-
correlated with the sentence being rated and out-
weighed by a larger majority of honest and rea-
sonably accurate data. Even if the data quality is
low, HUSE is still a valid upper bound (i.e. models
with low HUSE are guaranteed to be distinguish-
able from humans). Thus the models which we
identify as having low-HUSE are reliably distin-
guishable regardless of the crowdworker quality.

A.4 Reddit Dataset
We use a subset of Reddit comments from 2006-
2018 scraped from https://pushshift.io/. We con-
struct a dictionary containing the 10,000 most
popular words and preprocess the dataset by re-
moving deleted posts, out-of-vocabulary tokens,
profanity, comments with less than 10 upvotes,
and comments with over 400 tokens.


