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Abstract
By design, word embeddings are unable to
model the dynamic nature of words’ seman-
tics, i.e., the property of words to correspond
to potentially different meanings. To address
this limitation, dozens of specialized mean-
ing representation techniques such as sense
or contextualized embeddings have been pro-
posed. However, despite the popularity of
research on this topic, very few evaluation
benchmarks exist that specifically focus on the
dynamic semantics of words. In this paper we
show that existing models have surpassed the
performance ceiling of the standard evaluation
dataset for the purpose, i.e., Stanford Contex-
tual Word Similarity, and highlight its short-
comings. To address the lack of a suitable
benchmark, we put forward a large-scale Word
in Context dataset, called WiC, based on anno-
tations curated by experts, for generic evalua-
tion of context-sensitive representations. WiC
is released in https://pilehvar.github.io/wic/.

1 Introduction

One of the main limitations of mainstream word
embeddings lies in their static nature, i.e., a word
is associated with the same embedding, indepen-
dently from the context in which it appears. There-
fore, these embeddings are unable to reflect the
dynamic nature of ambiguous words1, in that they
can correspond to different (potentially unrelated)
meanings depending on their usage in context
(Camacho-Collados and Pilehvar, 2018). To get
around this limitation dozens of proposals have
been put forward, mainly in two categories: multi-
prototype embeddings (Reisinger and Mooney,
2010; Neelakantan et al., 2014; Pelevina et al.,
2016), which usually leverage context clustering
in order to learn distinct representations for in-
dividual meanings of words, and contextualized

1Ambiguous words are important as they constitute the
most frequent words in a natural language (Zipf, 1949).

word embeddings (Melamud et al., 2016; Peters
et al., 2018), which instead compute a single dy-
namic embedding for a given word which can
adapt itself to arbitrary contexts for the word.

Despite the popularity of research on these spe-
cialised embeddings, very few benchmarks ex-
ist for their evaluation. Most works in this do-
main either perform evaluations on word similar-
ity datasets (in which words are presented in isola-
tion; hence, they are not suitable for verifying the
dynamic nature of word semantics) or carry out
impact analysis in downstream NLP applications
(usually, by taking word embeddings as baseline).
Despite providing a suitable means of verifying
the effectiveness of the embeddings, the down-
stream evaluation cannot replace generic evalua-
tions as it is difficult to isolate the impact of em-
beddings from many other factors involved, in-
cluding the algorithmic configuration and param-
eter setting of the system. To our knowledge,
the Stanford Contextual Word Similarity (SCWS)
dataset (Huang et al., 2012) is the only existing
benchmark that specifically focuses on the dy-
namic nature of word semantics.2 In Section 4 we
will explain the limitations of this dataset for the
evaluation of recent work in the literature.

In this paper we propose WiC, a novel dataset
that provides a high-quality benchmark for the
evaluation of context-sensitive word embeddings.
WiC provides multiple interesting characteristics:
(1) it is suitable for evaluating a wide range
of techniques, including contextualized word and
sense representation and word sense disambigua-
tion; (2) it is framed as a binary classification
dataset, in which, unlike SCWS, identical words
are paired with each other (in different con-

2With a similar goal in mind but focused on hypernymy,
Vyas and Carpuat (2017) developed a benchmark to assess
the capability of automatic systems to detect hypernymy re-
lations in context.

https://pilehvar.github.io/wic/
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F There’s a lot of trash on the bed of the river — I keep
a glass of water next to my bed when I sleep

F Justify the margins — The end justifies the means
T Air pollution — Open a window and let in some air
T The expanded window will give us time to catch

the thieves — You have a two-hour window of clear
weather to finish working on the lawn

Table 1: Sample positive (T) and negative (F) pairs
from the WiC dataset (target word in italics).

texts); hence, a context-insensitive word embed-
ding model would perform similarly to a random
baseline; and (3) it is constructed using high qual-
ity annotations curated by experts.

2 WiC: the Word-in-Context dataset

We frame the task as binary classification. Each
instance in WiC has a target word w, either a verb
or a noun, for which two contexts, c1 and c2, are
provided. Each of these contexts triggers a specific
meaning of w. The task is to identify if the occur-
rences of w in c1 and c2 correspond to the same
meaning or not. Table 1 lists some examples from
the dataset. In what follows in this section, we de-
scribe the construction procedure of the dataset.

2.1 Construction
Contextual sentences in WiC were extracted from
example usages provided for words in three lexi-
cal resources: (1) WordNet (Fellbaum, 1998), the
standard English lexicographic resource; (2) Verb-
Net (Kipper-Schuler, 2005), the largest domain-
independent verb-based resource; and (3) Wik-
tionary3, a large collaborative-constructed online
dictionary. We used WordNet as our core re-
source, exploiting BabelNet’s mappings (Navigli
and Ponzetto, 2012) as a bridge between Wik-
tionary and VerbNet to WordNet. Lexicographer
examples constitute a reliable base for the con-
struction of the dataset, as they are curated in a
way to be clearly distinguishable across different
senses of a word.

2.1.1 Compilation
As explained above, the dataset is composed of in-
stances, each of which contain a target word and
two examples containing the target word. An in-
stance can be either positive or negative, depend-
ing on whether the corresponding c1 and c2 are
listed for the same sense of w in the target re-
source. In order to compile the dataset, we first

3https://www.wiktionary.org/

obtained all the possible positive and negative in-
stances from all resources, with the only condi-
tion of the surface word form occurring in both
c1 and c2.4 The total number of initial exam-
ples extracted from all resources at this stage were
23,949, 10,564 and 636 for WordNet, Wiktionary
and VerbNet, respectively. We first compiled the
test and development sets with two constraints: (1)
not having more than three instances for the same
target word, and (2) not having repeated contex-
tual sentences across instances. These constraints
were enforced to have a diverse and balanced set
which covers as many unique words as possible.
With all these constraints in mind, we set apart
1,600 and 800 instances for the test and develop-
ment sets, respectively. We ensured that all the
splits were balanced for their positive and nega-
tive examples. The remaining instances whose ex-
amples did not overlap with test and development
formed our initial training dataset.

Semi-automatic check. Even though very few
in number, all resources (even exprt-based ones)
contain errors such as incorrect part-of-speech
tags or ill-formed examples. Moreover, the ex-
traction of examples and the mappings across re-
sources were not always accurate. In order to
have as few resource-specific and mapping er-
rors as possible, all training, development and test
sets were semi-automatically post-processed, ei-
ther with small fixes whenever possible or by re-
moving problematic instances otherwise.

2.1.2 Pruning
WordNet is known to be a fine-grained resource
(Navigli, 2006). Often, different senses of the
same word are hardly distinguishable from one an-
other even for humans. For example, more than
40 senses are listed for the verb run, with many
of them corresponding to similar concepts, e.g.,
“move fast”, “travel rapidly”, and “run with the
ball”. In order to avoid this high-granularity, we
performed an automatic pruning of the resource,
removing instances with subtle sense distinctions.
Sense clustering is not a very well-defined prob-
lem (McCarthy et al., 2016) and there are dif-
ferent strategies to perform this sense distinction
(Snow et al., 2007; Pilehvar et al., 2013; Mancini
et al., 2017). We adopted a simple strategy and

4Given that WordNet provides examples for synsets
(rather than word senses), a target word (sense) might not
occur in all the examples of its corresponding synset.

https://www.wiktionary.org/
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removed all pairs whose senses were first degree
connections in the WordNet semantic graph, in-
cluding sister senses, and those which belonged
to the same supersense, i.e. sense clusters from
the Wordnet lexicographer files5. There are a total
of 44 supersenses in WordNet, comprising seman-
tic categories such as shape, substance or event.
This coarsening of the WordNet sense inventory
has been shown particularly useful in downstream
applications (Rüd et al., 2011; Severyn et al.,
2013; Flekova and Gurevych, 2016; Pilehvar et al.,
2017). In the next section we show that the prun-
ing resulted in a significant boost in the clarity of
the dataset.

2.2 Quality check

To verify the quality and the difficulty of the
dataset and to estimate the human-level perfor-
mance upperbound, we randomly sampled four
sets of 100 instances from the test set, with an
overlap of 50 instances between two of the anno-
tators. Each set was assigned to an annotator who
was asked to label each instance based on whether
they thought the two occurrences of the word re-
ferred to the same meaning or not.6 The annotators
were not provided with knowledge from any ex-
ternal lexical resource (such as WordNet). Specif-
ically, the number of senses and the sense distinc-
tions of the word (in the target sense inventory)
were unknown to the annotators.

We found the average human accuracy on the
dataset to be 80.0% (individual scores of 79%,
79%, 80% and 82%). We take this as an estima-
tion of the human-level performance upperbound
of the dataset. For the overlapping section, we
computed the agreement between the two anno-
tators to be 80%. Note that the annotators were
not provided with sense distinctions to resemble
the more difficult scenario for unsupervised mod-
els (which do not benefit from sense-based knowl-
edge resources). Having access to sense defini-
tions/distinctions would have substantially raised
the performance bar.

Impact of pruning. To check the effectiveness
of our pruning strategy, we also sampled a set of
100 instances from the batch of instances that were
pruned from the dataset. Similarly, the annotators

5wordnet.princeton.edu/documentation/lexnames5wn
6Annotators were not lexicographers. To make the task

more understandable, they were asked if in their opinion the
two words would belong to the same dictionary entry or not.

Split Instances Nouns Verbs Unique words

Training 5,428 49% 51% 1,256
Dev 638 62% 38% 599
Test 1,400 59% 41% 1,184

Table 2: Statistics of different splits of WiC.

were asked to independently label instances in the
set. We computed the average accuracy on this set
to be 57% (56% and 58%), which is substantially
lower than that for the final pruned set (i.e. 80%).
This indicates the success of our pruning strategy
in improving the semantic clarity of the dataset.

2.3 Statistics
Table 2 shows the statistics of the different splits
of WiC. The test set contains a large number of
unique target words (1,256), reflecting the variety
of the dataset. The large training split of 5,428 in-
stances makes the dataset suitable for various su-
pervised algorithms, including deep learning mod-
els. Only 36% of the target words in the test
split overlap with those in the training, with no
overlap of contextual sentences across the splits.
This makes WiC extremely challenging for sys-
tems that heavily rely on pattern matching.

3 Experiments

We experimented with recent multi-prototype and
contextualized word embedding techniques. Eval-
uation of other embedding models as well as word
sense disambiguation systems is left for future
work.

Contextualized word embeddings. One of the
pioneering contextualized word embedding mod-
els is Context2Vec (Melamud et al., 2016), which
computes the embedding for a word in context us-
ing a multi-layer perceptron which is built on top
of a bidirectional LSTM (Hochreiter and Schmid-
huber, 1997) language model. We used the 600-d
UkWac pre-trained models7. ELMo (Peters et al.,
2018) is a character-based model which learns dy-
namic word embeddings that can change depend-
ing on the context. ELMo embeddings are essen-
tially the internal states of a deep LSTM-based
language model, pre-trained on a large text cor-
pus. We used the 1024-d pre-trained models8 for
two configurations: ELMo1, the first LSTM hid-
den state, and ELMo3, the weighted sum of the

7https://github.com/orenmel/context2vec
8https://www.tensorflow.org/hub/modules/google/elmo/1

wordnet.princeton.edu/documentation/lexnames5wn
https://github.com/orenmel/context2vec
https://www.tensorflow.org/hub/modules/google/elmo/1
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3 layers of LSTM. A more recent contextualized
model is BERT (Devlin et al., 2019). The tech-
nique is built upon earlier contextual representa-
tions, including ELMo, but differs in the fact that,
unlike those models which are mainly unidirec-
tional, BERT is bidirectional, i.e., it considers con-
texts on both sides of the target word during repre-
sentation. We experimented with two pre-trained
BERT models: base (768 dimensions, 12 layer,
110M parameters) and large (1024 dimensions, 24
layer, 340M parameters).9 Around 22% of the
pairs in the test set had at least one of their tar-
get words not covered by these models. For such
out-of-vocabulary cases, we used BERT’s default
tokenizer to split the unknown word to subwords
and computed its embedding as the centroid of the
corresponding subwords’ embeddings.

Multi-prototype embeddings. We experiment
with three recent techniques that release 300-d
pre-trained multi-prototype embeddings10. JBT11

(Pelevina et al., 2016) induces different senses by
clustering graphs constructed using word embed-
dings and computes embedding for each cluster
(sense). DeConf12 (Pilehvar and Collier, 2016)
exploits the knowledge encoded in WordNet. For
each sense, it extracts from the resource the set
of semantically related words, called sense biasing
words, which are in turn used to compute the sense
embedding. SW2V13 (Mancini et al., 2017) is an
extension of Word2Vec (Mikolov et al., 2013a) for
jointly learning word and sense embeddings, pro-
ducing a shared vector space of words and senses
as a result. For these three methods we follow
the disambiguation strategy suggested by Pelev-
ina et al. (2016): for each example we retrieve
the closest sense embedding to the context vec-
tor, which is computed by averaging its contained
words’ embeddings.

Sentence-level baselines. We also report results
for two baseline models which view the task as
context (sentence) similarity. The BoW system
views the sentence as a bag of words and com-
putes a simple embedding as average of its words.
The system makes use of Word2vec (Mikolov
et al., 2013b) 300-d embeddings pre-trained

9https://github.com/google-research/bert/blob/master/
10Multi-prototype embeddings are also referred to as sense

embeddings in the literature.
11https://github.com/uhh-lt/sensegram
12https://pilehvar.github.io/deconf/
13http://lcl.uniroma1.it/sw2v

MLP Threshold

Contextualized word-based models

Context2vec 57.9 ± 0.9 59.7
ElMo1 56.4 ± 0.6 57.1
ElMo3 57.2 ± 0.8 56.3
BERTlarge 57.4 ± 1.0 63.8
BERTbase 60.2 ± 0.4 63.6

Multi-prototype models

DeConf* 52.4 ± 0.8 62.1
SW2V* 54.1 ± 0.5 59.1
JBT 54.1 ± 0.6 54.5

Sentence-level baselines

BoW 54.2 ± 1.3 61.0
Sentence LSTM 53.1 ± 0.9

Table 3: Accuracy % performance of different mod-
els on the WiC dataset. The estimated (human-level)
performance is 80.0 (cf. Section 2.2) and a random
baseline would perform at 50.0. Systems marked with
* make use of external lexical resources.

on the Google News corpus. Sentence LSTM
is another baseline, which differently from the
other models, does not obtain explicit encoded
representations of the target word or sentence.
The system has two LSTM layers with 50 units,
one for each context side, which concatenates the
outputs and passes that to a feedforward layer
with 64 neurons, followed by a dropout layer at
rate 0.5, and a final one-neuron output layer of
sigmoid activation.

We used two simple binary classifiers in our ex-
periments on top of all comparison systems (ex-
cept for the LSTM baseline). MLP: a simple
dense network with 100 hidden neurons (ReLU
activation), and one output neuron (sigmoid acti-
vation), tuned on the development set (batch size:
32; optimizer: Adam; loss: binary crossentropy).
Given the stochasticity of the network optimizer,
we report average results for five runs (± standard
deviation). Threshold: a simple threshold-based
classifier based on the cosine distance of the two
input vectors, tuned with step size 0.02 on the de-
velopment set.

3.1 Results

Table 3 shows the results on WiC. In general, the
dataset proves to be very difficult for all the tech-
niques, with the best model, i.e., BERTlarge, pro-
viding around 14% absolute improvement over a
random baseline. Among the two classifiers, the
simple threshold-based strategy, which computes

https://github.com/google-research/bert/blob/master/
https://github.com/uhh-lt/sensegram
https://pilehvar.github.io/deconf/
http://lcl.uniroma1.it/sw2v
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the cosine distance between the two encodings,
proves to be more efficient than the MLP network
which might not be suitable for this setting with
small amount of training data. The 16.2% ab-
solute accuracy difference between human-level
upperbound and state-of-the-art performance sug-
gests, however, a challenging dataset and encour-
ages future research in context-sensitive word em-
beddings to leverage WiC in their evaluations.

Among the contextualized word-based models,
after BERT, Context2vec provides more compet-
itive results on the dataset. However, surpris-
ingly, neither ELMo nor Context2vec are able to
improve over the simple sentence BoW baseline
(which also outperforms the sentence LSTM base-
line) using the threshold strategy. This raises a
question about the ability of these models in cap-
turing fine-grained semantics of words in vari-
ous contexts. Finally, as far as multi-prototype
techniques are concerned, DeConf is the best per-
former. We note that DeConf indirectly benefits
from sense-level information from WordNet en-
coded in its embeddings. The same applies to
SW2V, which leverages knowledge from a signifi-
cantly larger lexical resource, i.e., BabelNet (Nav-
igli and Ponzetto, 2012).

4 Related work

The Stanford Contextual Word Similarity (SCWS)
dataset (Huang et al., 2012) comprises 2003 word
pairs and is analogous to standard word similarity
datasets, such as RG-65 (Rubenstein and Goode-
nough, 1965) and SimLex (Hill et al., 2015), in
which the task is to automatically estimate the se-
mantic similarity of word pairs. Ideally, the es-
timated similarity scores should have high cor-
relation with those given by human annotators.
However, there is a fundamental difference be-
tween SCWS and other word similarity datasets:
each word in SCWS is associated with a context
which triggers a specific meaning of the word. The
unique property of the dataset makes it a suitable
benchmark for multi-prototype and contextualized
word embeddings. However, in the following, we
highlight some of the limitations of the dataset
which hinder its suitability for evaluating existing
techniques.

Inter-rater agreement (IRA) is widely accepted
as a metric to assess the annotation quality of a
dataset. The metric reflects the homogeneity of
ratings which is expected to be high for a well-

defined task and a qualified set of annotators. For
each word pair in SCWS ten scores were obtained
through crowdsourcing. We computed the pair-
wise IRA to be 0.35 (in terms of Spearman ρ cor-
relation) which is a very low figure. The mean
IRA (between each annotator and the average of
others), which can be taken as a human-level per-
formance upperbound, is 0.52. Moreover, most of
the instances in SCWS have context pairs with dif-
ferent target words.14 This makes it possible to
test context-independent models, which only con-
siders word pairs in isolation, on the dataset. Im-
portantly, such a context-independent model can
easily surpass the human-level performance up-
perbound. For instance, we computed the perfor-
mance of the Google News Word2vec pre-trained
word embeddings (Mikolov et al., 2013b) on the
dataset to be 0.65 (ρ), which is significantly higher
than the optimistic IRA for the dataset. In fact,
Dubossarsky et al. (2018) showed how the re-
ported high performance of multi-prototype tech-
niques in this dataset was not due to an accurate
sense representation, but rather to a subsampling
effect, which had not been controlled for in sim-
ilarity datasets. In contrast, a context-insensitive
word embedding model would perform no better
than a random baseline on our dataset.

5 Conclusions

In this paper we have presented a benchmark for
evaluating context-sensitive word representations.
The proposed dataset, WiC, is based on lexico-
graphic examples, which constitute a reliable basis
to validate different models in their ability to per-
ceive and discern different meanings of words. We
tested some of the recent state-of-the-art contextu-
alized and multi-prototype embedding models on
our dataset. The considerable gap between the per-
formance of these models and the human-level up-
perbound suggests ample room for future work on
modeling the semantics of words in context.
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Carla Pérez-Almendros for their help with the
manual evaluation and Kiamehr Rezaee for run-
ning the BERT experiments.

14Only 8% (12% if ignoring PoS) of SCWS pairs are iden-
tical but their assigned scores (by average 6.8) are substan-
tially higher than the dataset average of 3.6 on a [0,10] scale.



1272

References
Jose Camacho-Collados and Taher Pilehvar. 2018.

From word to sense embeddings: A survey on vec-
tor representations of meaning. Journal of Artificial
Intelligence Research, 63:743–788.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL, Minneapolis,
United States.

Haim Dubossarsky, Eitan Grossman, and Daphna
Weinshall. 2018. Coming to your senses: on con-
trols and evaluation sets in polysemy research. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1732–1740, Brussels, Belgium.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Database. MIT Press, Cambridge, MA.

Lucie Flekova and Iryna Gurevych. 2016. Supersense
embeddings: A unified model for supersense inter-
pretation, prediction, and utilization. In Proceedings
of ACL.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of ACL, pages 873–882,
Jeju Island, Korea.

Karin Kipper-Schuler. 2005. VerbNet: A broad-
coverage, comprehensive verb lexicon. Ph.D. the-
sis.

Massimiliano Mancini, Jose Camacho-Collados, Igna-
cio Iacobacci, and Roberto Navigli. 2017. Embed-
ding words and senses together via joint knowledge-
enhanced training. In Proceedings of CoNLL, pages
100–111, Vancouver, Canada.

Diana McCarthy, Marianna Apidianaki, and Katrin
Erk. 2016. Word sense clustering and clusterability.
Computational Linguistics.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional lstm. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 51–61, Berlin,
Germany.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Roberto Navigli. 2006. Meaningful clustering of
senses helps boost Word Sense Disambiguation per-
formance. In Proceedings of COLING-ACL, pages
105–112, Sydney, Australia.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artificial Intelligence, 193:217–
250.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of EMNLP,
pages 1059–1069, Doha, Qatar.

Maria Pelevina, Nikolay Arefyev, Chris Biemann, and
Alexander Panchenko. 2016. Making sense of word
embeddings. In Proceedings of the 1st Workshop on
Representation Learning for NLP, pages 174–183.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,
C. Clark, K. Lee, and L. Zettlemoyer. 2018. Deep
contextualized word representations. In Proceed-
ings of NAACL, New Orleans, LA, USA.

Mohammad Taher Pilehvar, Jose Camacho-Collados,
Roberto Navigli, and Nigel Collier. 2017. Towards
a Seamless Integration of Word Senses into Down-
stream NLP Applications. In Proceedings of ACL,
Vancouver, Canada.

Mohammad Taher Pilehvar and Nigel Collier. 2016.
De-conflated semantic representations. In Proceed-
ings of EMNLP, pages 1680–1690, Austin, TX.

Mohammad Taher Pilehvar, David Jurgens, and
Roberto Navigli. 2013. Align, Disambiguate and
Walk: a Unified Approach for Measuring Seman-
tic Similarity. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics, pages 1341–1351, Sofia, Bulgaria.

Joseph Reisinger and Raymond J. Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Proceedings of ACL, pages 109–117.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.
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