
Proceedings of NAACL-HLT 2019, pages 1566–1576
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

1566

Recursive Subtree Composition in LSTM-Based Dependency Parsing

Miryam de Lhoneux♠ Miguel Ballesteros♦ Joakim Nivre♠
♠ Department of Linguistics and Philology, Uppsala University

♦ IBM Research AI, Yorktown Heights, NY
{miryam.de_lhoneux,joakim.nivre}@lingfil.uu.se

miguel.ballesteros@ibm.com

Abstract
The need for tree structure modelling on top
of sequence modelling is an open issue in
neural dependency parsing. We investigate
the impact of adding a tree layer on top of
a sequential model by recursively compos-
ing subtree representations (composition) in a
transition-based parser that uses features ex-
tracted by a BiLSTM. Composition seems
superfluous with such a model, suggesting
that BiLSTMs capture information about sub-
trees. We perform model ablations to tease
out the conditions under which composition
helps. When ablating the backward LSTM,
performance drops and composition does not
recover much of the gap. When ablating the
forward LSTM, performance drops less dra-
matically and composition recovers a substan-
tial part of the gap, indicating that a forward
LSTM and composition capture similar infor-
mation. We take the backward LSTM to be
related to lookahead features and the forward
LSTM to the rich history-based features both
crucial for transition-based parsers. To capture
history-based information, composition is bet-
ter than a forward LSTM on its own, but it is
even better to have a forward LSTM as part
of a BiLSTM. We correlate results with lan-
guage properties, showing that the improved
lookahead of a backward LSTM is especially
important for head-final languages.

1 Introduction

Recursive neural networks allow us to construct
vector representations of trees or subtrees. They
have been used for constituency parsing by Socher
et al. (2013) and Dyer et al. (2016) and for de-
pendency parsing by Stenetorp (2013) and Dyer
et al. (2015), among others. In particular, Dyer
et al. (2015) showed that composing representa-
tions of subtrees using recursive neural networks
can be beneficial for transition-based dependency
parsing. These results were further strengthened in

Kuncoro et al. (2017) who showed, using ablation
experiments, that composition is key in the Recur-
rent Neural Network Grammar (RNNG) genera-
tive parser by Dyer et al. (2016).

In a parallel development, Kiperwasser and
Goldberg (2016b) showed that using BiLSTMs
for feature extraction can lead to high parsing ac-
curacy even with fairly simple parsing architec-
tures, and using BiLSTMs for feature extraction
has therefore become very popular in dependency
parsing. It is used in the state-of-the-art parser of
Dozat and Manning (2017), was used in 8 of the
10 highest performing systems of the 2017 CoNLL
shared task (Zeman et al., 2017) and 10 out of the
10 highest performing systems of the 2018 CoNLL
shared task (Zeman et al., 2018).

This raises the question of whether features ex-
tracted with BiLSTMs in themselves capture in-
formation about subtrees, thus making recursive
composition superfluous. Some support for this
hypothesis comes from the results of Linzen et al.
(2016) which indicate that LSTMs can capture hi-
erarchical information: they can be trained to pre-
dict long-distance number agreement in English.
Those results were extended to more construc-
tions and three additional languages by Gulordava
et al. (2018). However, Kuncoro et al. (2018)
have also shown that although sequential LSTMs
can learn syntactic information, a recursive neu-
ral network which explicitly models hierarchy (the
RNNG model from Dyer et al. (2015)) is better at
this: it performs better on the number agreement
task from Linzen et al. (2016).

To further explore this question in the context
of dependency parsing, we investigate the use of
recursive composition (henceforth referred to as
composition) in a parser with an architecture like
the one in Kiperwasser and Goldberg (2016b).
This allows us to explore variations of features
and isolate the conditions under which composi-



1567

tion is helpful. We hypothesise that the use of a
BiLSTM for feature extraction makes it possible
to capture information about subtrees and there-
fore makes the use of subtree composition super-
fluous. We hypothesise that composition becomes
useful when part of the BiLSTM is ablated, the
forward or the backward LSTM. We further hy-
pothesise that composition is most useful when the
parser has no access to information about the func-
tion of words in the context of the sentence given
by POS tags. When using POS tags, the tagger
has indeed had access to the full sentence. We
additionally look at what happens when we ab-
late character vectors which have been shown to
capture information which is partially overlapping
with information from POS tags. We experiment
with a wider variety of languages than Dyer et al.
(2015) in order to explore whether the usefulness
of different model variants vary depending on lan-
guage type.

2 K&G Transition-Based Parsing

We define the parsing architecture introduced by
Kiperwasser and Goldberg (2016b) at a high level
of abstraction and henceforth refer to it as K&G. A
K&G parser is a greedy transition-based parser.1

For an input sentence of length n with words
w1, . . . , wn, a sequence of vectors x1:n is cre-
ated, where the vector xi is a vector representa-
tion of the word wi. We refer to these as type vec-
tors, as they are the same for all occurrences of a
word type. Type vectors are then passed through
a feature function which learns representations of
words in the context of the sentence.

xi = e(wi)

vi = f(x1:n, i)

We refer to the vector vi as a token vector, as it
is different for different tokens of the same word
type. In Kiperwasser and Goldberg (2016b), the
feature function used is a BiLSTM.

As is usual in transition-based parsing, parsing
involves taking transitions from an initial configu-
ration to a terminal one. Parser configurations are
represented by a stack, a buffer and set of depen-
dency arcs (Nivre, 2008). For each configuration
c, the feature extractor concatenates the token rep-
resentations of core elements from the stack and

1Kiperwasser and Goldberg (2016b) also define a graph-
based parser with similar feature extraction, but we focus on
transition-based parsing.

buffer. These token vectors are passed to a classi-
fier, typically a Multilayer Perceptron (MLP). The
MLP scores transitions together with the arc labels
for transitions that involve adding an arc. Both the
word type vectors and the BiLSTMs are trained to-
gether with the model.

3 Composing Subtree Representations

Dyer et al. (2015) looked at the impact of using
a recursive composition function in their parser,
which is also a transition-based parser but with an
architecture different from K&G. They make use
of a variant of the LSTM called a stack LSTM. A
stack LSTM has push and pop operations which al-
low passing through states in a tree structure rather
than sequentially. Stack LSTMs are used to repre-
sent the stack, the buffer, and the sequence of past
parsing actions performed for a configuration.

The words of the sentence are represented by
vectors of the word types, together with a vector
representing the word’s POS tag. In the initial con-
figuration, the vectors of all words are in the buffer
and the stack is empty. The representation of the
buffer is the end state of a backward LSTM over
the word vectors. As parsing evolves, the word
vectors are popped from the buffer, pushed to and
popped from the stack and the representations of
stack and buffer get updated.

Dyer et al. (2015) define a recursive compo-
sition function and compose tree representations
incrementally, as dependents get attached to their
head. The composed representation c is built by
concatenating the vector h of the head with the
vector of the dependent d, as well as a vector r rep-
resenting the label paired with the direction of the
arc. That concatenated vector is passed through
an affine transformation and then through a tanh
non-linear activation.

c = tanh(W [h; d; r] + b)

They create two versions of the parser. In the first
version, when a dependent is attached to a head,
the word vector of the head is replaced by a com-
posed vector of the head and dependent. In the
second version, they simply keep the vector of the
head when attaching a dependent to a head. They
observe that the version with composition is sub-
stantially better than the version without, by 1.3
LAS points for English (on the Penn Treebank
(PTB) test set) and 2.1 for Chinese (on the Chi-
nese Treebank (CTB) test set).



1568

Their parser uses POS tag information. POS
tags help to disambiguate between different func-
tional uses of a word and in this way give informa-
tion about the use of the word in context. We hy-
pothesise that the effect of using a recursive com-
position function is stronger when not making use
of POS tags.

4 Composition in a K&G Parser

The parsing architectures of the stack LSTM
parser (S-LSTM) and K&G are different but have
some similarities.2 In both cases, the configura-
tion is represented by vectors obtained by LSTMs.
In K&G, it is represented by the token vectors of
top items of the stack and the first item of the
buffer. In the S-LSTM, it is represented by the vec-
tor representations of the entire stack, buffer and
sequence of past transitions.

Both types of parsers learn vector representa-
tions of word types which are passed to an LSTM.
In K&G, they are passed to an LSTM in a feature
extraction step that happens before parsing. The
LSTM in this case is used to learn vectors that have
information about the context of each word, a to-
ken vector. In the S-LSTM, word type vectors are
passed to Stack LSTMs as parsing evolves. In this
case, LSTMs are used to learn vector representa-
tions of the stack and buffer (as well as one which
learns a representation of the parsing action his-
tory).

When composition is not used in the S-LSTM,
word vectors represent word types. When com-
position is used, as parsing evolves, the stack and
buffer vectors get updated with information about
the subtrees they contain, so that they gradually
become contextualised. In this sense, those vec-
tors become more like token vectors in K&G.
More specifically, as explained in the previous sec-
tion, when a dependent is attached to its head, the
composition function is applied to the vectors of
head and dependent and the vector of the head is
replaced by this composed vector.

We cannot apply composition on type vectors
in the K&G architecture, since they are not used
after the feature extraction step and hence cannot
influence the representation of the configuration.
Instead, we apply composition on the token vec-
tors. We embed those composed representations
in the same space as the token vectors.

2Note that we use S-LSTM to denote the stack LSTM
parser, not the stack LSTM as an LSTM type.

In K&G, like in the S-LSTM, we can create a
composition function and compose the represen-
tation of subtrees as parsing evolves. We create
two versions of the parser, one where word tokens
are represented by their token vector. The other
where they are represented by their token vector
and the vector of their subtree ci, which is initially
just a copy of the token vector (vi = f(x1:n, i)◦ci).
When a dependent word d is attached to a word h
with a relation and direction r, ci is computed with
the same composition function as in the S-LSTM
defined in the previous section, repeated below.3

This composition function is a simple recur-
rent cell. Simple RNNs have known shortcomings
which have been addressed by using LSTMs, as
proposed by Hochreiter and Schmidhuber (1997).
A natural extension to this composition function
is therefore to replace it with an LSTM cell. We
also try this variant. We construct LSTMs for sub-
trees. We initialise a new LSTM for each new sub-
tree that is formed, that is, when a dependent d is
attached to a head h which does not have any de-
pendent yet. Each time we attach a dependent to a
head, we construct a vector which is a concatena-
tion of h, d and r. We pass this vector to the LSTM
of h. c is the output state of the LSTM after pass-
ing through that vector. We denote those models
with +rc for the one using an ungated recurrent
cell and with +lc for the one using an LSTM cell.

c = tanh(W [h; d; r] + b)

c = LSTM([h; d; r])

As results show (see § 5), neither type of composi-
tion seems useful when used with the K&G pars-
ing model, which indicates that BiLSTMs capture
information about subtrees. To further investigate
this and in order to isolate the conditions under
which composition is helpful, we perform differ-
ent model ablations and test the impact of recur-
sive composition on these ablated models.

First, we ablate parts of the BiLSTMs: we ab-
late either the forward or the backward LSTM.
We therefore build parsers with 3 different feature
functions f(x, i) over the word type vectors xi in
the sentence x: a BiLSTM (bi) (our baseline), a
backward LSTM (bw) (i.e., ablating the forward
LSTM) and a forward LSTM (fw) (i.e., ablating

3Note that, in preliminary experiments, we tried replac-
ing the vector of the head by the vector of its subtree instead
of concatenating the two but concatenating gave much better
results.



1569

the backward LSTM):

bi(x, i) = BILSTM(x1:n, i)

bw(x, i) = LSTM(xn:1, i)

fw(x, i) = LSTM(x1:n, i)

K&G parsers with unidirectional LSTMs are, in
some sense, more similar to the S-LSTM than
those with a BiLSTM, since the S-LSTM only uses
unidirectional LSTMs. We hypothesise that com-
position will help the parser using unidirectional
LSTMs in the same way it helps an S-LSTM.

We additionally experiment with the vector rep-
resenting the word at the input of the LSTM. The
most complex representation consists of a concate-
nation of an embedding of the word type e(wi),
an embedding of the (predicted) POS tag of wi,
p(wi) and a character representation of the word
obtained by running a BiLSTM over the charac-
ters ch1:m of wi (BiLSTM(ch1:m)).

xi = e(wi) ◦ p(wi) ◦ BiLSTM(ch1:m)

Without a POS tag embedding, the word vector
is a representation of the word type. With POS
information, we have some information about the
word in the context of the sentence and the tag-
ger has had access to the full sentence. The repre-
sentation of the word at the input of the BiLSTM
is therefore more contextualised and it can be ex-
pected that a recursive composition function will
be less helpful than when POS information is not
used. Character information has been shown to be
useful for dependency parsing first by Ballesteros
et al. (2015). Ballesteros et al. (2015) and Smith
et al. (2018b) among others have shown that POS
and character information are somewhat comple-
mentary. Ballesteros et al. (2015) used similar
character vectors in the S-LSTM parser but did
not look at the impact of composition when us-
ing these vectors. Here, we experiment with ab-
lating either or both of the character and POS vec-
tors. We look at the impact of using composition
on the full model as well as these ablated models.
We hypothesise that composition is most helpful
when those vectors are not used, since they give
information about the functional use of the word
in context.

Parser We use UUParser, a variant of the K&G
transition-based parser that employs the arc-hybrid
transition system from Kuhlmann et al. (2011)

extended with a SWAP transition and a Static-
Dynamic oracle, as described in de Lhoneux et al.
(2017b)4. The SWAP transition is used to allow the
construction of non-projective dependency trees
(Nivre, 2009). We use default hyperparameters.
When using POS tags, we use the universal POS
tags from the UD treebanks which are coarse-
grained and consistent across languages. Those
POS tags are predicted by UDPipe (Straka et al.,
2016) both for training and parsing. This parser
obtained the 7th best LAS score on average in the
2018 CoNLL shared task (Zeman et al., 2018),
about 2.5 LAS points below the best system, which
uses an ensemble system as well as ELMo embed-
dings, as introduced by Peters et al. (2018). Note,
however, that we use a slightly impoverished ver-
sion of the model used for the shared task which is
described in Smith et al. (2018a): we use a less ac-
curate POS tagger (UDPipe) and we do not make
use of multi-treebank models. In addition, Smith
et al. (2018a) use the three top items of the stack
as well as the first item of the buffer to represent
the configuration, while we only use the two top
items of the stack and the first item of the buffer.
Smith et al. (2018a) also use an extended feature
set as introduced by Kiperwasser and Goldberg
(2016b) where they also use the rightmost and left-
most children of the items of the stack and buffer
that they consider. We do not use that extended
feature set. This is to keep the parser settings as
simple as possible and avoid adding confounding
factors. It is still a near-SOTA model. We evaluate
parsing models on the development sets and report
the average of the 5 best results in 30 epochs and 5
runs with different random seeds.

Data We test our models on a sample of tree-
banks from Universal Dependencies v2.1 (Nivre
et al., 2017). We follow the criteria from
de Lhoneux et al. (2017c) to select our sample:
we ensure typological variety, we ensure variety
of domains, we verify the quality of the treebanks,
and we use one treebank with a large amount of
non-projective arcs. However, unlike them, we
do not use extremely small treebanks. Our selec-
tion is the same as theirs but we remove the tiny
treebanks and replace them with 3 others. Our
final set is: Ancient Greek (PROIEL), Basque,
Chinese, Czech, English, Finnish, French, Hebrew
and Japanese.

4The code can be found at https://github.com/
mdelhoneux/uuparser-composition



1570

5 Results

First, we look at the effect of our different recur-
sive composition functions on the full model (i.e.,
the model using a BiLSTM for feature extraction
as well as both character and POS tag informa-
tion). As can be seen from Figure 1, recursive
composition using an LSTM cell (+lc) is gener-
ally better than recursive composition with a re-
current cell (+rc), but neither technique reliably
improves the accuracy of a BiLSTM parser.

Figure 1: LAS of models using a BiLSTM (bi) without
composition, with a recurrent cell (+rc) and with an
LSTM cell (+lc). Bar charts truncated at 50 for visual-
ization purposes.

5.1 Ablating the forward and backward
LSTMs

Second, we only consider the models using char-
acter and POS information and look at the effect of
ablating parts of the BiLSTM on the different lan-
guages. The results can be seen in Figure 2. As ex-
pected, the BiLSTM parser performs considerably
better than both unidirectional LSTM parsers, and
the backward LSTM is considerably better than
the forward LSTM, on average. It is, however,
interesting to note that using a forward LSTM is
much more hurtful for some languages than others:
it is especially hurtful for Chinese and Japanese.
This can be explained by language properties: the
right-headed languages suffer more from ablating
the backward LSTM than other languages. We ob-
serve a correlation between how hurtful a forward
model is compared to the baseline and the percent-
age of right-headed content dependency relations

Figure 2: LAS of models using a BiLSTM (bi), back-
ward LSTM (bw) and forward LSTM (fw).

Figure 3: Correlation between how hurtful it is to ab-
late the backward LSTM and right-headedness of lan-
guages.

(R = −0.838, p < .01), see Figure 3.5

There is no significant correlation between how
hurtful ablating the forward LSTM is and the per-
centage of left-headed content dependency rela-
tions (p > .05) indicating that its usefulness is
not dependent on language properties. We hypoth-
esise that dependency length or sentence length
can play a role but we also find no correlation
between how hurtful it is to ablate the forward
LSTM and average dependency or sentence length
in treebanks. It is finally also interesting to note
that the backward LSTM performance is close
to the BiLSTMs performance for some languages
(Japanese and French).

5The reason we only consider content dependency rela-
tions is that the UD scheme focuses on dependency relations
between content words and treats function words as features
of content words to maximise parallelism across languages
(de Marneffe et al., 2014).



1571

Figure 4: LAS of models using a BiLSTM (bi), backward LSTM (bw) and forward LSTM (fw), without recursive
composition, with a recurrent cell (+rc) and with a LSTM cell (+lc). Bar charts truncated at 50 for visualization
purposes.

We now look at the effect of using recursive
composition on these ablated models. Results are
given in Figure 4. First of all, we observe un-
surprisingly that composition using an LSTM cell
is much better than using a simple recurrent cell.
Second, both types of composition help the back-
ward LSTM case, but neither reliably helps the bi
models. Finally, the recurrent cell does not help
the forward LSTM case but the LSTM cell does
to some extent. It is interesting to note that us-
ing composition, especially using an LSTM cell,
bridges a substantial part of the gap between the
bw and the bi models.

These results can be related to the literature on
transition-based dependency parsing. Transition-
based parsers generally rely on two types of fea-
tures: history-based features over the emerging
dependency tree and lookahead features over the
buffer of remaining input. The former are based
on a hierarchical structure, the latter are purely se-
quential. McDonald and Nivre (2007) and Mc-
Donald and Nivre (2011) have shown that history-
based features enhance transition-based parsers as
long as they do not suffer from error propaga-
tion. However, Nivre (2006) has also shown that
lookahead features are absolutely crucial given the
greedy left-to-right parsing strategy.

In the model architectures considered here, the

backward LSTM provides an improved lookahead.
Similarly to the lookahead in statistical parsing, it
is sequential. The difference is that it gives in-
formation about upcoming words with unbounded
length. The forward LSTM in this model architec-
ture provides history-based information but unlike
in statistical parsing, that information is built se-
quentially rather than hierarchically: the forward
LSTM passes through the sentence in the linear
order of the sentence. In our results, we see that
lookahead features are more important than the
history-based ones. It hurts parsing accuracy more
to ablate the backward LSTM than to ablate the
forward one. This is expected given that some
history-based information is still available through
the top tokens on the stack, while the lookahead
information is almost lost completely without the
backward LSTM.

A composition function gives hierarchical in-
formation about the history of parsing actions. It
makes sense that it helps the backward LSTM
model most since that model has no access to
any information about parsing history. It helps
the forward LSTM slightly which indicates that
there can be gains from using structured informa-
tion about parsing history rather than sequential
information. We could then expect that composi-
tion should help the BiLSTM model which, how-



1572

Figure 5: LAS of baseline, using char and/or POS tags
to construct word representations

ever, is not the case. This might be because the
BiLSTM constructs information about parsing his-
tory and lookahead into a unique representation.
In any case, this indicates that BiLSTMs are pow-
erful feature extractors which seem to capture use-
ful information about subtrees.

5.2 Ablating POS and character information

Next, we look at the effect of the different word
representation methods on the different languages,
as represented in Figure 5. As is consistent with
the literature (Ballesteros et al., 2015; de Lhoneux
et al., 2017a; Smith et al., 2018b), using character-
based word representations and/or POS tags con-
sistently improves parsing accuracy but has a dif-
ferent impact in different languages and the bene-
fits of both methods are not cumulative: using the
two combined is not much better than using either
on its own. In particular, character models are an
efficient way to obtain large improvements in mor-
phologically rich languages.

We look at the impact of recursive composi-
tions on all combinations of ablated models, see
Table 1. We only look at the impact of using an
LSTM cell rather than a recurrent cell since it was
a better technique across the board (see previous
section).

Looking first at BiLSTMs, it seems that com-
position does not reliably help parsing accuracy,
regardless of access to POS and character infor-
mation. This indicates that the vectors obtained
from the BiLSTM already contain information that
would otherwise be obtained by using composi-
tion.

Turning to results with either the forward or the

backward LSTM ablated, we see the expected pat-
tern. Composition helps more when the model
lacks POS tags, indicating that there is some re-
dundancy between these two methods of build-
ing contextual information. Composition helps re-
cover a substantial part of the gap of the model
with a backward LSTM with or without POS tag.
It recovers a much less substantial part of the gap
in other cases which means that, although there is
some redundancy between these different methods
of building contextual information, they are still
complementary and a recursive composition func-
tion cannot fully compensate for the lack of a back-
ward LSTM or POS and/or character information.
There are some language idiosyncracies in the re-
sults. While composition helps recover most of the
gap for the backward LSTM models without POS
and/or character information for Czech and En-
glish, it does it to a much smaller extent for Basque
and Finnish. We hypothesise that arc depth might
impact the usefulness of composition, since more
depth means more matrix multiplications with the
composition function. However, we find no corre-
lation between average arc depth of the treebanks
and usefulness of composition. It is an open ques-
tion why composition helps some languages more
than others.

Note that we are not the first to use composition
over vectors obtained from a BiLSTM in the con-
text of dependency parsing, as this was done by Qi
and Manning (2017). The difference is that they
compose vectors before scoring transitions. It was
also done by Kiperwasser and Goldberg (2016a)
who showed that using BiLSTM vectors for words
in their Tree LSTM parser is helpful but they did
not compare this to using BiLSTM vectors with-
out the Tree LSTM.

Recurrent and recursive LSTMs in the way they
have been considered in this paper are two ways of
constructing contextual information and making it
available for local decisions in a greedy parser.
The strength of recursive LSTMs is that they can
build this contextual information using hierarchi-
cal context rather than linear context. A possible
weakness is that this makes the model sensitive to
error propagation: a wrong attachment leads to us-
ing the wrong contextual information. It is there-
fore possible that the benefits and drawbacks of
using this method cancel each other out in the con-
text of BiLSTMs.



1573

pos+char+ pos+char-
bi bi+lc bw bw+lc fw fw+lc bi bi+lc bw bw+lc fw fw+lc

cs 87.9 88.2 85.9 87.7 84.9 85.0 86.7 87.0 84.5 86.2 83.6 83.6
en 82.0 82.3 80.3 81.9 75.1 75.6 81.5 81.5 79.7 81.4 74.3 75.0
eu 73.3 73.5 72.0 72.4 66.8 67.4 67.4 67.6 65.6 66.3 59.6 60.5
fi 79.3 79.7 77.7 79.2 73.7 74.7 72.5 72.7 69.8 71.7 66.7 67.4
fr 87.5 87.6 86.4 87.5 86.3 86.4 87.1 87.2 85.8 86.9 85.7 85.9
grc 75.4 76.1 72.8 75.0 70.9 71.1 72.2 72.5 69.6 71.4 67.4 67.8
he 80.0 80.1 78.0 80.0 77.9 78.2 79.4 79.2 77.2 79.0 76.9 77.3
ja 94.6 94.6 94.4 94.5 83.3 83.9 94.3 94.3 94.2 94.3 83.0 83.6
zh 72.9 72.7 71.3 72.4 57.4 58.7 71.5 71.3 69.9 70.8 56.4 57.9

av 81.4 81.6 79.8 81.2 75.1 75.7 79.2 79.2 77.4 78.7 72.6 73.2
pos-char+ pos-char-

bi bi+lc bw bw+lc fw fw+lc bi bi+lc bw bw+lc fw fw+lc

cs 88.1 88.4 86.0 87.8 84.7 84.9 84.3 84.5 81.3 83.1 79.9 79.8
en 82.2 82.1 79.8 81.6 73.2 73.8 80.0 79.9 77.5 79.2 70.5 71.5
eu 72.8 72.9 71.5 71.8 65.4 66.4 61.6 62.0 57.7 59.5 48.7 51.2
fi 78.2 78.6 75.8 77.9 72.0 73.0 62.8 63.1 56.6 60.2 52.8 54.7
fr 87.6 87.7 86.1 87.4 85.4 85.7 85.9 85.8 83.7 85.3 83.1 83.3
grc 74.4 74.8 71.3 73.7 69.2 69.6 68.3 69.0 64.6 67.3 62.6 63.4
he 79.9 80.1 77.4 79.9 76.5 77.3 77.5 77.4 74.4 77.2 74.2 74.7
ja 94.2 94.4 94.2 94.4 81.3 81.8 93.2 93.3 92.7 93.1 79.5 80.2
zh 72.7 72.5 70.8 72.2 56.5 58.2 69.1 69.3 66.7 68.1 53.4 55.0

av 81.1 81.3 79.2 80.8 73.8 74.5 75.9 76.0 72.8 74.8 67.2 68.2

Table 1: LAS for bi, bw and fw, without and with composition (+lc) with an LSTM. Difference > 0.5 with +lc
in bold.

5.3 Ensemble

To investigate further the information captured
by BiLSTMs, we ensemble the 6 versions of the
models with POS and character information with
the different feature extractors (bi, bw, fw) with
(+lc) and without composition. We use the (un-
weighted) reparsing technique of Sagae and Lavie
(2006)6 and ignoring labels. As can be seen
from the UAS scores in Table 2, the ensemble
(full) largely outperforms the parser using only a
BiLSTM, indicating that the information obtained
from the different models is complementary. To
investigate the contribution of each of the 6 mod-
els, we ablate each one by one. As can be seen
from Table 2, ablating either of the BiLSTM mod-
els or the backward LSTM using composition, re-
sults in the least effective of the ablated mod-
els, further strengthening the conclusion that BiL-
STMs are powerful feature extractors.

6 Conclusion

We investigated the impact of composing the rep-
resentation of subtrees in a transition-based parser.
We observed that composition does not reliably

6This method scores all arcs by the number of parsers pre-
dicting them and extracts a maximum spanning tree using the
Chu-Liu-Edmonds algorithm (Edmonds, 1967).

bi full -bi -[bi+lc] -bw -[bw+lc] -fw -[fw+lc]

cs 90.9 92.0 91.8 91.8 91.8 91.8 92.1 92.0
en 85.8 87.1 86.7 86.7 86.8 86.7 87.2 87.2
eu 78.7 80.9 80.3 80.2 80.4 80.3 80.9 81.0
fi 83.5 85.5 85.4 85.4 85.3 85.2 85.6 85.5
fr 89.8 90.8 90.8 90.6 90.8 90.7 90.8 90.8
grc 81.2 83.5 83.0 83.1 83.3 83.0 83.4 83.6
he 86.2 87.6 87.6 87.4 87.5 87.2 87.6 87.7
ja 95.9 96.1 95.8 95.7 95.9 95.8 96.3 96.2
zh 78.3 79.3 78.4 78.6 78.4 78.7 79.8 79.9

av 85.6 87.0 86.6 86.6 86.7 86.6 87.1 87.1

Table 2: UAS ensemble (full) and ablated experiments.

help a parser that uses a BiLSTM for feature
extraction, indicating that vectors obtained from
the BiLSTM might capture subtree information,
which is consistent with the results of Linzen et al.
(2016). However, we observe that, when ablating
the backward LSTM, performance drops and re-
cursive composition does not help to recover much
of this gap. We hypothesise that this is because the
backward LSTM primarily improves the looka-
head for the greedy parser. When ablating the for-
ward LSTM, performance drops to a smaller ex-
tent and recursive composition recovers a substan-
tial part of the gap. This indicates that a forward
LSTM and a recursive composition function cap-
ture similar information, which we take to be re-
lated to the rich history-based features crucial for
a transition-based parser. To capture this infor-



1574

mation, a recursive composition function is better
than a forward LSTM on its own, but it is even bet-
ter to have a forward LSTM as part of a BiLSTM.
We further find that recursive composition helps
more when POS tags are ablated from the model,
indicating that POS tags and a recursive compo-
sition function are partly redundant ways of con-
structing contextual information. Finally, we cor-
relate results with language properties, showing
that the improved lookahead of a backward LSTM
is especially important for head-final languages.

Acknowledgments

We acknowledge the computational resources pro-
vided by CSC in Helsinki and Sigma2 in Oslo
through NeIC-NLPL (www.nlpl.eu). We thank
Sara Stymne and Aaron Smith for many discus-
sions about this paper.

References
Miguel Ballesteros, Chris Dyer, and Noah A. Smith.

2015. Improved transition-based parsing by model-
ing characters instead of words with LSTMs. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
349–359.

Timothy Dozat and Christopher Manning. 2017. Deep
Biaffine Attention for Neural Dependency Parsing.
In Proceedings of the 5th International Conference
on Learning Representations.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 334–343.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. In Proceedings of NAACL-HLT, pages
199–209.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards,
71B:233–240.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Color-
less green recurrent networks dream hierarchically.
arXiv preprint arXiv:1803.11138.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Eliyahu Kiperwasser and Yoav Goldberg. 2016a. Easy-
first dependency parsing with hierarchical tree

LSTMs. Transactions of the Association for Com-
putational Linguistics, 4:445–461.

Eliyahu Kiperwasser and Yoav Goldberg. 2016b. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Marco Kuhlmann, Carlos Gómez-Rodríguez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
673–682.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What do recurrent neural network
grammars learn about syntax? In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1249–1258. Association for
Computational Linguistics.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
Lstms can learn syntax-sensitive dependencies well,
but modeling structure makes them better. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1426–1436.

Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu
Kiperwasser, Sara Stymne, Yoav Goldberg, and
Joakim Nivre. 2017a. From raw text to universal
dependencies - look, no tags! In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
207–217, Vancouver, Canada. Association for Com-
putational Linguistics.

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre.
2017b. Arc-hybrid non-projective dependency pars-
ing with a static-dynamic oracle. In Proceedings of
the 15th International Conference on Parsing Tech-
nologies, pages 99–104, Pisa, Italy. Association for
Computational Linguistics.

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre.
2017c. Old school vs. new school: Comparing
transition-based parsers with and without neural net-
work enhancement. In Proceedings of the 15th Tree-
banks and Linguistic Theories Workshop (TLT).

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Marie-Catherine de Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Univer-
sal Stanford Dependencies: A cross-linguistic ty-
pology. In Proceedings of the 9th International



1575

Conference on Language Resources and Evaluation
(LREC), pages 4585–4592.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the errors of data-driven dependency parsing
models. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 122–131.

Ryan McDonald and Joakim Nivre. 2011. Analyzing
and integrating dependency parsers. Computational
Linguistics, pages 197–230.

Joakim Nivre. 2006. Inductive Dependency Parsing.
Springer.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34:513–553.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP (ACL-
IJCNLP), pages 351–359.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene
Antonsen, Maria Jesus Aranzabe, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber
Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Victo-
ria Bobicev, Carl Börstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Aljoscha Burchardt, Marie
Candito, Gauthier Caron, Gülşen Cebiroğlu Eryiğit,
Giuseppe G. A. Celano, Savas Cetin, Fabri-
cio Chalub, Jinho Choi, Silvie Cinková, Çağrı
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Peter Dirix, Kaja Do-
brovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Marhaba Eli, Ali Elkahky, Tomaž Erjavec,
Richárd Farkas, Hector Fernandez Alcalde, Jennifer
Foster, Cláudia Freitas, Katarína Gajdošová, Daniel
Galbraith, Marcos Garcia, Moa Gärdenfors, Kim
Gerdes, Filip Ginter, Iakes Goenaga, Koldo Go-
jenola, Memduh Gökırmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra, Ma-
tias Grioni, Normunds Grūzı̄tis, Bruno Guillaume,
Nizar Habash, Jan Hajič, Jan Hajič jr., Linh Hà Mỹ,
Kim Harris, Dag Haug, Barbora Hladká, Jaroslava
Hlaváčová, Florinel Hociung, Petter Hohle, Radu
Ion, Elena Irimia, Tomáš Jelínek, Anders Jo-
hannsen, Fredrik Jørgensen, Hüner Kaşıkara, Hi-
roshi Kanayama, Jenna Kanerva, Tolga Kayade-
len, Václava Kettnerová, Jesse Kirchner, Natalia
Kotsyba, Simon Krek, Veronika Laippala, Lorenzo
Lambertino, Tatiana Lando, John Lee, Phương
Lê Hồng, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Cheuk Ying Li, Josie Li, Keying
Li, Nikola Ljubešić, Olga Loginova, Olga Lya-
shevskaya, Teresa Lynn, Vivien Macketanz, Aibek

Makazhanov, Michael Mandl, Christopher Manning,
Cătălina Mărănduc, David Mareček, Katrin Marhei-
necke, Héctor Martínez Alonso, André Martins, Jan
Mašek, Yuji Matsumoto, Ryan McDonald, Gustavo
Mendonça, Niko Miekka, Anna Missilä, Cătălin
Mititelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Shinsuke Mori,
Bohdan Moskalevskyi, Kadri Muischnek, Kaili
Müürisep, Pinkey Nainwani, Anna Nedoluzhko,
Gunta Nešpore-Bērzkalne, Lương Nguyễn Thị,
Huyền Nguyễn Thị Minh, Vitaly Nikolaev, Hanna
Nurmi, Stina Ojala, Petya Osenova, Robert Östling,
Lilja Øvrelid, Elena Pascual, Marco Passarotti,
Cenel-Augusto Perez, Guy Perrier, Slav Petrov, Jussi
Piitulainen, Emily Pitler, Barbara Plank, Martin
Popel, Lauma Pretkalniņa, Prokopis Prokopidis, Ti-
ina Puolakainen, Sampo Pyysalo, Alexandre Rade-
maker, Loganathan Ramasamy, Taraka Rama, Vinit
Ravishankar, Livy Real, Siva Reddy, Georg Rehm,
Larissa Rinaldi, Laura Rituma, Mykhailo Roma-
nenko, Rudolf Rosa, Davide Rovati, Benoı̂t Sagot,
Shadi Saleh, Tanja Samardžić, Manuela Sanguinetti,
Baiba Saulı̄te, Sebastian Schuster, Djamé Seddah,
Wolfgang Seeker, Mojgan Seraji, Mo Shen, At-
suko Shimada, Dmitry Sichinava, Natalia Silveira,
Maria Simi, Radu Simionescu, Katalin Simkó,
Mária Šimková, Kiril Simov, Aaron Smith, An-
tonio Stella, Milan Straka, Jana Strnadová, Alane
Suhr, Umut Sulubacak, Zsolt Szántó, Dima Taji,
Takaaki Tanaka, Trond Trosterud, Anna Trukhina,
Reut Tsarfaty, Francis Tyers, Sumire Uematsu,
Zdeňka Urešová, Larraitz Uria, Hans Uszkoreit,
Sowmya Vajjala, Daniel van Niekerk, Gertjan van
Noord, Viktor Varga, Eric Villemonte de la Clerg-
erie, Veronika Vincze, Lars Wallin, Jonathan North
Washington, Mats Wirén, Tak-sum Wong, Zhuoran
Yu, Zdeněk Žabokrtský, Amir Zeldes, Daniel Ze-
man, and Hanzhi Zhu. 2017. Universal dependen-
cies 2.1. LINDAT/CLARIN digital library at the In-
stitute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles Uni-
versity.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

Peng Qi and Christopher D. Manning. 2017. Arc-swift:
A novel transition system for dependency parsing.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 110–117. Association for
Computational Linguistics.

Kenji Sagae and Alon Lavie. 2006. Parser combination
by reparsing. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Com-
panion Volume: Short Papers, pages 129–132.

Aaron Smith, Bernd Bohnet, Miryam de Lhoneux,
Joakim Nivre, Yan Shao, and Sara Stymne. 2018a.
82 treebanks, 34 models: Universal dependency
parsing with multi-treebank models. In Proceed-
ings of the CoNLL 2018 Shared Task: Multilingual



1576

Parsing from Raw Text to Universal Dependencies,
pages 113–123. Association for Computational Lin-
guistics.

Aaron Smith, Miryam de Lhoneux, Sara Stymne, and
Joakim Nivre. 2018b. An investigation of the inter-
actions between pre-trained word embeddings, char-
acter models and pos tags in dependency parsing.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2711–2720. Association for Computational Linguis-
tics.

Richard Socher, John Bauer, Christopher D Manning,
et al. 2013. Parsing with compositional vector gram-
mars. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), volume 1, pages 455–465.

Pontus Stenetorp. 2013. Transition-based dependency
parsing using recursive neural networks. In Deep
Learning Workshop at the 2013 Conference on Neu-
ral Information Processing Systems (NIPS), Lake
Tahoe, Nevada, USA.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016), Portorož,
Slovenia. European Language Resources Associa-
tion.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martínez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017

Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.


