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Abstract

We address part-of-speech (POS) induction by
maximizing the mutual information between
the induced label and its context. We focus
on two training objectives that are amenable
to stochastic gradient descent (SGD): a novel
generalization of the classical Brown cluster-
ing objective and a recently proposed varia-
tional lower bound. While both objectives are
subject to noise in gradient updates, we show
through analysis and experiments that the vari-
ational lower bound is robust whereas the gen-
eralized Brown objective is vulnerable. We
obtain strong performance on a multitude of
datasets and languages with a simple architec-
ture that encodes morphology and context.

1 Introduction

We consider information theoretic objectives
for POS induction, an important unsupervised
learning problem in computational linguistics
(Christodoulopoulos et al., 2010). The idea is
to make the induced label syntactically informa-
tive by maximizing its mutual information with
respect to local context. Mutual information has
long been a workhorse in the development of NLP
techniques, for instance the classical Brown clus-
tering algorithm (Brown et al., 1992). But its role
in today’s deep learning paradigm is less clear and
a subject of active investigation (Belghazi et al.,
2018; Oord et al., 2018).

We focus on fully differentiable objectives that
can be plugged into an automatic differentiation
system and efficiently optimized by SGD. Specif-
ically, we investigate two training objectives. The
first is a novel generalization of the Brown cluster-
ing objective obtained by relaxing the hard clus-
tering constraint. The second is a recently pro-
posed variational lower bound on mutual informa-
tion (McAllester, 2018).

A main challenge in optimizing these objectives
is the difficulty of stochastic optimization. Each
objective involves entropy estimation which is a
nonlinear function of all data and does not de-
compose over individual instances. This makes
the gradients estimated on minibatches inconsis-
tent with the true gradient estimated from the en-
tire dataset. To our surprise, in practice we are able
to optimize the variational objective effectively but
not the generalized Brown objective. We analyze
the estimated gradients and show that the incon-
sistency error is only logarithmic in the former but
linear in the latter.

We validate our approach on POS induction by
attaining strong performance on a multitude of
datasets and languages. Our simple architecture
that encodes morphology and context reaches up
to 80.1 many-to-one accuracy on the 45-tag Penn
WSJ dataset and achieves 4.7% absolute improve-
ment to the previous best result on the universal
treebank. Unlike previous works, our model does
not rely on computationally expensive structured
inference or hand-crafted features.

2 Background

2.1 Information Theory

Mutual information. Mutual information be-
tween two random variables measures the amount
of information gained about one variable by ob-
serving the other. Unlike the Pearson correlation
coefficient which only captures the degree of lin-
ear relationship, mutual information captures any
nonlinear statistical dependencies (Kinney and At-
wal, 2014).

Formally, the mutual information between dis-
crete random variables X,Y with a joint distri-
bution p is the KL divergence between the joint
distribution p(x, y) and the product distribution
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p(x)p(y) over X,Y :

I(X,Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

= E
(x,y)∼p

[
log

p(x, y)

p(x)p(y)

]
(1)

It is thus nonnegative and zero iff X and Y are
independent. We assume that the marginals p(x)
and p(y) are nonzero.

It is insightful to write mutual information in
terms of entropy. The entropy of X is

H(X) = −
∑
x

p(x) log p(x) = E
x∼p

[
log

1

p(x)

]
corresponding to the number of bits for encoding
the behavior of X under p.1 The entropy of X
given the information that Y equals y is

H(X|Y = y) = −
∑
x

p(x|y) log p(x|y)

Taking expectation over Y yields the conditional
entropy of X given Y :

H(X|Y ) =
∑
y

p(y)

(
−
∑
x

p(x|y) log p(x|y)

)

= E
(x,y)∼p

[
log

1

p(x|y)

]
(2)

By manipulating the terms in mutual information,
we can write

I(X,Y ) = E
x∼p

[
log

1

p(x)

]
− E

(x,y)∼p

[
log

1

p(x|y)

]
= H(X)−H(X|Y )

which expresses the amount of information on X
gained by observing Y . SwitchingX and Y shows
that I(X,Y ) = H(Y )−H(Y |X).

Cross entropy. If p and q are full-support dis-
tributions over the same discrete set, the cross en-
tropy between p and q is the asymmetric quantity

H(p, q) = −
∑
x

p(x) log q(x) = E
x∼p

[
log

1

q(x)

]
corresponding to the number of bits for encoding
the behavior of X under p by using q. It is reveal-
ing to write entropy in terms of KL divergence.

1The paper will always assume log base 2 to accommo-
date the bit interpretation.

Multiplying the term inside the log by p(x)/p(x)
we derive

H(p, q) = E
x∼p

[
log

1

p(x)

]
+ E

x∼p

[
log

p(x)

q(x)

]
= H(p) +DKL(p||q)

Thus H(p, q) ≥ H(p) with equality iff p = q.

2.2 Brown Clustering
Our primary inspiration comes from Brown clus-
tering (Brown et al., 1992), a celebrated word clus-
tering technique that had been greatly influential in
unsupervised and semi-supervised NLP long be-
fore continuous representations based on neural
networks were popularized. It finds a clustering
C : V → [m] of the vocabulary V into m classes
by optimizing the mutual information between the
clusters of a random bigram (X,Y ). Given a cor-
pus of N words (x1 . . . xN ), it assumes a uniform
distribution over consecutive word pairs (xi−1, xi)
and optimizes the following empirical objective

max
C:V→[m]

∑
c,c′∈[m]

#(c, c′)

N
log

(
#(c, c′)N

#(c)#(c′)

)
(3)

where #(c, c′) denotes the number of occurrences
of the cluster pair (c, c′) under C. While this op-
timization is intractable, Brown et al. (1992) de-
rive an effective heuristic that 1. initializesmmost
frequent words as singleton clusters and 2. re-
peatedly merges a pair of clusters that yields the
smallest decrease in mutual information. The re-
sulting clusters have been useful in many appli-
cations (Koo et al., 2008; Owoputi et al., 2013)
and has remained a strong baseline for POS in-
duction decades later (Christodoulopoulos et al.,
2010). But the approach is tied to highly nontriv-
ial combinatorial optimization tailored for the spe-
cific problem and difficult to scale/generalize.

3 Objectives

In the remainder of the paper, we assume discrete
random variables (X,Y ) ∈ X×Y with a joint dis-
tribution D that represent naturally co-occurring
observations. In POS induction experiments, we
will set D to be a context-word distribution where
Y is a random word and X is the surrounding
context of Y (thus Y is the vocabulary and X is
the space of all possible contexts). Let m be the
number of labels to induce. We introduce a pair
of trainable classifiers that define conditional la-
bel distributions p(z|x) and q(z|y) for all x ∈ X ,
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y ∈ Y , and z ∈ [m]. For instance, p(·|y) can be
the output of a softmax layer on some transforma-
tion of y.

Our goal is to learn these classifiers without ob-
serving the latent variable z by optimizing an ap-
propriate objective. For training data, we assume
N iid samples (x1, y1) . . . (xN , yN ) ∼ D.

3.1 Generalized Brown Objective
Our first attempt is to maximize the mutual infor-
mation between the predictions of p and q. Intu-
itively, this encourages p and q to agree on some
annotation scheme (up to a permutation of labels),
modeling the dynamics of inter-annotator agree-
ment (Artstein, 2017). It can be seen as a differen-
tiable generalization of the Brown clustering ob-
jective. To this end, define

p(z) = E
x∼D

[p(z|x)] ∀z ∈ [m]

q(z) = E
y∼D

[q(z|y)] ∀z ∈ [m]

The mutual information between the predictions
of p and q on a single sample (x, y) is then

Jmi
x,y =

∑
z,z′

p(z|x)q(z′|y) log p(z|x)q(z
′|y)

p(z)q(z′)

and the objective (to maximize) is

Jmi = E
(x,y)∼D

[
Jmi
x,y

]
Note that this becomes exactly the original Brown
objective (3) if (X,Y ) is defined as a random bi-
gram and p and q are tied and constrained to be a
hard clustering.

Empirical objective. In practice, we work with
the value of empirical mutual information Ĵmi es-
timated from the training data:

p̂(z) =
1

N

N∑
i=1

p(z|xi) ∀z ∈ [m]

q̂(z) =
1

N

N∑
i=1

q(z|yi) ∀z ∈ [m]

Ĵmi
i =

∑
z,z′

p(z|xi)q(z′|yi) log
p(z|xi)q(z′|yi)
p̂(z)q̂(z′)

Ĵmi =
1

N

N∑
i=1

Ĵmi
i (4)

Our task is to maximize (4) by taking gradient
steps at random minibatches. Note, however, that

the objective cannot be written as a sum of lo-
cal objectives because we take log of the esti-
mates q̂(z) and p̂(z) computed from all samples.
This makes the stochastic gradient estimator bi-
ased (i.e., it does not match the gradient of (4)
in expectation) and compromises the correctness
of SGD. This bias is investigated more closely in
Section 4.

3.2 Variational Lower Bound
The second training objective we consider can be
derived in a rather heuristic but helpful manner as
follows. Since X,Y are always drawn together, if
q(z|y) is the target label distribution for the pair
(x, y), then we can train p(z|x) by minimizing the
cross entropy between q and p over samples

H(q, p) = E
(x,y)∼D

[
−
∑
z

q(z|y) log p(z|x)

]
which is minimized to zero at p = q. However,
q is also untrained and needs to be trained along
with p. Thus this loss alone admits trivial solu-
tions such as setting p(1|x) = p(1|y) = 1 for
all (x, y). This undesirable behavior can be pre-
vented by simultaneously maximizing the entropy
of q. Let Z denote a random label from q with dis-
tribution q(z) = E

y∼D
[q(z|y)] (thus Z is a function

of q). The entropy of Z is

H(Z) = −
∑
z

q(z) log q(z)

Putting together, the objective (to maximize) is

Jvar = H(Z)−H(q, p)

Variational interpretation. The reason this ob-
jective is named a variational lower bound is due to
McAllester (2018) who shows the following. Con-
sider the mutual information between Z and the
raw signal X:

I(X,Z) = H(Z)−H(Z|X) (5)

Because Z is drawn from q conditioning on Y ,
which is co-distributed with X , we have a Markov
chain X → Y

q−→ Z. Thus maximizing I(X,Z)
over the choice of q is a reasonable objective that
enforces “predictive coding”: the label predicted
by q from Y must be as informative of X as pos-
sible. It can be seen as a special case of the objec-
tive underlying the information bottleneck method
(Tishby et al., 2000).
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So what is the problem with optimizing (5) di-
rectly? The problem is that the conditional entropy
under the model

H(Z|X) = E
(x,y)∼D
z∼q(·|y)

[
log

1

π(z|x)

]
(6)

involves the posterior probability of z given x

π (z|x) =
∑

yD(x, y)q(z|y)∑
y,zD(x, y)q(z|y)

This conditional marginalization is generally in-
tractable and cannot be approximated by sampling
since the chance of seeing a particular x is small.
However, we can introduce a variational distribu-
tion p(z|x) to model π (z|x). Plugging this into
(6) we observe that

E
(x,y)∼D
z∼q(·|y)

[
log

1

p(z|x)

]
= H(q, p)

Moreover,

E
(x,y)∼D
z∼q(·|y)

[
log

1

p(z|x)

]

= E
(x,y)∼D
z∼q(·|y)

[
log

π (z|x)
π (z|x) p(z|x)

]
= H(Z|X) +DKL(π||p)

Thus H(q, p) is an upper bound on H(Z|X) for
any p with equality iff p matches the true poste-
rior distribution π. This in turn means that Jvar =
H(Z) − H(q, p) is a lower bound on I(X,Z),
hence the name.

Empirical objective. As with the generalized
Brown objective, the variational lower bound can
be estimated from the training data as

Ĥ(Z) = −
∑
z

q̂(z) log q̂(z)

Ĥ(q, p) =
1

N

N∑
i=1

(
−
∑
z

q(z|yi) log p(z|xi)

)
Ĵvar = Ĥ(Z)− Ĥ(q, p) (7)

where q̂(z) is defined as in Section 3.1. Our task
is again to maximize this empirical objective (7)
by taking gradient steps at random minibatches.
Once again, it cannot be written as a sum of local
objectives because the entropy term involves log
of q̂(z) computed from all samples. Thus it is not
clear if stochastic optimization will be effective.

4 Analysis

The discussion of the two objectives in the pre-
vious section is incomplete because the stochastic
gradient estimator is biased under both objectives.
In this section, we formalize this issue and analyze
the bias.

4.1 Setting

Let B1 . . . BK be a partition of the N training
examples (x1, y1) . . . (xN , yN ) into K (iid) mini-
batches. For simplicity, assume |Bk| = M for all
k andN =MK. We will adopt the same notation
in Section 3 for p̂(z) and q̂(z) estimated from all
N samples. Define analogous estimates based on
the k-th minibatch by

p̂k(z) =
1

M

∑
x∈Bk

p(z|x) ∀z ∈ [m]

q̂k(z) =
1

M

∑
y∈Bk

q(z|y) ∀z ∈ [m]

If lN denotes an objective function computed from
all N samples in the training data and lk denotes
the same objective computed fromBk, a condition
on the correctness of SGD is that the gradient of
lk (with respect to model parameters) is consistent
with the gradient of lN on average:

∇lN =
1

K

K∑
k=1

∇lk + ε (8)

where ε denotes the bias of the stochastic gradi-
ent estimator. In particular, any loss of the form
lN = (1/K)

∑
k lk that decomposes over inde-

pendent minibatches (e.g., the cross-entropy loss
for supervised classification) satisfies (8) with ε =
0. The bias is nonzero for the unsupervised ob-
jectives considered in this work due to the issues
discussed in Section 3.

4.2 Result

The following theorem precisely quantifies the
bias for the empirical losses associated with the
variational bound and the generalized Brown ob-
jectives. We only show the result with the gradi-
ent with respect to q, but the result with the gradi-
ent with respect to p is analogous and omitted for
brevity.

Theorem 4.1. Assume the setting in Section 4.1
and the gradient is taken with respect to the pa-
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rameters of q. For lN = −Ĵvar defined in (7),

ε =
1

K

K∑
k=1

∑
z

log
q̂(z)

q̂k(z)
∇q̂k(z)

On the other hand, for lN = −Ĵmi defined in (4),

ε =
1

N

K∑
k=1

∑
z,z′

(
εk(z, z

′)∇q̂k(z′)

+ log
p̂(z)q̂(z′)

p̂k(z)q̂k(z′)

∑
(x,y)∈Bk

p(z|x)∇q(z′|y)
)

where

εk(z, z
′) =

1

K

N∑
i=1

p(z|xi)q(z′|yi)
q̂(z′)

−
∑

(x,y)∈Bk

p(z|x)q(z′|y)
q̂k(z′)

A proof can be found in the appendix. We see
that both biases go to zero as p̂k and q̂k approach
p̂ and q̂. However, the bias is logarithmic in the
ratio q̂(z)/q̂k(z) for the variational lower bound
but roughly linear in the difference between 1

q̂(z′)

and 1
q̂k(z′)

for the generalized Brown objective. In
this sense, the variational lower bound is exponen-
tially more robust to noise in minibatch estimates
than the generalized Brown objective. This is con-
firmed in experiments: we are able to optimize
Ĵvar with minibatches as small as 80 examples
but unable to optimize Ĵmi unless minibatches are
prohibitively large.

5 Experiments

We demonstrate the effectiveness of our train-
ing objectives on the task of POS induction.
The goal of this task is to induce the correct
POS tag for a given word in context (Merialdo,
1994). As typical in unsupervised tasks, eval-
uating the quality of induced labels is challeng-
ing; see Christodoulopoulos et al. (2010) for an
in-depth discussion. To avoid complications, we
follow a standard practice (Berg-Kirkpatrick et al.,
2010; Ammar et al., 2014; Lin et al., 2015; Stratos
et al., 2016) and adopt the following setting for all
compared methods.

• We use many-to-one accuracy as a primary
evaluation metric. That is, we map each in-
duced label to the most frequently coinciding

ground-truth POS tag in the annotated data
and report the resulting accuracy. We also use
the V-measure (Rosenberg and Hirschberg,
2007) when comparing with CRF autoen-
coders to be consistent with reported results
(Ammar et al., 2014; Lin et al., 2015).

• We use the number of ground-truth POS tags
as the value of m (i.e., number of labels to
induce). This is a data-dependent quantity,
for instance 45 in the Penn WSJ and 12 in the
universal treebank. Fixing the number of tags
this way obviates many evaluation issues.

• Model-specific hyperparameters are tuned on
the English Penn WSJ dataset. This config-
uration is then fixed and used for all other
datasets: 10 languages in the universal tree-
bank2 and 7 languages from CoNLL-X and
CoNLL 2007.

5.1 Setting
We setD to be a uniform distribution over context-
word pairs in the training corpus. Given N sam-
ples (x1, y1) . . . (xN , yN ) ∼ D, we optimize the
variational objective (7) or the generalized Brown
objective (4) by taking gradient steps at random
minibatches. This gives us conditional label distri-
butions p(z|x) and q(z|y) for all contexts x, words
y, and labels z. At test time, we use

z∗ = argmax
z

q(z|y)

as the induced label of word y. We experimented
with different inference methods such as taking
argmaxz p(z|x)q(z|y) but did not find it helpful.

5.2 Definition of (X,Y )

Let V denote the vocabulary. We assume an inte-
gerH ≥ 1 that specifies the width of local context.
Given random word y ∈ V , we set x ∈ V 2H to be
an ordered list of H left and H right words of y.
For example, with H = 2, a typical context-target
pair (x, y) ∼ D may look like

x = (“had”, “these”, “in”, “my”)

y = “keys”

We find this simple fixed-window definition of ob-
served variables to be the best inductive bias for
POS induction. The correct label can be inferred
from either x or y in many cases: in the above
example, we can infer that the correct POS tag is
plural noun by looking at the target or the context.

2https://github.com/ryanmcd/uni-dep-tb
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5.3 Architecture

We use the following simple architecture to pa-
rameterize the label distribution p(·|x) condi-
tioned on context x ∈ V H and the label distri-
bution q(·|y) conditioned on word y ∈ V .

Context architecture. The parameters of p are
word embeddings ew ∈ Rd for all w ∈ V and
matrices Wj ∈ Rm×d for all j = 1 . . . 2H . Given
2H ordered contextual words x = (wj)

2H
j=1, we

define

p (·|x) = softmax

 2H∑
j=1

Wjewj


Word architecture. The parameters of q are
the same word embeddings ew ∈ Rd shared
with p, character embeddings ec ∈ Rd/2 for
all distinct characters c, two single-layer LSTMs
with input/output dimension d/2, and matrices
Wc,Ww ∈ Rm×d. Given the word y with char-
acter sequence c1 . . . cT , we define

(f1 . . . fT ) = LSTMf (ec1 . . . ecT )

(b1 . . . bT ) = LSTMb(ecT . . . ec1)

q(·|y) = softmax
(
Wc

[
fT
bT

]
+Wwey

)
The overall architecture is illustrated in Figure 1.
Our hyperparameters are the embedding dimen-
sion d = 200, the context width H = 2, the learn-
ing rate of the Adam optimizer r = 0.001, and the
minibatch size B = 80.3 Their values are tuned
on the 45-tag Penn WSJ dataset to maximize ac-
curacy.

5.4 Baselines

We focus on comparing with the following models
which are some of the strongest baselines in the
literature we are aware of. Berg-Kirkpatrick et al.
(2010) extend a standard hidden Markov Model
(HMM) to incorporate linguistic features. Stratos
et al. (2016) develop a factorization-based algo-
rithm for learning a constrained HMM. Ammar
et al. (2014) propose a CRF autoencoder that re-
constructs words from a structured label sequence.
Lin et al. (2015) extend Ammar et al. (2014) by
switching a categorical reconstruction distribution
with a Gaussian distribution. In addition to these

3An implementation is available at: https://
github.com/karlstratos/mmi-tagger.

I had these keys in my pocket

k e y s

BiLSTM

mutual information

Figure 1: Architecture illustrated on the example text
“had these keys in my” with target Y = “keys”.

baselines, we also report results with Brown clus-
tering (Brown et al., 1992), the Baum-Welch algo-
rithm (Baum and Petrie, 1966), and k-means clus-
tering of 300-dimensional GloVe vectors (Pen-
nington et al., 2014).

5.5 Results

The 45-tag Penn WSJ dataset. The 45-tag
Penn WSJ dataset is a corpus of around one mil-
lion words each tagged with one of m = 45 tags.
It is used to optimize hyperparameter values for
all compared methods. Table 1 shows the aver-
age accuracy over 10 random restarts with the best
hyperparameter configurations; standard deviation
is given in parentheses (except for deterministic
methods Stratos et al. (2016) and Brown cluster-
ing).

Our model trained with the variational objective
(7) outperforms all baselines.4 We also observe
that our model trained with the generalized Brown
objective (4) does not work. We have found that
unless the minibatch size is as large as 10,000 the
gradient steps do not effectively increase the true
data-wide mutual information (4). This supports
our bias analysis in Section 4. While it may be
possible to develop techniques to resolve the dif-
ficulty, for instance keeping a moving average of
estimates to stabilize estimation, we leave this as
future work and focus on the variational objective
in the remainder of the paper.

Table 2 shows ablation experiments on our best
4 We remark that Tran et al. (2016) report a single number

79.1 with a neuralized HMM. We also note that the concur-
rent work by He et al. (2018) obtains 80.8 by using word
embeddings carefully pretrained on one billion words.
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Method Accuracy
Variational Ĵvar (7) 78.1 (±0.8)

Generalized Brown Ĵmi (4) 48.8 (±0.9)

Berg-Kirkpatrick et al. (2010) 74.9 (±1.5)

Stratos et al. (2016) 67.7
Brown et al. (1992) 65.6
Baum-Welch 62.6 (±1.1)

k-MEANS 32.6 (±0.7)

Table 1: Many-to-one accuracy on the 45-tag Penn
WSJ with the best hyperparameter configurations. The
average accuracy over 10 random restarts is reported
and the standard deviation is given in parentheses (ex-
cept for deterministic methods).

Configuration Accuracy
Best 80.1
H = 3 75.9
H = 1 75.9

Sentence-level batching 72.4
GloVe initialization 67.6

No character encoding 65.6

Table 2: Ablation of the best model on Penn WSJ.

model (accuracy 80.1) to better understand the
sources of its strong performance. Context size
H = 2 is a sizable improvement over H = 3
or H = 1. Random sampling is significantly
more effective than sentence-level batching (i.e.,
each minibatch is the set of context-word pairs
within a single sentence as done in McAllester
(2018)). GloVe initialization of word embeddings
ew is harmful. As expected for POS tagging, mor-
phological modeling with LSTMs gives the largest
improvement.

While it may be surprising that GloVe initial-
ization is harmful, it is well known that pretrained
word embeddings do not necessarily capture syn-
tactic relationships (as evident in the poor perfor-
mance of k-means clustering). Consider the top
ten nearest neighbors of the word “made” under
GloVe embeddings (840B.300d, within PTB vo-
cab) shown in Table 3. The neighbors are clearly
not in the same syntactic category. The embed-
dings can be made more syntactic by controlling
the context window. But we found it much more
effective (and simpler) to start from randomly ini-
tialized embeddings and let the objective induce
appropriate representations.

Cosine Similarity Nearest Neighbor
0.7426 making
0.7113 make
0.6851 that
0.6613 they
0.6584 been
0.6574 would
0.6533 brought
0.6521 had
0.6514 came
0.6494 but
0.6486 even

Table 3: Nearest neighbors of “made” under GloVe em-
beddings (840B.300d, within PTB vocab).

The 12-tag universal treebank. The universal
treebank v2.0 is a corpus in ten languages tagged
with m = 12 universal POS tags (McDonald
et al., 2013). We use this corpus to be compati-
ble with existing results. Table 4 shows results on
the dataset, using the same setting in the experi-
ments on the Penn WSJ dataset. Our model signif-
icantly outperforms the previous state-of-the-art,
achieving an absolute gain of 4.7 over Stratos et al.
(2016) in average accuracy.

Comparison with CRF autoencoders. Table 5
shows a direct comparison with CRF autoencoders
(Ammar et al., 2014; Lin et al., 2015) in many-
to-one accuracy and the V-measure. We com-
pare against their reported numbers by running
our model once on the same datasets using the
same setting in the experiments on the Penn WSJ
dataset. The data consists of the training portion
of CoNLL-X and CoNLL 2007 labeled with 12
universal tags. Our model is competitive with all
baselines.

6 Related Work

Information theory, in particular mutual infor-
mation, has played a prominent role in NLP
(Church and Hanks, 1990; Brown et al., 1992).
It has intimate connections to the represen-
tation learning capabilities of neural networks
(Tishby and Zaslavsky, 2015) and underlies many
celebrated modern approaches to unsupervised
learning such as generative adversarial networks
(GANs) (Goodfellow et al., 2014).

There is a recent burst of effort in learning
continuous representations by optimizing various
lower bounds on mutual information (Belghazi
et al., 2018; Oord et al., 2018; Hjelm et al.,
2018). These representations are typically eval-
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Method de en es fr id it ja ko pt-br sv Mean

Variational Ĵvar (7) (±1.5)
75.4

(±1.7)
73.1

(±1.0)
73.1

(±2.9)
70.4

(±1.5)
73.6

(±3.3)
67.4

(±0.4)
77.9

(±1.2)
65.6

(±2.3)
70.7

(±1.5)
67.1 71.4

Stratos et al. 63.4 71.4 74.3 71.9 67.3 60.2 69.4 61.8 65.8 61.0 66.7

Berg-Kirkpatrick et al. (±1.8)
67.5

(±3.5)
62.4

(±3.1)
67.1

(±4.5)
62.1

(±3.9)
61.3

(±2.9)
52.9

(±2.9)
78.2

(±3.6)
60.5

(±2.2)
63.2

(±2.5)
56.7 63.2

Brown et al. 60.0 62.9 67.4 66.4 59.3 66.1 60.3 47.5 67.4 61.9 61.9

Baum-Welch (±4.8)
45.5

(±3.4)
59.8

(±2.2)
60.6

(±3.6)
60.1

(±3.1)
49.6

(±2.6)
51.5

(±2.1)
59.5

(±0.6)
51.7

(±3.7)
59.5

(±3.0)
42.4 54.0

Table 4: Many-to-one accuracy on the 12-tag universal treebank dataset. We use the same setting in Table 1. All
models use a fixed hyperparameter configuration optimized on the 45-tag Penn WSJ.

Metric Method Arabic Basque Danish Greek Hungarian Italian Turkish Mean
M2O Variational Ĵvar (7) 74.3 70.4 71.7 66.1 61.2 67.4 64.2 67.9

Ammar et al. 69.1 68.1 60.9 63.5 57.1 60.4 60.4 62.8
Berg-Kirkpatrick et al. 66.8 66.2 60.0 60.2 56.8 64.1 62.0 62.3

Baum-Welch 49.7 44.9 42.4 39.2 45.2 39.3 52.7 44.7

VM Variational Ĵvar (7) 56.9 43.6 56.0 56.3 47.9 53.3 38.5 50.4
Lin et al. 50.5 51.7 51.3 50.0 55.9 46.3 43.1 49.8

Ammar et al. 49.1 41.1 46.1 49.1 41.1 43.1 35.0 43.5
Berg-Kirkpatrick et al. 33.8 33.4 41.1 40.9 39.0 46.6 31.6 38.8

Baum-Welch 15.3 8.2 11.1 9.6 10.1 9.9 11.6 10.8

Table 5: Comparison with the reported results with CRF autoencoders in many-to-one accuracy (M2O) and the
V-measure (VM).

uated on extrinsic tasks as features. In contrast,
we learn discrete representations by optimizing
a novel generalization of the Brown clustering
objective (Brown et al., 1992) and a variational
lower bound on mutual information proposed by
McAllester (2018). We focus on intrinsic evalu-
ation of these representations on POS induction.
Extrinsic evaluation of these representations in
downstream tasks is an important future direction.

The issue of biased stochastic gradient estima-
tors is a common challenge in unsupervised learn-
ing (e.g., see Wang et al., 2015). This arises
mainly because the objective involves a nonlin-
ear transformation of all samples in a training
dataset, for instance the whitening constraints in
deep canonical correlation analysis (CCA) (An-
drew et al., 2013). In this work, the problem arises
because of entropy. This issue is not considered
in the original work of McAllester (2018) and the
error analysis we present in Section 4 is novel.
Our finding is that the feasibility of stochastic opti-
mization greatly depends on the size of the bias in
gradient estimates, as we are able to effectively op-
timize the variational objective while not the gen-
eralized Brown objective.

Our POS induction system has some practi-
cal advantages over previous approaches. Many
rely on computationally expensive structured in-
ference or pre-optimized features (or both). For

instance, Tran et al. (2016) need to calculate for-
ward/backward messages and is limited to trun-
cated sequences by memory constraints. Berg-
Kirkpatrick et al. (2010) rely on extensively hand-
engineered linguistic features. Ammar et al.
(2014), Lin et al. (2015), and He et al. (2018) rely
on carefully pretrained lexical representations like
Brown clusters and word embeddings. In con-
trast, the model presented in this work requires
no expensive structured computation or feature
engineering and uses word/character embeddings
trained from scratch. It is easy to implement using
a standard neural network library and outperforms
these previous works in many cases.
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A Proof of Theorem 4.1

We first analyze the variational loss

Ĥ(q, p)− Ĥ(Z)

Note that the cross entropy term decomposes over
samples and causes no bias. Thus we focus on the
negative entropy term

−Ĥ(Z) =
∑
z

q̂(z) log q̂(z)

whose gradient with respect to q is∑
z

(1 + log q̂(z))∇q̂(z)

=
1

K

K∑
k=1

∑
z

(1 + log q̂(z))∇q̂k(z) (9)

where we expand∇q̂(z) by the identity

∇q̂(z) = 1

N

N∑
i=1

∇q(z|yi) =
1

K

K∑
k=1

∇q̂k(z)

(10)

In contrast, the gradient of the negative entropy
term averaged over minibatches is

1

K

K∑
k=1

∑
z

(1 + log q̂k(z))∇q̂k(z) (11)

Hence the difference between (9) and (11) is

1

K

K∑
k=1

∑
z

log
q̂(z)

q̂k(z)
∇q̂k(z)

This shows the first result. Now we analyze the
generalized Brown loss

1

N

N∑
i=1

∑
z,z′

p(z|xi)q(z′|yi) log
p̂(z)q̂(z′)

p(z|xi)q(z′|yi)

When we expand the log fraction, we see that the
denominator decomposes over samples and causes
no bias. Thus we focus on the numerator term

1

N

∑
z,z′

log
(
p̂(z)q̂(z′)

) N∑
i=1

p(z|xi)q(z′|yi)

By the product rule, its gradient with respect to q
is a sum of two terms. The first term is (using (10)
again)

1

N

K∑
k=1

∑
z,z′

(
1

K

N∑
i=1

p(z|xi)q(z′|yi)
q̂(z′)

)
∇q̂k(z′)

(12)

The second term is (as a sum over batches)

1

N

K∑
k=1

∑
z,z′

log
(
p̂(z)q̂(z′)

) ∑
(x,y)∈Bk

p(z|x)∇q(z′|y) (13)

In contrast, the numerator term estimated as an av-
erage over minibatches is

1

N

K∑
k=1

∑
z,z′

log
(
p̂k(z)q̂k(z

′)
) ∑
(x,y)∈Bk

p(z|x)q(z′|y)

and the two terms of its gradient with respect to q
(corresponding to (12) and (13)) are

1

N

K∑
k=1

∑
z,z′

 ∑
(x,y)∈Bk

p(z|x)q(z′|y)
q̂k(z′)

∇q̂k(z
′) (14)

1

N

K∑
k=1

∑
z,z′

log
(
p̂k(z)q̂k(z

′)
) ∑
(x,y)∈Bk

p(z|xi)∇q(z′|y)

(15)

Thus the difference between (12) and (14) is

1

N

K∑
k=1

∑
z,z′

εk(z, z
′)∇q̂k(z′)

where

εk(z, z
′) =

1

K

N∑
i=1

p(z|xi)q(z′|yi)
q̂(z′)

−
∑

(x,y)∈Bk

p(z|x)q(z′|y)
q̂k(z′)

The difference between (13) and (15) is

1

N

K∑
k=1

∑
z,z′

log
p̂(z)q̂(z′)

p̂k(z)q̂k(z′)

∑
(x,y)∈Bk

p(z|x)∇q(z′|y)

Adding these differences gives the second result.


