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Abstract

Existing paraphrase identification datasets
lack sentence pairs that have high lexical over-
lap without being paraphrases. Models trained
on such data fail to distinguish pairs like flights
from New York to Florida and flights from
Florida to New York. This paper introduces
PAWS (Paraphrase Adversaries from Word
Scrambling), a new dataset with 108,463 well-
formed paraphrase and non-paraphrase pairs
with high lexical overlap. Challenging pairs
are generated by controlled word swapping
and back translation, followed by fluency and
paraphrase judgments by human raters. State-
of-the-art models trained on existing datasets
have dismal performance on PAWS (<40%
accuracy); however, including PAWS train-
ing data for these models improves their ac-
curacy to 85% while maintaining performance
on existing tasks. In contrast, models that
do not capture non-local contextual informa-
tion fail even with PAWS training examples.
As such, PAWS provides an effective instru-
ment for driving further progress on models
that better exploit structure, context, and pair-
wise comparisons.

1 Introduction

Word order and syntactic structure have a large im-
pact on sentence meaning. Even small perturba-
tion in word order can completely change interpre-
tation. Consider the following related sentences.

(1) Flights from New York to Florida.

(2) Flights to Florida from NYC.

(3) Flights from Florida to New York.

All three have high bag-of-words (BOW) overlap.
However, (2) is a paraphrase of (1), while (3) has
a very different meaning from (1).

Flights from New York to Florida Flights from Florida to New York

LM-based Word Scrambling

Flights from NYC to Florida 
Flights from New York to Florida 

… 
New York departure flights

Flights from Florida to NYC 
flight from Florida to New York 

… 
Looking for flights from Florida

+Filtering
Backtranslation

Flights from New York to Florida

Flights from NYC to Florida Flights from Florida to NYC

Flights from Florida to New York

Positive Positive
Negative

Recombination
PAWS Corpus

Original Corpus

+Human Judgment

+Human Judgment

Figure 1: PAWS corpus creation workflow.

Existing datasets lack non-paraphrase pairs like
(1) and (3). The Quora Question Pairs (QQP) cor-
pus contains 400k real world pairs, but its negative
examples are drawn primarily from related ques-
tions. Few have high word overlap, and of the
∼1,000 pairs with the same BOW, only 20% are
not paraphrases. This provides insufficient rep-
resentative examples to evaluate models’ perfor-
mance on this problem, and there are too few ex-
amples for models to learn the importance of word
order. Table 1 shows that models trained on QQP
are inclined to mark any sentence pairs with high
word overlap as paraphrases despite clear clashes
in meaning. Models trained or evaluated with only
this data may not perform well on real world tasks
where such sensitivity is important.

To address this, we introduce a workflow (out-
lined in Figure 1) for generating pairs of sentences
that have high word overlap, but which are bal-
anced with respect to whether they are paraphrases
or not. Using this process, we create PAWS
(Paraphrase Adversaries from Word Scrambling),
a dataset constructed from sentences in Quora and
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Sentence 1 Sentence 2 Gold BOW BERT BERT+
PAWS

(1) Can a bad person become good? Can a good person become bad? N Y Y N
(2) Which is the cheapest flight from any-

where in South America to Europe?
Which is the cheapest flight from any-
where in Europe to South America?

N Y N N

(3) “Taunton Castle” was on August 1 in Rio
de Janeiro and on October 31 in Penang.

“Taunton Castle” was at Penang on 1 Au-
gust and Rio de Janeiro on 31 October.

N Y Y N

(4) Although interchangeable, the body
pieces on the 2 cars are not similar.

Although similar, the body parts are not
interchangeable on the 2 cars.

N Y Y N

(5) Katz was born in Sweden in 1947 and
moved to New York City at the age of 1.

Katz was born in 1947 in Sweden and
moved to New York at the age of one.

Y Y Y Y

(6) It was not the sales manager who hit the
bottle that day, but the office worker with
the serious drinking problem.

That day the office manager, who was
drinking, hit the problem sales worker
with a bottle, but it was not serious.

N Y Y N

Table 1: Paraphrase/Non-paraphrase (Y/N) pairs with high bag-of-words (BOW) overlap. (1)-(5) are drawn from
PAWS, and (6) is from Mitchell and Lapata (2008). Both a simple BOW and the state-of-the-art BERT (Devlin
et al., 2018) models, if trained/fine-tuned on the Quora Question Pairs (QQP) corpus, classify all of them (with
one exception) as paraphrases (Y). A BERT model fine-tuned on both QQP and PAWS examples (BERT+PAWS),
however, is able to get them correct.

Wikipedia. Examples are generated from con-
trolled language models and back translation, and
given five human ratings each in both phases. A
final rule recombines annotated examples and bal-
ances the labels. Our final PAWS dataset will be
released publicly with 108,463 pairs at https:
//g.co/dataset/paws.

We show that existing state-of-the-art models
fail miserably on PAWS when trained on exist-
ing resources, but some perform well when given
PAWS training examples. BERT (Devlin et al.,
2018) fine-tuned on QQP achieves over 90% ac-
curacy on QQP, but only 33% accuracy on PAWS
data in the same domain. However, the accu-
racy on PAWS boosts to 85% by including 12k
PAWS training pairs (without reducing QQP per-
formance). Table 1 also shows that the new model
is able to correctly classify challenging pairs. An-
notation scale is also important: our learning
curves show strong models like BERT improve
with tens of thousands of training examples.

Our experimental results also demonstrate that
PAWS effectively measures sensitivity of models
to word order and structure. Unlike BERT, a sim-
ple BOW model fails to learn from PAWS training
examples, demonstrating its weakness at captur-
ing non-local contextual information. Our exper-
iments show that the gains from PAWS examples
correlate with the complexity of models.

2 Related Work

Existing data creation techniques have focused on
collecting paraphrases, e.g. from co-captions for

images (Lin et al., 2014), tweets with shared URLs
(Lan et al., 2017), subtitles (Creutz, 2018), and
back translation (Iyyer et al., 2018). Unlike all
previous work, we emphasize the collection of
challenging negative examples.

Our work closely relates to the idea of crafting
adversarial examples to break NLP systems. Ex-
isting approaches mostly focused on adding label-
preserving perturbations to inputs, but with the ef-
fect of distracting systems from correct answers.
Example perturbation rules include adding noise
to inputs (Jia and Liang, 2017; Chen et al., 2018),
word replacements (Alzantot et al., 2018; Ribeiro
et al., 2018), and syntactic transformation (Iyyer
et al., 2018). A notable exception is Glockner
et al. (2018): they generated both entailment and
contradiction examples by replacing words with
their synonyms or antonyms. Our work presents
two main departures. We propose a novel method
that generates challenging examples with balanced
class labels and more word reordering variations
than previous work. In addition, we release to
public a large set of 108k example pairs with high-
quality human labels. We believe the new dataset
will benefit future research on both adversarial ex-
ample generation and improvement of model ro-
bustness.

In our work, we demonstrate the importance
of capturing non-local contextual information in
the problem of paraphrase identification. This re-
lates to prior work on probing sentence represen-
tations for their linguistic properties, such as how
much syntactic information is encoded in repre-
sentations (Conneau et al., 2018; Tenney et al.,

https://g.co/dataset/paws
https://g.co/dataset/paws
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{ Flights } { from, to } { New York, Florida }

LSTM LSTM LSTM LSTM LSTM

NNS IN LOCATION

(a) Tagging

(b) Candidates

(c) Beam Search 
w/ Constraints

[Flights]
NNS IN LOCATION LOCATIONIN

[from] [Florida] [to] [New York]

[Flights]
NNS IN LOCATIONLOCATION IN

[from] [Florida][to][New York]

NNS IN LOCATION

Figure 2: Illustration of the generation method in three
steps. (a) Tag words and phrases with part-of-speech
(POS) and named entities. (b) Build candidate sets by
grouping words and phrases with the same tag. (c) Un-
der the constraints of tag sequence template and can-
didate sets, find sentences with high language model
scores using beam search.

2019; Ettinger et al., 2018). There also exists prior
work that directly uses structural information in
modeling (Filice et al., 2015; Liu et al., 2018).
All these prior approaches were evaluated on ex-
isting datasets. In contrast, we perform studies on
PAWS, a new dataset that emphasizes the impor-
tance of capturing structural information in repre-
sentation learning. While developing new models
is beyond the scope of this paper, this new dataset
can facilitate research in this direction.

3 PAWS Example Generation

We define a PAWS pair to be a pair of sentences
with high bag-of-words (BOW) overlap but differ-
ent word order. In the Quora Question Pairs cor-
pus, 80% of such pairs are paraphrases. Here, we
describe a method to automatically generate non-
trivial and well-formed PAWS pairs from real-
world text in any domain (this section), and then
have them annotated by human raters (Section 4).

Our automatic generation method is based on
two ideas. The first swaps words to generate a
sentence pair with the same BOW, controlled by a
language model. The second uses back translation
to generate paraphrases with high BOW overlap
but different word order. These two strategies gen-
erate high-quality, diverse PAWS pairs, balanced
evenly between paraphrases and non-paraphrases.

3.1 Word Swapping
Our first phase generates well-formed sentences
by swapping words in real world text. Most text
generation models rely on large amount of training

data (Iyyer et al., 2018; Guu et al., 2018; Gupta
et al., 2018; Li et al., 2018), which is unfortu-
nately not available in our case. We thus propose a
novel generation method based on language mod-
eling and constrained beam search. The goal is to
find a sentence that achieves high language model
score as well as satisfying all constraints. High
scores indicate that generated sentences are natu-
ral and well-formed, and constraints ensure gener-
ated pairs have the same BOW.

Figure 2 illustrates the generation procedure.
First, given an input sentence, a CRF-based part-
of-speech tagger tags each word. We further detect
person names, locations, and organizations using
a named entity recognizer, and replace POS with
entity tags if probability scores are above 95%.1

The sequence of tags of words and phrases form a
template for the input.

Our beam search method then fills in each slot
of the template from left to right, scoring each
state by a language model trained on one billion
words (Chelba et al., 2014). The candidate words
and phrases for each slot are drawn from the in-
put based on its tag. In Figure 2, for example,
the second slot must be filled with a LOCATION

from two candidate New York and Florida. Candi-
dates are drawn without replacement so the gener-
ated sentence and the input have exactly the same
bag-of-words. Note that this template-based con-
straint is more restrictive than the BOW require-
ment, but we choose it because it significantly re-
duces the search space. With this constraint, the
method achieves high generation quality without
a large beam. In practice, beam size is set to 100,
which produces near-optimal results in most cases.

Let s′ be the best sentence in the beam other
than the input sentence s, and LM(·) be their
log-likelihood by the language model. We take
(s, s′) as a good word-swapping pair if LM(s′) ≥
LM(s) − t.2 We manually pick the threshold
t=3.0 for a good balance between generation
quality and coverage. Examples (1) and (2) in Ta-
ble 2 are representative examples from this gener-
ation method.

1We pick this threshold to achieve about 95% precision.
2In a preliminary stage, we noticed that many pairs were

simply a permutation of a list, like “A and B” changed to
“B and A”. For the diversity of the dataset, 99% of these are
pruned via hand-crafted, heuristic rules.
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Sentence 1 Sentence 2 Generation Type

(1) Can a bad person become good? Can a good person become bad? Adjective swap
(2) Jerry looks over Tom’s shoulder and gets

punched.
Tom looks over Jerry’s shoulder and gets
punched.

Named entity swap

(3) The team also toured in Australia in 1953. In 1953, the team also toured in Australia. Temporal phrase swap
(4) Erikson formed the rock band Spooner with

two fellow musicians.
Erikson founded the rock band Spooner with
two fellow musicians.

Word replacement

Table 2: Examples of typical types of generation. (1) and (2) are from the word swapping method, while (3) and
(4) are from the back translation method. Boldface indicates changes in each example.

3.2 Back Translation

Because word order impacts meaning, especially
in English, the swapping method tends to pro-
duce non-paraphrases. Our preliminary results
showed that the distribution of paraphrase to non-
paraphrases from this method is highly imbal-
anced (about 1:4 ratio). However, we seek to
create a balanced dataset, so we use an addi-
tional strategy based on back translation—which
has the opposite label distribution and also pro-
duces greater diversity of paraphrases while still
maintaining a high BOW overlap.

The back translation method takes a sentence
pair and label (s1, s2, l) as input. For each sen-
tence, the top-k translations are obtained from an
English-German neural machine translation model
(NMT); then each of these is translated back to En-
glish using another German-English NMT model,
providing a resulting top-k results. We chose Ger-
man as the pivot language because it produced
more word reordering variations than other lan-
guages and the translation quality was good. Both
models have the same architecture (Wu et al.,
2016) and are trained on WMT14. This results
in k2 back translations before deduplication. We
chose k=5. To obtain more pairs with the PAWS
property, we further filter back translations by
their BOW similarities to the input and their word-
order inversion rates, as described below.

We define BOW similarity as the cosine similar-
ity α between the word count vectors of a sentence
pair. Pairs generated from the swapping strategy
have score α = 1.0, but here we relax the thresh-
old to 0.9 because it brings more data diversity
and higher coverage, while still generating para-
phrases of the input with high quality.

To define the word-order inversion rate, we first
compute word alignments between a sentence pair
in a heuristic way by assuming they are one-to-one
mapping and are always monotonic. For example,
if the first sentence has three instances of dog and

On     April   2    Jenkins    married   Ivy   Vujic

Jenkins     married     Ivy     on     April     2 

Figure 3: An example of how to compute inversion
rate.

the second has two, we align the first two instances
of dog in the same order and skip the third one.
The inversion rate is then computed as the ratio of
cross alignments. Figure 3 is an example pair with
six alignments. There are 15 alignment pairs in
total and 9 of them are crossed, e.g. alignments
of on and married. The inversion rate of this ex-
ample is therefore 9/15 = 0.6. We sample back
translation results such that at least half of the pairs
have inversion rate over 0.02; this way, the final
selected pairs cover interesting transformations of
both word-order changes and word replacement.
Examples (3) and (4) in Table 2 are representative
examples from back translation.

Label Balancing Figure 1 illustrates the pro-
cess of constructing the final label-balanced set
based on human annotations. The set first in-
cludes all pairs from back translation, which are
mostly paraphrases. For each labeled pair (s1, s2)
from swapping and a labeled pair (s1, s

′
1) from

back translation, the set further includes the pair
(s2, s

′
1) based on the rules: (1) (s2, s

′
1) is para-

phrase if both (s1, s2) and (s1, s
′
1) are para-

phrases; (2) (s2, s
′
1) is non-paraphrase if exactly

one of (s1, s2) and (s1, s
′
1) is non-paraphrase; (3)

otherwise (s2, s′1) is not included because its label
is unknown. We also consider pairs (s′2, s1) and
(s′2, s

′
1) in the similar way if s′2 is a back transla-

tion of s2 with human labels.

4 PAWS Dataset

Using the example generation strategies described
in Section 3 combined with human paraphrase an-
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Quora Wikipedia

# Raw pairs 16,280 50,000

Sentence correction
# Accepted pairs 10,699 39,903
# Fixed pairs 3,626 7,387
# Rejected pairs 1,955 2,710

Paraphrase identification
Total # pairs 14,325 47,290

paraphrase 4,693 5,725
non-paraphrase 9,632 41,565

Human agreement 92.0% 94.7%

After post-filtering
Total # pairs 12,665 43,647
Human agreement 95.8% 97.5%

Table 3: Detailed counts for examples created via the
swapping strategy, followed by human filtering and
paraphrase judgments.

notations, we create a large new dataset, PAWS
that contains both paraphrase and non-paraphrase
pairs that have both high bag-of-words overlap and
word reordering. Source sentences are drawn from
both the Quora Question Pairs (QQP) corpus (Iyer
et al., 2017) and Wikipedia.3 From these, we pro-
duce two datasets, PAWSQQP and PAWSWiki.

We start by producing swapped examples from
both QQP and Wikipedia. Both sources contain
naturally occurring sentences covering many top-
ics. On both corpora only about 3% of candi-
dates are selected for further processing—the rest
are filtered because there is no valid generation
candidate that satisfies all swapping constraints
or because the language model score of the best
candidate is below the threshold. The remaining
pairs (16,280 for QQP and 50k for Wikipedia) are
passed to human review.

Sentence correction The examples generated
using both of our strategies are generally of high
quality, but they still need to be checked with re-
spect to grammar and coherence. Annotators eval-
uate each generated sentence without seeing its
source sentence. The sentence is accepted as is,
fixed, or rejected. Table 3 shows the number of
pairs of each action on each domain. Most of fixes
are minor grammar corrections like a apple→an
apple. Accepted and fixed sentences are then
passed to the next stage for paraphrase annotation.

3https://dumps.wikimedia.org

Total # back translation pairs 26,897
paraphrase 25,521
non-paraphrase 1,376

Human agreement 94.8%

Table 4: Paraphrase judgments on example pairs gen-
erated by back translation on Wikipedia sentences.

Overall 88% of generated examples passed the hu-
man correction phase on both domains.

Paraphrase identification Sentence pairs are
presented to five annotators, each of which gives
a binary judgment as to whether they are para-
phrases or not. We choose binary judgments to
make our dataset have the same label schema
as the QQP corpus. Table 3 shows aggregated
annotation statistics on both domains, including
the number of paraphrase (positive) and non-
paraphrase (negative) pairs and human agreement,
which is the percentage ratio of agreement be-
tween each individual label and the majority vote
of five labels on each example pair. Overall, hu-
man agreement is high on both Quora (92.0%) and
Wikipedia (94.7%) and each label only takes about
24 seconds. As such, answers are usually straight-
forward to human raters.

To ensure the data is comprised of clearly para-
phrase or non-paraphrase pairs, only examples
with four or five raters agreeing are kept.4 An ex-
ample of low agreement is Why is the 20th-century
music so different from the 21st music? v.s. Why
is the 21st century music so different from the 20th
century music?, where three out of five raters gave
negative labels on this pair. The bottom block of
Table 3 shows the final number of pairs after this
filtering, and human agreement further goes up to
over 95%. Finally, source and generated sentences
are randomly flipped to mask their provenance.

The swapping strategy generally produces non-
paraphrase examples—67% for QQP and 88% for
Wikipedia. Because (a) the label imbalance is
less pronounced for QQP and (b) NMT models
perform poorly on Quora questions due to do-
main mismatch, we only apply the back transla-
tion strategy to Wikipedia pairs. Doing so creates
26,897 candidate example pairs after filtering. As
before, each pair is rated by five annotators on the
paraphrase identification task.5 Table 4 shows that

4We exclude low agreement pairs from our experiments,
but we include them in our data release for further study.

5Sentence correction was not necessary for these because

https://dumps.wikimedia.org
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Train Dev Test Yes%

PAWSQQP 11,988 677 – 31.3%
PAWSWiki 49,401 8,000 8,000 44.2%
PAWSWiki-Swap 30,397 – – 9.6%

Table 5: Counts of experimental split for each PAWS
dataset. The final column gives the proportion of para-
phrase (positive) pairs. There are 108,463 PAWS pairs
in total.

most of the examples (94.9%) are paraphrases (as
expected), with high human agreement (94.8%).
Finally, we expand the pairs using the the rules
described in Section 3.2.

Table 5 provides counts for each split in the final
PAWS datasets. The training portion of PAWSQQP
is a subset of the QQP training set; however,
PAWSQQP’s development set is a subset of both
QQP’s development and test sets because there are
only 677 pairs. PAWSWiki randomly draws 8,000
pairs for each of its development and test sets and
takes the rest as its training set, with no overlap of
source sentences across sets. Finally, any trivial
pairs with identical sentences from development
and test sets are removed.6 The final PAWSQQP
has a total of 12,665 pairs (443k tokens), where
31.3% of them have positive labels (paraphrases).
PAWSWiki has a total of 65,401 pairs (2.8m to-
kens), where 44.2% of them are paraphrases.

Note that we have human annotations on 43k
pairs generated by the word swapping method on
Wikipedia, but 30k of them have no back trans-
lation counterparts and therefore they are not in-
cluded in our final PAWSWiki dataset. Neverthe-
less, they are high-quality pairs with manual la-
bels, so we include them as an auxiliary training
set (PAWSWiki-Swap in Table 5), and empirically
show its impact in Section 6.

Unlabeled PAWSWiki In addition to the fully la-
beled PAWSWiki dataset, we also construct an un-
labeled PAWSWiki set at large scale. The idea is to
simply treat all pairs from word swapping as non-
paraphrases and all pairs from back translation as
paraphrase, and construct the dataset in the same
way as labeled PAWSWiki. The result is a total of
656k pairs with silver labels. We show empirically

NMT generates fluent output.
6Such trivial examples exist because annotators some-

times fix a swapped sentence back to its source. We keep
such examples in the training set (about 8% of the corpus)
because otherwise a trained model would actually predict low
similarity scores to identical pairs.

BOW
BiLSTM

& ESIM
DecAtt

DIIN &

BERT

Non-local context × X × X
Word interaction × × X X

Table 6: Complexity of each evaluated model.

the impact of using this silver set in pre-training in
Section 6.

5 Evaluated Models

PAWS is designed to probe models’ ability to
go beyond recognizing overall sentence similar-
ity or relatedness. As noted in the introduction,
models—even the best avaliable—trained on ex-
isting resources tend to classify any example with
high BOW overlap as a paraphrase. Can any of
these models learn finer structural sensitivity when
provided with PAWS examples as part of their
training?

We consider six different models that cover a
wide range of complexity and expressiveness: two
baseline encoders and four recent advanced mod-
els that achieved state-of-the-art or strong per-
formance on paraphrase identification. Table 6
summarizes the models with respect to whether
they represent non-local contexts or support cross-
sentential word interaction.

The baseline models use cosine similarity with
simple sentence encoders: a bag-of-words (BOW)
encoder based on token unigram and bigram en-
codings and a bi-directional LSTM (BiLSTM)
that produces a contextualized sentence encoding.
A cosine value above .5 is taken as a paraphrase.

ESIM. The Enhanced Sequential Inference
Model (Chen et al., 2017) achieved competitive
performance on eight sentence pair modeling tasks
(Lan and Xu, 2018). It encodes each sentence
using a BiLSTM, concatenates the encodings for
each sentence in the pair, and passes them through
a multi-layer perceptron (MLP) for classification.
The additional layers allow ESIM to capture more
complex sentence interaction than cosine similar-
ity in the baseline models.

DecAtt. The Decomposable Attention Model
(Parikh et al., 2016) is one of the earliest mod-
els to introduce attention for paraphrase identifi-
cation. It computes word pair interaction between
two sentences and aggregates aligned vectors for
final classification. This model achieved state-of-
the-art results without explicitly modeling word
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order. In our experiments, we show the limitations
of this modeling choice on PAWS pairs.

DIIN. The Densely Interactive Inference Net-
work (Gong et al., 2018) adopts DenseNet (Huang
et al., 2017), a 2-dimensional convolution archi-
tecture, to extract high-order word-by-word in-
teraction between n-gram pairs. This model
achieved state-of-the-art performance without re-
lying on pre-trained deep contextualized represen-
tations like ELMo (Peters et al., 2018). It outper-
formed ESIM and DecAtt models by a large mar-
gin on both paraphrase identification and natural
language inference tasks.

BERT. The Bidirectional Encoder Represen-
tations from Transformers (Devlin et al., 2018)
recently obtained new state-of-the-art results on
eleven natural language processing tasks, includ-
ing pushing the GLUE benchmark to 80.4% (7.6%
absolute improvement). BERT involves pre-
training a Transformer encoder (Vaswani et al.,
2017) on a large corpus with over three billion
words. This large network is then fine-tuned with
just one additional output layer.

6 Experiments

We seek to understand how well models trained
on standard datasets perform on PAWS pairs and
to see which models are most able to learn from
PAWS pairs. A strong model should improve
significantly on PAWS when trained on PAWS
pairs without diminishing performance on existing
datasets like QQP. Overall, both DIIN and BERT
prove remarkably able to adapt to PAWS pairs and
perform well on both PAWSQQP and PAWSWiki
while the other models prove far less capable.

6.1 Experimental Setup

We use two metrics: classification accuracy and
area-under-curve (AUC) scores of precision-recall
curves. For all classification models, 0.5 is the
threshold used to compute accuracy. We report re-
sults on testing sets for QQP and PAWSWiki, and
on the development set for PAWSQQP (which has
no test set).

For BERT, we use the implementation provided
by the authors7 and apply their default fine-tuning
configuration. We use the provided BERTBASE
pre-trained model instead of BERTLARGE due to
GPU memory limitations. For all other models,
we use our own (re-)implementations that matched

7
https://github.com/google-research/bert

reported performance on QQP. We use 300 di-
mensional GloVe embeddings (Pennington et al.,
2014) to represent words and fix them during train-
ing.

6.2 Results

Main Results on PAWSQQP Table 7 summa-
rizes results on the Quora domain. We first train
models on the Quora Question Pairs (QQP) train-
ing set, and column “QQP→QQP” shows that all
models achieve over 83% accuracy on QQP. How-
ever, when evaluating on PAWSQQP, all models,
including BERT, obtain abysmal accuracy under
40% (column “QQP→PAWSQQP”).

We hypothesize the performance on PAWSQQP
relies on two factors: the number of representative
training examples, and the capability of models
to represent complex interactions between words
in each sentence and across the sentences in the
pair. To verify that, we further train models on a
combination of QQP and PAWSQQP training sets
and the last two columns of Table 7 show the re-
sults on PAWSQQP. As expected, all models ben-
efit from new training examples, but to different
extents. Gains are much larger on state-of-the-art
models like BERT, while the BOW model learns
almost nothing from new examples. As a con-
sequence, performance changes are more drastic
on PAWSQQP than on QQP. For example, the ab-
solute difference between BiLSTM and BERT is
4.2% on QQP, but it goes up to 27% on PAWSQQP,
which is a 60% relative reduction in error.

It is also noteworthy that adding PAWSQQP
training examples has no negative impact to QQP
performance at all. For example, a BERT model
fine-tuned on QQP+PAWSQQP achieves the same
90.5% classification accuracy as training on QQP
alone. We therefore obtain a single model that per-
forms well on both datasets.

Main Results on PAWSWiki In our second ex-
periment we train and evaluate models on our
PAWSWiki dataset. Table 8 presents the results.
DIIN and BERT outperform others by a substan-
tial margin (>17% accuracy gains). This obser-
vation gives more evidence that PAWS data effec-
tively measures models’ sensitivity to word order
and syntactic structure.

One interesting observation is that DecAtt per-
forms as poorly as BOW on this dataset. This is
likely due to the fact that DecAtt and BOW both
consider only local context information. We there-

 https://github.com/google-research/bert
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MODELS
QQP→QQP QQP→PAWSQQP QQP+PAWSQQP→PAWSQQP

(Acc) (AUC) (Acc) (AUC) (Acc) (AUC)

BOW 83.2 89.5 29.0 27.1 30.0 (+1.0) 27.3 (+0.2)

BiLSTM 86.3 91.6 34.8 37.9 57.6 (+22.9) 52.3 (+14.5)

ESIM (Chen et al., 2017) 85.3 92.8 38.9 26.9 66.5 (+27.7) 48.1 (+17.2)

DecAtt (Parikh et al., 2016) 87.8 93.9 33.3 26.3 67.4 (+34.1) 51.1 (+24.9)

DIIN (Gong et al., 2018) 89.2 95.2 32.8 32.4 83.8 (+51.1) 77.8 (+45.5)

BERT (Devlin et al., 2018) 90.5 96.3 33.5 35.1 85.0 (+51.5) 83.1 (+48.0)

Table 7: Accuracy (%) of classification and AUC scores (%) of precision-recall curves on Quora Question Pairs
(QQP) testing set and our PAWSQQP development set. QQP→PAWSQQP indicates that models are trained on
QQP and evaluated on PAWSQQP. Other columns are defined in a similar way. QQP+PAWSQQP is a simple
concatenation of the two training sets. Boldface numbers indicate the best accuracy for each testing scenario.
Numbers in parentheses indicate absolute gains from adding PAWSQQP training data.

MODELS
Supervised Pretrain+Fine-tune

(Acc) (AUC) (Acc) (AUC)

BOW 55.8 41.1 55.6 44.9
BiLSTM 71.1 75.6 80.8 87.6
ESIM 67.2 69.6 81.9 85.8
DecAtt 57.1 52.6 55.8 45.4

+BiLSTM 68.6 70.6 88.8 92.3
DIIN 88.6 91.1 91.8 94.4
BERT 90.4 93.7 91.9 94.3

Table 8: Accuracy (%) and AUC scores (%) of
different models on PAWSWiki testing set. Super-
vised models are trained on human-labeled data only,
while Pretrain+Fine-tune models are first trained on
noisy unlabeled PAWSWiki data and then fine-tuned on
human-labeled data.

fore tested an enhancement of DecAtt by replac-
ing its word representations with encodings from a
BiLSTM encoder to capture non-local context in-
formation. The enhanced model significantly out-
performs the base, yielding an 11.5% (57.1% vs.
68.6%) absolute gain on accuracy.

We further evaluate the impact of using sil-
ver PAWSWiki data in pre-training, as discussed
in Section 4. The last two columns of Table 8
show the results. Comparing to supervised perfor-
mance, pre-training with silver data gives consis-
tent improvements across all models except BOW
and vanilla DecAtt. Perhaps surprisingly, adding
silver data gives more than 10% absolute improve-
ments on AUC scores for BiLSTM and ESIM,
much higher than the gains on DIIN and BERT.

Size of Training Set To analyze how many
PAWS examples are sufficient for training, we
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Figure 4: AUC scores (y-axis) as a function of the num-
ber of PAWSQQP examples in the training set (x-axis).

train multiple models on QQP plus different num-
ber of PAWSQQP examples. Figure 4 plots AUC
score curves of DIIN and BERT as a function of
the number of PAWSQQP training examples. x = 0
corresponds to models trained on QQP only, and
the rightmost points correspond to models trained
on QQP and full PAWSQQP. Both models im-
prove from 30% to 74% AUC scores with 6,000
PAWSQQP examples. Furthermore, neither curve
reaches convergence, so they would likely still
benefit from more PAWS training examples.

Cross-domain Results The PAWS datasets
cover two domains: Quora and Wikipedia. Here
we demonstrate that a model trained on one
domain also generalizes to another domain, al-
though not as well as training on in-domain data.
Table 9 shows that a DIIN model trained on
Quora (QQP+PAWSQQP) achieves 70.5% AUC
on the Wikipedia domain. This is lower than
training on in-domain data (92.9%), but higher
than the model trained without any PAWS data
(46.0%). We also observe similar patterns when
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TRAINING DATA
QQP PAWSQQP PAWSWiki

(Test) (Dev) (Test)

QQP (Train) 95.2 32.4 46.0
QQP+PAWSQQP 95.3 77.8 70.5
QQP+PAWSWiki 95.3 58.5 92.9

+PAWSWiki-Swap 95.3 70.6 93.5
QQP+PAWSQQP+Wiki 95.1 87.0 93.4

+PAWSWiki-Swap 95.3 89.9 93.8

Table 9: AUC scores (%) when training DIIN models
on different sets of training data. Boldface numbers
indicate the best accuracy for each testing set.

training on Wikipedia (QQP+PAWSWiki) and test-
ing on PAWSQQP. Interestingly, using out-of-
domain data also boosts in-domain performance.
As Table 9 shows, training on both domains
(QQP+PAWSQQP+Wiki) leads to 9.2% absolute
AUC gains on PAWSQQP over the model trained
only on QQP+PAWSQQP.

The auxiliary training set on Wikipedia
(PAWSWiki-Swap) helps further. As Table 9 shows,
adding this auxiliary training set is particularly
helpful to the performance on PAWSQQP, yielding
a 12.1% (70.6% vs 58.5%) gain on AUC when
training on QQP+PAWSWiki. On PAWSWiki, this
addition lifts the (no pre-training) DIIN model
AUC from 91.1% (Table 8) to 93.8% (Table 9).

BERT vs DIIN Both models achieve top scores
on PAWS, but interestingly, the two models dis-
agree on many pairs and are not correlated in their
errors. For example, of 687 of BERT’s mistakes
on the PAWSWiki test set, DIIN got 280 (41%) cor-
rect. As such, performance might improve with
combinations of these two existing models.

It is also worth noting that the DIIN model used
in our experiments has only 590k model param-
eters, whereas BERT has over 100m. Further-
more, the computational cost of BERT is notably
higher than DIIN. Given this, and the fact that
DIIN is competitive with BERT (especially when
pre-trained on noisy pairs, see Table 8), DIIN is
likely the better choice in computationally con-
strained scenarios—especially those with strict la-
tency requirements.

7 Conclusion

Datasets are insufficient for differentiating models
if they lack examples that exhibit the necessary di-
agnostic phenomena. This has led, for example,

to new datasets for noun-verb ambiguity (Elkahky
et al., 2018) and gender bias in coreference (Web-
ster et al., 2018; Rudinger et al., 2018; Jieyu Zhao,
2018). Our new PAWS datasets join these efforts
and provide a new resource for training and evalu-
ating paraphrase identifiers. We show that includ-
ing PAWS training data for state-of-the-art models
dramatically improves their performance on chal-
lenging examples and makes them more robust to
real world examples. We also demonstrate that
PAWS effectively measures sensitivity of models
on word order and syntactic structure.
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