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Abstract

Extreme classification is a classification task
on an extremely large number of labels (tags).
User generated labels for any type of online
data can be sparing per individual user but in-
tractably large among all users. It would be
useful to automatically select a smaller, stan-
dard set of labels to represent the whole label
set. We can then solve efficiently the prob-
lem of multi-label learning with an intractably
large number of interdependent labels, such
as automatic tagging of Wikipedia pages. We
propose a submodular maximization frame-
work with linear cost to find informative la-
bels which are most relevant to other labels yet
least redundant with each other. A simple pre-
diction model can then be trained on this label
subset. Our framework includes both label-
label and label-feature dependencies, which
aims to find the labels with the most repre-
sentation and prediction ability. In addition,
to avoid information loss, we extract and pre-
dict outlier labels with weak dependency on
other labels. We apply our model to four
standard natural language data sets including
Bibsonomy entries with users assigned tags,
web pages with user assigned tags, legal texts
with EUROVOC descriptors(A topic hierarchy
with almost 4000 categories regarding differ-
ent aspects of European law) and Wikipedia
pages with tags from social bookmarking as
well as news videos for automated label de-
tection from a lexicon of semantic concepts.
Experimental results show that our proposed
approach improves label prediction quality, in
terms of precision and nDCG, by 3% to 5%
in three of the 5 tasks and is competitive in
the others, even with a simple linear prediction
model. An ablation study shows how different
data sets benefit from different aspects of our
model, with all aspects contributing substan-
tially to at least one data set.

1 Introduction

Multi-label learning has recently attracted atten-
tion in the research community due to an increase
in applications such as semantic labeling of im-
ages and videos, bio-informatics, genetic func-
tions, and music categorization. In addition, multi-
label learning can address machine learning prob-
lems in web data mining, including recommender
systems, multimedia sharing websites, and rank-
ing (Zhang and Zhang, 2010).

An important application of extreme multi-label
learning is automatic tagging and social tagging of
large information collections such as Wikipedia or
the Web. A user can add their own keywords to a
text, as if they were the keywords they would use
to look for the article in a search engine. Since tags
use an open vocabulary, the number of tags is in-
creasing continually in order to adjust to the needs
of new information. Moreover, different users can
assign different tags to the same resource, result-
ing in a great diversity of tags for that resource.

The biggest challenge of extreme multi-label
learning is the dimension of the output space. As
the number of output labels increases, the num-
ber of output states increases exponentially. In
order to overcome this exponential growth, it is
necessary to use label dependencies to simplify
the problem (Zhang and Zhang, 2010; Tsoumakas
et al., 2010).

We propose a submodular maximization ap-
proach with a linear cost to find an informative
set of labels. In contrast to the other similar ap-
proaches (Balasubramanian and Lebanon, 2012;
Bi and Kwok, 2013) which consider only label-
label dependencies, we also consider label-feature
dependencies and outlier labels that are highly in-
dependent of other labels. Solving the problem us-
ing the selected (smaller number of) labels leads to
minimizing both representation and training error.
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Representation ability is equivalent to the power
of the selected subset to reconstruct the remain-
ing labels, and prediction ability is equivalent to
training accuracy leading to less error propagation
from predicted label subset to the remaining labels
during reconstruction.

Submodular maximization approaches have
proved very effective in many applications, such
as finding the most influential nodes in social
networks to maximize the spread of information
(for applications such as advertising and market-
ing (Kempe et al., 2003; Ohsaka et al., 2014)) and
video and image collection summarization (Gygli
et al., 2015; Tschiatschek et al., 2014). There are
many effective algorithms such as (Mirzasoleiman
et al., 2015) to make submodular optimization ap-
proaches much faster or do them in a distributed
way (Mirrokni and Zadimoghaddam, 2015) to per-
form faster parallel processing for very large scale
datasets.

2 Related Work

Many of the early proposed multi-label learning
approaches struggle with large-scale applications,
as they learn each label separately or investigate
the label dependencies in a way that leads to a
costly and complicated model (Tsoumakas et al.,
2010).

The other research trends is to transform the la-
bel space to a smaller space and map back the pre-
dicted results in the compressed space to the orig-
inal space. Hsu et al. (2009) presented the first
approach targeting label space compression based
on compressed sensing, which assumes sparsity of
the label space. An expensive optimisation prob-
lem has to be solved in the prediction step. Tai and
Lin (2012); Chen and Lin (2012); Yu et al. (2014),
and (Lin et al., 2014) used orthogonal projections
and low-rank assumptions to extract a label matrix
decomposition and find a low-dimensional embed-
ding space. In (Bhatia et al., 2015b), the authors
perform local embedding of the label vectors. To
achieve stronger locality, they cluster the data into
smaller regions, which is unstable and costly for
high-dimensional spaces and one needs an ensem-
ble of the learners to overcome this instability and
achieve a good prediction accuracy.

Although the previously proposed approaches
make the embedding space smaller and more
tractable, they may lead to loss of information as
a result of transforming the label space to lower-

dimensional spaces. Many of these approaches
rely on low-rank assumptions which transform
the sparse label space to a new dense embed-
ding space resulting in even lower accuracy, with
a higher prediction cost in the new complicated
space (Bhatia et al., 2015a).

Balasubramanian and Lebanon (2012) and Bi
and Kwok (2013) proposed to select a subset of
the labels, and solve the problem in the original la-
bel space, based on structure sparsity optimization
and SVD decomposition, correspondingly. How-
ever, these methods are not tractable for large scale
data and not compatible for the real application
data. In addition, they have ignored the training
error in the label selection step which can lead to
selection of the labels that are hard to predict re-
sulting in training error propagation through the
next steps.

Another recent thread of research includes the
methods that partition the data into smaller groups:
In the framework proposed by Barezi et al. (2017),
the label space is divided into smaller independent
groups, while Agrawal et al. (2013); Prabhu and
Varma (2014); Prabhu et al. (2018) propose tree-
based methods which partition the data into tree-
structured hierarchical groups. These partitioning-
based approaches avoid information loss from di-
mension reduction. However, finding a partition-
ing tree is a very complicated and time-consuming
problem and these approaches require solving a
complicated optimization problem to perform par-
titioning at each node, which is expensive and
needs many training samples. In addition, the
tree-based approaches suffer from error propaga-
tion through the hierarchy and need many training
samples to avoid under-fitting in the lower levels
of the partitioning tree (Liu et al., 2005).

Instead of making the structural assumption on
the relation between the labels, Yen et al. (2016)
assume the label space is highly sparse and has a
strong correlation with the feature space. They ig-
nore the label space correlation information. Yen
et al. (2017) proposed the parallel version of (Yen
et al., 2016).

3 Methodology

In this paper, we propose a landmark selection
framework for selecting the most informative la-
bels and to solve the multi-label learning problem
with these labels. As an example, consider pre-
dicting the commercial impact of a new event on
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some global organizations (equivalent to the la-
bels in our problem) given a history of the impact
of previous events (equivalent to the features and
training data in our problem). Instead of predict-
ing the impact on each organization individually,
we predict only the impact on a small number of
organizations which are both easier to predict and
analyze according to available data as well as be-
ing more indicative of the economy and the other
organizations. Being indicative means that if we
know the impact of the new event on these organi-
zations, it can help us to predict the reaction of the
other organizations. More formally, we optimize
the above set function f(S) in Equation 1.

The proposed method includes both label-label
and label-feature dependencies in order to mini-
mize both representation and training error. Pre-
vious similar methods ignore label-feature depen-
dencies in the subset selection step, allowing the
training error for the selected subset of the labels
to be propagated to the reconstructed labels and af-
fecting the final predictions. In addition, to avoid
information loss, we also extract and predict out-
lier labels with weak dependency on other labels
and treat them separately.

Our construction results in a monotone submod-
ular function of label sets allowing us to use a
maximization framework that benefits from a good
theoretical bound by a fast greedy approach with
linear cost (Nemhauser et al., 1978). We use a
method based on Alternating Direction Method of
Multipliers (ADMM) (Boyd, 2011) optimization
to learn a linear mapping back to original label
space. Therefore, during training, we can select
and learn the most informative label subset using
a submodular maximization framework of linear
cost. During the prediction time, we can use the
selected subset to represent the remaining labels
using a linear equation with a linear cost in num-
ber of the labels.

3.1 Overview of the Submodular
Maximization Theorem

Submodular functions have a natural diminishing
property which makes them suitable for many ap-
plications. A submodular function is a set function
with the property that as the size of the selected
subset increases, the incremental value of the func-
tion by adding a new element to the selected subset
does not increase.

The formal definition of a submodular function

is as follows:

Definition 1. For a set function f(S) : 2V → R
defined for a finite ground set V = 1, 2, ...n, the
marginal gain of adding each new member can be
computed as ∆f (e|S) = f(e ∪ S) − f(S). The
function f(.) is submodular, if for each A ⊆ B ⊆
V , e ∈ V \A ∩ V \B, then ∆f (e|A) ≥ ∆f (e|B).
Equivalently, the function f(S) : 2V → R is sub-
modular if for any two setsA, B ∈ V , f(A∪B)+
f(A ∩B) ≤ f(A) + f(B).

Monotony of sunmodular functions is a useful
property which means that the value of the func-
tion would not decrease by adding each new mem-
ber to the input set, and can be defined as follow-
ing.

Definition 2. A submodular function f(.) is
monotone (non-decreasing) if for every T ⊆ S,
we have that f(T ) ≤ f(S).

A simple example of a submodular function is
the setup cost in a factory. Suppose that a factory
is capable of making any one of a large finite set
V of products. In order to produce product e ∈ V ,
it is necessary to set up the machines needed to
manufacture e, and this costs money. The setup
cost is non-linear, and it depends on which other
products you choose to produce. For example, if
you are already producing iPhones, then the setup
cost for also producing iPads is small, but if you
are not producing iPhones, the setup cost for pro-
ducing iPads is large.

We can find a good approximation of the op-
timum answer for a monotone submodular max-
imization problems by using the greedy approach
and considering the selected subset size constraint.
More formally:

Theorem 3. (Nemhauser et al., 1978) For a non-
negative, monotone submodular function f , let S
be a set of size k obtained by the greedy strat-
egy similar to Algorithm 1. Then, f(S) ≥ (1 −
1/e)f(S∗), where S∗ is the optimum solution,
and e is Euler’s constant approximately equal to
2.71828

3.2 Submodularity for Label Subset Selection
We propose two submodular functions, aiming to
select the most informative subset of the labels.
The first function is a penalized version of the
graph cut function. It scores label sets with cor-
relation to the other labels and penalizes their sim-
ilarity to the previously selected labels (fpen in
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f(S) = (How members of set S are individually predictable) +

(How members of set S can represent the members not included in S)

= (Prediction ability) + (Representation ability)

= (Label − Feature dependency) + (Label − Label dependency) (1)

Algorithm 1 argmaxS f(S) s.t. ‖S‖ = k .
Input: V = 1, 2, ...n
Initialization: S = ∅.
Repeat:

1: a? = argmaxa∈V \S f(S ∪ {a})− f(S)
2: S = S ∪ {a?}

Until |S| = k.
Output: S.

Equation 3). The graph is constructed using the
labels as nodes and label correlations as weights
for the graph edges. The second function scores
the predictability of labels with respect to prob-
lem input features (fscore in Equation 5). Our fi-
nal function for identifying the optimal subset of
labels is a weighted sum of these (Equation 6).

We consider the label correlations as graph
weights w. The graph cut function fcut(.) aims to
find a subset of the graph nodes (labels) with the
highest weights (strongest dependencies) to the re-
maining nodes (labels). This captures strong cor-
relation of a label set to the other labels and thus
its ability to reconstruct the other labels. The pe-
nalised version fpen(.) adds one more term to in-
crease the diversity of the selected labels and avoid
choosing similar labels.

fcut(S) =
∑
i∈V \S

∑
j∈S

wi,j (2)

fpen(S) = fcut(S)− λ
∑
i,j∈S
i 6=j

wi,j , λ ≥ 0 (3)

Theorem 4. fcut(S) is a submodular function
and it is monotone for non-large values of |S|
(Nemhauser et al., 1978).

Theorem 5. fpen(S) is a submodular function
and it is monotone for non-large values of λ (Lin
et al., 2009).

The proofs for Theorem 4 and 5 is provided in
supplementary Section.

It is important also to consider predictability,
which is the training error for the selected subset

of the labels, in order to avoid the prediction error
of labels with high training error being propagated
to the whole label space.

As an estimate of predictability we use either a
G2 or χ2 independence test for the discrete data,
and Fishers Z or t test for the continuous data
in order to reject or accept the null hypothesis
of independence (Tsamardinos and Borboudakis,
2010). Since, this measures include an implicit
normalization, the frequency of the classes in
training data does not affect the sampling step.

A higher dependency score for each label and
the input feature space means a stronger correla-
tion of the label with the feature space and higher
predictability. Given label predictability scores fij
for label i and input feature j andD input features,
we calculate dependency scores fi of the i-th label
and the input features:

fi =

D∑
j=1

fij (4)

Note that fi ≥ 0. We then define the following set
function, which also is monotone and submodular
(Theorem 6):

fscore(S) =
∑
i∈S

fi (5)

Theorem 6. fscore(S) is a submodular monotone
function.

Proof. For wi = the sum over the dependency
scores of the i-th label and the feature space,
f(S) =

∑
i∈S wi is a linear function with wi ≥ 0.

Any linear function of the form f(S) =
∑

i∈S wi
is a submodular function. If S ⊂ R, ∆f (k|S) −
∆f (k|R) = 0⇒ ∆f (k|S) ≥ ∆f (k|R).
Additionally, if ∀i wi ≥ 0, then f is monotone,
because f(S ∪ k)− f(S) = wk, wk ≥ 0.
max|S|=kf(S) = max

∑
i∈S wi. Therefore f(S)

is a monotone submodular function.

Since, any sum of submodular functions with
positive coefficients is a submodular function,
we can combine fpen(.), and fscore(.) by positive
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weights, which results in a new submodular func-
tion that includes both representation ability and
prediction ability of the selected labels. We choose
a model parameter γ > 0 giving us our final sub-
modular function:

f(S) = fpen(S) + γ.fscore(S) (6)

3.3 Landmark Information Propagation
The main step of our proposed framework is to
propagate the predicted value for the selected label
subset to the full set of labels in order to recover
the original space. Therefore, we aim to find a
linear relation including the dependency of the se-
lected labels and all the other labels. In the predic-
tion step, this linear function obtains the full label
set by combining the subset (Ys) and outlier pre-
dictions (E) predicted by the regression functions
discussed in next section 3.4. Given 1-hot repre-
sentations Ys over the reduced set of labels and Y
the full set of labels, we seek matrices Z and E
that recover the original labels:

Y = YsZ + E (7)

To find optimal Z and E, we solve the opti-
mization problem Equation 8, where Y and Ys are
matrices populated with our training data. Note
that ‖E‖2,1 is the L1 norm of the L2 norms of the
columns of E.

argmin
Z,E

(‖Z‖1 + α‖E‖2,1) (8)

s.t. Y = YsZ + E

The sparse matrix Z is a k×L matrix which in-
cludes a few representative labels (due to the spar-
sity constraint ‖Z‖1) for each label (Y = YkZ).
The Z matrix includes the dependency informa-
tion and performs propagation of the predicted
label subset to the full label set, while nonzero
columns of matrix E show the outlier and tail la-
bels set O, which cannot be computed perfectly
through their relation to the other labels. The in-
dex set of the nonzero columns of matrix E indi-
cates the outlier labels. α is a model parameter.

The alternating direction method of multipliers
(ADMM) method (Boyd, 2011; Nesterov, 2004;
Beck and Teboulle, 2009) provides an efficient al-
gorithm for solving this problem, achieving a con-
vergence rate of O(1/T 2) (where T is the number
of iterations). ADMM solves the problem with
more than one unknown variable, (Z and E in

our case), by alternating between optimizing each
variable using augmented Lagrangian. Please see
the supplementary materials for more detail on the
ADMM method and how it is applied in this case.

3.4 Prediction and Mapping Back to the
Original Label Space

We now train a linear classifier to predict labels in
the reduced label set S ∪ O and map back to the
full label set. Given features of the training data
X , corresponding labels from selected and outlier
labels YS and YO, we learn linear regression pa-
rameters ws, bs for the selected labels and we, be
for the outlier labels:

argmin
ws,bs

‖Ys − (X ∗ ws + bs)‖+ λ1
2 ‖ws‖

2

argmin
we,be

‖Yo − (X ∗ we + be)‖+ λ2
2 ‖we‖

2 (9)

Since all these training tasks are independent of
each other, this step is highly parallelizable. The
final values for the labels are computed by propa-
gating the selected label subset through the linear
relation 7:

Ŷs = X ∗ ws + bs

Ê = X ∗ we + be (10)

Ŷ = ŶsZ + Ê (11)

An overview of steps for training and prediction
are shown in Algorithms 2 and 3.

Algorithm 2 Training Algorithm.
Input: Training Data X and Y .

1: Find the best label subset by submodular op-
timization over function 6;

2: Find the linear propagation equation through
ADMM optimization over problem 8.

3: Find the linear regression models over small
subset of labels and outliers by Equation 9

Output: Label subset, outliers, propagation and
regression models.

4 Experiments

4.1 Datasets

We used six different datasets in the experiments.
The “Bibtex” dataset is a text dataset extracted
from the BibSonomy website (Katakis et al., 2008)



1014

Algorithm 3 Prediction Algorithm.
Input: prediction samples X .

1: Predict candidate label subset and outlier la-
bels using regression model 10.

2: Use 11 to produce full set of labels from can-
didate subset and outlier labels.

Output: Full label set for input X .

contains metadata for the bibtex items like the ti-
tle of the paper, the authors, etc and extracts the
features according to the term frequency. The
“Mediamill” dataset is extracted from the Me-
diamill contest datasets, which include low-level
multimedia features (visual and textual features)
extracted from 85 hours of international news
videos from the TRECVID 2005/2006 benchmark
datasets (Snoek et al., 2006) labeled using a lex-
icon of 101 semantic concepts, like commercials,
nature, and baseball.

The “Eurlex” dataset includes 19,348 legal doc-
uments from European nations, containing several
different types of documents, including treaties,
legislation, case-law and legislative proposals,
classified according to the EUROVOC descriptor
using 3993 different classes, and 5000 features
extracted using common TF-IDF term weight-
ing (Mencia and Fürnkranz, 2008). The “De-
licious” dataset is a text dataset extracted from
the del.icio.us social bookmarking site on
the 1st of April 2007 and contains textual data
of web pages along with their user defined tags
(Tsoumakas et al., 2008). The content of web
pages was represented using the Boolean bag-of-
words model. “Wiki10-31K” is a collection of so-
cial tags for given Wikipedia pages with TF-IDF
features (Zubiaga, 2012). The statistics of these
datasets are provided in Table 1.

4.2 Experimental Setup
For the small datasets, “Bibtex”, “Mediamill”,
“Delicious”, and “Eurlex”, the reported results are
the average of 10 different experiments for random
partitions of each dataset. For the larger dataset,
“Wiki10-31K”, we did one experiment with the
training and testing partition reported in Table 1.

For all experiments we chose a label subset size
of 100, except for Mediamill where we chose 30
since 100 would represent all labels. Model tuning
is done in two phases: first we tune α for group
sparsity (Equation 8), and γ for weighting of the
submodular functions (Equation 6), then we tune

for λ1 and λ2, the regression parameters for map-
ping back to the original label set (Equation 9)
with α and γ fixed. All parameters were cho-
sen by measuring the precision of 10-fold cross
validation and using a grid search over the values
{0, 10−3,...,+3} for each dataset.

The proposed method was compared with sev-
eral state-of-the-art methods with diverse ap-
proaches. LEML (Yu et al., 2014), CPLST (Chen
and Lin, 2012), CS (Hsu et al., 2009) and SLEEC
(Bhatia et al., 2015b) which are embedding based
approaches with a low-rank or sparse assumption
in the label space. ML-CSSP (Bi and Kwok, 2013)
which solves the problem in the original label
space which ignores the training error in the sub-
set selection step. FastXML (Prabhu and Varma,
2014), and PD-sparse (Yen et al., 2016) which do
not use an embedding transformation and aim to
solve the problem without using compression or
sampling. We have used the reported results, if
available, and otherwise tuned the parameters for
the baseline algorithms by means of 10-fold cross
validation.

5 Results and Discussion

Table 2 shows the average and standard deviation
of Precision@k for the four small-scale datasets,
“Bibtex”, “Mediamill”, “Delicious”, and “Eu-
rlex”, and the large-scale dataset “Wiki10-31k”.
For ”Wiki10-31k”, results are reported only for
those baselines that were tractable. The results
for nDCG@k are included in supplementary Ma-
terial, Table 5. Since the SLEEC and FastXML
methods are ensemble-based, using multiple non-
linear models, it is not fair to compare them with
the single model methods such as our own. These
methods partition the sample space into smaller
tractable clusters and obtain separate classifiers for
each partition. We compare our method with these
in Table 3.

The proposed approach in most cases has sig-
nificantly better results than other methods on
both measures. The embedding based approaches
suffer from accumulation of the embedding and
training error (Balasubramanian and Lebanon,
2012), however in the proposed approach, we
have removed the embedding step and consid-
ered the training error minimization at the la-
bel subset selection step. On the other hand,
the non-embedding approaches such as PD-sparse
(Yen et al., 2016) ignore the label space inter-
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Dataset Domain Number of Features Number of Labels Training Points Testing Points
Bibtex Text 1836 159 4880 2515

Delicious Text(Web) 500 983 12920 3185
Mediamill Video 120 101 30993 12914

Eurlex Text 5000 3993 17413 1935
Wiki10-31K Text 101938 30938 14146 6616

Table 1: Dataset statistics

Proposed PD-sparse LEML CPLST CS ML-CSSP
Bibtex

P@1 64.56±0.79 61.29±0.65 62.54±0.52 62.38±0.63 58.87±0.61 44.98±1.15
P@3 39.51±0.34 35.82±0.46 38.41±0.42 37.84±0.48 33.53±0.49 30.43±0.59
P@5 28.80±0.26 25.74±0.30 28.21±0.24 27.62±0.27 23.72±0.29 23.53±0.37

Delicious
p@1 65.13±0.39 51.82±1.40 65.67±0.73 65.31±0.88 61.36±0.38 63.04±1.28
P@3 59.07±0.41 44.18±1.04 60.55±0.48 59.95±0.43 56.46±0.33 56.26±1.13
P@5 54.52±0.34 38.95±0.94 56.08±0.43 55.31±0.50 52.07±0.30 50.16±0.83

Mediamill
P@1 84.25±0.27 81.86±4.08 84.01±0.31 83.35±0.33 83.82±5.92 78.95±0.23
P@3 67.29±0.24 62.52±2.31 67.20±0.23 66.18±0.22 67.32±4.42 60.93±0.24
P@5 52.90±0.15 45.11±1.14 52.80±0.18 51.46±0.20 52.80±2.61 44.27±0.20

Eurlex
P@1 81.04±0.81 76.43±1.04 63.40±1.58 72.28±0.99 58.52±1.06 62.09±2.12
P@3 67.91±0.97 60.37±0.74 50.35±1.44 58.16±1.11 45.51±0.71 48.39±1.31
P@5 56.81±0.97 49.72±0.74 41.28±1.07 47.73±0.97 32.47±0.58 40.11±1.10

Wiki10-31k
p@1 86.05 82.14 73.47 - - -
P@3 76.85 69.68 62.43 - - -
P@5 67.77 58.76 54.35 - - -

Table 2: Non-ensemble models with k=100 or 30 (Mediamill). Best in bold and not significantly different to best
at p=0.05 in italics.

Proposed SLEEC FastXML
Bibtex

P@1 64.56±0.79 65.08±0.65 63.42±0.67
P@3 39.51±0.34 39.64±0.39 39.23±0.57
P@5 28.80±0.26 28.87±0.32 28.86±0.38

Delicious
P@1 65.13±0.39 67.59±0.53 69.61±0.58
P@3 59.07±0.41 61.38±0.59 64.12±0.75
P@5 54.52±0.34 56.56±0.54 59.27±0.65

Mediamill
P@1 84.25±0.27 87.82±0.33 84.22±0.27
P@3 67.29±0.24 73.45±0.30 67.33±0.20
P@5 52.90±0.15 59.17±0.34 53.04±0.18

Eurlex
P@1 81.04±0.81 79.26±0.86 71.36±1.63
P@3 67.91±0.97 64.30±0.88 59.90±1.58
P@5 56.81±0.97 52.33±0.80 50.39±1.40

Wiki10-31k
p@1 86.05 85.88 83.03
P@3 76.85 72.98 67.47
P@5 67.77 62.70 57.76

Table 3: Ensemble-based nonlinear models. Best in
bold and not significantly different to best in italics.

dependency information which can be useful to
improve the prediction accuracy for the labels
which are not easy to predict only from input fea-
tures.

ML-CSSP (Bi and Kwok, 2013) and the work
of Balasubramanian and Lebanon (2012) attempt,
like us, to find the most informative labels in or-
der to perform label subset selection. However,
our approach improves on their results, supporting
the idea that considering only the label space in-
formation (ignoring label-feature dependency in-

formation) in the label selection step can lead to
label sets that are not easy to predict whose train-
ing error will be propagated through to final model
predictions.

The SLEEC and FastXML methods are
ensemble-based methods using multiple nonlinear
models and can be expected to outperform single
model methods such as ours. SLEEC aims to par-
tition the sample space into smaller tractable clus-
ters to obtain a nonlinear embedding and trained
model for each partition. FastXML finds a parti-
tioning tree by using nonlinear binary classifiers
to partition the samples at each node, which is a
very complicated and unstable problem for high-
dimensional spaces. Therefore, for both SLEEC
and FastXML methods, they need an ensemble of
the learners in order to overcome this instability
and achieve a good prediction accuracy. Table 3
shows that SLEEC performs best on the Medi-
amill and FastXML performs best on the Delicious
dataset. This shows that finding a representative
subset using a linear method is not a consistent
assumption for these datasets than the low-rank
and tree-based assumptions. However, for Bib-
tex datasset, our proposed method is competitive
with the best results, and for Eurlex and Wiki10-
31k, our method is substantially better than both
SLEEC and FastXML, a notable achievement for
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a single model approach.

5.1 Ablation study

The ablation study results in Table 4 shows how
different data sets benefit from different parts of
our proposed framework, with all parts contribut-
ing substantially to at least one data set. We have
reported the results by considering only label-
label dependency information (fpen), label-feature
dependency information (fscore) and combining
all 3 parts (fpen, fscore and outlier information).
The results support the assertions that considering
only the label space information (ignoring label-
feature dependency information) in the label se-
lection step causes prediction error of labels with
high training error to be propagated to the whole
label space and that it is important to also select
outlier labels that are hard to predict from other
selected labels.

fpen fscore fpen + αfscore +Outliers
Bibtex

P@1 60.98 63.27 63.29 64.55
P@3 34.86 37.10 37.55 39.51
P@5 25.94 26.73 27.05 28.78

Mediamill
P@1 81.12 81.83 84.25 84.25
P@3 64.15 65.92 67.79 67.99
P@5 51.26 51.66 52.70 52.90

Delicious
P@1 62.71 62.71 64.33 65.14
P@3 56.95 56.95 58.30 59.10
P@5 52.63 52.63 53.58 54.55

Eurlex
P@1 56.60 3.84 56.60 81.04
P@3 37.88 3.11 37.88 67.91
P@5 29.71 3.01 29.71 56.81

Wiki10-31k
P@1 81.86 54.34 81.86 86.05
P@3 68.51 40.41 68.51 76.85
P@5 56.77 33.00 56.77 67.77

Table 4: Ablation Study. Bold indicates a difference of
≥ 0.8%

We also investigated the effect of changing the
subset size S on the final prediction quality (we
have ignored the outlier effect in these experi-
ments). Figure 1 shows an initial marked increase
in performance with subset size, however the re-
sults gets more stable when the subset size gets
larger. This observation, which is consistent with
the submodular property, provides a clue that us-
ing a more complicated training model, like a non-
linear model, for a smaller selected set of labels
may lead to higher performance than increasing
the subset size while using a linear model.
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Figure 1: Precision score changes by subset size with-
out outliers.
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6 Conclusion and Future Work

We propose a novel approach for extreme multi-
label classification that simplifies the problem by
selecting an informative and easily modelled sub-
set of labels and subsequently mapping back to the
full set of labels. While the method is very well
applicable to text datasets, it is applicable as a gen-
eral ML method for different domains. Our novel
label selection mechanism follows three princi-
ples: A new submodular maximisation frame-
work that combines label-label dependencies and
label training error together with a mechanism
to identify outlier labels that are hard to recon-
struct. Modelling only the most informative la-
bels helps to avoid transforming the label space
to a new embedding space leading to accumula-
tion of training and embedding errors. We use
a greedy approach for our monotone submodular
framework with linear cost and good theoretical
convergence. Extensive experiments using a lin-
ear prediction model on selected labels conducted
on five standard real-world datasets demonstrate
that our method achieves better performance than
single model approaches, and better or compara-
ble performance to ensemble based methods. In
future, we can improve our model by using non-
linear training model instead of a simple linear re-
gression model for the selected subset of the la-
bels. Moreover, ablation study results suggest that
a nonlinear propagation model to reconstruct the
full label set may be of benefit.
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