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Abstract

The problem of learning to translate between
two vector spaces given a set of aligned points
arises in several application areas of NLP. Cur-
rent solutions assume that the lexicon which
defines the alignment pairs is noise-free. We
consider the case where the set of aligned
points is allowed to contain an amount of
noise, in the form of incorrect lexicon pairs
and show that this arises in practice by ana-
lyzing the edited dictionaries after the cleaning
process. We demonstrate that such noise sub-
stantially degrades the accuracy of the learned
translation when using current methods. We
propose a model that accounts for noisy pairs.
This is achieved by introducing a generative
model with a compatible iterative EM algo-
rithm. The algorithm jointly learns the noise
level in the lexicon, finds the set of noisy
pairs, and learns the mapping between the
spaces. We demonstrate the effectiveness
of our proposed algorithm on two alignment
problems: bilingual word embedding transla-
tion, and mapping between diachronic embed-
ding spaces for recovering the semantic shifts
of words across time periods.

1 Introduction

We consider the problem of mapping between
points in different vector spaces. This problem has
prominent applications in natural language pro-
cessing (NLP). Some examples are creating bilin-
gual word lexicons (Mikolov et al., 2013), ma-
chine translation (Artetxe et al., 2016, 2017a,b,
2018a,b; Conneau et al., 2017), hypernym gen-
eration (Yamane et al., 2016), diachronic embed-
dings alignment (Hamilton et al., 2016) and do-
main adaptation (Barnes et al., 2018). In all these
examples one is given word embeddings in two
different vector spaces, and needs to learn a map-
ping from one to the other.

The problem is traditionally posed as a super-
vised learning problem, in which we are given two
sets of vectors (e.g.: word-vectors in Italian and in
English) and a lexicon mapping the points between
the two sets (known word-translation pairs). Our
goal is to learn a mapping that will correctly map
the vectors in one space (e.g.: English word em-
beddings) to their known corresponding vectors in
the other (e.g.: Italian word embeddings). The
mapping will then be used to translate vectors for
which the correspondence is unknown. This setup
was popularized by Mikolov et al. (2013).

The supervised setup assumes a perfect lexicon.
Here, we consider what happens in the presence of
training noise, where some of the lexicon’s entries
are incorrect in the sense that they don’t reflect an
optimal correspondence between the word vectors.

2 Background

2.1 The Supervised Translation Problem

We are given two datasets, X = x1, ..., xm
and Y = y1, ..., yn, coming from d-dimensional
spaces X and Y . We assume that the spaces are
related, in the sense that there is a function f(x)
mapping points in space X to points in space Y .
In this work, we focus on linear mappings, i.e. a
d× d matrix Q mapping points via yi = Qxi. The
goal of the learning is to find the translation ma-
trix Q. In the supervised setting, m = n and we
assume that ∀i f(xi) ≈ yi. We refer to the sets
X and Y as the supervision. The goal is to learn a
matrix Q̂ such the Frobenius norm is minimized:

Q̂ = arg min
Q

‖QX − Y ‖2F . (1)

2.2 Existing Solution Methods

Gradient-based The objective in (1) is convex,
and can be solved via least-squares method or via
stochastic gradient optimization iterating over the
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pairs (xi, yi), as done by Mikolov et al. (2013) and
Dinu and Baroni (2014).

Orthogonal Procrustes (OP) Artetxe et al.
(2016) and Smith et al. (2017) argued and proved
that a linear mapping between sub-spaces must be
orthogonal. This leads to the modified objective:

Q̂ = arg min
Q,s.t:QTQ=I

‖QX − Y ‖2F (2)

Objective (2) is known as the Orthogonal Pro-
crustes Problem. It can be solved algebraically
by using a singular value decomposition (SVD).
Schnemann (1966) proved that the solution to 2
is: Q̂ = UV T s.t. UΣV T is the SVD of Y XT .

The OP method is used in Xing et al. (2015);
Artetxe et al. (2016, 2017a,b, 2018a,b); Hamilton
et al. (2016); Conneau et al. (2017); Ruder et al.
(2018).

2.3 The Unsupervised Translation Problem

The supervised alignment problem can be ex-
pended to the semi-supervised (Artetxe et al.,
2017b; Lample et al., 2017; Ruder et al., 2018)
or unsupervised (Zhang et al., 2017; Conneau
et al., 2017; Artetxe et al., 2018b; Xu et al., 2018;
Alvarez-Melis and Jaakkola, 2018) case, where a
very small lexicon or none at all is given. In it-
erative methods, the lexicon is expended and used
to learn the alignment, later the alignment is used
to predict the lexicon for the next iteration and so
on. In adversarial methods, a final iterative step is
used after the lexicon is built to refine the result.
We will focus on the supervised stage in the un-
supervised setting, meaning estimating the align-
ment once a lexicon is induced.

3 The Effect of Noise

The previous methods assume the supervision set
X,Y is perfectly correct. However, this is often
not the case in practice. We consider the case
where a percentage p of the pairs in the supervi-
sion set are “noisy”: applying the gold transfor-
mation to a noisy point xj will not result in a vec-
tor close to yj . The importance of the quality of
word-pairs selection was previously analyzed by
Vulić and Korhonen (2016). Here, we equate “bad
pairs” to noise, and explore the performance in the
presence of noise by conducting a series of syn-
thetic experiments. We take a set of points X , a
random transformationQ and a gold set Y = QX .
We define error as ‖Y − Ŷ ‖2F where Ŷ = Q̂X is

Figure 1: Noise influence. (A): the effect of a noisy
pair on 2D alignment. (B) mean error over non-noisy
pairs as a function of noise level.

the prediction according to the learned transform
Q̂. Following the claim that linear transformations
between word vector spaces are orthogonal, we fo-
cus here on orthogonal transformations.

Low Dimensional Synthetic Data We begin by
inspecting a case of few 2-dimensional points,
which can be easily visualized. We compare a
noise-free training to the case of a single noisy
point. We construct X by sampling n = 10 points
of dimension d = 2 from a normal distribution.
We take nine points and transformed them via an
orthogonal random transform Q. We then add a
single noisy pair which is generated by sampling
two normally distributed random points and treat-
ing them as a pair. The error is measured only on
the nine aligned pairs.

When no noise is applied, both Gradient-based
and Procrustes methods are aligned with 0 error
mean and variance. Once the noisy condition is
applied this is no longer the case. Figure 1(A)
shows the noisy condition. Here, the red point
(true) and box (prediction) represent the noisy
point. Green dots are the true locations after trans-
formation, and the blue boxes are the predicted
ones after transformation. Both methods are af-
fected by the noisy sample: all ten points fall away
from their true location. The effect is especially
severe for the gradient-based methods.
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High Dimensional Embeddings The experi-
ment setup is as before, but instead of a normal
distribution we use (6B, 300d) English Glove Em-
beddings (Pennington et al., 2014) with lexicon of
size n = 5000. We report the mean error for var-
ious noise levels on an unseen aligned test set of
size 1500.

In Figure 1(B) we can see that both methods are
effected by noise. As expected, as the amount of
noise increases the error on the test set increases.
We can again see that the effect is worse with
gradient-based methods.

4 Noise-aware Model

Having verified that noise in the supervision
severely influences the solution of both methods,
we turn to proposing a noise-aware model.

The proposed model jointly identifies noisy
pairs in the supervision set and learns a translation
which ignores the noisy points. Identifying the
point helps to clean the underlying lexicon (dic-
tionary) that created the supervision. In addition,
by removing those points our model learns a better
translation matrix.

Generative Model We are given x ∈ Rd and we
sample a corresponding y ∈ Rd by first sampling
a Bernoulli random variable with probability α:

z ∼ Bernoulli(α)

y ∼

{
N(µy, σ

2
yI) z = 0 (‘noise’)

N(Qx, σ2I) z = 1 (‘aligned’)

The density function y is a mixture of two Gaus-
sians:

f(y|x) = (1−α)N(µy, σy
2I) + αN(Qx, σ2I).

The likelihood function is:

L(Q, σ, µy, σy) =
∑
t

log f(yt|xt)

EM Algorithm We apply the EM algorithm
(Dempster et al., 1977) to maximize the objective
in the presence of latent variables. The algorithm
has both soft and hard decision variants. We used
the hard decision one which we find more natural,
and note that the posterior probability of zt was
close to 0 or 1 also in the soft-decision case.

It is important to properly initialize the EM al-
gorithm to avoid convergence to a local optima.
We initialize Q by applying OP on the entire lex-
icon (not just the clean pairs). We initialize the

variance, σ, by calculating σ2 = 1
n·d

∑
t=1 ‖Qxt−

yt‖2 . We initialize, µy, σy by taking the mean and
variance of the entire dataset. Finally, we initialize
α to 0.5.

The (hard version) EM algorithm is shown in
Algorithm box 1. The runtime of each iteration is
dominated by the OP algorithm (matrix multipli-
cation and SVD on a d× d matrix). Each iteration
contains an additional matrix multiplication and
few simple vector operations. Figure 1(B) shows it
obtains perfect results on the simulated noisy data.

Algorithm 1 Noise-aware Alignment
Data: List of paired vectors: (x1, y1), ..., (xn, yn)
Result: Q, σ, µy, σy
while |αcurr − αprev| > ε do

E step:
wt = p(zt=1|xt, yt) = αN(Qxt,σ2I)

f(yt|xt)
ht = 1(wt > 0.5)
n1 =

∑
t ht

M step:
Apply OP on the subset {t|ht = 1} to find Q.
σ2 = 1

d·n1

∑
t|ht=1 ‖Qxt − yt‖2

µy = 1
(n−n1)

∑
t|ht=0 yt

σ2y = 1
d(n−n1)

∑
t|ht=0 ‖µy − yt‖2

αprev = αcurr
αcurr = n1

n

end

5 Experiments

5.1 Bilingual Word Embedding

Experiment Setup This experiment tests the
noise-aware solution on an unsupervised transla-
tion problem. The goal is to learn the “translation
matrix”, which is a transformation matrix between
two languages by building a dictionary. We can
treat the unsupervised setup after retrieving a lex-
icon as an iterative supervised setup where some
of the lexicon pairs are noisy. We assumes the un-
supervised setting will contain higher amount of
noise than the supervised one, especially in the
first iterations. We follow the experiment setup
in Artetxe et al. (2018b). But instead of using
OP for learning the translation matrix, we used
our Noise-Aware Alignment (NAA), meaning we
jointly learn to align and to ignore the noisy pairs.
We used the En-It dataset provided by Dinu and
Baroni (2014) and the extensions: En-De, En-Fi
and En-Es of Artetxe et al. (2018a, 2017b).
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Method En→It En→De En→Fi En→Es
best avg iters best avg iters best avg iters best avg iters

Artetxe et al., 2018b 48.53 48.13 573 48.47 48.19 773 33.50 32.63 988 37.60 37.33 808
Noise-aware Alignment 48.53 48.20 471 49.67 48.89 568 33.98 33.68 502 38.40 37.79 551

Table 1: Bilingual Experiment P@1. Numbers are based on 10 runs of each method. The En→De, En→Fi and
En→Es improvements are significant at p < 0.05 according to ANOVA on the different runs.

Experiment Results In Table 1 we report the
best and average precision@1 scores and the aver-
age number of iterations among 10 experiments,
for different language translations. Our model
improves the results in the translation tasks. In
most setups our average case is better than the for-
mer best case. In addition, the noise-aware model
is more stable and therefore requires fewer iter-
ations to converge. The accuracy improvements
are small but consistent, and we note that we con-
sider them as a lower-bound on the actual im-
provements as the current test set comes from the
same distribution of the training set, and also con-
tains similarly noisy pairs. Using the soft-EM ver-
sion results in similar results, but takes roughly
15% more iterations to converge.

Table 2 lists examples of pairs that were kept
and discarded in En-It dictionary. The algorithm
learned the pair (dog→ dog) is an error. Another
example is the translation (good → santo) which
is a less-popular word-sense than (good→ buon /
buona). When analyzing the En-It cleaned dictio-
nary we see the percentage of potentially mislead-
ing pairs (same string, numbers and special char-
acters) is reduced from 12.1% to 4.6%.

English Italian Latent Variable

dog cane Aligned
dog cani Aligned
dog dog Noise
good buon Aligned
good buona Aligned
good santo Noise
new new Noise
new york Noise
new nuove Aligned

Table 2: A sample of decisions from the noise-aware
alignment on the English→ Italian dataset.

5.2 Diachronic (Historical) Word Embedding

Experiment Setup The goal is to align English
word-embedding derived from texts from differ-

ent time periods, in order to identify which words
changed meaning over time. The assumption is
that most words remained stable, and hence the
supervision is derived by aligning each word to it-
self. This problem contains noise in the lexicon
by definition. We follow the exact setup fully de-
scribed in Hamilton et al. (2016), but replace the
OP algorithm with our Noise-aware version 1. We
project 1900s embeddings to 1990s embeddings
vector-space. The top 10 distant word embeddings
after alignment are analyzed by linguistic experts
for semantic shift.

Experiment Results 45.5% of the input pairs
were identified as noise. After the post process-
ing of removing the non-frequent words as de-
scribed in the experiment setup we end up with
121 noisy words. Our algorithm successfully iden-
tifies all the top-changing words in Hamilton et al.
(2016) as noise, and learns to ignore them in the
alignment. In addition, we argue our method pro-
vides better alignment. Table 3 shows the Near-
est Neighbor (NN) of a 1990s word, in the 1900s
vector-space after projection. We look at the top
10 changed words in Hamilton et al. (2016) and 3
unchanged words. We compare the alignment of
the OP projection to the Noise-aware Alignment
(NAA). For example, with our solution the word
actually whose meaning shifted from ”in fact” to
express emphasize or surprise, is correctly mapped
to really instead of believed. The word gay shifted
from cheerful to homosexual, yet is still mapped to
gay with NAA. This happens because the related
embeddings (homosexual, lesbian and so on) are
empty embeddings in 1900s, leaving gay as the
next-best candidate, which we argue is better than
OP’s society. The words car, driver, eve whose
meaning didn’t change, were incorrectly aligned
with OP to cab, stepped, anniversary instead of to
themselves.

1 Pre-possessing: removing proper nouns, stop words and
empty embeddings. Post-processing: removing words whose
frequency is below 10−5 in either years.
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1990s
Word

1900s NN
aligned
with OP

1900s NN
aligned

with NAA

Latent
Variable

wanting need wishing Noise
gay society gay Noise
check give send Noise
starting begin beginning Noise
major general successful Noise
actually believed really Noise
touching touched touching Noise
harry hello john Noise
headed halfway toward Noise
romance artists romance Noise
car cab car Aligned
driver stepped driver Aligned
eve anniversary eve Aligned

Table 3: Diachronic Semantic Change Experiment.
Upper-part: noisy pairs. Bold: real semantic shifts.
Underlined: global genre/discourse shifts. Unmarked:
corpus artifacts. Bottom-part: clean pairs: Italics: un-
changed words, no semantic shift.

6 Conclusion

We introduced the problem of embedding space
projection with noisy lexicons, and showed
that existing projection methods are sensitive
in the presence of noise. We proposed an
EM algorithm that jointly learns the projection
and identifies the noisy pairs. The algorithm
can be used as a drop-in replacement for the
OP algorithm, and was demonstrated to im-
prove results on two NLP tasks. We provide
code at https://github.com/NoaKel/Noise-Aware-
Alignment.
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