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Abstract

Insufficient or even unavailable training data
of emerging classes is a big challenge of many
classification tasks, including text classifica-
tion. Recognising text documents of classes
that have never been seen in the learning stage,
so-called zero-shot text classification, is there-
fore difficult and only limited previous works
tackled this problem. In this paper, we pro-
pose a two-phase framework together with
data augmentation and feature augmentation
to solve this problem. Four kinds of semantic
knowledge (word embeddings, class descrip-
tions, class hierarchy, and a general knowl-
edge graph) are incorporated into the pro-
posed framework to deal with instances of un-
seen classes effectively. Experimental results
show that each and the combination of the two
phases achieve the best overall accuracy com-
pared with baselines and recent approaches
in classifying real-world texts under the zero-
shot scenario.

1 Introduction

As one of the most fundamental problems in ma-
chine learning, automatic classification has been
widely studied in several domains. However,
many approaches, proven to be effective in tradi-
tional classification tasks, cannot catch up with a
dynamic and open environment where new classes
can emerge after the learning stage (Romera-
Paredes and Torr, 2015). For example, the number
of topics on social media is growing rapidly, and
the classification models are required to recognise
the text of the new topics using only general in-
formation (e.g., descriptions of the topics) since
labelled training instances are unfeasible to ob-
tain for each new topic (Lee et al., 2011). This
scenario holds in many real-world domains such

∗ Piyawat Lertvittayakumjorn and Jingqing Zhang con-
tributed equally to this project.

as object recognition and medical diagnosis (Xian
et al., 2017; World Health Organization, 1996).

Zero-shot learning (ZSL) for text classification
aims to classify documents of classes which are
absent from the learning stage. Although it is
challenging for a machine to achieve, humans are
able to learn new concepts by transferring knowl-
edge from known to unknown domains based on
high-level descriptions and semantic representa-
tions (Thrun and Pratt, 1998). Therefore, without
labelled data of unseen classes, a zero-shot learn-
ing framework is expected to exploit supportive
semantic knowledge (e.g., class descriptions, rela-
tions among classes, and external domain knowl-
edge) to generally infer the features of unseen
classes using patterns learned from seen classes.

So far, three main types of semantic knowl-
edge have been employed in general zero-shot sce-
narios (Fu et al., 2018). The most widely used
one is semantic attributes of classes such as vi-
sual concepts (e.g., colours, shapes) and semantic
properties (e.g., behaviours, functions) (Lampert
et al., 2009; Zhao et al., 2018). The second type
is concept ontology, including class hierarchy and
knowledge graphs, which represents relationships
among classes and features (Wang et al., 2018;
Fergus et al., 2010). The third type is semantic
word embeddings which capture implicit relation-
ships between words thanks to a large training text
corpus (Socher et al., 2013; Norouzi et al., 2013).
Nonetheless, concerning ZSL in text classification
particularly, there are few studies exploiting one
of these knowledge types and none has considered
the combinations of them (Pushp and Srivastava,
2017; Dauphin et al., 2013). Moreover, some pre-
vious works used different datasets to train and
test, but there is similarity between classes in the
training and testing set. For example, in (Dauphin
et al., 2013), the class “imdb.com” in the training
set naturally corresponds to the class “Movies” in
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Figure 1: The overview of the proposed framework with two phases. The coarse-grained phase judges if an input
document xi comes from seen or unseen classes. The fine-grained phase finally decides the class ŷi. All notations
are defined in section 2.1-2.2.

the testing set. Hence, these methods are not work-
ing under a strict zero-shot scenario.

To tackle the zero-shot text classification prob-
lem, this paper proposes a novel two-phase frame-
work together with data augmentation and fea-
ture augmentation (Figure 1). In addition, four
kinds of semantic knowledge including word em-
beddings, class descriptions, class hierarchy, and
a general knowledge graph (ConceptNet) are ex-
ploited in the framework to effectively learn the
unseen classes. Both of the two phases are based
on convolutional neural networks (Kim, 2014).
The first phase called coarse-grained classifica-
tion judges if a document is from seen or un-
seen classes. Then, the second phase, named fine-
grained classification, finally decides its class.
Note that all the classifiers in this framework are
trained using labelled data of seen classes (and
augmented text data) only. None of the steps
learns from the labelled data of unseen classes.

The contributions of our work can be sum-
marised as follows.

• We propose a novel deep learning based two-
phase framework, including coarse-grained
and fine-grained classification, to tackle the
zero-shot text classification problem. Un-
like some previous works, our framework
does not require semantic correspondence be-
tween classes in a training stage and classes
in an inference stage. In other words, the seen
and unseen classes can be clearly different.

• We propose a novel data augmentation tech-
nique called topic translation to strengthen
the capability of our framework to detect doc-
uments from unseen classes effectively.

• We propose a method to perform feature
augmentation by using integrated semantic
knowledge to transfer the knowledge learned
from seen to unseen classes in the zero-shot
scenario.

In the remainder of this paper, we firstly explain
our proposed zero-shot text classification frame-
work in section 2. Experiments and results, which
demonstrate the performance of our framework,
are presented in section 3. Related works are dis-
cussed in section 4. Finally, section 5 concludes
our work and mentions possible future work.

2 Methodology

2.1 Problem Formulation

Let CS and CU be disjoint sets of seen and
unseen classes of the classification respec-
tively. In the learning stage, a training set
{(x1, y1), . . . , (xn, yn)} is given where xi is the
i-th document containing a sequence of words
[wi

1, w
i
2, . . . , w

i
t] and yi ∈ CS is the class of xi.

In the inference stage, the goal is to predict the
class of each document, ŷi, in a testing set which
has the same data format as the training set ex-
cept that yi comes from CS ∪ CU . Note that (i)
every class comes with a class label and a class de-
scription (Figure 2a); (ii) a class hierarchy show-
ing superclass-subclass relationships is also pro-
vided (Figure 2b); (iii) the documents from unseen
classes cannot be observed to train the framework.

2.2 Overview and Notations

As discussed in the Introduction, our proposed
classification framework consists of two phases
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Figure 2: Illustrations of semantic knowledge inte-
grated into our framework: (a) class labels and class
descriptions (b) class hierarchy and (c) a subgraph of
the general knowledge graph (ConceptNet).

(Figure 1). The first phase, coarse-grained classifi-
cation, predicts whether an input document comes
from seen or unseen classes. We also apply a
data augmentation technique in this phase to help
the classifiers be aware of the existence of unseen
classes without accessing their real data. Then
the second phase, fine-grained classification, fi-
nally specifies the class of the input document. It
uses either a traditional classifier or a zero-shot
classifier depending on the coarse-grained predic-
tion given by Phase 1. Also, feature augmentation
based on semantic knowledge is used to provide
additional information which relates the document
and the unseen classes to generalise the zero-shot
reasoning.

We use the following notations in Figure 1 and
throughout this paper.

• The list of embeddings of each word in
the document xi is denoted by viw =
[viw1

, viw2
, . . . , viwt

].

• The embedding of each class label c is de-
noted by vc, ∀c ∈ CS ∪CU . It is assumed that
each class has a one-word class label. If the
class label has more than one word, a similar
one-word class label is provided to find vc.

• As augmented features, the relationship vec-

tor viwj ,c shows the degree of relatedness be-
tween the word wj and the class c according
to semantic knowledge. Hence, the list of re-
lationship vectors between each word in xi
and each class c ∈ CS ∪CU is denoted by viw,c

= [viw1,c, v
i
w2,c, . . . , v

i
wt,c]. We will explain

the construction method in section 2.4.1.

2.3 Phase 1: Coarse-grained Classification

Given a document xi, Phase 1 performs a binary
classification to decide whether ŷi ∈ CS or ŷi /∈
CS . In this phase, each seen class cs ∈ CS has its
own CNN classifier (with a subsequent dense layer
and a sigmoid output) to predict the confidence
that xi comes from the class cs, i.e., p(ŷi = cs|xi).
The classifier uses viw as an input and it is trained
using a binary cross entropy loss with all docu-
ments of its class in the training set as positive ex-
amples and the rest as negative examples.

For a test document xi, this phase computes
p(ŷi = cs|xi) for every seen class cs in CS . If there
exists a class cs such that p(ŷi = cs|xi) > τs,
it predicts ŷi ∈ CS ; otherwise, ŷi /∈ CS . τs is a
classification threshold for the class cs, calculated
based on the threshold adaptation method from
(Shu et al., 2017).

2.3.1 Data Augmentation

During the learning stage, the classifiers in Phase
1 use negative examples solely from seen classes,
so they may not be able to differentiate the positive
class from unseen classes. Hence, when the names
of unseen classes are known in the inference stage,
we try to introduce them to the classifiers in Phase
1 via augmented data so they can learn to reject
the instances likely from unseen classes. We do
data augmentation by translating a document from
its original seen class to a new unseen class using
analogy. We call this process topic translation.

In the word level, we translate a word w in a
document of class c to a corresponding word w′

in the context of a target class c′ by solving an
analogy question “c:w :: c′:?”. For example, solv-
ing the analogy “company:firm :: village:?” via
word embeddings (Mikolov et al., 2013), we know
that the word “firm” in a document of class “com-
pany” can be translated into the word “hamlet”
in the context of class “village”. Our framework
adopts the 3COSMUL method by Levy and Gold-
berg (2014) to solve the analogy question and find
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candidates of w′:

w′ = argmax
x∈V

cos(x, c′) cos(x,w)

cos(x, c) + ε

where V is a vocabulary set and cos(a, b) is a co-
sine similarity score between the vectors of word a
and word b. Also, ε is a small number (i.e., 0.001)
added to prevent division by zero.

In the document level, we follow Algorithm 1
to translate a document of class c into the topic
of another class c′. To explain, we translate all
nouns, verbs, adjectives, and adverbs in the given
document to the target class, word-by-word, using
the word-level analogy. The word to replace must
have the same part of speech as the original word
and all the replacements in one document are 1-to-
1 relations, enforced by replace dict in Algorithm
1. With this idea, we can create augmented doc-
uments for the unseen classes by topic-translation
from the documents of seen classes in the training
dataset. After that, we can use the augmented doc-
uments as additional negative examples for all the
CNNs in Phase 1 to make them aware of the tone
of unseen classes.

Algorithm 1: Document-level topic translation

Input : a document xi = [wi
1, w

i
2, . . . , w

i
t],

an original class label c, a target class label c′

Output: a translated document x′i
1 replace dict = dict(); x′i = [];
2 foreach w ∈ xi do
3 if is valid pos(w) then
4 if w /∈ replace dict then
5 cands = solve analogy(w, c, c′,

top k=20);
6 for j = 0 to len(cands)-1 do
7 if cands[j] /∈ replace dict.values() ∧

pos of(w) ∈ pos list(cands[j])
then

8 replace dict[w] = cands[j];
9 break;

10 if j == len(cands) then
11 x′i.append(w);
12 continue;
13 x′i.append(replace dict[w]);
14 else
15 x′i.append(w);
16 return x′i

2.4 Phase 2: Fine-grained Classification

Phase 2 decides the most appropriate class ŷi for
xi using two CNN classifiers: a traditional classi-
fier and a zero-shot classifier as shown in Figure
1. If ŷi ∈ CS predicted by Phase 1, the traditional
classifier will finally select a class cs ∈ CS as ŷi.

Otherwise, if ŷi /∈ CS , the zero-shot classifier will
be used to select a class cu ∈ CU as ŷi.

The traditional classifier and the zero-shot clas-
sifier have an identical CNN-based structure fol-
lowed by two dense layers but their inputs and
outputs are different. The traditional classifier is a
multi-class classifier (|CS | classes) with a softmax
output, so it requires only the word embeddings
viw as an input. This classifier is trained using a
cross entropy loss with a training dataset whose
examples are from seen classes only.

In contrast, the zero-shot classifier is a binary
classifier with a sigmoid output. Specifically, it
takes a text document xi and a class c as inputs
and predicts the confidence p(ŷi = c|xi). How-
ever, in practice, we utilise viw to represent xi, vc
to represent the class c, and also augmented fea-
tures viw,c to provide more information on how
intimate the connections between words and the
class c are. Altogether, for each word wj , the clas-
sifier receives the concatenation of three vectors
(i.e., [viwj

; vc; v
i
wj ,c]) as an input. This classifier

is trained using a binary cross entropy loss with
a training data from seen classes only, but we ex-
pect this classifier to work well on unseen classes
thanks to the distinctive patterns of viw,c in positive
examples of every class. This is how we transfer
knowledge from seen to unseen classes in ZSL.

2.4.1 Feature Augmentation
The relationship vector vwj ,c contains augmented
features we input to the zero-shot classifier. vwj ,c

shows how the word wj and the class c are related
considering the relations in a general knowledge
graph. In this work, we use ConceptNet providing
general knowledge of natural language words and
phrases (Speer and Havasi, 2013). A subgraph of
ConceptNet is shown in Figure 2c as an illustra-
tion. Nodes in ConceptNet are words or phrases,
while edges connecting two nodes show how they
are related either syntactically or semantically.

We firstly represent a class c as three sets of
nodes in ConceptNet by processing the class hi-
erarchy, class label, and class description of c. (1)
the class nodes is a set of nodes of the class la-
bel c and any tokens inside c if c has more than
one word. (2) superclass nodes is a set of nodes
of all the superclasses of c according to the class
hierarchy. (3) description nodes is a set of nodes
of all nouns in the description of the class c. For
example, if c is the class “Educational Institution”,
according to Figure 2a-2b, the three sets of Con-
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ceptNet nodes for this class are:
(1) educational institution, educational, institution
(2) organization, agent
(3) place, people, ages, education.

To construct vwj ,c, we consider whether the
word wj is connected to the members of the three
sets above within K hops by particular types of
relations or not1. For each of the three sets, we
construct a vector with 3K + 1 dimensions.

• v[0] = 1 if wj is a node in that set; otherwise,
v[0] = 0.

• for k = 0, . . . ,K − 1:

– v[3k + 1] = 1 if there is a node in the
set whose shortest path to wj is k + 1.
Otherwise, v[3k + 1] = 0.

– v[3k + 2] is the number of nodes in the
set whose shortest path to wj is k + 1.

– v[3k+3] is v[3k+2] divided by the total
number of nodes in the set.

Thus, the vector associated to each set shows how
wj is semantically close to that set. Finally, we
concatenate the constructed vectors from the three
sets to become vwj ,c with 3×(3K+1) dimensions.

3 Experiments

3.1 Datasets
We used two textual datasets for the experiments.
The vocabulary size of each dataset was limited by
20,000 most frequent words and all numbers were
excluded. (1) DBpedia ontology dataset (Zhang
et al., 2015) includes 14 non-overlapping classes
and textual data collected from Wikipedia. Each
class has 40,000 training and 5,000 testing sam-
ples. (2) The 20newsgroups dataset 2 has 20 top-
ics each of which has approximately 1,000 docu-
ments. 70% of the documents of each class were
randomly selected for training, and the remaining
30% were used as a testing set.

3.2 Implementation Details 3

In our experiments, two different rates of unseen
classes, 50% and 25%, were chosen and the corre-
sponding sizes of CS and CU are shown in Table 1.
For each dataset and each unseen rate, the random

1In this paper, we only consider the most common types
of positive relations which are RelatedTo, IsA, PartOf, and
AtLocation. They cover ∼60% of all edges in ConceptNet.

2http://qwone.com/∼jason/20Newsgroups/
3Code: https://github.com/JingqingZ/KG4ZeroShotText.

selection of (CS , CU ) were repeated ten times and
these ten groups were used by all the experiments
with this setting for a fair comparison. All doc-
uments from CU were removed from the training
set accordingly. Finally, the results from all the
ten groups were averaged.

In Phase 1, the structure of each classifier was
identical. The CNN layer had three filter sizes [3,
4, 5] with 400 filters for each filter size and the
subsequent dense layer had 300 units. For data
augmentation, we used gensim with an implemen-
tation of 3COSMUL (Řehůřek and Sojka, 2010) to
solve the word-level analogy (line 5 in Algorithm
1). Also, the numbers of augmented text docu-
ments per unseen class for every setting (if used)
are indicated in Table 1. These numbers were set
empirically considering the number of available
training documents to be translated.

In Phase 2, the traditional classifier and the
zero-shot classifier had the same structure, in
which the CNN layer had three filter sizes [2, 4,
8] with 600 filters for each filter size and the two
intermediate dense layers had 400 and 100 units
respectively. For feature augmentation, the max-
imum path length K in ConceptNet was set to
3 to create the relationship vectors4. The DBpe-
dia ontology5 was used to construct a class hier-
archy of the DBpedia dataset. The class hierar-
chy of the 20newsgroups dataset was constructed
based on the namespaces initially provided by the
dataset. Meanwhile, the classes descriptions of
both datasets were picked from Macmillan Dictio-
nary6 as appropriate.

For both phases, we used 200-dim GloVe vec-
tors7 for word embeddings vw and vc (Penning-
ton et al., 2014). All the deep neural networks
were implemented with TensorLayer (Dong et al.,
2017a) and TensorFlow (Abadi et al., 2016).

Dataset Unseen
rate | CS | | CU | #Augmented

docs per cu
DBpedia 25% 11 3 12,000

(14 classes) 50% 7 7 8,000
20news 25% 15 5 4,000

(20 classes) 50% 10 10 3,000

Table 1: The rates of unseen classes and the numbers
of augmented documents (per unseen class) in the ex-
periments

4Based on our observation, most of the related words stay
within 3 hops from the class nodes in ConceptNet.

5http://mappings.dbpedia.org/server/ontology/classes/
6https://www.macmillandictionary.com/
7glove6B.zip in https://nlp.stanford.edu/projects/glove/
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3.3 Baselines and Evaluation Metrics

We compared each phase and the overall frame-
work with the following approaches and settings.

Phase 1: Proposed by (Shu et al., 2017), DOC
is a state-of-the-art open-world text classification
approach which classifies a new sample into a seen
class or “reject” if the sample does not belong to
any seen classes. The DOC uses a single CNN
and a 1-vs-rest sigmoid output layer with thresh-
old adjustment. Unlike DOC, the classifiers in the
proposed Phase 1 work individually. However, for
a fair comparison, we used DOC only as a binary
classifier in this phase (ŷi ∈ CS or ŷi /∈ CS).

Phase 2: To see how well the augmented fea-
ture vw,c work in ZSL, we ran the zero-shot clas-
sifier with different combinations of inputs. Par-
ticularly, five combinations of vw, vc, and vw,c

were tested with documents from unseen classes
only (traditional ZSL).

The whole framework: (1) Count-based
model selected the class whose label appears most
frequently in the document as ŷi. (2) Label simi-
larity (Sappadla et al., 2016) is an unsupervised
approach which calculates the cosine similarity
between the sum of word embeddings of each
class label and the sum of word embeddings of
every n-gram (n = 1, 2, 3) in the document. We
adopted this approach to do single-label classifi-
cation by predicting the class that got the highest
similarity score among all classes. (3) RNN Au-
toEncoder was built based on a Seq2Seq model
with LSTM (512 hidden units), and it was trained
to encode documents and class labels onto the
same latent space. The cosine similarity was ap-
plied to select a class label closest to the document
on the latent space. (4) RNN+FC refers to the
architecture 2 proposed in (Pushp and Srivastava,
2017). It used an RNN layer with LSTM (512 hid-
den units) followed by two dense layers with 400
and 100 units respectively. (5) CNN+FC replaced
the RNN in the previous model with a CNN, which
has the identical structure as the zero-shot classi-
fier in Phase 2. Both RNN+FC and CNN+FC pre-
dicted the confidence p(ŷi = c|xi) given vw and
vc. The class with the highest confidence was se-
lected as ŷi.

For Phase 1, we used the accuracy for binary
classification (y, ŷi ∈ CS or y, ŷi /∈ CS) as an
evaluation metric. In contrast, for Phase 2 and the
whole framework, we used the multi-class classi-
fication accuracy (ŷi = yi) as a metric.

Artist Building Office holder Written work
0.975

0.980

0.985

0.990

0.995

1.000

Figure 3: The distributions of confidence scores of pos-
itive examples from four seen classes of DBpedia in
Phase 1.

3.4 Results and Discussion

The evaluation of Phase 1 (coarse-grained classi-
fication) checks if each xi was correctly delivered
to the right classifier in Phase 2. Table 3 shows
the performance of Phase 1 with and without aug-
mented data compared with DOC. Considering
test documents from seen classes only, our frame-
work outperformed DOC on both datasets. In
addition, the augmented data improved the accu-
racy of detecting documents from unseen classes
clearly and led to higher overall accuracy in every
setting. Despite no real labelled data from unseen
classes, the augmented data generated by topic
translation helped Phase 1 better detect documents
from unseen classes. Table 4 shows some exam-
ples of augmented data from the DBpedia dataset.
Even if they are not completely understandable,
they contain the tone of the target classes.

Although Phase 1 provided confidence scores
for all seen classes, we could not use them to pre-
dict ŷi directly since the distribution of scores of
positive examples from different CNNs are dif-
ferent. Figure 3 shows that the distribution of
confidence scores of the class “Artist” had a no-
ticeably larger variance and was clearly different
from the class “Building”. Hence, even if p(ŷi =
“Building”|xi) > p(ŷi = “Artist”|xi), we cannot
conclude that xi is more likely to come from the
class “Building”. This is why a traditional clas-
sifier in Phase 2 is necessary.

Regarding Phase 2, fine-grained classification
is in charge of predicting ŷi and it employs two
classifiers which were tested separately. Assum-
ing Phase 1 is perfect, the classifiers in Phase 2
should be able to find the right class. The purpose
of Table 5 is to show that the traditional CNN
classifier in Phase 2 was highly accurate.
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Dataset Unseen
rate yi Count-based

Label
Similarity
(Sappadla

et al., 2016)

RNN
Autoencoder

RNN + FC
(Pushp and
Srivastava,

2017)

CNN +
FC Ours

DBpedia

25%
seen 0.322 0.377 0.250 0.895 0.985 0.975

unseen 0.372 0.426 0.267 0.046 0.204 0.402
overall 0.334 0.386 0.254 0.713 0.818 0.852

50%
seen 0.358 0.401 0.202 0.960 0.991 0.982

unseen 0.304 0.369 0.259 0.044 0.069 0.197
overall 0.333 0.386 0.230 0.502 0.530 0.590

20news

25%
seen 0.205 0.279 0.263 0.614 0.792 0.745

unseen 0.201 0.287 0.149 0.065 0.134 0.280
overall 0.204 0.280 0.236 0.482 0.633 0.633

50%
seen 0.219 0.293 0.275 0.709 0.684 0.767

unseen 0.196 0.266 0.126 0.052 0.126 0.168
overall 0.207 0.280 0.200 0.381 0.405 0.469

Table 2: The accuracy of the whole framework compared with the baselines.

Dataset
Unseen rate yi DOC Ours

w/o aug.
Ours

w/ aug.

DBpedia
25%

seen 0.980 0.982 0.982
unseen 0.471 0.388 0.536
overall 0.871 0.855 0.886

DBpedia
50%

seen 0.983 0.986 0.987
unseen 0.384 0.345 0.512
overall 0.684 0.666 0.749

20news
25%

seen 0.800 0.838 0.831
unseen 0.573 0.431 0.577
overall 0.745 0.754 0.770

20news
50%

seen 0.824 0.856 0.843
unseen 0.562 0.419 0.603
overall 0.694 0.639 0.724

Table 3: The accuracy of Phase 1 with and without aug-
mented data compared with DOC .

Animal
(Original)

Mitra perdulca is a species of sea snail
a marine gastropod mollusk in the family
Mitridae the miters or miter snails.

Animal
→

Plant

Arecaceae perdulca is a flowering of port
aster a naval mollusk gastropod in the
fabaceae Clusiaceae the tiliaceae or rock-
ery amaryllis.

Animal
→

Athlete

Mira perdulca is a swimmer of sailing
sprinter an Olympian limpets gastropod in
the basketball Middy the miters or miter
skater.

Table 4: Examples of augmented data translated from a
document of the original class “Animal” into two target
classes “Plant” and “Athlete”.

Besides, given test documents from unseen
classes only, the performance of the zero-shot
classifier in Phase 2 is shown in Table 6. Based
on the construction method, vw,c quantified the
relatedness between words and the class but, un-
like vw and vc, it did not include detailed seman-
tic meaning. Thus, the classifier using vw,c only
could not find out the correct unseen class and nei-
ther [vw; vw,c] and [vc; vw,c] could do. On the other

Dataset DBpedia 20news
Input \ Unseen rate 50% 25% 50% 25%

vw 0.993 0.992 0.878 0.861

Table 5: The accuracy of the traditional classifier in
Phase 2 given documents from seen classes only.

Dataset DBpedia 20news
Inputs \ Unseen rate 50% 25% 50% 25%

Random guess 0.143 0.333 0.100 0.200
vw,c 0.154 0.443 0.104 0.210

[vc; vw,c] 0.163 0.400 0.099 0.215
[vw; vw,c] 0.266 0.460 0.122 0.307
[vw; vc] 0.381 0.711 0.274 0.431

[vw; vc; vw,c] 0.418 0.754 0.302 0.500

Table 6: The accuracy of the zero-shot classifier in
Phase 2 given documents from unseen classes only.

hand, the combination of [vw; vc], which included
semantic embeddings of both words and the class
label, increased the accuracy of predicting unseen
classes clearly. However, the zero-shot classifier
fed by the combination of all three types of inputs
[vw; vc; vw,c] achieved the highest accuracy in all
settings. It asserts that the integration of semantic
knowledge we proposed is an effective means for
knowledge transfer from seen to unseen classes in
the zero-shot scenario.

Last but most importantly, we compared the
whole framework with four baselines as shown
in Table 2. First, the count-based model is a rule-
based model so it failed to predict documents from
seen classes accurately and resulted in unpleasant
overall results. This was similar to the label simi-
larity approach even though it had higher degree
of flexibility. Next, the RNN Autoencoder was
trained without any supervision since ŷi was pre-
dicted based on the cosine similarity. We believe
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the implicit semantic relatedness between classes
caused the failure of the RNN Autoencoder. Be-
sides, the CNN+FC and RNN+FC had same in-
puts and outputs and it was clear that CNN+FC
performed better than RNN+FC in the experi-
ment. However, neither CNN+FC nor RNN+FC
was able to transfer the knowledge learned from
seen to unseen classes. Finally, our two-phase
framework has competitive prediction accuracy on
unseen classes while maintaining the accuracy on
seen classes. This made it achieve the highest
overall accuracy on both datasets and both unseen
rates. In conclusion, by using integrated seman-
tic knowledge, the proposed two-phase framework
with data and feature augmentation is a promising
step to tackle this challenging zero-shot problem.

Furthermore, another benefit of the framework
is high flexibility. As the modules in Figure 1 has
less coupling to one another, it is flexible to im-
prove or customise each of them. For example, we
can deploy an advanced language understanding
model, e.g., BERT (Devlin et al., 2018), as a tradi-
tional classifier. Moreover, we may replace Con-
ceptNet with a domain-specific knowledge graph
to deal with medical texts.

4 Related Work

4.1 Zero-shot Text Classification

There are a few more related works to discuss be-
sides recent approaches we compared with in the
experiments (explained in section 3.3). Dauphin
et al. (2013) predicted semantic utterance of texts
by mapping class labels and text samples into the
same semantic space and classifying each sam-
ple to the closest class label. Nam et al. (2016)
learned the embeddings of classes, documents,
and words jointly in the learning stage. Hence, it
can perform well in domain-specific classification,
but this is possible only with a large amount of
training data. Overall, most of the previous works
exploited semantic relationships between classes
and documents via embeddings. In contrast, our
proposed framework leverages not only the word
embeddings but also other semantic knowledge.
While word embeddings are used to solve analogy
for data augmentation in Phase 1, the other seman-
tic knowledge sources (in Figure 2) are integrated
into relationship vectors and used as augmented
features in Phase 2. Furthermore, our framework
does not require any semantic correspondences be-
tween seen and unseen classes.

4.2 Data Augmentation in NLP

In the face of insufficient data, data augmentation
has been widely used to improve generalisation of
deep neural networks especially in computer vi-
sion (Krizhevsky et al., 2012) and multimodality
(Dong et al., 2017b), but it is still not a common
practice in natural language processing. Recent
works have explored data augmentation in NLP
tasks such as machine translation and text clas-
sification (Saito et al., 2017; Fadaee et al., 2017;
Kobayashi, 2018), and the algorithms were de-
signed to preserve semantic meaning of an orig-
inal document by using synonyms (Zhang and Le-
Cun, 2015) or adding noises (Xie et al., 2017), for
example. In contrast, our proposed data augmen-
tation technique translates a document from one
meaning (its original class) to another meaning (an
unseen class) by analogy in order to substitute un-
available labelled data of the unseen class.

4.3 Feature Augmentation in NLP

Apart from improving classification accuracy, fea-
ture augmentation is also used in domain adapta-
tion to transfer knowledge between a source and
a target domain (Pan et al., 2010b; Fang and Chi-
ang, 2018; Chen et al., 2018). An early research
paper applying feature augmentation in NLP is
Daume III (2007) which targeted domain adapta-
tion on sequence labelling tasks. After that, fea-
ture augmentation was used in several NLP tasks
such as cross-domain sentiment classification (Pan
et al., 2010a), multi-domain machine translation
(Clark et al., 2012), semantic argument classifi-
cation (Batubara et al., 2018), etc. Our work is
different from previous works not only that we ap-
plied this technique to zero-shot text classification
but also that we integrated many types of semantic
knowledge to create the augmented features.

5 Conclusion and Future Work

To tackle zero-shot text classification, we pro-
posed a novel CNN-based two-phase framework
together with data augmentation and feature aug-
mentation. The experiments show that data aug-
mentation by topic translation improved the accu-
racy in detecting instances from unseen classes,
while feature augmentation enabled knowledge
transfer from seen to unseen classes for zero-shot
learning. Thanks to the framework and the in-
tegrated semantic knowledge, our work achieved
the highest overall accuracy compared with all the
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baselines and recent approaches in all settings. In
the future, we plan to extend our framework to do
multi-label classification with a larger amount of
data, and also study how semantic units defined
by linguists can be used in the zero-shot scenario.
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