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Abstract

Standard word embedding algorithms, such
as word2vec and Glove, make a restric-
tive assumption that words are likely to be
semantically related only if they co-occur lo-
cally within a window of fixed size. How-
ever, this restrictive assumption may not cap-
ture the semantic association between words
that co-occur frequently but non-locally within
documents. To alleviate this restriction, in
this paper, we propose a graph-based word
embedding method, named ‘word-node2vec’.
By relaxing the strong constraint of local-
ity, our method is able to capture both lo-
cal and non-local co-occurrences. Word-
node2vec constructs a weighted graph, where
each node represents a word and the weight of
an edge between two nodes represents a com-
bination of both local (e.g. word2vec) and
document-level co-occurrences. Our experi-
ments show that word-node2vec outperforms
word2vec and glove on a range of different
tasks, such as word-pair similarity prediction,
word analogy and concept categorization.

1 Introduction

Word embedding, the process of obtaining vec-
tor representations of words, is a first step towards
addressing language semantics, in which discrete
entities, such as words, are embedded as vectors
over a continuous space of reals. This not only
facilitates to obtain semantic similarities between
words to improve tasks such as semantic search
(Ganguly et al., 2015; Roy et al., 2016), but is also
useful in a number of down-stream NLP tasks in-
cluding concept categorization (Jastrzebski et al.,
2017), information retrieval (Guo et al., 2016),
sentence similarity prediction (Mueller and Thya-
garajan, 2016), sentiment analysis (Faruqui et al.,
2015) and POS tagging (Tsvetkov et al., 2016) etc.

Word embedding approaches such as
word2vec (Mikolov et al., 2013a) and Glove

(Pennington et al., 2014) rely on a large corpus to
learn the association between words. The archi-
tecture of existing word embedding approaches
mimics the process of human cognition of word
association by learning the representation of
each word with an objective of maximizing the
likelihood of predicting the words around its local
context (defined by a fixed length word window).
A limitation of existing word embedding ap-
proaches, such as word2vec and glove, is that they
use a strong constraint that words are likely to
be semantically related to each other only if one
occurs within a local context of the another, where
the local context is given by a word window of
specified length.

On the other hand, non-local or document-level
co-occurrences between words have been widely
used to estimate semantic similarities between
words. More specifically, the latent semantic anal-
ysis (LSA) method proposed by Deerwester et al.
(1990) uses a spectral analysis (method of prin-
cipal component analysis) of the term-document
matrix of a collection to obtain the most informa-
tive concepts (word classes), and then expresses
each document as a linear combination of these
principal components. Blei et al. (2003) esti-
mate a generative model from a given collec-
tion by assuming that documents are mixtures
of a preset number of topics, where each topic
represents a word distribution over the vocabu-
lary. This is largely similar to decomposing a
term-document matrix as a product of matrices
with non-negative components, a process com-
monly known as non-negative matrix factorization
(NMF) (Gaussier and Goutte, 2005). The underly-
ing common idea among all these approaches is to
make use of the frequent document-level word co-
occurrences to identify likely semantic association
between words.

Despite the presence of a vast volume of lit-
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erature on document-level (non-local) word co-
occurrences, word embedding approaches do not
utilize this information to derive the word repre-
sentations. In this paper, we propose to augment
the document-level non-local word co-occurrence
information with the local co-occurrence informa-
tion that methods such as word2vec and glove use.
More specifically, we propose a graph-based word
embedding method, named word-node2vec,
that by relaxing the strong constraint of locality,
is able to capture both the local and non-local
co-occurrences. To represent the local dependen-
cies, each node, representative of a word (hence
the name ‘word-node’), is initialized with a vector
representation obtained with a standard method,
e.g. word2vec. We then define the weight of the
edge between a pair of word-nodes to reflect their
likelihood of non-local co-occurrence, computed
with the help of the global term-document matrix
for the whole collection.

The rest of the paper is organized as follows. In
Section 2, we survey existing literature on word
embedding. In Section 3, we revisit the skip-gram
approach and propose a graph-based view of the
skip-gram objective as a pre-cursor to developing
our model. In Section 4, we extend the skip-gram
graph model with non-local document-level co-
occurrence information. Section 5 describes our
experimental setup. Section 6 reports the results
of our new embedding approach against a number
of baselines. Finally, Section 7 concludes the pa-
per with directions for future work.

2 Related Work

The word2vec (Mikolov et al., 2013a) embedding
model shifts a window of a predefined size (a pa-
rameter) across the text of a collection of docu-
ments in order to train a linear classifier for each
word to predict itself given its context (continu-
ous bag-of-words), or its context given the word
(skip-gram). The parameter vector transforming
a word to its context (or vice-versa) gives its em-
bedded representation. In addition to making use
of the words in the context as positive samples,
word2vec also relies on the use of words randomly
sampled from the collection (outside the current
context) as negative examples. Levy and Gold-
berg (2014) showed that the negative sampling
based skip-gram (SGNS) objective function of
word2vec is mathematically equivalent to fac-
torizing a positive point-wise mutual information

gain (PPMI) matrix shifted by log(k), where k is
the number of negative samples.

The key idea behind the glove algorithm pro-
posed in (Pennington et al., 2014) is to make use
of the ratio of the co-occurrence probabilities be-
tween word pairs to better distinguish semanti-
cally related words from non-related ones. The
study ultimately shows that factorizing the log of
the co-occurrence matrix leads to effective embed-
ded representation of words. The co-occurrences
in both word2vec and glove are essentially local in
nature. In contrast, our proposed algorithm lever-
ages both local and non-local co-occurrences.

More recently, Peters et al. (2018) proposed
ELMO, a deep contextualized word representation
with layers of stacked bi-directional LSTMs to
model both a) complex characteristics of word use
(e.g., syntax and semantics), and b) their diver-
sity across various linguistic contexts. A limita-
tion of ELMO is that a word representation may
effectively be learned mainly in the presence of an
associated context, as a result of which the method
is likely to find applications mostly in downstream
tasks, e.g. question answering and sentiment anal-
ysis. However, in contrast, our proposed method
can learn the representation of a word in isolation,
which means that, similar to word2vec and Glove,
word vectors obtained using our method can be ap-
plied directly to (and is also likely to work well
for) word similarity and word analogy tasks. We
included ELMO as of our baseline approaches in
our experiments.

Grover and Leskovec (2016) proposed a skip-
gram based objective function to embed each node
of a graph. Analogous to skip-gram based word
embedding, each node vector is given as input
to a linear classifier to predict the context vector
around a node. The context vector around a node,
in this case, consists of a sequence of nodes visited
by a random walk starting from that node. In our
method, we use a similar graph-based construc-
tion to train vector representations of a node (each
node a word). However, we use a stratified sam-
pling approach within a maximum distance (hop-
count) of 2, instead of allowing the random walk
to proceed along in a combined depth-first and
breadth-first manner, as in (Grover and Leskovec,
2016). Through our experiments, we find that
larger hop-counts (i.e. longer transitive dependen-
cies) introduce noise in the document-level word
co-occurrence estimation process.
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3 Generalized Word Embedding

In this section, we propose a general word embed-
ding framework based on the skip-gram objective
function of word2vec. Our proposed method relies
on a general construction of the context around a
word. We modify the skip-gram objective function
of word2vec to take into account this general con-
text of words. Before describing our proposed ap-
proach, we revisit the objective function of nega-
tive sampling based skip-gram word2vec (SGNS).

Skip-gram. In word2vec, the context of a word
comprises words occurring within a window of a
fixed size (say k) pivoted at a particular instance
of w in the collection. More formally, let Λ(w)
denote the set of indexes where the word w occurs
in a collection C = {t1, . . . , tT }, T denoting the
total number of tokens in the collection C, i.e.

Λ(w) = {i : ti = w}. (1)

We then construct the context c(w) of a word as

c(w) = ∪i∈Λ(w) ∪kj=−k
j 6=0

ti+j (2)

Let Ω denote the set of all observed word-context
pairs (w, c(w)), i.e.

Ω+ = ∪w∈V {w, c(w)}, (3)

where V denotes the vocabulary set, and Ω− de-
note the set of negative samples of word-context
pairs, i.e.

Ω− = ∪w∈V {w,∪{v : v ∼ (V − c(w))}}, (4)

where words v’s in the negative context set are ran-
domly sampled from the complement set c(w).

Let y be an indicator random variable denoting
semantic relatedness of a word with its context.
For a word w and its context c(w) (as defined in
Equation 2, the SGNS algorithm seeks to maxi-
mize the objective function

J(θ) =
∑

w,c(w)∈Ω+

p(y = 1|w, cw)+

∑
w,c(w)∈Ω−

p(y = 0|w, cw)),
(5)

where p(.) is the log-likelihood function, and θ ∈
Rd×|V | represents the trainable matrix of parame-
ters, each d dimensional column vector of the ma-
trix θ denoting the vector representation of word

w, i.e. w = θw. Note that the vector for a set of
context words c(w) is obtained by some aggrega-
tion function (sum or average) over the constituent
words, i.e.

c(w) =
∑

u∈c(w)

u. (6)

In order to optimize J(θ), the word2vec ap-
proach shifts a window of size k pivoted around
a word w = ti (token positioned at offset i in
the corpus), and applies stochastic gradient de-
scent (SGD) to update the parameters for the cor-
responding word w and its context vector c(w).

A Graph Formulation of SGNS. We now pro-
pose a general framework that allows contexts to
be defined in a more general way. The solution re-
lies on defining a graph G = (V, E), where each
node corresponds to a word from the vocabulary
of the given collection, i.e.

V = {xw : w ∈ V }. (7)

In general, an edge (xu, xv) ∈ E represents a
relation between two words u and v of weight
w(xu, xv) ∈ R. For example, in order to define
the context of SGNS (Equation 2), the edge set is
defined as

E = {(xw, xu) : u ∈ ∪i∈Λ(w) ∪kj=−k
j 6=0

ti+j}. (8)

Learning the vector representations for each
node of the graph G leads to learning the vec-
tor representation for each word, because there is
a one-one mapping between the set of nodes V
and the set of words V (henceforth we refer to a
node of this general class of graphs, defined as
per Equation 7, as a word-node). The objective
of the embedding is to learn vector representations
of nodes such that two nodes are close in the em-
bedded space if, as per the edge relations of the
graph, these nodes are within a κ-adjacency neigh-
borhood of each other. The κ-adjacency neighbor-
hood of a graph is the set

Nκ(xw) = {xu ∈ V : h(xw, xu) ≤ κ}, (9)

where h(u, v) denotes the hop-count or adjacency
number between nodes u and v. In the general for-
mulation, the set of Nκ(xw), constituting the set
of nodes reachable from paths of length at most k
starting at xw, act as positive examples to learn the
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embedding of node xw. This is because these pos-
itive examples seek to make the vector representa-
tion of xw similar to the vector representations of
nodes in Nκ(xw). More formally,

Ω+ = ∪xw∈V{xw, Nκ(xw)},
Ω− = ∪xw∈V{xw,∪{xu : u ∼ V −Nκ(xw)}}.

(10)

Instead of iterating over the words in a corpus,
the SGNS equivalent is then achieved by iterating
over the set of nodes and maximizing the same
objective function of Equation 5 using the defi-
nitions of the positive and negative example sets
from Equation 10. Note that to achieve the SGNS
objective the value of κ is set to 1 in the defini-
tion of Ω+ in Equation 10, i.e. the set of context
for a word-node comprises one-hop neighbours as
defined by the edge relations of Equation 8.

4 Extending the Graph Model for
Non-Local Co-occurrences

The graph based approach of Section 3 allows al-
ternative ways to define the context and learn the
objective function to obtain word-node representa-
tions. In this section, we describe how to augment
the non-local document-level co-occurrence infor-
mation in the graph-based framework.

Co-occurrence Weights. The first step to in-
clude non-local co-occurrences is to modify the
edge relations of SGNS (Equation 8) to accom-
modate weighted document-level co-occurrences.
Instead of considering the collection C =
{t1, . . . , tT } as a stream of words, we consider C
as a set of M documents {Di}Mi=1.

First, we make provision to include weighted
edges of the form (xw, xu, ω(xw, xu)) in the edge
construction process of Equation 8. The weight
ω(xw, xu) between word-nodes xw and xu is in-
tended to represent a measure of association be-
tween these words.

Next, we describe how to compute the non-local
co-occurrence weight between a pair of words.
First, we compute the co-occurrence probability of
two words w and u as

P (w, u) =

∑M
i=1 I(w, u,Di)∑M

i=1 I(w,Di)
∑M

i=1 I(u,Di)
, (11)

where the numerator denotes the total number of
times that the words w and u co-occur in the

collection of all documents, and the denomina-
tor denotes the number of times each occur in-
dependently. In our approach, we use a gener-
alized form of Equation 11, where analogous to
the Jelinek-Mercer smoothing method (Ponte and
Croft, 1998), we take into account the informative-
ness of the co-occurrences by linearly combining
the frequencies with the global statistics of inverse
collection frequency. More specifically,

Pα(w, u) = αP (w, u) +
(1− α)T 2

|Λ(w)||Λ(u)|
, (12)

where P (w, u) represents the maximum likeli-
hood estimate computed by Equation 11 and the
denominator denotes the product of the collection
frequencies of the terms (as per the notation of
Equation 1). It can be seen that Equation 12 al-
lows relative weighting of the term frequency and
the informativeness components.

Combination with Local Co-occurrences. The
next step in our word-node2vec method is to
augment the non-local co-occurrence information
computed as per Equation 12 with the local co-
occurrence of SGNS as defined in Equation 8. For
this, analogous to (Pennington et al., 2014), we
compute the probability of co-occurrence between
a word pair restricted within a window of size k
over the whole collection. More formally,

Pk(w, u) =
1

|Λ(w)|
∑

i∈Λ(w)

I(ti+j = u)kj=−k

(13)
Next, we assign weight to an edge by combining

the local and non-local co-occurrence probabilities
estimated from Equations 13 and 12 respectively.
Formally speaking,

ω(xw, xu) = Pα(w, u)Pk(w, u). (14)

Context with Weighted Edges. Constructing
the context of a node xw (Section 3), requires a
modification aimed to take into account the edge
weights while selecting the neighboring nodes of
xw. Instead of defining the context as the entire
set of κ-neighborhood Nκ(xw) of a node xw, we
define a κ-neighbourhood of length (hop-count),
l, which is a subset of l samples drawn from the
overall neighbourhood.

The likelihood of sampling a node xu from the
neighbourhood set is proportional to the weight of
the edge (xw, xu), i.e., ω(xw, xu). This way of
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defining the context allows the algorithm to make
use of the edge weights (local and non-local co-
occurrences) in learning the node representations,
i.e. assigning more importance to associations
with higher weights in seeking to embed the cur-
rent word-node close to them.

Our idea, in general, is to use stratified sam-
pling, where each stratum corresponds to a neigh-
bourhood of particular length. The priors as-
signed to the strata in increasing sequence of ad-
jacency length form a decreasing sequence, which
means that the most emphasis is put on direct co-
occurrence evidence (i.e. the 1-adjacent neighbor-
hood), than to the 2-adjacent nodes and so on.

Stratified sampling requires the strata to be mu-
tually disjoint of each other. This means that the
κ-neighbourhood of Equation 9 needs to be rede-
fined to ensure that any node belongs to exactly
one of the partitions (defined by its hop-count). To
state this formally, we define the set of nodes of
(not up to) hop-count j as

Hj(xw) = ∪{xu : h(xw, xu) = j} (15)

The κ-neighbourhood is then defined as

Nκ(xw) = ∪κj=1(Hj(xw)− ∪j−1
j′=1Hj′(xw)).

(16)
A subset of size l, comprised of stratified samples
from Nκ(xw), is then sampled with decreasing
priors β1, . . . , βκ, i.e., βj < βj−1∀j = 2, . . . , κ
and

∑κ
j=1 βj = 1.

Putting things together, the probability of sam-
pling a node from the set Nκ(xw) defined as per
Equation 16 is then given by

P (xu|Nκ(xw))=βjP (xu|Hj(xw))=βj
ω(xw, xu)

ω(xw, .)
,

(17)
where ω(xw, xu) are edge weights computed with
Equation 14 and ω(xw, .) denotes the sum of edges
emanating from node xw.

As a point of note, for our experiments, we ob-
tained optimal results by using κ = 2. Conse-
quently, to simplify the description of our exper-
iments, we name the parameter β1 as β (the pa-
rameter β2 is then identical to 1 − β). We would
also mention at this point that our proposed way
of constructing the context by sampling neighbor-
ing nodes is different from the one proposed in
(Grover and Leskovec, 2016), which uses a combi-
nation of breadth-first (BFS) and depth-first (DFS)
traversals, with parameters p and q respectively.

#Documents 4,641,754
#Avg. Doc Length (#words) 43.23
#Vocabulary size 461,572
#Tokens 202,575,916

Table 1: Dataset characteristics of DBPedia-2014.

Our experiments reveal that our sampling strategy
outperforms that of Grover and Leskovec (2016)
(treated as a baseline).

5 Experimental Setup

In this section, we describe our experimental setup
to evaluate our new word embedding method.

5.1 Dataset
A word embedding algorithm requires a collec-
tion to learn word representations. To compare
the various word embedding approaches (i.e. our
method and the baselines), we use the DBPedia
(2014) corpus, which is a collection of abstracts of
Wikipedia pages crawled in 20141. Dataset char-
acteristics are outlined in Table 1. As part of pre-
processing, we removed words with collection fre-
quency less than 10 and also removed stopwords2.

5.2 Baselines and Implementation
The objective of our experiments is two-fold.
First, to show that a combination of local and
global approaches is likely to yield effective em-
bedded representations of word vectors, and sec-
ond that our proposed graph-based formalism is
likely to work better than a trivial black-box way
of combining the two sources of information.

Local Co-occurrence approaches. As ap-
proaches that use local co-occurrence infor-
mation, we use three state-of-the-art embedding
approaches namely skip-gram word2vec with neg-
ative sampling (SGNS) (Mikolov et al., 2013a),
Glove (Pennington et al., 2014) and Fasttext
(Joulin et al., 2016). All these methods rely only
on co-occurrences (at the level of words for the
first two and at the level of character n-grams for
the last one) within a word or character n-gram
window of specified length k (acting as a param-
eter). Fasttext learns the vector representation of
each word by aggregating (vector sum) the vector
representations of its constituent n-grams.

1http://downloads.dbpedia.org/2014/en/
long_abstracts_en.ttl.bz2

2http://www.lextek.com/manuals/onix/
stopwords2.html
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Additionally, we also employ a more recent
approach, namely ELMO (Peters et al., 2018),
which relies on a pre-trained model (comprised of
stacked bidirectional LSTMs) to infer vectors for a
given context (typically a sequence of words). For
our experiments,

Document-level Co-occurrence approaches.
Although not an embedding approach, the LDA
topic modeling algorithm outputs two matrices,
namely θ ∈ RM×d and φ ∈ Rd×V , representing
the document-topic and topic-words distribu-
tion respectively (Blei et al., 2003). LDA uses
document-level word co-occurrences to estimate
both these matrices. In principle, one can then
use the φ matrix as a substitute for the word em-
bedding parameter matrix of SGNS (see Equation
5). This gives d dimensional vectors for each
word purely with a global co-occurrence based
approach.

Although it is possible to choose other non-local
co-occurrence approaches as baselines, e.g. PLSA
(Hofmann, 1999) or LSA, (Deerwester et al.,
1990), it was shown in (Blei et al., 2003) that LDA
outperforms each of these. Consequently, we use
the stronger baseline of LDA in our experiments.

Combination of Local and Non-local Co-
occurrences. To empirically demonstrate the ef-
fectiveness of our proposed graph-based word-
node embedding, we employ an additional base-
line that is a linear combination of the word vec-
tors obtained individually with the local and non-
local approaches. More formally, the vector of
each word w is given as

w = λwLocal + (1− λ)wLDA, (18)

where wLocal is the vector representation of word
w obtained by a local co-occurrence baseline, i.e.
SGNS and Glove, whereas wLDA represents the
vector for the word w obtained with LDA.

Additionally, we employ the node2vec ap-
proach as a baseline. In particular, we use
node2vec to learn the word-node representations
of the graph constructed as per Section 4. The
purpose of this baseline is to show that our way of
defining the contexts around word-nodes is more
suitable for our task of word embedding than a
general-purpose graph node embedding approach.

5.3 Evaluation Tasks and Datasets
To compare the relative performance of word-
node2vec with the baselines, we use a number of

Dataset Composition Example

MSR Syntactic good:better rough:X
Google Syntactic and Semantic Athens:Greece Berlin:X
SemEval Syntactic and Semantic dog:bone bird:X

Table 2: Word analogy datasets overview.

datasets, each corresponding to one of the follow-
ing three evaluation tasks.

Word Similarity. A standard way to measure
the effectiveness of embedded words is to measure
how well the similarity between a pair of words
correlates with human judgments. Two such stan-
dard datasets that we use for our experiments are
the WSIM-353 (Finkelstein et al., 2014) and the
MEN (Bruni et al., 2014) datasets. Both com-
prise a list of word pairs, with an associated hu-
man judged similarity value. This similarity value
is expected to be high for semantically similar
words, such as ‘morning’ and ‘sunrise’ (human as-
signed score of 49 out of 50), and low for seman-
tically unrelated words, such as ‘angel’ and ‘gaso-
line’ (score of 1 out of 50), both examples being
taken from the MEN dataset.

Word Analogy. The word analogy task consists
of templates of the form “A:B as C:X”, where A,
B, and C are given words, whereas X is unknown.
Using a vector representation of words this anal-
ogy task is solved by retrieving the vector most
similar to that of B + C−A. A word embedding
is considered effective if it finds a greater number
of correct answers (resulting in higher accuracy).

We employed three different analogy datasets,
namely, the Google Analogy (Mikolov et al.,
2013a), the MSR Analogy (Mikolov et al., 2013b)
and the SemEval-2012 task 2 (Jurgens et al.,
2012) datasets. The MSR dataset contains syntac-
tic questions only involving morphological varia-
tions. The Google dataset on the other hand con-
tains both syntactic and semantic questions.

Given an analogy ‘A:B as C:D’, the Semeval-
2012 task requires prediction of the degree to
which the semantic relations between A and B are
similar to those between C and D. In our experi-
ments, we treat the given entity D as unknown and
seek to predict D, similar to the MSR and Google
analogy datasets. Table 2 provides an overview of
examples from these datasets.

Concept Categorization Task. The concept
categorization task requires classifying nouns into
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a concept type derived from an ontology. For
this task, we employ the AP (Almuhareb and Poe-
sio, 2005), BLESS (Baroni and Lenci, 2011) and
ESSL2b (Marco Baroni and Lenci, 2008) datasets.
The AP dataset contains 402 nouns from 21
WordNet classes, e.g., nouns such as ‘ceremony’,
‘feast’, and ‘graduation’ belong to the class ‘So-
cial Occasion’. The BLESS dataset, designed for
the evaluation of distributional semantic models,
contains 200 distinct English concrete nouns as
target concepts. These nouns are categorized into
17 broad classes.

Evaluation Metrics and Pipeline. The word
similarity prediction effectiveness is measured
with the help of Spearman’s rank correlation co-
efficient ρ. This measures the rank correlation
(higher is better) between the list of word pairs
sorted in decreasing order of inter-similarity val-
ues as predicted by a word embedding algorithm
and the reference list of human judged word pairs.
For the analogy and the concept categorization
tasks, we report the accuracy in predicting the ref-
erence word and that of the class, respectively.

Parameters and Settings. In our experiments,
for all the methods, except ELMO, we set the
number of dimensions to 200. To find optimal set-
tings for each method (except ELMO), we use the
MEN dataset as a development set for tuning the
parameters of each method. Each method with the
optimal parameter settings is then applied for the
rest of the datasets and tasks.

Since we used a pre-trained model for ELMO,
the number of dimensions corresponds to the size
of the output layer of the network, the value of
which in the default configuration of the Python
implementation3 is 1024.

The parameters of SGNS are window size (k)
and the number of negative samples (NS). For the
baseline approach SGNS, we varied k from 5 to
40 in steps of 5 and found that the best results
are obtained when k = 10 and NS = 5. Simi-
larly, for Glove we chose the optimal settings by
varying k within the same range of [5, 40] and
found that the optimal ρ for the MEN dataset is
obtained for k = 20. We obtain the LDA re-
sults by setting the number of topics to 200 (so
as to match with the dimensionality). As LDA
hyper-parameters, we use settings as prescribed in

3https://github.com/allenai/allennlp/
blob/master/tutorials/how_to/elmo.md

Method Spearman’s ρ

MEN WSIM

SGNS (k = 10, NS = 5) 0.7432 0.6977
Glove (k = 20) 0.7066 0.6706
FastText 0.7307 0.6518
ELMO 0.4225 0.4631
LDA 0.4933 0.4074
SGNS-LDA (λ = 0.9) 0.7367 0.6548
Node2vec (p = 0.5, q = 0.5, l = 40) 0.7440 0.6988
Word-node2vec (α = 0.5, β = 0.7, l = 20) 0.7491 0.7032

Table 3: Word similarity prediction results.

(Griffiths and Steyvers, 2004), i.e., β = 0.1 and
α = 0.25 (50/(#topics = 200)).

Since we found that SGNS performed signifi-
cantly better than Glove, we use SGNS vectors
for the linear combination method (Equation 1),
which we call SGNS-LDA from hereon. The pa-
rameter λ was varied within a range of [0.1, 0.9] in
steps of 0.1 (λ = 0 and λ = 1 degenerate to that
of LDA and SGNS respectively). We found that
the best results are obtained for λ = 0.9.

For node2vec baseline approach of word-node
embedding, we varied the parameters p and q
(BFS and DFS parameters) within a range of
[0.1, 5] and found that the best results on the MEN
dataset are given for p = 1 and q = 1 (Grover and
Leskovec, 2016). Another parameter in node2vec
is the random walk length, l, for which the optimal
value was found to be 80.

For word-node2vec, in addition to window size
(k) and number of negative samples (NS), three
more parameters are: i) α, i.e., the importance
of the presence of a term relative to its informa-
tiveness (Equation 12, ii) β, the prior assigned
to sampling from the 1-adjacent neighborhood,
and iii) the size of the context sampled from the
neighborhood, l (this is analogous to the random
walk length parameter of node2vec). Instead of
separately optimizing the parameters common to
SGNS, we directly use the optimal values of k =
10 and NS = 5 for word-node2vec. The optimal
results of the additional parameters, tuned on the
MEN dataset, are shown in Table 3.

6 Results

Word Similarity Prediction. Table 3 shows the
results obtained by the competing methods on the
word similarity prediction task. It can be seen
that Glove turns out to be relatively ineffective in
modeling the semantic representations of words
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Figure 1: Parameter sensitivity of word-node2vec on word prediction (left column) and word analogy (right col-
umn) tasks using WSIM (top row) and MSR (bottom row) datasets.

Method Accuracy (P@1)

Google MSR SemEval’12

SGNS 0.5615 0.2777 0.1460
Glove 0.4841 0.2485 0.1419
FastText 0.4930 0.2607 0.1592
ELMO 0.5986 0.2789 0.1439
LDA 0.0578 0.0158 0.0596
SGNS-LDA 0.5491 0.2776 0.1413
Node2vec 0.5588 0.2785 0.1427
Word-node2vec 0.5627 0.2890 0.1464

Table 4: Word analogy results.

Method Accuracy

AP BLESS ESSLI2b

SGNS 0.6194 0.7500 0.7500
Glove 0.6343 0.7200 0.7250
FastText 0.6119 0.7950 0.7250
ELMO 0.6368 0.7350 0.7500
LDA 0.3383 0.3900 0.6500
SGNS-LDA 0.5796 0.7850 0.7750
Node2vec 0.6355 0.7500 0.7350
Word-node2vec 0.6393 0.7950 0.7750

Table 5: Concept categorization results.

as compared to human judgments. SGNS per-
forms significantly better and the settings trained
on MEN dataset generalize well on the WSIM-353
dataset as well. LDA performs rather poorly in-
dicating that only global co-occurrences can lead
to noisy representations of words. FastText per-
forms worse as compared to SGNS. It is worth
mentioning that the performance of ELMO is dis-
appointing on this task of semantic similarity pre-

diction, because of the most likely reason that it
better learns vector representations of word in the
presence of a context.

A linear combination of SGNS and LDA (Equa-
tion 1 with λ = 0.9) does not perform better than
SGNS, which means that a simple way of combin-
ing the embedded representations obtained indi-
vidually with local and non-local approaches does
not work well.

The node2vec approach of embedding nodes of
the word-nodes graph constructed as per the de-
scription of Section 4 relies on a random walk
based construction of the context of a word node.
This random walk based context construction is
only able to improve the SGNS results slightly, in-
dicating that random walks can introduce noise in
the contexts of word-nodes.

The word-node based graph construction (in-
corporating local and non-local co-occurrences in
a principled way) works particularly well in con-
junction with the stratified sampling based ap-
proach of selecting context words from the κ-
neighborhood. The optimal value of α = 0.5 sug-
gests that document-level co-occurrences should
be computed by assigning equal importance to
term presence and informativeness. A value of
β = 0.7 confirms the hypothesis that more em-
phasis should be put on direct co-occurrences.

Word Analogy and Concept Categorization.
Similar trends are observed in the word anal-
ogy and concept categorization tasks in Tables 4
and 5 respectively. Relatively higher improve-
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Rank SGNS word-node2vec

1 albums 0.929 albums 0.926
2 selftitled 0.885 selftitled 0.883
3 rerecorded 0.868 rerecorded 0.863
4 promotional 0.815 released 0.852
5 reissue 0.790 song 0.810

Table 6: Nearest neighbors of the word ‘album’ ob-
tained by SGNS and word-node2vec.

ments with word-node2vec are noted for the MSR
analogy task (comprised of syntactic categories).
Among the baseline approaches, both node2vec
and SGNS-LDA work well on the concept catego-
rization task. However, the performance improve-
ments are inconsistent across datasets, e.g. SGNS-
LDA performs well on ESSLI2b and poorly on
AP. Our proposed method configured on the MEN
dataset works consistently well across all datasets,
which indicates that word-node2vec can general-
ize well for different tasks.

As a side observation, we note that ELMO per-
forms well for the analogy and concept categoriza-
tion tasks (yielding the best results in particular
on the Google analogy dataset). Although the re-
sults are not directly comparable because of dif-
ferences in the dimensionality of the vectors and
also in the collection of documents used in the pre-
trained ELMO vectors (Billion word benchmark
as against DBPedia in our case), it could possibly
be reasoned that the additional contextual infor-
mation of the ELMO vectors turns out to be useful
for in the analogy task.

Embedding Examples. Table 6 shows an exam-
ple of the change in the neighbourhood of a sample
word in the embedded space obtained by SGNS
and word-node2vec. It can be seen from the ta-
ble that word-node2vec is able to push relevant
words, such as ‘released’ and ‘song’ within the top
5-NN of the word ‘album’. Although the words
‘promotional’ and ‘reissue’ are related to ‘album’,
the semantic association of ‘released’ and ‘song’
with ‘album’ is apparently higher. We found that
the word ‘song’ occurs in the local context of the
word ‘album’ only 133, 494 number of times out
of a total number of 177, 487 instances of the word
‘album’. This means that a significant percentage
of times (almost 25%), ‘song’ co-occurs with ‘al-
bum’ at a document-level. Our embedding algo-
rithm is able to leverage this information by mak-
ing the vector for ‘song’ closer to ‘album’.

Sensitivity Analysis. Tables 3-5 show word-
node2vec results with optimal parameter settings.
We now investigate the effect of varying these pa-
rameters on each individual evaluation task. We
observe that both term presence and term infor-
mativeness are important to model document-level
co-occurrences as seen from the fact that the ρ and
accuracy values decrease as α gets close to 0 or
1 (the 1st and 3rd plots from the left of Figure
1). Similarly, it can be seen that the results tend
to improve with higher values of β, which con-
firms that direct associations between words in the
word-node graph are more important than transi-
tive ones (2nd plot from the left and the rightmost
plot of Figure 1). However, second-order transi-
tive associations are still important because the re-
sults tend to decrease for β close to 1.

7 Conclusions and Future work

We proposed a word embedding approach
that leverages document-level non-local co-
occurrences, in addition to the window-based lo-
cal co-occurrences. We proposed a graph-based
framework, in which words are represented as
nodes and the edges between a pair of words re-
flect the degree of association between them. This
association is a function of both the local and
the document-level co-occurrences, which enables
our approach to achieve ‘the best of both worlds’
in word embedding. Experiments show that our
proposed method outperforms local approaches,
namely word2vec, Glove and FastText, on a num-
ber of different tasks. Our approach also outper-
forms a naive black-box combination of embed-
dings obtained separately by local and document-
level approaches. This proves the importance
of addressing both these sources of information
jointly in an embedding objective.

In future, we would like to explore ways of ap-
plying a similar graph based formalism for learn-
ing vectors for documents.
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