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Abstract

It is very critical to analyze messages shared
over social networks for cyber threat intel-
ligence and cyber-crime prevention. In this
study, we propose a method that leverages
both domain-specific word embeddings and
task-specific features to detect cyber secu-
rity events from tweets. Our model employs
a convolutional neural network (CNN) and
a long short-term memory (LSTM) recurrent
neural network which takes word level meta-
embeddings as inputs and incorporates contex-
tual embeddings to classify noisy short text.
We collected a new dataset of cyber security
related tweets from Twitter and manually an-
notated a subset of 2K of them. We exper-
imented with this dataset and concluded that
the proposed model outperforms both tradi-
tional and neural baselines. The results sug-
gest that our method works well for detecting
cyber security events from noisy short text.

1 Introduction

Twitter has become a medium where people can
share and receive timely messages on about any-
thing. People share facts, opinions, broadcast
news and communicate with each other through
these messages. Due to the low barrier to tweeting,
and growth in mobile device usage, tweets might
provide valuable information as people often share
instantaneous updates such as the breaking news
before even being broadcasted in the newswire c.f .
Petrović et al. (2010). People also share cyber se-
curity events in their tweets such as zero day ex-
ploits, ransomwares, data leaks, security breaches,
vulnerabilities etc. Automatically detecting such
events might have various practical applications
such as taking the necessary precautions promptly
as well as creating self-awareness as illustrated in
Fig. 1. Recently, working with the cyber security

∗Corresponding author.

Dear @AppleSupport, we noticed a *HUGE* se-
curity issue at MacOS High Sierra. Anyone can
login as “root” with empty password after click-
ing on login button several times. Are you aware
of it @Apple?

Figure 1: A cyber security event. A recently discovered se-
curity issue has been reported on Twitter which caught public
attention. A security fix has been published right afterward.

related text has garnered a lot of interest in both
computer security and natural language process-
ing (NLP) communities (c.f . Joshi et al. (2013);
Ritter et al. (2015); Roy et al. (2017)). Neverthe-
less, detecting cyber security events from tweets
pose a great challenge, as tweets are noisy and of-
ten lack sufficient context to discriminate cyber se-
curity events due to length limits. Recently, deep
learning methods have shown to be outperform-
ing traditional approaches in several NLP tasks
(Chen and Manning, 2014; Bahdanau et al., 2014;
Kim, 2014; Hermann et al., 2015). Inspired by
this progress, our goal is to detect cyber secu-
rity events in tweets by learning domain-specific
word embeddings and task-specific features using
neural architectures. The key contribution of this
work is two folds. First, we propose an end-to-
end learning system to effectively detect cyber se-
curity events from tweets. Second, we propose a
noisy short text dataset with annotated cyber secu-
rity events for unsupervised and supervised learn-
ing tasks. To our best knowledge, this will be
the first study that incorporates domain-specific
meta-embeddings and contextual embeddings for
detecting cyber security events.

2 Method

In the subsequent sections, we address the chal-
lenges to solve our task. The proposed system
overview is illustrated in Fig. 2.
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Figure 2: System Overview. A tweet is first pre-processed, then task-specific features and word level meta-embeddings are
extracted to represent tokens. Finally, a Bi-LSTM, CNN, and Contextual Encoder are fused to classify the encoded tweet.

2.1 Meta-Embeddings

Word embedding methods might capture differ-
ent semantic and syntactic features about the same
word. To exploit this variety without losing the
semantics, we learn meta-embeddings for words.
Word Embeddings. Word2vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), and fast-
Text (Joulin et al., 2016; Bojanowski et al., 2016)
are trained for learning domain specific word em-
beddings on the unlabeled tweet corpus.
Meta-Encoder. Inspired by Yin and Schütze
(2015) we learn meta-embeddings for words with
the aforementioned word embeddings. We use a
Convolutional Autoencoder (Masci et al., 2011)
for encoding 3xD size embeddings to a 1xD di-
mensional latent variable and to reconstruct the
original embeddings from this latent variable.
Both encoder and decoder are comprised of 2 con-
volutional layers where 32 neurons are used on
each. The encoder part is shown in Fig. 3. We ar-
gue that this network learns a much simpler map-
ping while capturing the semantic and syntactic re-
lations from each of these embeddings, thus lead-
ing to a richer word-level representation. Another
advantage of learning meta-embeddings for words

Meta-Embedding Vector

Convolutional Features

3xD Word Embeddings

Figure 3: Convolutional encoder as a feature extractor. The
decoder is symmetric to the encoder, and in inference time
we drop the decoder and use only the encoder network.

is that the proposed architecture alleviates the Out-
of-Vocabulary (OOV) embeddings problem, as we
still get embeddings from the fastText channel, in
contrast to GloVe and word2vec, where no embed-
dings are available for OOV words.

2.2 Contextual Embeddings

To capture the contextual information, we learn
task-specific features from tweets.
LDA. Latent Dirichlet Allocation (LDA) is a gen-
erative probabilistic model to discover topics from
a collection of documents (Blei et al., 2003). LDA
works in an unsupervised manner and learns a fi-
nite set of categories from a collection, thus rep-
resents documents as mixtures of topics. We train
an LDA model to summarize each tweet by using
the topic with the maximum likelihood e.g. with
the topic “vulnerability” for the tweet in Fig 1.
NER. Named Entity Recognition (NER) tags the
specified named entities from raw text into pre-
defined categories. Named entities could be more
general categories such as people, organizations,
or specific entities can be learned by creating a
dataset containing specific entity tags. We em-
ploy an automatically annotated dataset that con-
tains entities from cyber security domain (Bridges
et al., 2013) to train our Conditional Random Field
model using handcrafted features, i.e., uni-gram,
bi-gram, and gazetteers. The dataset comprises of
850K tokens that contain named entities such as
‘Relevant Term’, ‘Operating System’,‘Hardware’,
‘Software’, ‘Vendor’, in the standard IOB-tagging
format. Our NER model tags “password” as ‘Rel-
evant Term’ and “Apple” as ‘Vendor’ for the tweet
in Fig 1.
IE. Uncovering entities and the relations between
those entities is an important task for detecting
cyber security events. In order to address this
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we use Information Extraction (IE), in particu-
lar OpenIE annotator(Angeli et al., 2015) from
the Stanford CoreNLP (Manning et al., 2014).
Subsequently, we extract relations between noun
phrases with the following dependency triplet
〈arg1, rel, arg2〉, where arg1, arg2 denote the ar-
guments and rel represents an implicit semantic
relation between those arguments. Hence, the fol-
lowing triplet is extracted from the tweet in Fig. 1,
〈we, noticed, huge security issue〉.
Contextual-Encoder. We use the outputs of LDA,
NER and IE algorithms to obtain a combined
vector representation using meta-embeddings de-
scribed in Sec. 2.1. Thus, contextual embeddings
are calculated as follows1.

γ(τ) =

f(ϕ(τ)) +
N∑
i=1

f(ς(τ)i) +
M∑
j=1

f(δ(τ)j)

N +M + 1
(1)

where γ function extracts contextual embeddings
and τ denotes a tweet, f , ϕ, ς and δ represent
meta-embedding, LDA, NER, and IE functions,
respectively. Lastly, N and M denote the output
tokens.

2.3 Event Detection

Inspired by the visual question answering task
(Antol et al., 2015), where different modalities are
combined by CNNs and RNNs, we adopt a similar
network architecture for our task. Prior to train-
ing, and inference we preprocess, normalize and
tokenize each tweet as described in Sec. 3.
CNN. We employ a CNN model similar to that of
(Kim, 2014) where we feed the network with static
meta-embeddings. Our network is comprised of
one convolutional layer with varying filter sizes,
that is 2, 3, 5. All tweets are zero padded to the
maximum tweet length. We use ReLU as activa-
tion and global max pooling at the end of CNN.
RNN. We use a bi-directional LSTM (Hochreiter
and Schmidhuber, 1997) and read the input in both
directions and concatenate forward and backward
hidden states to encode the input as a sequence.
Our LSTM model is comprised of a single layer
and employs 100 neurons.

3 Experiments

Data Collection. We collected 2.5M tweets us-
ing the Twitter’s streaming API over a period from
2015-01-01 to 2017-12-31 using an initial

1We used zero vectors for the non-existent relations.

set of keywords, henceforth referred as seed key-
words to retrieve cyber security related tweets.
In particular, we use the main group names of
cyber security taxonomy described in Le Sceller
et al. (2017) as seed keywords e.g. ‘denial of ser-
vice’, ‘botnet’, ‘malware’, ‘vulnerability’, ‘phish-
ing’, ‘data breach’ to retrieve relevant tweets. Us-
ing seed keywords is a practical way to filter out
noise considering sparsity of cyber security related
tweets in the whole tweet stream. After the initial
retrieval, we use langid.py (Lui and Baldwin,
2012) to filter out non-English tweets.
Data Preprocessing. We substitute user han-
dles with $mention$, and hyperlinks with $url$.
We remove emoticons and reserved keyword RT
which denotes retweets. We substitute hashtags by
removing the prefix # character. We limit charac-
ters that repeat more than two times, remove cap-
italization and tokenize tweets using the Twitter
tokenizer in nltk library. We normalize non-
standard forms, i.e. writing cu tmrrw instead of
see you tomorrow. Although there are several rea-
sons for that, the most prominent one is that people
tend to mimic prosodic effects in speech (Eisen-
stein, 2013). To overcome this, we use lexical nor-
malization, where we substitute OOV tokens with
in-Vocabulary (IV) standard forms, i.e. a standard
form available in a dictionary. In particular we use
UniMelb (Han et al., 2012), UTDallas (Liu et al.,
2011) datasets. Lastly, we remove identical tweets
and check the validity by removing tweets with
less than 3 non-special tokens.
Data Annotation. We instructed cyber security
domain experts for manual labelling of the dataset.
Annotators are asked to provide a binary label for
whether there is a cyber security event in the given
tweet or not. Annotators are told to skip tweets
if they are unsure about their decisions. Finally,
we validated annotations by only accepting an-
notations if at least 3 among 4 annotators agreed
on. Therefore, we presume the quality of attained
ground truth labels is dependable. Overall, 2K
tweets are annotated.
Dataset Statistics. After preprocessing, our ini-
tial 2.5M tweet dataset is reduced to 1.7M tweets
where 2K of them are labeled2. The labeled
dataset is somewhat balanced as there are 843
event-related tweets and 1157 non-event tweets.
The training and testing sets have 1600 and 400
samples, respectively.

2Available at http://stmai.github.io/cydec
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Training. We used Keras with Tensorflow back-
end in our neural models. For fastText and
word2vec embeddings we used Gensim, and for
GloVe we used glove-python library. For
training the word embeddings, we use the en-
tire tweet text corpus and obtain 100 dimensional
word embeddings. We set word2vec and fastText
model’s alpha parameter to 0.025 and window size
to 5. For GloVe embedding model, we set the
learning rate to 0.01, alpha to 0.75 and maximum
count parameter to 100. For embedding mod-
els, we determined the minimum count parameter
to 5, culminating in the elimination of infrequent
words. Consequently, we have 3, 100-dimensional
word embedding tensor in which first, second and
third channels consist of word2vec, fastText and
GloVe embeddings respectively. We then, en-
code these 3x100 dimensional embeddings into
1x128 dimensional representations by using our
Meta-Encoder. We train our two channel architec-
ture that combines both LSTM and CNN with 2
inputs: meta-embeddings and contextual embed-
dings. We use meta-embeddings for feature learn-
ing via LSTM and CNN, and their feature maps
are concatenated with contextual embeddings in
the Fusion Layer. In the end, fully connected lay-
ers and a softmax classifier are added, and the
whole network is trained to minimize binary cross
entropy loss with a learning rate of 0.01 by using
the Adam optimizer (Kingma and Ba, 2014).3

Baselines. To compare with our results, we im-
plemented the following baselines: SVM with
BoW: We trained an SVM classifier using Bag-
of-words (BoW) which provides a simplified rep-
resentation of textual data by calculating the oc-
currence of words in a document. SVM with
meta-embeddings: We trained an SVM clas-
sifier with the aforementioned meta-embeddings.
CNN-Static: We used Kim (2014)’s approach
using word2vec embeddings.
Results. Table 1 summarizes the overall perfor-
mance of each method. To compare the models,
we used four different metrics: accuracy, recall,
precision and F1-score. Each reported result is the
mean of a 5-fold cross validation experiment. It is
clear that our method outperforms various simple
and neural baselines. Also, in Table 2, we pro-
vide results of our proposed model along with the
ground-truth annotations. We also provide results
with the different combinations of contextual fea-

3See supplementary for hyperparameter choices.

Models Accuracy Precision Recall F1
SVM+BoW 0.75 0.71 0.70 0.70
SVM+Meta-Emcoder 0.71 0.64 0.61 0.63
CNN-static (Yoon Kim, 2014) 0.76 0.72 0.69 0.70
Human 0.65 0.70 0.87 0.59
CNN+Meta-Encoder 0.78 0.78 0.63 0.70
LSTM+Meta-Encoder 0.78 0.74 0.70 0.72
Ours (see Fig. 2) 0.82 0.79 0.72 0.76

Table 1: Results

tures, i.e., LDA, NER, IE4.
Human Study. 8 different subjects are thoroughly
instructed about what is considered as a cyber se-
curity event and individually asked to label 50 ran-
domly selected tweets from the test set. The re-
sults are provided in Table 3.
Error Analysis. In order to understand how our
system performs, we randomly select a set of erro-
neously classified instances from the test dataset.
Type I Errors. Our model identifies this tweet
as an event “uk warned following breach in air
pollution regulation $url$” whereas it is clearly
about the a breach of a regulation. We hypothe-
size that this is due to the lack of sufficient train-
ing data. Following tweet is also identified as
an event “wannacry ransomware ransomwareat-
tack ransomwarewannacry malware $url$”. We
suspect that the weights of multiple relevant terms
deceive the model.
Type II Errors. Our model fails to identify the fol-
lowing positive sample as an event. For “playsta-
tion network was the target of miraibotnet ddos at-
tack guiding tech rss news feed search” our model
fails to recognize the ’miraibotnet’ from the tweet.
We suspect this is due to the lack of hashtag de-
composition; otherwise, the model could recog-
nize ‘mirai’ and ‘botnet’ as separate words.
Discussions. Cyber security related tweets are
complicated and analysing them requires in-depth
domain knowledge. Although human subjects
are properly instructed, the results of the human
study indicate that our task is challenging and
humans can hardly discriminate cyber security
events amongst cyber security related tweets. To
further investigate this, we plan to increase the
number of human subjects. One limitation of this
study is that we do not consider hyperlinks and
user handles which might provide additional in-
formation. One particular problem we have not
addressed in this work is hashtag decomposition.
Error analysis indicates that our model might get
confused by challenging examples due to ambigu-
ities and lack of context.

4See supplementary for feature combination details.
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Tweet Our Model GT
that thing where you run corporation phishing test and user does’nt
click it but clicks the next message which is real phishing email sigh

0 0

march 03 the fbi investigating alleged data breach at the center
for election systems at kennesaw state university

1 1

cia malware codenames are freaking amazing 1 0
proprietary software on malware vista10 is more malicious 0 1
in huge breach of trust deidentified medical history data from
millions of australians can be matched to individuals url2

0 1

hackers take aim at your mention account with this new phishing
attack cdwsocia

0 1

wannacry ransomware ransomwareattack ransomwarewannacry
malware url

1 0

Table 2: Some Example Results

Subjects Accuracy Precision Recall F1 Cohen’s κ
#1 0.62 0.54 1 0.7 0.43
#2 0.54 0.5 0.95 0.65 0.33
#3 0.66 0.58 0.91 0.71 0.42
#4 0.66 0.57 1 0.73 0.46
#5 0.8 0.8 0.73 0.77 0.28
#6 0.66 0.57 0.95 0.72 0.41
#7 0.7 0.63 0.82 0.71 0.31
#8 0.6 0.56 0.60 0.58 0.28
Average 0.65 0.70 0.87 0.59 0.36

Table 3: Human Study Results

4 Related Work

Event detection on Twitter is studied extensively
in the literature (Petrović et al., 2010; Sakaki et al.,
2010; Weng and Lee, 2011; Ritter et al., 2012;
Yuan et al., 2013; Atefeh and Khreich, 2015).
Banko et al. (2007) proposed a method to extract
relational tuples from web corpus without requir-
ing hand labeled data. Ritter et al. (2012) pro-
posed a method for categorizing events in Twit-
ter. Luo et al. (2015) suggested an approach to
infer binary relations produced by open IE sys-
tems. Recently, Ritter et al. (2015) introduced the
first study to extract event mentions from a raw
Twitter stream for event categories DDoS attacks,
data breaches, and account hijacking. Chang et al.
(2016) proposed an LSTM based approach which
learns tweet level features automatically to extract
events from tweet mentions. Lately, Le Sceller
et al. (2017) proposed a model to detect cyber se-
curity events in Twitter which uses a taxonomy
and a set of seed keywords to retrieve relevant
tweets. Tonon et al. (2017) proposed a method to
detect events from Twitter by using semantic anal-
ysis. Roy et al. (2017) proposed a method to learn
domain-specific word embeddings for sparse cy-
ber security text. Prior art in this direction (Ritter

et al., 2015; Chang et al., 2016) focuses on extract-
ing events and in particular predicting the events’
posterior given the presence of particular words.
Le Sceller et al. (2017); Tonon et al. (2017) focus
on detecting cyber security events from Twitter.
Our work distinguishes from prior studies as we
formulate cyber security event detection problem
as a classification task and learn meta-embeddings
from domain-specific word embeddings while in-
corporating task-specific features and employing
neural architectures.

5 Conclusion

We introduced a novel neural model that utilizes
meta-embeddings learned from domain-specific
word embeddings and task-specific features to
capture contextual information. We present a
unique dataset of cyber security related noisy short
text collected from Twitter. The experimental re-
sults indicate that the proposed model outperforms
the traditional and neural baselines. Possible fu-
ture research direction might be detecting cyber
security related events in different languages.
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