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Abstract

We consider the problem of learning dis-

tributed representations for entities and rela-

tions of multi-relational data so as to predict

missing links therein. Convolutional neural

networks have recently shown their superior-

ity for this problem, bringing increased model

expressiveness while remaining parameter ef-

ficient. Despite the success, previous convolu-

tion designs fail to model full interactions be-

tween input entities and relations, which poten-

tially limits the performance of link prediction.

In this work we introduce ConvR, an adaptive

convolutional network designed to maximize

entity-relation interactions in a convolutional

fashion. ConvR adaptively constructs convolu-

tion filters from relation representations, and

applies these filters across entity representa-

tions to generate convolutional features. As

such, ConvR enables rich interactions between

entity and relation representations at diverse re-

gions, and all the convolutional features gener-

ated will be able to capture such interactions.

We evaluate ConvR on multiple benchmark

datasets. Experimental results show that: (1)

ConvR performs substantially better than com-

petitive baselines in almost all the metrics and

on all the datasets; (2) Compared with state-

of-the-art convolutional models, ConvR is not

only more effective but also more efficient. It

offers a 7% increase in MRR and a 6% in-

crease in Hits@10, while saving 12% in pa-

rameter storage.

1 Introduction

Multi-relational data refers to directed graphs

whose nodes correspond to entities and edges dif-

ferent types of relations between entities. An edge

of the form (subject, relation, object) indicates that

there exists a specific relation between the subject

and object entities. Learning with multi-relational

data plays a pivotal role in many application do-

mains, ranging from social networks or recom-

mender systems to large-scale knowledge bases

(KBs) (Bordes et al., 2013; Jenatton et al., 2012).

This work focuses on modeling multi-relational

data from KBs, with the aim of predicting miss-

ing facts on KBs, a challenging task known as link

prediction in statistical relational learning (SRL)

(Getoor and Taskar, 2007).

Various SRL techniques (Nickel et al., 2016a)

have been proposed for this task, among which vec-

tor space embedding models (Wang et al., 2017)

are gaining increasing attention due to their su-

perior performance and potential scalability. The

key idea there is to learn and operate on latent fea-

tures (embeddings) of entities and relations, so as to

uncover non-trivial connectivity patterns in multi-

relational data. Previous works of this kind tend

to adopt shallow, simple models to extract latent

features, e.g., the translation based models (Bordes

et al., 2013; Wang et al., 2014) or the bilinear mod-

els and their variants (Jenatton et al., 2012; Yang

et al., 2015; Trouillon et al., 2016). Using these

simple models allows one to easily handle large-

scale KBs, but usually at the cost of learning less

expressive features. In fact, such simple models

typically generate a single feature with each entry

of the embeddings. The only way to increase the

number of features (and thus their expressiveness)

is to increase the embedding size (Dettmers et al.,

2018). This potentially limits the performance of

link prediction with a given number of parameters.

To increase model expressiveness, there emerge

some deeper, more complicated designs, in par-

ticular those on the basis of neural network archi-

tectures (Socher et al., 2013; Bordes et al., 2014;

Dong et al., 2014; Schlichtkrull et al., 2017a). Such

approaches, however, often have more parameters

and are prone to overfit, at least on the (relatively

small) benchmark datasets used by the scientific

community (Nickel et al., 2016a).

Recently, Dettmers et al. (2018) devised ConvE,
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a multi-layer convolutional network which enables

expressive feature learning while remaining highly

parameter efficient. Given a subject-relation-object

triple (s, r, o), ConvE first reshapes the vector rep-

resentation of the subject s and that of the relation

r into 2D matrices, and then concatenates the two

matrices and feeds them into a 2D convolutional

layer to extract higher-level, non-linear features, as

illustrated in Figure 1(a). The resultant convolu-

tional features are finally projected and matched

with the vector representation of the object o via

an inner product. Note that by sliding across the

embeddings using small-sized filters, the convolu-

tion operator can easily generate much more fea-

tures without increasing the embedding size. As

such, ConvE offers increased expressiveness and

achieves competitive performance in link predic-

tion.

Nevertheless, despite its success, ConvE is still

insufficient to fully capture the interactions be-

tween input entities and relations, which has long

been recognized as crucial for modeling multi-

relational data (Nickel et al., 2011; García-Durán

et al., 2014; Trouillon et al., 2016). In ConvE, the

(reshaped) representations of input entities and rela-

tions are simply stacked together and fed into a con-

volutional layer. Although 2D convolution is better

than 1D convolution in modeling entity-relation

interactions, typical 2D convolution with global

filters on such a stacked matrix, however, can only

model interactions around the concatenation line

(Dettmers et al., 2018). Consider the example in

Figure 1(a), where two matrices of size 3× 3 are

formed after reshaping, stacked, and fed as input to

a convolutional layer. Convolving across the input

with a global filter of size 2× 2 will then be able

to model interactions only in the regions where the

two matrices adjoin (e.g., the region outlined in

red). That means, only a small proportion of the

output convolutional features (20% in this exam-

ple, striped with orange and blue) will effectively

capture entity-relation interactions, and the vast ma-

jority others will be entity- or relation-independent.

This poses potential negative impacts on the link

prediction task.

This paper, aiming at maximizing the interac-

tions between input entities and relations, intro-

duces ConvR, an adaptive convolutional network

specifically designed for multi-relational data. As

illustrated in Figure 1(b), the key idea of ConvR

is to facilitate convolution across entity represen-

tations with its filters adaptively constructed from

relation representations. Such adaptive convolution

will model the interactions between the two types

of input not only more naturally but also more ef-

fectively. Specifically, given a triple, the vector

representation of the subject is reshaped and fed

as input to a convolutional layer, while that of the

relation is split and reshaped into a set of filters.

ConvR then convolves across the input with these

filters, enabling each filter (a part of the relation

representation) to interact with diverse regions of

the input (the entity representation). Through this

adaptive convolution process, all the features gener-

ated will be able to capture entity-relation interac-

tions (striped with orange and blue in Figure 1(b)).

These convolutional features are finally projected

and matched with the representation of the object.

Besides being more effective, adaptive convo-

lution enables potentially more efficient modeling

(in terms of the number of parameters). Compared

with ConvE (Figure 1(a)), ConvR (Figure 1(b))

needs no global filters and generates smaller fea-

ture maps, making the follow-up projection layer

roughly half as large as that of ConvE. The idea

of adaptive convolution, in fact, is rather generic

for the multi-relational scenario. By splitting and

reshaping relation vectors, ConvR can be easily

generalized to other paradigms such as 1D or 3D

convolution, not restricted to the 2D setting. To

facilitate a direct and fair comparison to ConvE

where only 2D convolution is considered and tested,

this paper takes the 2D setting as an example, and

shows the superiority of ConvR over ConvE in this

setting. We will investigate higher dimensional

convolution in our future work.

Our contributions are as follows. (1) We propose

a novel adaptive convolution model for learning

with multi-relational data. Our approach, ConvR,

takes full advantage of entity-relation interactions

in a convolutional fashion, while still remaining

highly parameter efficient. (2) We evaluate ConvR

in the link prediction task on KBs and achieve very

promising results on multiple benchmark datasets,

including not only the popular WN18 and FB15K

(Bordes et al., 2013), but also the more difficult

WN18RR (Dettmers et al., 2018) and FB15K-237

(Toutanova and Chen, 2015). (3) We systematically

compare the efficiency and effectiveness of ConvR

and ConvE on FB15K-237, showing that ConvR

can perform substantially better with a good variety

of parameter settings. In particular, it offers a 7%
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(b) ConvR: Convolution with relation-specfic filters.

Figure 1: Reshaping and convolution in ConvE and ConvR. Entity-related neurons are marked in orange, relation-

related ones striped with blue backslash, and those capturing entity-relation interactions striped with slash. White

blocks stand for global filters applied to all input entities and relations.

increase in MRR and a 6% increase in Hits@10,

with the total parameter number only 88% as large

as that of ConvE.

2 Background

We consider multi-relational data represented as

a graph, which can also be formalized as a set of

subject-relation-object triples G = {(s, r, o)} ∈
E ×R×E . Here, E is the set of entities, and R the

set of relations. Each triple (s, r, o) is composed

of a subject entity s ∈ E , a relation r ∈ R, and an

object entity o ∈ E , indicating that there exists a

relation of type r between the two entities s and

o. Such triples are also called facts in knowledge

bases (KBs).

We follow (Dettmers et al., 2018) and formalize

link prediction on multi-relational data as a point-

wise learning to rank problem, where the objective

is to learn a scoring function ψ : E ×R× E → R.

For any input triple (s, r, o), the higher the score

ψ(s, r, o), the more likely the triple is true. Vari-

ous statistical relational learning (SRL) techniques

have been proposed for this task. See (Nickel et al.,

2016a) for a thorough review of such techniques,

with their application on large-scale KBs.

This paper focuses on vector space embedding

models, a branch of SRL with superior perfor-

mance and potential scalability. Given an input

triple (s, r, o), a model of this kind first maps the en-

tities s, o and relation r to their distributed represen-

tations (i.e., embeddings), usually vectors s, r,o ∈
R
d for efficient learning. A score is then defined

for the triple by operating on these distributed rep-

resentations, i.e., ψ(s, r, o) = φ(s, r,o). A great

many approaches of this kind have been devised

in the last few years, where a key difference is the

designing of the scoring function φ(s, r,o). See

(Wang et al., 2017) for a recent survey.

3 Adaptive Convolution on
Multi-relational Data

This section presents ConvR, an adaptive convolu-

tional network specifically designed for learning

with multi-relational data. The key idea of ConvR

is to facilitate convolution across entity represen-

tations with its filters adaptively constructed from

relation representations, so as to maximize the inter-

actions between the two types of input. Figure 1(b)

provides a simple illustration of this idea. In the rest

of this section, we detail the ConvR model, discuss

parameter learning of it, and show its advantages

over ConvE, a convolutional network achieving

promising results in multi-relational link prediction

(Dettmers et al., 2018). To facilitate a direct and

fair comparison to ConvE, we focus on the 2D set-

ting. But the idea can be easily generalized to other

convolution paradigms.

The ConvR model Given a triple (s, r, o),
ConvR maps the two entities s, o to vectors s,o ∈
R
de , and the relation r to vector r ∈ R

dr , where

de and dr are the embedding size of entities and

relations, respectively. Then, the subject vector s
is reshaped into a 2D matrix S ∈ R

dhe×dwe (where

de = dhed
w
e ) and fed as input to a convolutional

layer. As shown in (Dettmers et al., 2018), using

2D rather than 1D convolution would be able to ex-

tract more feature interactions and increase model

expressiveness. The relation vector r is further split

into blocks r(1), · · · , r(c) with equal size, where

each r(�) ∈ R
dr/c is reshaped into a 2D convolu-

tion filter R(�) ∈ R
h×w. Here, c is the number of

filters, h and w the height and width of each filter,

and dr = chw. Figure 1(b) gives a simple example

of this reshaping process, where a subject vector

of length 9 is reshaped into a 3 × 3 matrix, and a

relation vector of length 8 is split and reshaped into
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Figure 2: A simple illustration of adaptive convolution, where a 2× 2 filter R(1) (constructed from the first half of

the relation vector r) is convolved across a 3× 3 input S (reshaped from the subject vector s), generating a feature

map of size 2 × 2. Each entry of the feature map could be calculated with certain dimensions of r and s, marked

with blue backslash and orange respectively.

two 2× 2 filters.1

After reshaping, ConvR convolves across the

input S using these adaptively constructed, relation-

specific filters. For each filter R(�), a convolutional

feature map C(�) ∈ R
(dhe−h+1)×(dwe −w+1) will be

generated, with the mn-th entry calculated as:

c(�)m,n = f
(∑

i,j
sm+i−1,n+j−1 × r

(�)
i,j

)
, (1)

where f(·) is a non-linear function, e.g., ReLU

(Krizhevsky et al., 2012). Figure 2 visualizes how

such a feature map could be generated by convolv-

ing across the input with a relation-specific filter

(the first equality sign “=”), and how each entry of

the feature map could be calculated with the origi-

nal entity and relation vectors (the second equality

sign “=”). We can see that the adaptive convolu-

tion paradigm is quite effective in modeling entity-

relation interactions. It enables rich interactions

between input entity and relation representations at

diverse regions, and all the convolutional features

generated will be able to capture such interactions.

Finally, to compute the triple score ψ(s, r, o), we

flatten the convolutional feature maps C(1), · · · ,
C(c) and stack them into a single vector c. This vec-

tor is then projected into R
de by a fully-connected

layer, and matched with the object vector o with an

inner product, i.e.,

ψ(s, r, o) = f(Wc+ b)�o, (2)

where W ∈ R
de×c(dhe−h+1)(dwe −w+1) and b ∈ R

de

are parameters of the fully-connected layer, and

f(·) is again a non-linear function.

1During reshaping we consider the most natural ordering
of the embedding entries. That means, a length-x vector is
reshaped into a y × z matrix (x = yz) such that the first row
of the matrix comes from the first z entries of the vector, the
second row from the second z entries, and the y-th row from
the last z entries.

Parameter learning For learning the model pa-

rameters, we follow (Dettmers et al., 2018) and use

1-to-many scoring to speed-up training and evalua-

tion. Unlike traditional 1-to-1 scoring which takes

a triple (s, r, o) as input and directly scores it, 1-

to-many scoring takes (s, r) as input and scores it

against all candidate objects o ∈ E simultaneously,

generating a score vector ps,r ∈ R
|E|. Each dimen-

sion of this score vector corresponds to an entity

o ∈ E , calculated as ps,ro = σ(ψ(s, r, o)), where

ψ(s, r, o) is the triple score defined in Eq. (2) and

σ(x) = 1
1+e−x the sigmoid function. For each in-

put (s, r), we minimize the following cross-entropy

loss:

L(s,r)=− 1

|E|
∑
o∈E

ys,ro log(ps,ro )+

(1−ys,ro )log(1−ps,ro ),

(3)

where ys,ro is a binary label. We have ys,ro = 1 if

(s, r, o) is a valid triple and ys,ro = 0 otherwise.

During optimization, we use dropout (Srivastava

et al., 2014) to prevent overfitting. Specifically, we

use dropout on the reshaped subject representations,

the convolutional feature maps, and the projected

vectors after the fully-connected layer. We also use

batch normalization (Ioffe and Szegedy, 2015) on

these representations to stabilize and speed up con-

vergence. We use Adam (Kingma and Ba, 2014) op-

timizer and label smoothing (Szegedy et al., 2016)

as suggested by ConvE.

Advantages over ConvE The most prominent

advantage of ConvR over ConvE is its high abil-

ity to model entity-relation interactions in a con-

volutional fashion, which is crucial for learning

with multi-relational data. ConvE, which convolves

across stacked entity-relation representations with

global filters, can only model interactions between
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the two types of input around the concatenation

line, and only a small proportion of the convolu-

tional features would be able to capture such in-

teractions (see Figure 1(a)). ConvR, by contrast,

enables entity-relation interactions at diverse re-

gions, and all the convolutional features are able

to capture such interactions (see Figure 1(b) and

Figure 2).

Besides being more effective, ConvR might po-

tentially be more efficient (in terms of the number

of parameters). ConvE has a space complexity of

O(d|E| + d|R| + chw + cd(2dh − h + 1)(dw −
w+ 1)), where d|E| is to store entity vectors, d|R|
relation vectors, chw the c global filters with size

h×w, cd(2dh−h+1)(dw−w+1) the projection

matrix in the fully-connected layer, and d = dhdw.

As entity and relation representations need to be

stacked in ConvE, they are usually of the same size,

say d. In ConvR, convolution filters are adaptively

constructed from relation vectors, so there is no

need for global filters. Also, the input of the convo-

lutional layer will be half-sized, generating smaller

feature maps, and hence requires a smaller fully-

connected layer. The space complexity of ConvR

would be O(de|E|+dr|R|+cde(d
h
e −h+1)(dwe −

w + 1)). Although it could be possible to use dif-

ferent configuration of those common arguments in

the two methods (e.g., different number of filters or

entity vectors with different size), which may result

in different memory cost, we empirically show that

ConvR can perform substantially better than ConvE

with a good variety of configurations, even those

with fewer parameters (see the section “Parameter

efficiency of ConvR” for details).

4 Experiments

In this section, we evaluate ConvR against competi-

tive baselines in the link prediction task on multiple

benchmark KBs. We also investigate parameter ef-

ficiency of ConvR against ConvE to further show

its superiority.

4.1 Experimental Setup

Datasets We use four datasets for our experi-

ments. The first two are the popular WN18 and

FB15k, both released by (Bordes et al., 2013).2

WN18 is a subset of WordNet for lexical relation-

ships between words, and FB15k a subgraph of

Freebase for generic facts. In most cases WN18

2https://everest.hds.utc.fr/doku.php?
id=en:smemlj12

Dataset # Rel # Ent # Train # Valid # Test

FB15k 1,345 14,951 483,142 50,000 59,071
WN18 18 40,943 141,442 5,000 5,000
FB15k-237 237 14,541 272,115 17,535 20,466
WN18RR 11 40,943 86,835 3,034 3,134

Table 1: Statistics of the four datasets. Columns stand

for the number of relations, number of entities, and

number of triples in training/validation/test sets.

and FB15k encode a relation and its inverse relation

at the same time. That means, once a fact is ob-

served, there are usually two distinct triples created

for it, e.g., (s, hyponym, o) and (o, hypernym, s),
or (s, director-of, o) and (o, directed-by, s). As

pointed out by (Toutanova and Chen, 2015) and

(Dettmers et al., 2018), encoding inverse rela-

tions might suffer from test leakage, i.e., for each

test triple (s, r, o), it is likely to find its inverse

(o, r−1, s) in the training set. To avoid this test

leakage issue, we further use WN18RR (Dettmers

et al., 2018),3 a subset of WN18 with inverse re-

lations removed, and FB15k-237 (Toutanova and

Chen, 2015),4 a filtered version of FB15k with both

inverse and duplicate relations removed. Table 1

summarizes the statistics of the four datasets, where

the training sets are used for parameter learning,

the validation sets for hyperparameter tuning, and

the test sets for evaluation.

Evaluation protocol We adopt the ranking pro-

cess proposed in (Bordes et al., 2013) for evalu-

ation. For each triple (s, r, o) in the test set, we

replace the subject s with every entity e ∈ E , and

calculate a score for the corrupted triple (e, r, o).
Then we sort these scores in descending order to

get the rank of the correct subject s. Since cor-

rupted triples may also be valid, we remove those

that already exist in either the training, validation,

or test set during ranking, i.e., the filtered setting as

called by (Bordes et al., 2013). This whole proce-

dure is repeated while replacing the object o. We

aggregate over all test triples, and report the mean

reciprocal rank (MRR) and the proportion of cor-

rect entities ranked in the top n (Hits@n), with

n = 1, 3, 10.

Implementation details We implement ConvR

in PyTorch. In our experiments, we fix mini-batch

3https://github.com/TimDettmers/ConvE/
blob/master/WN18RR.tar.gz

4https://www.microsoft.com/en-us/
download/details.aspx?id=52312
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Dataset de c h× w ρ1 ρ2 ρ3

FB15k 200 100 3 × 3 0.1 0.4 0.2
WN18 200 100 3 × 3 0.4 0.3 0.3
FB15k-237 100 100 5 × 5 0.3 0.2 0.3
WN18RR 200 200 3 × 3 0.2 0.2 0.5

Table 2: Optimal configurations of ConvR on the four

datasets. Columns are the entity embedding size, num-

ber and size of filters, and dropout ratios.

size to 128, initial learning rate to 0.001, and la-

bel smoothing coefficient to 0.1. Other hyper-

parameters are selected with grid search on the

validation set. Specifically, we tune the entity

embedding size de ∈ {100, 200}, filter number

c ∈ {50, 100, 150, 200}, and filter size h × w ∈
{3 × 3, 4 × 4, 5 × 5}. All dropout ratios, i.e.,

ρ1 on reshaped subject representations, ρ2 on

convolutional feature maps, and ρ3 on projected

vectors after the fully-connected layer, are tuned

in {0.1, 0.2, 0.3, 0.4, 0.5}. On each dataset, we

choose the optimal configuration with the high-

est MRR on the validation set within 1000 epochs,

and report its performance on the test set. Table 2

lists the optimal configurations of ConvR on the

four datasets.

Baseline methods We compare ConvR against

a variety of competitive baselines, which can be

roughly categorized into two groups:

• Methods that use (relatively) simple opera-

tions in vector space to model multi-relational

data, including TransE (Bordes et al., 2013),

DistMult (Yang et al., 2015) and its re-

implementation (Kadlec et al., 2017), HolE

(Nickel et al., 2016b), ComplEx (Trouillon

et al., 2016), ANALOGY (Liu et al., 2017),

TorusE (Ebisu and Ichise, 2017), Gaifman

(Niepert, 2016), KBGAN (Cai and Wang,

2017), KBLRN (Garcia-Duran and Niepert,

2018), and Node+LinkFeat (Toutanova and

Chen, 2015).

• Methods that further introduce multi-layer

structures and non-linearity, in particular

those based on neural networks, including R-

GCN (Schlichtkrull et al., 2017a), Neural LP

(Yang et al., 2017), ConvE (Dettmers et al.,

2018), and ConvKB (Nguyen et al., 2018).

4.2 Link Prediction Results

Table 3 reports the results on WN18 and FB15k,

and Table 4 the results on WN18RR and FB15k-

237. On all the four datasets, the results for the

baselines are taken directly from previous litera-

ture to avoid re-implementation bias. Since not

all baselines have their results reported on all the

four datasets, we cannot make the two sets of base-

lines compared in Table 3 and Table 4 exactly the

same. From the results, we can see that: (1) On

WN18 and FB15k, ConvR performs better than or

at least as well as the baselines in almost all the

metrics. (2) Compared to ConvE, it offers a 5%

increase in MRR, a 7% increase in Hits@1, and

a 2% increase in Hits@10 on FB15k. (3) On the

more difficult WN18RR and FB15k-237, ConvR

consistently outperforms most of the baselines, ex-

cept for MRR score of ConvKB on FB15k-237.

However, on WN18RR ConvR outperforms Con-

vKB on all known metrices, especially MRR. This

discrepancy may be attributed to ConvKB’s initial-

ization with TransE on FB15k-237. (4) Compared

to ConvE, it offers a 3% increase in MRR, a 14%

increase in Hits@1, a 12% increase in Hits@10

on WN18RR, and an 11% increase in MRR, a 9%

increase in Hits@1, an 8% increase in Hits@10 on

FB15k-237.

4.3 Parameter Efficiency of ConvR

We further investigate parameter efficiency of

ConvR against ConvE on FB15k-237. Specif-

ically, we tune the number of filters c ∈
{20, 40, 60, 80, 100} and the filter size h × w ∈
{2 × 2, 3 × 3, 4 × 4, 5 × 5}, fix the other hyper-

parameters to their optimal configurations (see Ta-

ble 2 for details), and show how the performance of

ConvR (on the test set) will change as the number

of parameters varies. For comparison, we directly

show the performance and parameter efficiency of

the optimal ConvE model, as reported in (Dettmers

et al., 2018). The results are given in Table 5.5

From the results, we can see that: (1) The param-

eter number of ConvR steadily grows as the filter

number c and filter size h × w increase, but the

performance does not change much. That means,

ConvR might achieve relatively good (though not

best) performance with a potentially small number

5Note that some results reported here are even better than
those reported in Table 4. This is because in Table 4 we
determine optimal configurations according to MRR on the
validation set, which may not necessarily lead to best perfor-
mance on the test set.
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WN18 FB15k

Hits Hits
MRR @1 @3 @10 MRR @1 @3 @10

TransE (Bordes et al., 2013) † 0.454 0.089 0.823 0.934 0.380 0.231 0.472 0.641
DistMult (Yang et al., 2015) † 0.822 0.728 0.914 0.936 0.654 0.546 0.733 0.824
DistMult(Kadlec et al., 2017) 0.797 – – 0.946 0.798 – – 0.893
HolE (Nickel et al., 2016b) 0.938 0.930 0.945 0.949 0.524 0.402 0.613 0.739
ComplEx (Trouillon et al., 2016) 0.941 0.936 0.945 0.947 0.692 0.599 0.759 0.840
ANALOGY (Liu et al., 2017) 0.942 0.939 0.944 0.947 0.725 0.646 0.785 0.854
TorusE (Ebisu and Ichise, 2017) 0.947 0.943 0.950 0.954 0.733 0.674 0.771 0.832
Gaifman (Niepert, 2016) – 0.761 – 0.939 – 0.692 – 0.842
KBLRN (Garcia-Duran and Niepert, 2018) – – – – 0.794 0.748 – 0.875
Node+LinkFeat (Toutanova and Chen, 2015) 0.940 – – 0.943 0.822 – – 0.870

R-GCN (Schlichtkrull et al., 2017b) 0.814 0.686 0.928 0.955 0.651 0.541 0.736 0.825
Neural LP (Yang et al., 2017) 0.94 – – 0.945 0.76 – – 0.837
ConvE (Dettmers et al., 2018) 0.942 0.935 0.947 0.955 0.745 0.670 0.801 0.873

ConvR (this work) 0.951 0.947 0.955 0.958 0.782 0.720 0.826 0.887

Table 3: Link prediction results on the test sets of WN18 and FB15k. Results marked by † are taken from

(Trouillon et al., 2016). Other results are taken from the original papers. Missing scores not reported are denoted

by “–”. Best scores highlighted in bold.

WN18RR FB15k-237

Hits Hits
MRR @1 @3 @10 MRR @1 @3 @10

DistMult (Yang et al., 2015) ‡ 0.43 0.39 0.44 0.49 0.241 0.155 0.263 0.419
ComplEx (Trouillon et al., 2016) ‡ 0.44 0.41 0.46 0.51 0.247 0.158 0.275 0.428
KBGAN (Cai and Wang, 2017) 0.214 – – 0.472 0.278 – – 0.458
KBLRN (Garcia-Duran and Niepert, 2018) – – – – 0.309 0.219 – 0.493
Node+LinkFeat (Toutanova and Chen, 2015) – – – – 0.226 – – 0.347

R-GCN (Schlichtkrull et al., 2017b) – – – – 0.248 0.153 0.258 0.417
Neural LP (Yang et al., 2017) – – – – 0.24 – – 0.362
ConvE (Dettmers et al., 2018) 0.46 0.39 0.43 0.48 0.316 0.239 0.350 0.491
ConvKB (Nguyen et al., 2018) 0.248 – – 0.525 0.396 – – 0.517

ConvR (this work) 0.475 0.443 0.489 0.537 0.350 0.261 0.385 0.528

Table 4: Link prediction results on the test sets of WN18RR and FB15k-237. Results marked by ‡ are taken

from (Dettmers et al., 2018). Other results are taken from the original papers. KBGAN refers to the “TransD +

DistMult” setting which shows best performance. ConvKB is initialized with TransE on FB15k-237, and randomly

on WN18RR. Missing scores not reported are denoted by “–”. Best scores highlighted in bold.

of parameters. (2) ConvR consistently and sub-

stantially outperforms the best performing ConvE

with all the configurations listed in Table 5. (3)

In particular, even the most efficient configuration

(i.e., c = 20 and h × w = 2 × 2) offers a 7% in-

crease in MRR and a 6% increase in Hits@10, with

its parameter number only 88% as large as that of

ConvE.

5 Related Work

Link prediction is a crucial task for knowledge

bases (KBs). A good variety of statistical relational

learning techniques have been proposed for this

task (Nickel et al., 2016a), among which vector

space embedding models are most particular due

to their superior performance and potential scal-

ability. Early works of this kind tend to employ

simple vector space operations for link prediction.

For example, TransE (Bordes et al., 2013) takes

relations as translations between subject and object

entities. DistMult (Yang et al., 2015) uses multi-

linear dot product to characterize three-way interac-

tions among subjects, relations, and objects. Com-

plEx (Trouillon et al., 2016) further generalizes

DistMult to complex vector space. Using simple

models allows one to easily handle large-scale KBs,

but usually at the cost of less model expressiveness

(Dettmers et al., 2018). HolE (Nickel et al., 2016b)

tries to increase model expressiveness while keep-

ing simplicity. It uses cross-correlation, i.e., the
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h×w = 2×2 h×w = 3×3 h×w = 4×4 h×w = 5×5

ConvE – 1.89M | 0.32 | 0.49 – –
ConvR, c = 20 1.67M | 0.342 | 0.520 1.68M | 0.342 | 0.522 1.72M | 0.342 | 0.522 1.78M | 0.342 | 0.522
ConvR, c = 40 1.87M | 0.345 | 0.526 1.90M | 0.344 | 0.524 1.97M | 0.348 | 0.529 2.09M | 0.347 | 0.526
ConvR, c = 60 2.07M | 0.347 | 0.525 2.11M | 0.348 | 0.530 2.22M | 0.350 | 0.529 2.40M | 0.350 | 0.527
ConvR, c = 80 2.27M | 0.347 | 0.528 2.32M | 0.348 | 0.532 2.47M | 0.350 | 0.532 2.71M | 0.348 | 0.528
ConvR, c = 100 2.47M | 0.348 | 0.531 2.54M | 0.348 | 0.527 2.72M | 0.349 | 0.527 3.02M | 0.350 | 0.528

Table 5: Parameter efficiency on FB15k-237. Each cell reports number of parameters, MRR, and Hits@10 in turn.

Results of ConvE are taken from (Dettmers et al., 2018).

inverse of circular convolution, to match subject

and object entities, which has some similarity to

our work. But HolE is not a typical neural network

architecture. It does not learn multiple layers of

non-linear features, and hence is less expressive

than our approach.

A more direct way of increasing model expres-

siveness is to employ deeper, more complicated

neural network architectures, e.g., multi-layer per-

ceptron (Dong et al., 2014), semantic matching

energy networks (Bordes et al., 2014), and neural

tensor networks (Socher et al., 2013). This kind

of approaches, however, often have more parame-

ters and are prone to overfit (Nickel et al., 2016a).

(Dettmers et al., 2018) recently devised ConvE,

a multi-layer convolutional network which offers

increased model expressiveness while remaining

highly parameter efficient. After that, (Nguyen

et al., 2018) propose ConvKB that explores the

global relationships among same dimensional en-

tries of the entity and relation embeddings. How-

ever, neither of them models the interactions be-

tween various positions of entities and relations.

R-GCN (Schlichtkrull et al., 2017a) is another

convolutional network designed for KBs, gener-

alized from GCN (Kipf and Welling, 2016) for

uni-relational data. But the convolution of R-GCN

is conducted in a message passing manner, quite

different from our work.

Convolutional neural networks have been suc-

cessfully applied to a wide variety of domains,

ranging from speech or visual recognition (Abdel-

Hamid et al., 2014; Krizhevsky et al., 2012) to nat-

ural language processing (Collobert et al., 2011).

Similar ideas of using adaptive or dynamic convo-

lutional filters have been studied before (Lee et al.,

2010; Jia et al., 2016; Kang et al., 2017). But most

of such works focus on image or video processing.

This work focuses on multi-relational data and de-

vises an adaptive convolution paradigm particularly

suitable for this scenario.

6 Conclusion

In this paper, we propose ConvR, an adaptive con-

volutional network specially designed for learn-

ing with multi-relational data. In contrast to pre-

vious work which convolves across stacked rep-

resentations with global filters, ConvR adaptively

constructs convolution filters from relation repre-

sentations, and applies these filters across entity

representations to generate convolutional features.

This adaptive convolution paradigm enables rich

interactions between entity and relation representa-

tions at diverse regions, and all convolutional fea-

tures generated in this way will be able to capture

such interactions. Experimental results on multi-

ple benchmark knowledge bases show that ConvR

achieves significant and consistent improvements

against a variety of baselines. In particular, it is

not only more effective but also more efficient than

state-of-the-art convolutional models, offering a 7%

increase in MRR and a 6% increase in Hits@10,

while saving 12% in parameter storage.

As future work, we plan to devise convolutional

paradigms that can maximize interactions not only

between subject entities and relations, but also be-

tween object entities and relations. In ConvR, we

use 1-to-many scoring to speed up training and

evaluation. As a side effect, object representations

can only interact with a hidden vector (output of the

fully-connected layer) via an inner product, which

potentially limits the performance of ConvR. It

is worth investigating modeling these interactions

while keeping the merit of fast training and evalua-

tion.
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