
Proceedings of NAACL-HLT 2019, pages 1493–1503
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

1493

Improving Lemmatization of Non-Standard Languages with Joint
Learning

Enrique Manjavacas1, Ákos Kádár2, and Mike Kestemont1

1Computational Linguistics and Psycholinguistics Research Center, University of Antwerp, Belgium
2Tilburg Center for Cognition and Communication, Tilburg University, The Netherlands

{firstname,lastname}@uantwerpen.be,a.kadar@uvt.nl

Abstract
Lemmatization of standard languages is con-
cerned with (i) abstracting over morphologi-
cal differences and (ii) resolving token-lemma
ambiguities of inflected words in order to map
them to a dictionary headword. In the present
paper we aim to improve lemmatization per-
formance on a set of non-standard histori-
cal languages in which the difficulty is in-
creased by an additional aspect (iii): spelling
variation due to lacking orthographic stan-
dards. We approach lemmatization as a string-
transduction task with an encoder-decoder ar-
chitecture which we enrich with sentence con-
text information using a hierarchical sentence
encoder. We show significant improvements
over the state-of-the-art when training the sen-
tence encoder jointly for lemmatization and
language modeling. Crucially, our architec-
ture does not require POS or morphological
annotations, which are not always available
for historical corpora. Additionally, we also
test the proposed model on a set of typolog-
ically diverse standard languages showing re-
sults on par or better than a model without en-
hanced sentence representations and previous
state-of-the-art systems. Finally, to encourage
future work on processing of non-standard va-
rieties, we release the dataset of non-standard
languages underlying the present study, based
on openly accessible sources.

1 Introduction

Lemmatization is the task of mapping a token to
its corresponding dictionary head-form to allow
downstream applications to abstract away from
orthographic and inflectional variation (Knowles
and Mohd Don, 2004). While lemmatization is
considered to be solved for analytic and resource-
rich languages such as English, it remains an open
challenge for morphologically complex (e.g. Es-
tonian, Latvian) and low-resource languages with
unstable orthography (e.g. historical languages).

Especially for languages with higher surface vari-
ation, lemmatization plays a crucial role as a pre-
processing step for downstream tasks such as topic
modeling, stylometry and information retrieval.

In the case of standard languages, lemmatiza-
tion complexity arises primarily from two sources:
(i) morphological complexity affecting the num-
ber of inflectional patterns a lemmatizer has to
model and (ii) token-lemma ambiguities (e.g. “liv-
ing” can refer to lemmas “living” or “live”) which
require modeling sentence context information.
In the case of historical languages, however, the
aforementioned spelling variation introduces fur-
ther complications. For instance, the regularity
of the morphological system is drastically reduced
since the evidence supporting token-lemma map-
pings becomes more sparse. As an example, while
the modern Dutch lemma “jaar” (en. “year”) can
be inflected in 2 different ways (“jaar”, “jaren”),
in a Middle Dutch corpus used in this study it
is found in combination with 70 different forms
(“iare”, “ior”, “jaer”, etc.). Moreover, spelling
variation increases token-lemma ambiguities by
conflating surface realizations of otherwise unam-
biguous tokens—e.g. Middle Low German “bath”
can refer to lemmas “bat” (en. “bad”) and “bid-
den” (en. “bet”) due to different spellings of the
dental occlusive in final position.

Spelling variation is not exclusive of histori-
cal languages and it can be found in contempo-
rary forms of on communication, such as micro-
blogs, with loose orthographic conventions (Crys-
tal, 2001). An important difference, however, is
that while for modern languages normalization is
feasible (Schulz et al., 2016), for many historic
languages such is not possible, because one is
dealing with an amalgam of regional dialects that
lacked any sort of supra-regional variant function-
ing as target domain (Kestemont et al., 2016).

In the present paper, we apply representation

1494

learning to lemmatization of historical languages.
Our method shows improvements over a plain
encoder-decoder framework, which reportedly
achieves state-of-the-art performance on lemmati-
zation and morphological analysis (Bergmanis and
Goldwater, 2018; Peters et al., 2018). In particu-
lar, we make the following contributions:

1. We introduce a simple joint learning ap-
proach based on a bidirectional Language
Model (LM) loss and achieve relative im-
provements in overall accuracy of 7.9% over
an encoder-decoder trained without joint loss
and 30.72% over edit-tree based approaches.

2. We provide a detailed analysis of the linguis-
tic and corpus characteristics that explain the
amount of improvement we can expect from
LM joint training.

3. We probe the hidden representations learned
with the joint loss and find them signifi-
cantly better predictors of POS-tags and other
morphological categories than the represen-
tations of the simple model, confirming the
efficiency of the joint loss for feature extrac-
tion.

Additionally, we test our approach on a typolog-
ically varied set of modern standard languages and
find that the joint LM loss significantly improves
lemmatization accuracy of ambiguous tokens over
the encoder-decoder baseline (with a relative in-
crease of 15.1%), but that, in contrast to previ-
ous literature (Chakrabarty et al., 2017; Bergmanis
and Goldwater, 2018), the overall performance of
encoder-decoder models is not significantly higher
than that of edit-tree based approaches. Tak-
ing into account the type of inflectional morphol-
ogy dominating in a particular language, we show
that the benefit of encoder-decoder approaches is
highly dependent on typological morphology. Fi-
nally, to assure reproducibility, all corpus prepro-
cessing pipelines and train-dev-test splits are re-
leased. With this release, we hope to encourage
future work on processing of lesser studied non-
standard varieties.1

1 Datasets and training splits are available at https:
//www.github.com/emanjavacas/pie-data. Ex-
periments are conducted with our framework pie avail-
able at: https://www.github.com/emanjavacas/
pie. All our experiments are implemented using PyTorch
(Paszke et al., 2017).

2 Related Work

Modern data-driven approaches typically treat
lemmatization as a classification task where
classes are represented by binary edit-trees in-
duced from the training data. Given a token-
lemma pair, its binary edit-tree is induced by com-
puting the prefix and suffix around the longest
common subsequence, and recursively building
a tree until no common character can be found.
Such edit-trees manage to capture a large propor-
tion of the morphological regularity, especially for
languages that rely on suffixation for morphologi-
cal inflection (e.g. Western European languages),
for which such methods were primarily designed.

Based on edit-tree induction, different lemma-
tizers have been proposed. For example, Chrupala
et al. (2008) use a log-linear model and a set of
hand-crafted features to decode a sequence of edit-
trees together with the sequence of POS-tags using
a beam-search strategy. A related approach is pre-
sented by Gesmundo and Samardži (2012), where
edit-trees are extracted using a non-recursive ver-
sion of the binary edit-tree induction approach.
More recently, Cotterell et al. (2015) have used an
extended set of features and a second-order CRF to
jointly predict POS-tags and edit-trees with state-
of-the-art performance. Finally, Chakrabarty et al.
(2017) employed a softmax classifier to predict
edit-trees based on sentence-level features implic-
itly learned with a neural encoder over the input
sentence.

With the advent of current encoder-decoder ar-
chitectures, lemmatization as a string-transduction
task has gained interest partly inspired by the
success of such architectures in Neural Machine
Translation (NMT). For instance, Bergmanis and
Goldwater (2018) apply a state-of-the-art NMT
system with the lemma as target and as source the
focus token with a fixed window over neighboring
tokens. Most similar to our work is the approach
by Kondratyuk et al. (2018), which conditions the
decoder on sentence-level distributional features
extracted from a sentence-level bidirectional RNN
and morphological tags.

Recently, work on non-standard historical va-
rieties has focused on spelling normalization
using rule-based, statistical and neural string-
transduction models (Pettersson et al., 2014; Boll-
mann and Søgaard, 2016; Tang et al., 2018). Pre-
vious studies on lemmatization of historical vari-
ants focused on evaluating off-the-shelf systems.

https://www.github.com/emanjavacas/pie-data
https://www.github.com/emanjavacas/pie-data
https://www.github.com/emanjavacas/pie
https://www.github.com/emanjavacas/pie

1495

For instance, Eger et al. (2016) evaluates differ-
ent pre-existing models on a dataset of German
and Medieval Latin, and Dereza (2018) focuses
on Early Irish. The most similar to the present
paper in this area is work by Kestemont et al.
(2016), which tackled lemmatization of Middle
Dutch with a neural encoder that extracts charac-
ter and word-level features from a fixed-length to-
ken window and predicts the target lemma from a
closed-set of true lemmas.

Using Language Modeling as a task to extract
features in a Transfer Learning setup has gained
momentum only in the last year, partly thanks to
overall improvements over previous state-of-the-
art across multiple tasks (NER, POS, QA, etc.).
Different models have been proposed around the
same idea varying in implementation, optimiza-
tion and task definition. For instance, Howard and
Ruder (2018) present a method to fine-tune a pre-
trained LM for text classification. Peters et al.
(2018) learn task-specific weighting schemes over
different layer features extracted by a pretrained
bidirectional LM. Recently, Akbik et al. (2018)
used context-sensitive word-embeddings extracted
from a bidirectional character-level LM to im-
prove NER, POS-tagging and chunking.

3 Proposed Model

Here we describe our encoder-decoder architec-
ture for lemmatization. In Section 3.1 we start by
describing the basic formulation known from the
machine translation literature. Section 3.2 shows
how sentential context is integrated into the decod-
ing process as an extra source of information. Fi-
nally, Section 3.3 describes how we learn richer
representations for the encoder through the addi-
tion of an extra language modeling task.

3.1 Encoder-Decoder

We employ a character-level Encoder-Decoder ar-
chitecture that takes an input token xt character-
by-character and has as goal the character-level
decoding of the target lemma lt conditioned on
an intermediate representation of xt. For token
xt, a sequence of token character embeddings
cx1 , . . . , c

x
n is extracted from embedding matrix

Wenc ∈ R|C|×d (where |C| and d represent, re-
spectively, the size of the character vocabulary and
the embedding dimensionality). These are then
passed to a bidirectional RNN encoder, that com-
putes a forward and a backward sequence of hid-

den states:
−−→
henc1 , . . . ,

−−→
hencn and

←−−
henc1 , . . . ,

←−−
hencn . The

final representation of each character i is the con-
catenation of the forward and the backward states:
henci = [

−−→
henci ;

←−−
henci].

At each decoding step j, a RNN decoder gener-
ates the hidden state hdecj , given the lemma charac-
ter embedding clj from embedding matrix Wdec ∈
R|L|×d, the previous hidden state hdecj−1 and addi-
tional context. This additional context consists of
a summary vector rj obtained via an attentional
mechanism (Bahdanau et al., 2014) that takes as
input the previous decoder state hdecj−1 and the se-
quence of encoder activations henc1 , . . . , hencn .2 Fi-
nally, the output logits for character j are com-
puted by a linear projection of the current decoder
state hencj with parameters O ∈ RH×|L|, which
are normalized to probabilities with the softmax
function. The model is trained to maximize the
probability of the target character sequence ex-
pressed in Equation 1 using teacher-forcing.

P (lt|xt) =
m∏
j=1

P (clj |cl<j , rj ; θenc, θdec) (1)

3.2 Adding sentential context

Lemmatization of ambiguous tokens can be im-
proved by incorporating sentence-level informa-
tion. Our architecture is similar to Kondratyuk
et al. (2018) in that it incorporates global sentence
information by extracting distributional features
with a hierarchical bidirectional RNN over the in-
put sequence of tokens x1, ..., xm. For each token
xt, we first extract word-level features re-using the
last hidden state of character-level bidirectional
RNN Encoder from Section 3.1 wt = [

−−→
henct ;

←−−
henct].

Optionally, word-level features can be enriched
with extra lookup parameters from an embedding
matrix Wword ∈ R|V |×e – where V and e de-
note respectively the vocabulary size in words
and the word embedding dimensionality.3 Given
these word-level features wt, the sentence-level
features st are computed as the concatenation of

2 We refer to Bahdanau et al. (2014) for the description of
the attentional mechanism.

3 During development word embeddings did not con-
tribute significant improvements on historical languages, and
we therefore exclude them from the rest of the experiments.
It must be noted, however, that word embeddings might still
be helpful for lemmatization of standard languages where the
type-token ratio is smaller as well as when pretrained embed-
dings are available.

1496

forward and backward activations of an additional
sentence-level bidirectional RNN st = [−→st ;←−st].

In order to perform sentence-aware lemmatiza-
tion for token xt, we condition the decoder on the
sentence-level encoding st and optimize the prob-
ability given by Equation 2.

P (lt|xt) =
m∏
j=1

P (clj |cl<j , rj , st; θenc, θdec) (2)

Our architecture ensures that both word-level
and character-level features of each input token
in a sentence can contribute to the sentence-level
features at any given step and therefore to the
lemmatization of any other token in the sentence.
From this perspective, our architecture is more
general than those presented in Kestemont et al.
(2016); Bergmanis and Goldwater (2018), where
sentence information is included by running the
encoder over a predetermined fixed-length win-
dow of neighboring characters. Moreover, we let
the character-level embedding extractor and the
lemmatizer encoder share parameters in order to
amplify the training signal coming into the latter.
Figure 1 visualizes the proposed architecture.

3.3 Improved sentence-level features

We hypothesize that the training signal from
lemmatization alone might not be enough to ex-
tract sufficiently high quality sentence-level fea-
tures. As such we include an additional bidirec-
tional word-level language-model loss over the in-
put sentence. Given the forward and backward
subvectors of the sentence encoding st = [

−→
st ;
←−
st],

we train two additional softmax classifiers to pre-
dict token xt+1 given −→st and xt−1 given ←−st with
parameters OLMfwd and OLMbwd ∈ RS×|V |.4

We train our model to jointly minimize the neg-
ative log-likelihood of the probability defined by
Equation 2 and the LM probability defined by
Equation 3.

PLM (x) = 1/2

n∏
t=2

P (xt|x1, . . . , xt−1)

+ 1/2

n−1∏
t=1

P (xt|xt+1, . . . , xn)

(3)

4 We have found the joint loss most effective when both
forward and backward classifiers shared parameters.

t h e

hbwd

hfwd

c a t

w
t

w
t+1

s
t
fwd

s
t
bwd

s
t+1
fwd

s
t+1
bwd

s
t

s
t+1

Character-level features

Word-level features

Sentence-level features

DET

Prediction

"the" ... NN "cat" ...

Figure 1: Hierarchical sentence encoding architecture
with feature extraction at different levels.

Following a Multi-Task Learning (Caruana,
1997), we set a weight on the LM negative log-
likelihood which we decrease over training based
on lemmatization accuracy on development data to
reduce its influence on training after convergence.

4 Experiments

Section 4.1 first introduces the datasets, both the
newly introduced dataset of historical languages,
and the dataset of modern standard languages sam-
pled from Universal Dependencies (v2.2) corpus
(Nivre et al., 2016). Finally, Section 4.2 describes
model training and settings in detail.

4.1 Datasets
Historical Languages In recent years, a num-
ber of historical corpora have appeared thanks
to an increasing number of digitization initiatives
(Piotrowski, 2012). For the present study, we
chose a representative collection of medieval and
early modern datasets, favoring publicly available
data, corpora with previously published results
and datasets covering multiple genres and historic
periods. We include a total of 8 corpora cover-
ing Middle Dutch, Middle Low German, Medieval

1497

0 20000 40000 60000 80000 100000
Tokens

fro
tr
fr
it

hu
cs
he
sl

llat
ur
lv

bg
fa

cgr
de
fi

eu
en
ar
nb

goo
et
es

gml
cgl

cga
crm

ru

La
ng

ua
ge

Total number of Tokens

0.00 0.17 0.34 0.52 0.69 0.86

% Tokens

% of Unknown Tokens
% of Ambiguous Tokens

Figure 2: Statistics of total number of tokens, ambigu-
ous and unknown tokens in the test sets. The full list
of languages for both historical and standard corpora
as well as the corresponding ISO 639-1 codes used in
the present study can be found in the Appendix. Statis-
tics for unknown and ambiguous tokens are shown as
percentages.

French, Historical Slovene and Medieval Latin,
which we take from the following sources.

Both cga and cgl contain medieval Dutch ma-
terial from the Gysseling corpus curated by the In-
stitute for Dutch Lexicology5 cga is a charter col-
lection (administrative documents), whereas cgl
concerns a variety of literary texts that greatly vary
in length. crm is another Middle Dutch charter
collection from the 14th century with wide geo-
graphic coverage (Van Reenen and Mulder, 1993;
van Halteren and Rem, 2013). cgr, finally, is a
smaller collection of samples from Middle Dutch
religious writings that include later medieval texts
(Kestemont et al., 2016). fro offers a corpus
of Old French heroic epics, known as chansons
de geste (Camps, 2016). llat dataset is taken
from the Late Latin Charter Treebank, consisting
of early medieval Latin documentary texts (Korki-
akangas and Lassila, 2013). goo comes from the

5 https://ivdnt.org/taalmaterialen.

reference corpus of historical Slovene, sampled
from 89 texts from the period 1584-1899 (Erjavec,
2015). gml refers to the reference corpus of Mid-
dle Low German and Low Rhenish texts, found
in manuscripts, prints and inscriptions (Barteld
et al., 2017). Finally, cap is a corpus of early
medieval Latin ordinances decreed by Carolingian
rulers (Eger et al., 2016).

Standard Languages For a more thorough
comparison between systems across domains and
a better examination of the effect of the LM loss,
we evaluate our systems on a set of 20 standard
languages sampled from the UD corpus, trying
to guarantee typological diversity while selecting
datasets with at least 20k words. We use the
pre-defined splits from the original UD corpus
(v2.2).6. Figure 2 visualizes the test set sizes in
terms of total, ambiguous and unknown tokens for
both historical and standard languages.

4.2 Models

We refer to the full model trained with joint LM
loss by Sent-LM. In order to test the effec-
tiveness of sentence information and the impor-
tance of enhancing the quality of the sentence-
level feature extraction, we compare against a sim-
ple encoder-decoder model without sentence-level
information (Plain) and a model trained with-
out joint LM loss (Sent). Moreover, we compare
to previous state-of-the-art lemmatizers based on
binary edit-tree induction: Morfette (Chrupala
et al., 2008) and Lemming (Cotterell et al., 2015),
which we run with default hyperparameters.

For all our models, we use the same hyperpa-
rameter values as follows. All recurrent layers
have 150 cells per layer and use GRUs (Cho et al.,
2014). Encoder and Decoder have 2 layers but
the sentence encoder has only 1. We apply 0.25
dropout (Srivastava et al., 2014) after the embed-
ding layer and before the output layer and 0.25
variational dropout (Gal and Ghahramani, 2016)
in between recurrent layers. Models are optimized
with Adam (Kingma and Ba, 2015) using an ini-
tial learning rate of 1e-3 which is reduced by 25%
after each epoch without improvement on devel-
opment accuracy. Models are trained until fail-

6 The full list of languages for both historical and stan-
dard corpora as well as the corresponding ISO 639-1 codes
used in the present study can be found in the Appendix. In
the cases where train-dev-test splits were not pre-defined, we
randomly split sentences using 10% and 5% for test and dev
respectively.

https://ivdnt.org/taalmaterialen

1498

Full Ambiguous Unknown

Edit-tree 91.11 91.79 35.48
Plain 91.61 87.39 65.69
Sent 93.4 91.14 66.98
Sent-LM 94.0 92.81 65.39

Table 1: Average accuracy across historical languages.
Lemming and Morfette are shown aggregated by
taking the best performing model per dataset.

ing to achieve any improvement for 3 consecutive
epochs. Initial LM loss weight is set to 0.2 and it
is halved each epoch after two consecutive epochs
without achieving any improvements on develop-
ment perplexity.

We use sentence boundaries when given and
otherwise use POS tags corresponding to full stops
as clues. In any case, sentences are split into
chunks of maximum 35 words to accommodate to
limited memory. Target lemmas during both train-
ing and testing are lowercased in agreement with
the implementation of Lemming and Morfette,
which also do so. For models with joint loss, we
truncate the output vocabulary to the top 50k most
frequent words for similar reasons. We run a max-
imum of 100 optimization epochs in randomized
batches containing 25 sentences each. The learn-
ing rate is decreased by a factor of 0.75, after ev-
ery 2 epochs without accuracy increase on held-
out data and learning stops after failing to improve
for 5 epochs. Decoding is done with beam search
with a beam size of 10.7

5 Results

As is customary, we report exact-match accuracy
on target lemmas. Besides overall accuracy, we
also compute accuracy of ambiguous tokens (i.e.
tokens that map to more than 1 lemma in the train-
ing data) and unknown tokens (i.e. tokens that do
not appear in the training data).

5.1 Historical languages
Table 1 shows the aggregated results over all
datasets in our historical language corpus.8 In
4 cases (cga, cgl, crm and gml), Lemming
failed to converge due to memory requirements ex-
ceeding 250G RAM due to the large amount of

7 For all languages, we observed relatively small gains
ranging from 0.1% to 0.5% in overall accuracy.

8 We aggregate both edit-tree based approaches by se-
lecting the best performing model for each corpus. When
Lemming converge, the results were better than Morfette.

Full Ambiguous Unknown

K-2016 91.88 51.64
Edit-tree 89.01 91.18 20.46
Plain 90.21 87.4 61.93
Sent 92.55 91.6 64.61
Sent-LM 93.25 93.31 62.1

Table 2: Accuracy for the Gysseling subcorpora.

edit-trees. Following Søgaard et al. (2014), we
compute p-values with a Wilcoxon’s signed rank
test. Sent-LM is the best performing model with
a relative improvement of 7.9% (p < .01) over
Sent and 30.72% (p < .01) over the edit-tree ap-
proach on full datasets and 10.27% (p < .1) and
18.66% (p < .01) on ambiguous tokens. More-
over, the edit-tree approach outperforms encoder-
decoder models Plain and Sent on ambiguous
tokens, and it is only due to the joint loss that the
encoder-decoder paradigm gains an advantage. Fi-
nally, for tokens unseen during training, the best
performing model is Sent with a relative error
reduction of 47% (p < .01) over the edit-tree ap-
proach and 4.77% (p < .1) over Sent-LM.

Table 2 compares scores for a subset from the
corpora coming from the Gysseling corpus, which
have been used in previous work on lemmatiza-
tion of historical languages. The model described
by Kestemont et al. (2016) is included as K-2016
for comparison.9 It is apparent that both Sent
and Sent-LM outperform K-2016 on full and
unknown tokens. It is worth noting that K-2016,
a model that uses distributed contextual features
but no edit-tree induction, performs better than
Plain – which highlights the importance of con-
text for the lemmatization of historical languages
–, and also better than the edit-tree approaches –
which highlights the difficulty of tree induction on
this dataset. We find Sent-LM to have a signifi-
cant advantage over Sent on full and ambiguous
tokens, but a disadvantage vs Sent and Plain
on unknown tokens.

5.2 Standard languages
Table 4 shows overall accuracy scores aggregated
across all languages.10 We observe that on aver-
age Sent-LM is the best model on full datasets.

9 Unfortunately, scores on ambiguous tokens were not re-
ported and therefore cannot be compared.

10 Similarly to results on historical languages, we aggre-
gate Morfette and Lemming due to the later failing to
converge on et.

1499

Full Ambiguous Unknown
Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3

Edit-tree 96.34 93.02 98.37 92.47 92.47 97.5 84.99 74.66 91.39
Plain 96.21 94.6 97.5 88.87 90.51 95.34 85.43 83.78 86.37
Sent 96.42 94.41 97.84 91.12 92.01 96.65 85.44 84.02 86.67
Sent-LM 96.52 94.62 97.86 93.01 92.07 97.48 85.15 83.32 85.36

Table 3: Average accuracy across morphologically related standard languages. Type 1 encloses bg, cs, lv, ru
and sl. Type 2 comprises et, fi, hu, tr. Finally, Type 3 encompasses de, en, es, fr, it and nb.

Full Ambiguous Unknown

Edit-tree 96.1 94.35 83.26
Plain 95.93 91.44 83.02
Sent 96.19 93.25 82.61
Sent-LM 96.28 94.08 82.58

Table 4: Average accuracy across all 20 standard lan-
guages. Lemming and Morfette are shown aggre-
gated by taking the best performing model per dataset.

However, in contrast to previous results, the edit-
tree approach has an advantage over all encoder-
decoder models for both ambiguous and unknown
tokens.

Since the differences in performance are not sta-
tistically significant (p > 0.05), we seek to shed
light on the advantages and disadvantages of the
encoder-decoder and edit-tree paradigms by con-
ducting a more fine-grained analysis with respect
to the morphological typology of the considered
languages. To this end, we group languages into
morphological types depending on the dominant
morphological processes of each language and ag-
gregate scores over languages in each type:

Type 1. Balto-Slavic languages which are known
for their strongly suffixing morphology and
complex case system.

Type 2. Uralic and Altaic languages, which are
characterized by agglutinative morphology
and a tendency towards monoexponential
case and vowel harmony.

Type 3. Western European languages with a ten-
dency towards synthetic morphology and par-
tially lacking nominal case.

Table 3 shows accuracy scores per morphologi-
cal group for each model type. It is apparent that
the Edit-tree approach is very effective for
Type 3 languages both in ambiguous and unknown

tokens. In both Type 1 and Type 2 languages,
the best overall performing model is Sent-LM. In
the case of ambiguous tokens, Sent-LM achieves
highest accuracy for Type 1 languages, but it is
surpassed by the Edit-tree approach on Type
2 languages. Finally, in the case of unknown to-
kens, we observe a similar pattern to the historical
languages where Plain and Sent have an ad-
vantage over Sent-LM.

6 Discussion

For clarity, we group the discussion of the main
findings according to four major discussion points.

How does the joint LM loss help? As Section 5
shows, Sent-LM is the overall best model, and
its advantage is biggest on ambiguous datasets,
always outperforming the second-best encoder-
decoder model on ambiguous tokens. For a more
detailed comparison of the two models we tested
the following two hypotheses: (i) the joint LM loss
helps by providing sentence representations with
stronger disambiguation capacities (ii) The joint
LM loss helps in cases when the evidence of a
token-lemma relationship is sparse —e.g in lan-
guages with highly synthetic morphological sys-
tems and in the presence of spelling variation.

As Figure 3 shows, improvement over Sent
is correlated with percentage of token-lemma am-
biguity in the corpus, providing evidence for hy-
pothesis (i). Finally, as Figure 4 shows, improve-
ment over Sent is correlated with higher token-
lemma ratio, suggesting that the improvement is
likely to be due to learned representations that bet-
ter identify the input token. These two aspects
help explain the efficiency of the joint learning ap-
proach on non-standard languages where high lev-
els of spelling variation provide increased ambi-
guity by conflating unrelated forms and also lower
evidence for token-lemma mappings.

Another factor certainly related to the efficiency

1500

of the proposed joint LM-loss is the size of the
training dataset. However, dataset size should be
considered a necessary but not a sufficient condi-
tion for the feasibility of the joint LM-loss and has
therefore weak explanation power for the perfor-
mance of the proposed approach.

0.1 0.2 0.3 0.4 0.5
Ambiguity (%)

0.1

0.0

0.1

0.2

Er
ro

r r
ed

uc
tio

n

bg

urhe

fi

de

it

et

fr

es

cs

en

ru

hu lv
fa

eu

tr

ar
sl

cap
llat

fro

goo
cga

cgl

crm
cgr

gml

Figure 3: Error reduction of Sent-LM vs Sent by
percentage of ambiguous tokens (Spearman’s R =
0.53; p < .01). Historical languages are shown in bold.

0 20 40 60 80 100
Token/Lemma Ratio

0.0

0.1

0.2

Er
ro

r r
ed

uc
tio

n

bg

urhe

fi

de

it

et

fr

es

cs

en

ru

hulv
fa

eu

tr

ar
sl

cap
llat

fro

goo
cga

cgl

cgr
gml

Figure 4: Error reduction of Sent-LM vs Sent by
Token-Lemma ratio on 50k tokens of the training set
(Spearman’s R = 0.47; p < .05). Historical languages
are shown in bold.

LM loss leads to better representations In or-
der to analyze the representations learned with the
joint loss, we turn to “representation probing” ex-
periments following current approaches on inter-
pretability (Linzen et al., 2016; Adi et al., 2017).
Using the same train-dev-test splits from the cur-
rent study, we exploit additional POS, Number,
Gender, Case and syntactic function (Dep) annota-
tions provided in the UD corpora and compare the
ability of the representations extracted by Sent
and Sent-LM to predict these labels.11 Model
parameters are frozen and a linear softmax layer

11 Note that not all tasks are available for all languages,
due to some corpora not providing all annotations and some
categories not being relevant for particular languages.

Pos Dep Gender Case Num

Majority 82.61 62.93 85.83 80.76 83.92
Sent 79.27 64.14 83.39 83.01 81.01
Sent-LM 83.62 68.36 86.55 84.44 84.37

Support 29 20 15 19 20

Table 5: Overall accuracy of Sent and Sent-LM
models and a Majority baseline on 5 probing tasks
and actual number of languages per morphological cat-
egory. All differences over Sent except for Case are
significant at p < 0.05. Support is shown in terms of
number of languages exhibiting such grammatical dis-
tinctions.

Q ∈ RH×V per task is learned using a cross-
entropy loss function.12 The results of this ex-
periment are reported in Table 5. The classifier
trained with Sent-LM outperforms the one with
Sent on all considered labeling tasks, confirming
the efficiency of the LM loss at extracting better
representations.

Edit-tree vs. Encoder-Decoder Our fine-
grained analysis suggests that the performance of
the edit-tree and encoder-decoder approaches de-
pends on the underlying morphological typology
of the studied languages. Neural approaches seem
to be stronger for languages with complex case
systems and agglutinative morphology. In con-
trast, edit-tree approaches excel on more synthetic
languages (e.g. Type 3) and languages with lower
ambiguity (e.g. Type 2).

Figure 5 illustrates that as the number of edit-
trees increase the encoder-decoder models start to
excel. This is most likely due to the fact that, from
an edit-tree approach perspective, a large number
of trees creates a large number of classes, which
leads to higher class imbalance and more spar-
sity. However, edit-tree based approaches do out-
perform representation learning methods for lan-
guages with lower number of trees, which leads to
the intuition that the edit-tree formalism does pro-
vide a useful inductive bias to the task of lemma-
tization and it should not be discarded in future
work. Our results, in fact, point to a future di-
rection which applies the edit-tree formalism, but
alleviates the edit-tree explosion by exploiting the
relationships between the edit-tree classes poten-
tially using representation learning methods.

12 Models trained for 50 epochs using the Adam optimizer
with default learning rate and training stops after 2 epochs
without accuracy increase on dev set.

1501

0 1000 2000 3000 4000 5000
Tree Productivity

0.6

0.4

0.2

0.0

0.2

0.4
Er

ro
r r

ed
uc

tio
n

bg

urhe

nb

fi

deit

et

fr

es
cs

en

ru

hu

lv

fa

eu

tr

ar
sl

cap
llat

fro
goo

cgacglcrm

cgr
gml

Figure 5: Error reduction of best encoder-decoder
model vs best tree-edit model over tree productivity
computed as number of unique binary edit-trees in the
first 50k tokens of the training corpora (Spearman’s
R = 0.79; p < .001). Historical languages are shown
in bold.

Accuracy on unknown tokens We observe that
while overall the joint loss outperforms the sim-
pler encoder-decoder, it seems, however, detri-
mental to the accuracy on unknown tokens. This
discrepancy is probably due to the fact that (i) un-
known tokens are likely unambiguous and there-
fore less likely to profit from improved context
representations and to (ii) our design choice of
word-level language modeling, where the model
is forced to predict UNK for unknown words. As
Sent-LM is the overall best model, in future work
we will explore character-level language modeling
in order to harness the full potential of the joint-
training approach even on unknown tokens.

7 Conclusion

We have presented a method to improve lemmati-
zation with encoder-decoder models by improving
context representations with a joint bidirectional
language modeling loss. Our method sets a new
state-of-the-art for lemmatization of historical lan-
guages and is competitive on standard languages.
Our examination of the learned representations in-
dicates that the LM loss helps enriching sentence
representations with features that capture morpho-
logical information. In view of a typologically in-
formed comparison of encoder-decoder and edit-
tree based approaches, we have shown that the lat-
ter can be very effective for highly synthetic lan-
guages. Such result might have been overlooked
in previous studies due to only considering a re-
duced number of languages (Chakrabarty et al.,
2017) or pooling results across typology (Bergma-
nis and Goldwater, 2018). With respect to lan-

guages with higher ambiguity and token-lemma
ratio, the encoder-decoder approach is preferable
and the joint loss generally provides a substan-
tial improvement. Finally, while other models use
morphological information to improve the repre-
sentation of context (e.g. edit-tree approaches),
our joint language modeling loss does not rely on
any additional annotation, which can be crucial
in low resource and non-standard situations where
annotation is costly and often not trivial.

Acknowledgments

We thank NVIDIA for donating 1 GPU that was
used for the experiments in the present paper. We
would also like to thank the anonymous reviewers
for their valuable comments.

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. ICLR ’17.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual String Embeddings for Sequence
Labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649. Association for Computational Linguis-
tics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Fabian Barteld, Katharina Dreessen, Sarah Ihden,
and Ingrid Schröder. 2017. Das Referenzko-
rpus Mittelniederdeutsch/Niederrheinisch (1200–
1650)–Korpusdesign, Korpuserstellung und Korpus-
nutzung. Mitteilungen des Deutschen Germanisten-
verbandes, 64(3):226–241.

Toms Bergmanis and Sharon Goldwater. 2018. Con-
text Sensitive Neural Lemmatization with Lematus.
In North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies Volume 1.

Marcel Bollmann and Anders Søgaard. 2016. Im-
proving historical spelling normalization with bi-
directional LSTMs and multi-task learning. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 131–139. The COLING 2016 Or-
ganizing Committee.

Jean-Baptiste Camps. 2016. Geste: un corpus de chan-
sons de geste. Avec la collab. d’Elena Albarran, Al-
ice Cochet & Lucence Ing.

https://doi.org/10.1161/STR.0b013e318284056a
https://doi.org/10.1161/STR.0b013e318284056a
https://doi.org/10.1161/STR.0b013e318284056a
http://aclweb.org/anthology/C18-1139
http://aclweb.org/anthology/C18-1139
https://doi.org/10.1007/s00259-011-1787-z
https://doi.org/10.1007/s00259-011-1787-z
http://aclweb.org/anthology/C16-1013
http://aclweb.org/anthology/C16-1013
http://aclweb.org/anthology/C16-1013
http://github.com/Jean-Baptiste-Camps/Geste
http://github.com/Jean-Baptiste-Camps/Geste

1502

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Abhisek Chakrabarty, Onkar Arun Pandit, and Utpal
Garain. 2017. Context Sensitive Lemmatization Us-
ing Two Successive Bidirectional Gated Recurrent
Networks. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1481–1491. Asso-
ciation for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the Prop-
erties of Neural Machine Translation: Encoder–
Decoder Approaches. In Proceedings of SSST-8,
Eighth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation, pages 103–111. As-
sociation for Computational Linguistics.

Grzegorz Chrupala, Georgiana Dinu, and Josef van
Genabith. 2008. Learning Morphology with Mor-
fette. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA).

Ryan Cotterell, Alexander Fraser, and Hinrich Schütze.
2015. Joint Lemmatization and Morphological Tag-
ging with LEMMING. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing.

D. Crystal. 2001. Language and the Internet. Cam-
bridge University Press.

Oksana Dereza. 2018. Lemmatization for Ancient
Languages: Rules or Neural Networks? In Con-
ference on Artificial Intelligence and Natural Lan-
guage, pages 35–47. Springer.

Steffen Eger, Rdiger Gleim, and Alexander Mehler.
2016. Lemmatization and Morphological Tagging
in German and Latin: A Comparison and a Survey of
the State-of-the-art. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), Paris, France. European
Language Resources Association (ELRA).

Tomaž Erjavec. 2015. Reference corpus of historical
slovene goo300k 1.2. Slovenian language resource
repository CLARIN.SI.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019–1027.

Andrea Gesmundo and Tanja Samardži. 2012. Lem-
matisation as a Tagging Task. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
368–372, Jeju Island, Korea. Association for Com-
putational Linguistics.

Hans van Halteren and Margit Rem. 2013. Dealing
with orthographic variation in a tagger-lemmatizer
for fourteenth century dutch charters. Language Re-
sources and Evaluation, 47(4):1233–1259.

Jeremy Howard and Sebastian Ruder. 2018. Univer-
sal Language Model Fine-tuning for Text Classifica-
tion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 328–339. Association
for Computational Linguistics.

Mike Kestemont, Guy De Pauw, Renske van Nie,
and Walter Daelemans. 2016. Lemmatization for
variation-rich languages using deep learning. Dig-
ital Scholarship in the Humanities, 32(4):797–815.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
a Method for Stochastic Optimization. Inter-
national Conference on Learning Representations
2015, pages 1–15.

G. Knowles and Z. Mohd Don. 2004. The notion of a
lemma. Headwords, roots and lexical sets. Interna-
tional Journal of Corpus Linguistics, 9(1):69–81.

Daniel Kondratyuk, Tom Gavenčiak, and Milan Straka.
2018. LemmaTag: Jointly Tagging and Lemma-
tizing for Morphologically-Rich Languages with
BRNNs. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 4921–4928, Brussels, Belgium.

Timo Korkiakangas and Matti Lassila. 2013. Abbre-
viations, fragmentary words, formulaic language:
treebanking mediaeval charter material. In Proceed-
ings of The Third Workshop on Annotation of Cor-
pora for Research in the Humanities, pages 61–72.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the Ability of LSTMs to Learn
Syntax-Sensitive Dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Joakim Nivre, Marie-Catherine De Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D
Manning, Ryan T McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal Dependencies v1: A Mul-
tilingual Treebank Collection. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation (LREC 2016), Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Adam Paszke, Sam Gross, Soumith Chintala, and Gre-
gory Chanan. 2017. Pytorch: Tensors and dynamic
neural networks in python with strong gpu acceler-
ation. PyTorch: Tensors and dynamic neural net-
works in Python with strong GPU acceleration.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference

https://doi.org/10.18653/v1/P17-1136
https://doi.org/10.18653/v1/P17-1136
https://doi.org/10.18653/v1/P17-1136
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
http://www.lrec-conf.org/proceedings/lrec2008/pdf/594_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/594_paper.pdf
https://doi.org/10.1016/j.ecolecon.2009.11.007
https://doi.org/10.1016/j.ecolecon.2009.11.007
http://www.lrec-conf.org/proceedings/lrec2016/pdf/656_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/656_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/656_Paper.pdf
http://hdl.handle.net/11356/1025
http://hdl.handle.net/11356/1025
http://aclweb.org/anthology/P12-2072
http://aclweb.org/anthology/P12-2072
https://doi.org/10.1007/s10579-013-9236-1
https://doi.org/10.1007/s10579-013-9236-1
https://doi.org/10.1007/s10579-013-9236-1
http://aclweb.org/anthology/P18-1031
http://aclweb.org/anthology/P18-1031
http://aclweb.org/anthology/P18-1031
https://doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
https://doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
http://aclweb.org/anthology/D18-1532
http://aclweb.org/anthology/D18-1532
http://aclweb.org/anthology/D18-1532
http://aclweb.org/anthology/Q16-1037
http://aclweb.org/anthology/Q16-1037
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

1503

of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Eva Pettersson, Beta Megyesi, and Joakim Nivre. 2014.
A Multilingual Evaluation of Three Spelling Nor-
malisation Methods for Historical Text. In Proceed-
ings of the 8th Workshop on Language Technology
for Cultural Heritage, Social Sciences, and Human-
ities (LaTeCH), pages 32–41. Association for Com-
putational Linguistics.

Michael Piotrowski. 2012. Natural language process-
ing for historical texts. Synthesis Lectures on Hu-
man Language Technologies, 5(2):1–157.

Sarah Schulz, Guy De Pauw, Orphe De Clercq, Bart
Desmet, Veronique Hoste, Walter Daelemans, and
Lieve Macken. 2016. Multimodular text normaliza-
tion of dutch user-generated content. ACM Transac-
tions on Intelligent Systems and Technology (TIST),
7(4):61.

Anders Søgaard, Anders Johannsen, Barbara Plank,
Dirk Hovy, and Hctor Martı́nez Alonso. 2014.
What’s in a p-value in NLP? In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning, pages 1–10. Association for
Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Gongbo Tang, Fabienne Cap, Eva Pettersson, and
Joakim Nivre. 2018. An Evaluation of Neural
Machine Translation Models on Historical Spelling
Normalization. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1320–1331. Association for Computational
Linguistics.

P. Van Reenen and M. Mulder. 1993. Een gegevens-
bank van 14de-eeuwse middelnederlandse dialecten
op computer. Lexikos, 3:259–279.

A Appendix

A.1 Dataset Statistics

Table 6 shows the dataset sources and codes from
our Historical Languages.

Language Dataset Code

Medieval Latin Capitularia cap
LLCT1 llat

Middle Dutch Gys (Admin) cga
Gys (Literary) cgl

Religious cgr
Adelheid crm

Medieval French Geste fro
Middle Low German ReN gml

Slovenian goo300k goo

Table 6: Corpus identifier and description in the histor-
ical languages dataset. “Gys” refers to the Gysseling
corpus, which consists of several subsets.

Table 7 shows the languages from the UD cor-
pus that were sampled for the study. We have used
ISO 639-1 codes (instead of the more general ISO
639-2) in order to avoid clutter in the plots.

Language Dataset Code

Arabic Arabic-PDAT ar
Bulgarian Bulgarian-BTB bg

Czech Czech-CAC cs
German German-GSD de
English English-EWT en
Spanish Spanish-AnCora es
Estonian Estonian-EDT et
Basque Basque-BDT eu
Persian Persian-Seraji fa
Finnish Finnish-TDT fi
French French-GSD fr
Hebrew Hebrew-HTB he

Hungarian Hungarian-Szeged hu
Italian Italian-ISDT it
Latvian Latvian-LVTB lv

Norwegian (Bokmaal) Norwegian-Bokmaal nb
Russian Russian-SynTagRus ru

Slovenian Slovenian-SSJ sl
Turkish Turkish-IMST tr

Urdu Urdu-UDTB ur

Table 7: Standard language datasets from the Universal
Dependencies (v2.2) corpus.

https://doi.org/10.3115/v1/W14-0605
https://doi.org/10.3115/v1/W14-0605
http://dx.doi.org/10.1145/2850422
http://dx.doi.org/10.1145/2850422
https://doi.org/10.3115/v1/W14-1601
https://doi.org/10.1214/12-AOS1000
https://doi.org/10.1214/12-AOS1000
http://aclweb.org/anthology/C18-1112
http://aclweb.org/anthology/C18-1112
http://aclweb.org/anthology/C18-1112

