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Abstract

As offensive content has become pervasive in
social media, there has been much research
in identifying potentially offensive messages.
However, previous work on this topic did not
consider the problem as a whole, but rather fo-
cused on detecting very specific types of offen-
sive content, e.g., hate speech, cyberbulling,
or cyber-aggression. In contrast, here we tar-
get several different kinds of offensive content.
In particular, we model the task hierarchically,
identifying the type and the target of offensive
messages in social media. For this purpose,
we complied the Offensive Language Identi-
fication Dataset (OLID), a new dataset with
tweets annotated for offensive content using
a fine-grained three-layer annotation scheme,
which we make publicly available. We discuss
the main similarities and differences between
OLID and pre-existing datasets for hate speech
identification, aggression detection, and simi-
lar tasks. We further experiment with and we
compare the performance of different machine
learning models on OLID.

1 Introduction

Offensive content has become pervasive in social
media and thus a serious concern for government
organizations, online communities, and social me-
dia platforms. One of the most common strategies
to tackle the problem is to train systems capable
of recognizing offensive content, which can then
be deleted or set aside for human moderation. In
the last few years, there have been several stud-
ies on the application of computational methods
to deal with this problem. Prior work has stud-
ied offensive language in Twitter (Xu et al., 2012;
Burnap and Williams, 2015; Davidson et al., 2017;
Wiegand et al., 2018), Wikipedia comments,1 and
Facebook posts (Kumar et al., 2018).

1http://bit.ly/2FhLMVz

Previous studies have looked into different as-
pects of offensive language such as the use of
abusive language (Nobata et al., 2016; Mubarak
et al., 2017), (cyber-)aggression (Kumar et al.,
2018), (cyber-)bullying (Xu et al., 2012; Dadvar
et al., 2013), toxic comments1, hate speech (Kwok
and Wang, 2013; Djuric et al., 2015; Burnap and
Williams, 2015; Davidson et al., 2017; Malmasi
and Zampieri, 2017, 2018), and offensive lan-
guage (Wiegand et al., 2018).

Recently, Waseem et al. (2017) analyzed the
similarities between different approaches pro-
posed in previous work and argued that there was
a need for a typology that differentiates between
whether the (abusive) language is directed towards
a specific individual or entity, or towards a gener-
alized group, and whether the abusive content is
explicit or implicit. Wiegand et al. (2018) further
applied this idea to German tweets. They experi-
mented with a task on detecting offensive vs. non-
offensive tweets, and also with a second task on
further sub-classifying the offensive tweets as pro-
fanity, insult, or abuse. However, to the best of our
knowledge, no prior work has explored the target
of the offensive language, which might be impor-
tant in many scenarios, e.g., when studying hate
speech with respect to a specific target. Below, we
aim at bridging this gap.

More generally, in this paper, we expand on the
above ideas by proposing a novel three-level hier-
archical annotation schema that encompasses the
following three general categories:

A: Offensive Language Detection

B: Categorization of Offensive Language

C: Offensive Language Target Identification

http://bit.ly/2FhLMVz
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Tweet A B C

@USER He is so generous with his offers. NOT — —
IM FREEEEE!!!! WORST EXPERIENCE OF MY FUCKING LIFE OFF UNT —
@USER Fuk this fat cock sucker OFF TIN IND
@USER Figures! What is wrong with these idiots? Thank God for @USER OFF TIN GRP

Table 1: Four tweets from the dataset, with their labels for each level of the annotation schema.

We further use the above schema to annotate a
large dataset of English tweets, which we make
publicly available online.2

The key contributions of this paper can be sum-
marized as follows:

• We propose a new three-level hierarchical an-
notation schema for abusive language detec-
tion and characterization.

• We apply the schema to create Offensive Lan-
guage Identification Dataset (OLID), a new
large-scale dataset of English tweets with
high-quality annotation of the target and type
of offenses.

• We perform experiments on OLID using
different machine learning models for each
level of the annotation, thus setting important
baselines to compare to in future work.

While each of these sub-tasks tackles a particular
type of abuse or offense, they share similar prop-
erties and the hierarchical annotation model pro-
posed in this paper aims to capture this. Consid-
ering that, for example, an insult targeted at an in-
dividual is commonly known as cyberbulling and
that insults targeted at a group are known as hate
speech, we believe that OLID’s use of a hierarchi-
cal annotation schema makes it a useful resource
for various offensive language identification and
characterization tasks.

2 Hierarchically Modelling Offensive
Content

In the OLID dataset, we use a hierarchical anno-
tation schema split into three levels to distinguish
between whether the language is offensive or not
(A), its type (B), and its target (C). Each level is
described in more detail in the following subsec-
tions and examples are shown in Table 1.

2The data can be downloaded from the following address:
http://scholar.harvard.edu/malmasi/olid

2.1 Level A: Offensive language Detection
Level A discriminates between the following types
of tweets:

• Not Offensive (NOT): Posts that do not con-
tain offense or profanity;

• Offensive (OFF): Posts containing any form
of non-acceptable language (profanity) or a
targeted offense, which can be veiled or di-
rect. This includes insults, threats, and posts
containing profane language or swear words.

2.2 Level B: Categorization of Offensive
Language

Level B categorizes the type of offense:

• Targeted Insult (TIN): Posts containing in-
sult/threat to an individual, a group, or others;

• Untargeted (UNT): Posts containing non-
targeted profanity and swearing. Posts with
general profanity are not targeted, but they
contain non-acceptable language.

2.3 Level C: Offensive Language Target
Identification

Level C categorizes the targets of insults/threats:

• Individual (IND): Posts targeting an individ-
ual. This can be a famous person, a named
individual or an unnamed participant in the
conversation. Insults and threats targeted at
individuals are often defined as cyberbulling.

• Group (GRP): Posts targeting a group of
people considered as a unity due to the same
ethnicity, gender or sexual orientation, polit-
ical affiliation, religious belief, or other com-
mon characteristic. Many of the insults and
threats targeted at a group correspond to what
is commonly understood as hate speech.

• Other (OTH) The target of these offensive
posts does not belong to any of the previous
two categories (e.g., an organization, a situa-
tion, an event, or an issue).

http://scholar.harvard.edu/malmasi/olid
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Keyword Offensive %

medical marijuana 0.0
they are 5.9
to:NewYorker 8.3
you are 21.0
she is 26.6
to:BreitBartNews 31.6
he is 32.4
gun control 34.7
-filter:safe 58.9
conservatives 23.2
antifa 26.7
MAGA 27.7
liberals 38.0

Table 2: The keywords from the full dataset (except
for the first three rows) and the percentage of offensive
tweets for each keyword.

3 Data Collection

We retrieved the examples in OLID from Twitter
using its API and searching for keywords and con-
structions that are often included in offensive mes-
sages, such as ‘she is’ or ‘to:BreitBartNews’3. The
full list of keywords we used is shown in Table 2.

We first carried out a round of trial annotation
of 300 instances with six experts using nine key-
words. The goal of the trial annotation was (i) to
evaluate the proposed tagset, (ii) to evaluate the
data retrieval method, and (iii) to create a gold
standard with instances that could be used as test
questions to ensure the quality of the annotators
for the rest of the data, which was carried out us-
ing crowdsourcing. The keywords used in the trial
annotation are shown in the first nine rows of Ta-
ble 2. We included left (@NewYorker) and far-
right (@BreitBartNews) news accounts because
there tends to be political offense in the comments
for such accounts. The keyword that resulted in
the highest concentration of offensive content was
the Twitter ‘safe’ filter, corresponding to tweets
that were flagged as unsafe by Twitter (the ‘-’ sym-
biol indicates ‘not safe’).

Since the vast majority of content on Twitter is
not offensive, we tried different strategies to keep
the distribution of offensive tweets at around 30%
of the dataset. We excluded some keywords that
were not high in offensive content during the trial
annotation such as ‘they are’ and ‘to:NewYorker’.

3to is a special Twitter API word indicating that the tweet
was directed at a specific account (e.g., BreitBartNews).

Although ‘he is’ was poor in offensive content in
the trial dataset (15%), we kept it as a keyword
in order to avoid gender bias, and we found that
in the full dataset it was more offensive (32.4%).
The trial keywords that we ultimately decided to
exclude due to low percentage of offensive tweets
are shown in the top portion of Table 2.

We computed Fleiss’ kappa on the trial dataset
for the five annotators on 21 of the tweets. The
value was .83 for Layer A (OFF vs. NOT) indi-
cating high agreement. As to normalization and
anonymization, we did not store any user meta-
data or Twitter IDs, and we substituted the URLs
and the Twitter mentions by placeholders.

During the full annotation task, we decided to
search for more political keywords as they tend
to be richer in offensive content. Thus, we sam-
pled our full dataset, so that 50% of the tweets
come from political keywords, and the other 50%
come from non-political keywords. Within these
two groups, tweets were evenly sampled for the
keywords. In addition to ‘gun control’, and
‘to:BreitbartNews’ used during the trial annota-
tion, four new political keywords were used to col-
lect tweets for the full dataset: ‘MAGA’, ‘antifa’,
‘conservatives’, and ‘liberals’. The breakdown of
keywords and their offensive content in the full
dataset is shown in the bottom of Table 2.

We follow prior work in related areas (Burnap
and Williams, 2015; Davidson et al., 2017) and
we annotate our data using crowdsourcing. We
used Figure Eight4 and we ensured data quality by
(i) only hiring annotators who were experienced
in the platform, and (ii) using test questions to dis-
card annotations by individuals who did not reach
a certain threshold. Each instance in the dataset
was annotated by multiple annotators and inter-
annotator agreement was calculated at the end.

We first acquired two annotations for each in-
stance. In the case of disagreement, we requested
a third annotation, and we then took a majority
vote. The annotators were asked to label each
tweet at all three levels of the annotation scheme,
and we considered there to be agreement only
when the annotators agreed on the labels for all
levels. Approximately 60% of the time, the two
annotators agreed, and thus no additional annota-
tion was needed. A third annotation was requested
for the rest of the tweets; there was no instance
when more than three annotations were needed.

4http://www.figure-eight.com

http://www.figure-eight.com
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A B C Training Test Total

OFF TIN IND 2,407 100 2,507
OFF TIN OTH 395 35 430
OFF TIN GRP 1,074 78 1,152
OFF UNT — 524 27 551
NOT — — 8,840 620 9,460

All 13,240 860 14,100

Table 3: Distribution of label combinations in OLID.

The breakdown of the data into training and test-
ing for the labels from each level is shown in Ta-
ble 3. It is worth noting that one of the key chal-
lenges we observed when collecting for OLID was
producing a dataset containing a sufficient num-
ber of instances for each class. This is particularly
evident in the sizes for Subtasks B and C. Other
studies also had this issue when collecting similar
datasets. For example, in (Davidson et al., 2017),
only 5% of the tweets were considered hate speech
by the majority of the annotators, and in (Burnap
and Williams, 2015) only 11.6% of the examples
were labeled as hate speech.

4 Experiments and Evaluation

We experiment with various models:

SVM Our simplest machine learning model is
a linear SVM trained on word unigrams. SVMs
have achieved state-of-the-art results for many text
classification tasks (Zampieri et al., 2018).

BiLSTM We also experiment with a bidi-
rectional Long Short-Term-Memory (BiLSTM)
model, which we adapted from a pre-existing
model for sentiment analysis (Rasooli et al.,
2018). The model consists of (i) an input em-
bedding layer, (ii) a bidirectional LSTM layer,
and (iii) an average pooling layer of input fea-
tures. The concatenation of the LSTM layer and
the average pooling layer is further passed through
a dense layer, whose output is ultimately passed
through a softmax to produce the final prediction.
We set two input channels for the input embed-
ding layers: pre-trained FastText embeddings (Bo-
janowski et al., 2017), as well as updatable embed-
dings learned by the model during training.

CNN Finally, we experiment with a Convolu-
tional Neural Network (CNN) model based on the
architecture of (Kim, 2014), and using the same
multi-channel inputs as the above BiLSTM.

Our models are trained on the training dataset, and
evaluated by predicting the labels for the held-out
test set. As the label distribution is highly im-
balanced (see Table 3), we evaluate and we com-
pare the performance of the different models us-
ing macro-averaged F1-score. We further report
per-class Precision (P), Recall (R), and F1-score
(F1), and weighted average. Finally, we compare
the performance of the models against simple ma-
jority and minority class baselines.

4.1 Offensive Language Detection

The performance on discriminating between of-
fensive (OFF) and non-offensive (NOT) posts is
reported in Table 4. We can see that all models
perform significantly better than chance, with the
neural models performing substantially better than
the SVM. The CNN outperforms the RNN model,
achieving a macro-F1 score of 0.80.

4.2 Categorization of Offensive Language

In this set of experiments, the models were
trained to discriminate between targeted insults
and threats (TIN) and untargeted (UNT) offenses,
which generally refer to profanity. The results are
shown in Table 5. We can see that the CNN per-
forms better than the BiLSTM, with a macro-F1
score of 0.69. Note that all models perform better
at identifying TIN compared to UNT.

4.3 Offensive Language Target Identification

The results for the offensive target identification
experiment are shown in Table 6. Here the models
were trained to distinguish between three targets:
a group (GRP), an individual (IND), or others
(OTH). We can see that all three models achieved
similar results, far surpassing the random base-
lines, with a slight performance edge for the neural
models.

The performance of all models for the OTH
class is 0, which can be explained by two factors.
First, unlike the two other classes, OTH is a het-
erogeneous collection of targets. It includes of-
fensive tweets targeted at organizations, situations,
events, etc., thus making it more challenging for
models to learn discriminative properties for this
class. Second, there are fewer training instances
for this class compared to the other two: there are
only 395 instances for OTH vs. 1,075 for GRP and
2,407 for IND.
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NOT OFF Weighted Average

Model P R F1 P R F1 P R F1 F1 Macro
SVM 0.80 0.92 0.86 0.66 0.43 0.52 0.76 0.78 0.76 0.69
BiLSTM 0.83 0.95 0.89 0.81 0.48 0.60 0.82 0.82 0.81 0.75
CNN 0.87 0.93 0.90 0.78 0.63 0.70 0.82 0.82 0.81 0.80

All NOT - 0.00 0.00 0.72 1.00 0.84 0.52 0.72 0. 0.42
All OFF 0.28 1.00 0.44 - 0.00 0.00 0.08 0.28 0.12 0.22

Table 4: Results for offensive language detection (Level A). We report Precision (P), Recall (R), and F1 for each
model/baseline on all classes (NOT, OFF), and weighted averages. Macro-F1 is also listed (best in bold).

TIN UNT Weighted Average
Model P R F1 P R F1 P R F1 F1 Macro

SVM 0.91 0.99 0.95 0.67 0.22 0.33 0.88 0.90 0.88 0.64
BiLSTM 0.95 0.83 0.88 0.32 0.63 0.42 0.88 0.81 0.83 0.66
CNN 0.94 0.90 0.92 0.32 0.63 0.42 0.88 0.86 0.87 0.69

All TIN 0.89 1.00 0.94 - 0.00 0.00 0.79 0.89 0.83 0.47
All UNT - 0.00 0.00 0.11 1.00 0.20 0.01 0.11 0.02 0.10

Table 5: Results for offensive language categorization (level B). We report Precision (P), Recall (R), and F1 for
each model/baseline on all classes (TIN, UNT), and weighted averages. Macro-F1 is also listed (best in bold).

GRP IND OTH Weighted Average

Model P R F1 P R F1 P R F1 P R F1 F1 Macro

SVM 0.66 0.50 0.57 0.61 0.92 0.73 0.33 0.03 0.05 0.58 0.62 0.56 0.45
BiLSTM 0.62 0.69 0.65 0.68 0.86 0.76 0.00 0.00 0.00 0.55 0.66 0.60 0.47
CNN 0.75 0.60 0.67 0.63 0.94 0.75 0.00 0.00 0.00 0.57 0.66 0.60 0.47

All GRP 0.37 1.00 0.54 - 0.00 0.00 - 0.00 0.00 0.13 0.37 0.20 0.18
All IND - 0.00 0.00 0.47 1.00 0.64 - 0.00 0.00 0.22 0.47 0.30 0.21
All OTH - 0.00 0.00 - 0.00 0.00 0.16 1.00 0.28 0.03 0.16 0.05 0.09

Table 6: Results for offense target identification (level C). We report Precision (P), Recall (R), and F1 for each
model/baseline on all classes (GRP, IND, OTH), and weighted averages. Macro-F1 is also listed (best in bold).

5 Conclusion and Future Work

We presented OLID, a new dataset with annotation
of type and target of offensive language. It is the
official dataset of the shared task SemEval 2019
Task 6: Identifying and Categorizing Offensive
Language in Social Media (OffensEval) (Zampieri
et al., 2019).5 In OffensEval, each annotation level
in OLID is an independent sub-task. To the best of
our knowledge, this is the first dataset to contain
annotation of type and target of offenses in social
media, and it opens interesting research directions.

We further presented baseline experiments us-
ing SVMs and neural networks, which have shown
that this is a challenging, yet doable task.

5http://competitions.codalab.org/
competitions/20011

In future work, we would like to make a cross-
corpus comparison of OLID vs. datasets anno-
tated for similar tasks such as aggression identi-
fication (Kumar et al., 2018) and hate speech de-
tection (Davidson et al., 2017). We further plan to
create similar datasets for other languages, follow-
ing OLID’s hierarchical annotation scheme.
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