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Abstract
Event extraction for the biomedical domain
is more challenging than that in the general
news domain since it requires broader ac-
quisition of domain-specific knowledge and
deeper understanding of complex contexts.
To better encode contextual information and
external background knowledge, we propose
a novel knowledge base (KB)-driven tree-
structured long short-term memory networks
(Tree-LSTM) framework, incorporating two
new types of features: (1) dependency struc-
tures to capture wide contexts; (2) entity prop-
erties (types and category descriptions) from
external ontologies via entity linking. We eval-
uate our approach on the BioNLP shared task
with Genia dataset and achieve a new state-
of-the-art result. In addition, both quantita-
tive and qualitative studies demonstrate the ad-
vancement of the Tree-LSTM and the exter-
nal knowledge representation for biomedical
event extraction.

1 Introduction

Biomedical information extraction is widely used
to assist the biology community on knowledge ac-
quisition and ontology construction. Biomedical
events generally refer to a change of status, par-
ticularly on proteins or genes. The goal of event
extraction is to identify triggers and their argu-
ments from biomedical text, and then assign an
event type to each trigger and a role to each ar-
gument. For example, in the sentence shown in
Figure 1, it includes a gene expression and a pos-
itive regulation event mention, both triggered by
the word transduced. Tax is the Theme argument
of the gene expression event. An event could
also serve as an argument of another event, lead-
ing to a nested structure. For instance, the gene
expression event triggered by transduced is also a
Theme argument of the positive regulation event
as shown in Figure 1.

Earlier studies on biomedical event extrac-
tion rely on kernel classification methods like
the support vector machines (SVMs) (Björne and
Salakoski, 2011; Venugopal et al., 2014) using
hand-crafted features, which require high engi-
neering effort and domain-specific knowledge.
Recent distributional representation based ap-
proaches (Rao et al., 2017; Björne and Salakoski,
2018) explore deep neural networks which only
require distributed semantic features. However,
different from event extraction in the general news
domain, biomedical event extraction requires
broad acquisition of domain-specific knowledge
and deep understanding of complex contexts. For
example, in Genia event extracton of BioNLP
shared task 2011 (Kim et al., 2011), about 80%
of entity mentions are abbreviations of genes, pro-
teins and diseases while more than 36% of event
triggers and arguments are separated with more
than 10 words.

In order to efficiently capture indicative infor-
mation from broad contexts, we first adopt tree
structure based long short-term memory (Tree-
LSTM) networks. Compared to the linear chain
structured LSTM, the Tree-LSTM takes tree-
structured network topology into consideration.
As shown in the top frame of Figure 1, Tree-
LSTM takes the dependency tree structure of each
sentence as input and gradually incorporates the
information from the whole subtree into each
node. Dependency tree structure can connect se-
mantically related concepts, and thus shorten the
distance between a trigger and its arguments sig-
nificantly. For instance, in the following sentence
“... , which binds to the enhancer A located in
the promoter of the mouse MHC class I gene H-
2Kb, ...”, when determining the trigger type of
binds, we need to carefully select its contextual
words, such as H-2Kb, which indicates the object
of binds. However, binds and H-2Kb are sepa-
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Figure 1: The framework of the KB-driven Tree-LSTM model. The upper frame shows the dependency tree
structure and event annotations of a sentence; the middle frame demonstrates the knowledge base information
obtained from the Gene Ontology for Tax; the bottom frame describes the KB-driven Tree-LSTM which takes the
KB concept embedding and word embedding as input.

rated with 16 words which is difficult for a chain-
structured LSTM to capture their long distance de-
pendency, while within dependency tree structure,
their distance is significantly shortened to 7.

Moreover, to better capture domain-specific
knowledge, we further propose to leverage the ex-
ternal knowledge bases (KBs) to acquire proper-
ties of all the biomedical entities. The KB prop-
erties are extremely beneficial for our model to
learn patterns more explicitly. Take the entity Tax
in Figure 1 as an example, it’s a protein often in-
volved in the biological process of positive regu-
lation of transcription referred to Gene Ontology
(Ashburner et al., 2000). This function descrip-
tion provides crucial clues to determine the type
of transduced as positive regulation. Therefore,
to capture such knowledge from external KBs, for

each entity, we first learn a KB concept embedding
from its properties, and then automatically incor-
porate the KB representation into its Tree-LSTM
hidden state with a gate function.

Our contributions are twofold: First, to the best
of our knowledge, it’s the first time to adopt Tree-
LSTM for biomedical event extraction to effec-
tively capture the wide contexts. Second, we fur-
ther incorporate external knowledge from domain-
specific KBs into the Tree-LSTM, which yields
state-of-the-art performance on Genia event ex-
traction shared task.

2 KB-driven Tree-LSTM for Event
Extraction

In this section, we present our KB-driven Tree-
LSTM approach for biomedical event extraction.
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Figure 2: (A): a Tree-LSTM unit. (B): a KB-driven Tree-LSTM unit. The yellow circles with µ̃ notations denote
external KB concept embeddings.

We first introduce the Tree-LSTM framework, and
then describe the construction of KB concept em-
bedding for each entity. Finally we incorporate the
KB concept embedding into a Tree-LSTM and ap-
ply it for event trigger and argument extraction.

2.1 Tree-LSTM

The Tree-LSTM (Tai et al., 2015) is a variation
of LSTM (Hochreiter and Schmidhuber, 1997)
to a tree-structured network topology. It shows
improvement in representing sentence semantic
meaning compared to sequential LSTM such as
Bidirectional LSTM (BiLSTM) (Graves et al.,
2013). The main difference between sequential
LSTM and Tree-LSTM is, at each time step, the
former calculates its hidden state from the input at
the current time step and the hidden state from pre-
vious step, while Tree-LSTM computes its hidden
state from the input token and the hidden states
of all its children nodes from the tree structure.
A Tree-LSTM reduces to sequential LSTM when
each node in the tree only has one child. Figure 2
(A) shows a Tree-LSTM unit. In order to obtain
the hidden state hj of an input token xj , the unit
calculates all of its children hidden states (hj−1,
hj−2) through depth-first traversal.

2.2 Constructing KB Concept Embedding

For the biomedical event extraction, we mainly ex-
plore the Gene Ontology as our external KB since
it provides detailed descriptions for each gene and
gene product attributes across all species. It con-
sists of two types of information: (1) the gene on-
tology (GO) defines all the gene functions, rela-
tions between these gene functions, and aspects
used to describe the gene functions, including
molecular function, cellular component and bio-
logical process. (2) the gene product annotations

(GO Anno) provide all entity related attributes,
such as the full entity name, entity type, as well as
the gene functions it is related to. For example, in
Figure 1, given the entity tax, from the gene prod-
uct annotations, we can get its full entity name as
tax protein which is a type of proteins and it’s re-
lated to a function about biological process. From
the gene ontology, we can further determine the
specific function that tax is related to positive reg-
ulation of transcription in terms of biological pro-
cess aspect.

In order to leverage the external KB informa-
tion, we first apply QuickGO API (Binns et al.,
2009) to link each entity mention to the Gene On-
tology and retrieve all the KB annotations. For
each entity, we carefully select two types of prop-
erties which are beneficial for event extraction
task: the entity type (e.g., protein for tax) and the
gene ontology function it is related to (e.g., posi-
tive regulation of transcription for tax). The entity
type can facilitate the explicit pattern learning for
argument role labeling, for example, the gene ex-
pression event pattern (Theme: Protein, Trigger:
transduced) is more popular than (Theme: Tax,
Trigger: transduced) in Figure 1. The gene on-
tology function can provide implicit clues to de-
termine the trigger type as aforementioned in Sec-
tion 1.

As shown in Figure 1, we assign a word em-
bedding which pretrained on PubMed and PMC
texts (Moen and Ananiadou, 2013) to represent
each entity type. For each gene ontology func-
tion which is usually a long phrase, we use a state-
of-the-art sentence embedding approach (Conneau
et al., 2017) to automatically learn a vector repre-
sentation. We then concatenate these two types of
KB property representations as the final KB con-
cept embedding.
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2.3 Event Trigger Extraction
After obtaining the KB concept embeddings, we
further incorporate them into the Tree-LSTM to
leverage the domain-specific knowledge.

Given a sentence, for example the sentence
shown in Figure 3, we first perform the de-
pendency parsing with the Stanford dependency
parser (Chen and Manning) and obtain a depen-
dency tree structure. For each node j in the tree
structure, C(j) is the set of children nodes of node
j and µk is the KB concept embedding of node k.
We set µk to 0 if node k is not a biomedical entity.
µ̃j denotes the sum of the KB concept embeddings
of j’s children nodes and h̃j is the sum of the hid-
den states of j’s children nodes:

h̃j =
∑

k∈C(j)

hk

µ̃j =
∑

k∈C(j)

µk

where hk is the hidden state of node k.
Then we incorporate the KB concept embed-

dings into the input, forget, and output gates of the
Tree-LSTM:

ij = σ(Wi[xj , h̃j , µ̃j ] + bi)

fjk = σ(Wf [xj , hk, µ̃k] + bf )

oj = σ(Wo[xj , h̃j , µ̃j ] + bo)

where ij and oj are the input gate and the out-
put gate for node j respectively. fjk is the forget
gate for node j in terms of its child node k. Wi,
Wf , and Wo are learnable parameters, bi, bf and
bo are bias terms. Thus, for each node j, the input
gate gathers all KB information from its children
nodes, and the output gate balances the meaning-
ful information from its local contexts and the KB
concept embeddings of its children nodes.

Besides adding the KB concept embeddings
into the three gates to select useful KB formation
implicitly, similar to Ma et al. (2018), we also
introduce a knowledge specific output gate gj to
explicitly incorporate knowledge information into
each node’s hidden state. While different from Ma
et al. (2018) which only considers the knowledge
concept embedding of each node itself, we use the
sum of the KB concept embeddings of the whole
subtree instead:

gj = σ(Wg[xj , h̃j , µ̃j ] + bg)

where Wg is a weight matrix to be learned, bg is
the bias term.

As demonstrated in Figure 2 (B), we eventually
combine the implicit way of incorporating KB in-
formation into the input, output and forget gates
and an explicit way of directly incorporating the
KB information into a node’s hidden state:

c̃j = tanh(Wc[xj , h̃j ] + bc)

cj =
∑

k∈C(j)

fjk � ck + ij � c̃j

hj = oj � tanh(cj) + gj � tanh(Wµµ̃j)

where cj is the memory cell, Wc and Wµ are
weight matrices to be learned.

After getting the hidden state hj of each node
j, we use a softmax classifier to predict a label for
each node, and optimize the parameters by mini-
mizing a negative log-likelihood loss.

2.4 Event Argument Role Labeling

After detecting all candidate triggers, we further
extract arguments for each trigger. The Genia
event extraction shared task provides the annota-
tions of all entity mentions. Thus, for each trig-
ger, we use all the entity mentions that occur in
the same sentence as its candidate arguments, and
then assign an argument role or None. Different
from trigger extraction, we use the shortest de-
pendency path (SDP) within the dependency tree
structure instead of the surface contexts to better
capture the dependency between the trigger and
each argument.

Taking the sentence in Figure 3 as an example,
given a trigger transcription and a candidate argu-
ment OBF-1, we first perform dependency pars-
ing and extract the shortest dependency path be-
tween transcription and OBF-1 with the Dijkstra’s
algorithm (Johnson, 1973) and obtain the shortest
dependency path transcription → of → genes →
OBF-1. We use the same KB-driven Tree-LSTM
architecture as introduced in Section 2.3 to encode
each node into a new hidden state representation.
We use the hidden state of the root node h0 as the
overall vector representation of the whole depen-
dency path. Finally, we feed the concatenation of
h0 with the hidden state of the trigger and argu-
ment as input to another softmax to predict the ar-
gument role. We also optimize the model by min-
imizing a negative log-likelihood loss.
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Figure 3: Examples of trigger labeling and argument role labeling via a KB-driven Tree-LSTM.

Event Type Core Arguments
Gene expression Theme(P)
Transcription Theme(P)
Protein catabolism Theme(P)
Phosphorylation Theme(P)
Localization Theme(P)
Binding Theme(P)+
Regulation Theme(P/E), Cause(P/E)
Positive regulation Theme(P/E), Cause(P/E)
Negative regulation Theme(P/E), Cause(P/E)

Genia corpus 2011 statistics
events 14496
sentences 11581
nested events 37.2%
intersentence events 6.0%
abbrev. of entities 15912

Table 1: Predefined event types with accepted argu-
ment roles in Genia event extraction task, and data
statistics of Genia event extraction 2011 dataset. P:
protein; E: event.

3 Experiment

3.1 Task Description

The Genia Event Extraction task is the main task
in the BioNLP Shared Task series (Kim et al.,
2009, 2011; Nédellec et al., 2013). The Genia
task defines 9 fine-grained event types as shown
in Table 1. Note that a Binding event may take
more than one protein as its Theme arguments. A
Regulation event may take one protein or event as
its Theme argument and also optionally take one

protein or event as its Cause argument. A Regu-
lation event taking an event as its argument will
lead to a nested structure. 37.2% nested events
are observed in Genia 2011 corpus (Björne and
Salakoski, 2011). There are 6.0% inter-sentence
events while our model only focuses on sentence-
level event extraction.

3.2 Experimental Setup

We apply our KB-driven Tree-LSTM model on
Genia 2011 data set. The entities in Genia data
set are manually annotated and given as part of the
input.

We evaluate our results on the test set using
the official online tool provided by the Genia task
organizers.1 Following previous studies (Björne
and Salakoski, 2011; Venugopal et al., 2014; Rao
et al., 2017; Björne and Salakoski, 2018), we re-
port scores obtained by the approximate span (al-
lowing trigger spans to differ from gold spans by
single words). As we only focus on matching core
arguments, we use recursive matching criterion for
evaluation which not requires matching of addi-
tional arguments for events referred from other
events (Kim et al., 2011).

We use the word embedding pretrained on
PubMed and PMC texts (Moen and Ananiadou,

1http://bionlp-st.dbcls.jp/GE/2011/eval-test/
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2013) for word and type embeddings. The hyper-
parameters are tuned on the development set and
listed in Table 2. Word representations are updated
during training with an initial learning rate of 0.1.

Parameter Value
Word embedding size 200
Type embedding size 200
Sentence embedding size 4096
Tree-LSTM hidden size 100
Batch size 25
Epoch size 30
Dropout rate 0.5
Learning rate 0.05
Initial embedding learning rate 0.1
Optimizer AdaGrad

Table 2: Hyper-parameters.

3.3 Results and Error Analysis

Table 3 shows the final event extraction results of
applying our KB-driven Tree-LSTM model on Ge-
nia 2011 dataset with the comparison of only using
Tree-LSTM and a standard BiLSTM model. Tree-
LSTM outperforms the BiLSTM baseline which
indicates the power of Tree-LSTM in dealing with
long-distance dependency structure in biomedical
literature. By incorporating external KB informa-
tion, our approach achieves about 2.12% F-score
gain comparing to Tree-LSTM, which demon-
strates the effectiveness of the KB properties for
biomedical event extraction. We will show de-
tailed analysis in Section 3.4.

Table 4 presents the previous event extrac-
tion results from the BioNLP shared task using
the same corpus. Our approach outperforms all
previous methods. Among them, the systems
TEES (Björne and Salakoski, 2011), EventMine-
CR (Miwa et al., 2012) and Stacked Generaliza-
tion (Majumder et al., 2016) are based on SVMs
with well designed features. FAUST (Riedel and
McCallum, 2011) and BioMLN (Venugopal et al.,
2014) use jointed inference models. Björne and
Salakoski (2018) adopts a convolutional neural
networks (CNNs) with abundant features derived
from TEES system. In our work, instead of using
high-dimensional features with manual effort as in
these previous models, our approach only requires
pretrained distributed word representations as in-
put features.

We notice that our approach achieves high
scores on Simple event types but get relatively low
scores on Binding event and Regulation event
types. We analyze the results and find that Bind-

System Event Type Rec Prec F1

KB-driven
Tree-LSTM

Gene expression 74.35 87.24 80.28
Transcription 69.54 82.31 75.39
Protein catabolism 46.67 87.50 60.87
Phosphorylation 81.62 87.28 84.36
Localization 59.69 80.28 68.47
Simple total 72.62 85.95 78.73
Binding 37.68 53.16 44.10
Regulation 36.62 53.61 43.52
Positive regulation 41.37 57.90 48.26
Negative regulation 46.06 52.39 49.02
Regulation total 41.73 55.73 47.72
Event total 52.14 67.01 58.65

Tree-LSTM
Simple total 71.22 83.41 76.83
Binding 34.83 48.72 40.62
Regulation total 39.78 53.54 45.64
Event total 50.28 64.56 56.53

BiLSTM
Simple total 68.09 78.75 73.03
Binding 38.49 43.05 40.65
Regulation total 37.64 53.81 44.30
Event total 48.44 62.18 54.46

Table 3: Precision (Prec), recall (Rec) and F-score (F1)
results achieved by the KB-driven Tree-LSTM model
on the test set of BioNLP Genia 2011, evaluated on
approximate span and recursive criteria.

System Rec Prec F1
TEES(Björne and Salakoski, 2011) 49.56 57.65 53.30
FAUST(Riedel and McCallum,
2011)

49.41 64.75 56.04

EventMine-CR(Miwa et al., 2012) 53.35 63.48 57.98
BioMLN(Venugopal et al., 2014) 53.42 63.61 58.07
Stacked Generalization(Majumder
et al., 2016)

48.96 66.46 56.38

CNN(Björne and Salakoski, 2018) 49.94 69.45 58.07

Table 4: State-of-the-art system results evaluated on
BioNLP Genia 2011 test dataset with approximate span
and recursive criteria.

ing event extraction is more challenging since it
usually has multiple arguments. For example, Fig-
ure 4 shows two sentences which are chosen from
the output of the development data set. There are
two Binding event mentions in the first sentence:
E1 (Trigger: interacting, Type: Binding, Theme:
RUNX1, Theme2: p3000) and E2 (Trigger: bind-
ing, Type: Binding, Theme: CREB). Our model
mistakenly extracts CREB as a Theme of E1 since
CREB is highly related to protein p300 in the de-
pendency tree structure.

Regulation events are considered as the most
challenging event type because they usually have
an optional Cause argument and are involved in
nested structures, which are not handled well by
most of current event extraction approaches. In ad-
dition, intuitively, most trigger words are verbs or
nouns. We rank all the trigger words in the train-
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Figure 4: Case study on binding event and regulation event types.
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Figure 5: Visualization of the effect of KB concept embeddings on trigger labeling for the word transcription.

ing data set according to their frequency, and find
that most of spurious errors for Regulation event
trigger extraction occur when the trigger words
are prepositions or conjunctions. For instance, in
Figure 4, the second sentence contains two posi-
tive Regulation events triggered by a preposition
from and a conjunction rather than. Such function
words are rarely annotated as triggers and our KB-
aware Tree-LSTM cannot well collect meaningful
contexts from their subtrees.

3.4 Effect of KB concepts

As shown in Table 3, we achieve about 3.5% and
2.1% F1 score gain on Binding and Regulation
event types by leveraging external KB information
into the Tree-LSTM. In order to show the effect of
KB concept embeddings, we visualize the prob-
abilities of word transcription to be predicted for
each event type. As Figure 5 shows, by adding KB
concept embeddings, the function description pos-
itive regulation of transcription, DNA-templated
provided by the biomedical entity OBF-1 signif-
icantly enhances the probability of transcription
being predicted to a Transcription event type.

Similarly, Figure 6 visualizes the probabili-
ties of the E1 event mention (Trigger: trans-

transduced	[gene_expression]/[positive_regulation]

with

mutants

Tax	[protein]

E1:	(Type:gene	expression,	Theme:	Tax,	Trigger:	transduced)

E2:	(Type:positive	regulation,	Theme:	E1,	Trigger:	transduced)

E2:	(Theme:	None)

E2:	(Theme:	E1)

Theme

Theme

Figure 6: Visualization of the effect of KB concept em-
bedding on argument role labeling for a Positive Reg-
ulation event triggered by transduced and a Gene Ex-
pression event E1 (Theme: Tax, Trigger: transduced).

duced, Type: gene expression, Theme: Tax) to
be predicted as an argument of E2 event mention
(Trigger: transduced, Type: positive regulation,
Theme: E1). We can see that, without using KB
information, the Tree-LSTM mistakenly predict
the argument role of E1 as None. In contrast, by
incorporating KB concept embeddings, especially
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the information from the function description pos-
itive regulation of transcription, DNA-templated
for Tax, our approach successfully promotes the
probability of E1 being predicted as the Theme of
E2.

4 Related Work

As a crucial task in information extraction, event
extraction has gained a lot of interest. In gen-
eral news domain, previous work on event extrac-
tion can be divided into two main categories. The
first is feature-based methods which mainly fo-
cus on feature design, leveraging local features
(Grishman et al., 2005; Ahn, 2006) and global
features (Ji and Grishman, 2008; Liao and Gr-
ishman, 2011; Huang and Riloff, 2012) to im-
prove the performance. Some studies proposed
joint models to overcome the error propagation
problem (Poon and Vanderwende, 2010; Riedel
et al., 2009; Li et al., 2013; Venugopal et al.,
2014; Li et al., 2014). The second category in-
cludes distributional representation based meth-
ods which have been applied into event extrac-
tion extensively. Most of these approaches are
based on the standard Convolutional Neural Net-
works (CNNs) (Chen et al., 2015; Nguyen and
Grishman, 2015, 2016), Recurrent Neural Net-
works (RNNs) (Nguyen et al., 2016), generative
adversarial networks (Hong et al., 2018), zero-shot
learning (Huang et al., 2017) and advanced atten-
tion mechanisms (Liu et al., 2018b; Chen et al.,
2018).

Our work is also related to the studies which
leverage the external knowledge base for informa-
tion extraction. Liu et al. (2017) takes advantage
of external resources, such as FrameNet, to label
events while Chen et al. (2017) adopts distance
supervision to augment the training data. Liu
et al. (2018a) develops an attention-based model
for event extraction. What’s more, shortest depen-
dency path is broadly explored for information ex-
traction, especially for relation classification (Xu
et al., 2015; Miwa and Bansal, 2016) and shows
promising benefits.

Biomedical event extraction task part of the
BioNLP Shared Task series (Kim et al., 2009,
2011; Nédellec et al., 2013). Previous stud-
ies mainly explore local and global features with
SVM model (Miwa et al., 2010, 2012; Björne and
Salakoski, 2013; Majumder et al., 2016). Riedel
and McCallum (2011) develop a joint model with

dual decomposition. Cohen et al. (2009), Kil-
icoglu and Bergler (2011) and Bui et al. (2013)
develop rule-based methods and achieve high pre-
cision. Venugopal et al. (2014) leverage Markov
logic networks for joint inference. Rao et al.
(2017) uses the Abstract Meaning Representations
(AMR) to extract events based on the assump-
tion that an event structure can be derived from an
AMR subgraph. Recently, some representation-
based models (Jagannatha and Yu, 2016; Rao
et al., 2017; Björne and Salakoski, 2018) have
been proposed while most of them adopt the
widely used CNNs and RNNs with features de-
rived from the biomedical text. Lim et al. (2018)
implements a binary Tree-LSTM architecture for
biomedical relation extraction. Compared with
these methods, our approach only requires pre-
trained distributed word representations as input
features and incorporates meaningful KB informa-
tion into a Tree-LSTM.

5 Conclusions and Future Work

In this paper, we show the effectiveness of using
a KB-driven tree-structured LSTM for event ex-
traction in biomedical domain. The Tree-LSTM
can efficiently capture semantically related con-
cepts for each node within the tree structure. By
leveraging the external KB concept properties in-
cluding the entity type and the function descrip-
tion, our approach is able to perform deep under-
standing of domain-specific expressions and con-
nections. Without using manually designed high-
dimensional features, our approach significantly
outperforms all previous methods. In the future,
we plan to explore a broader range of properties
from KB to facilitate biomedical information ex-
traction tasks.
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