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Abstract

We investigate the extent to which the behav-

ior of neural network language models reflects

incremental representations of syntactic state.

To do so, we employ experimental method-

ologies which were originally developed in

the field of psycholinguistics to study syntac-

tic representation in the human mind. We ex-

amine neural network model behavior on sets

of artificial sentences containing a variety of

syntactically complex structures. These sen-

tences not only test whether the networks have

a representation of syntactic state, they also re-

veal the specific lexical cues that networks use

to update these states. We test four models:

two publicly available LSTM sequence mod-

els of English (Jozefowicz et al., 2016; Gulor-

dava et al., 2018) trained on large datasets; an

RNN Grammar (Dyer et al., 2016) trained on a

small, parsed dataset; and an LSTM trained on

the same small corpus as the RNNG. We find

evidence for basic syntactic state representa-

tions in all models, but only the models trained

on large datasets are sensitive to subtle lexical

cues signalling changes in syntactic state.

1 Introduction

It is now standard practice in NLP to derive sen-

tence representations using neural sequence mod-

els of various kinds (Elman, 1990; Sutskever et al.,

2014; Goldberg, 2017; Peters et al., 2018; De-

vlin et al., 2018). However, we do not yet have a

firm understanding of the precise content of these

representations, which poses problems for inter-

pretability, accountability, and controllability of

NLP systems. More specifically, the success of

neural sequence models has raised the question

of whether and how these networks learn robust

syntactic generalizations about natural language,

which would enable robust performance even on

data that differs from the peculiarities of the train-

ing set.

Here we build upon recent work studying neural

language models using experimental techniques

that were originally developed in the field of psy-

cholinguistics to study language processing in

the human mind. The basic idea is to examine

language models’ behavior on targeted sentences

chosen to probe particular aspects of the learned

representations. This approach was introduced by

Linzen et al. (2016), followed more recently by

others (Bernardy and Lappin, 2017; Enguehard

et al., 2017; Gulordava et al., 2018), who used

an agreement prediction task (Bock and Miller,

1991) to study whether RNNs learn a hierarchical

morphosyntactic dependency: for example, that

The key to the cabinets. . . can grammatically con-

tinue with was but not with were. This dependency

turns out to be learnable from a language mod-

eling objective (Gulordava et al., 2018). Subse-

quent work has extended this approach to other

grammatical phenomena, with positive results for

filler–gap dependencies (Chowdhury and Zampar-

elli, 2018; Wilcox et al., 2018) and negative results

for anaphoric dependencies (Marvin and Linzen,

2018).

In this work, we consider syntactic representa-

tions of a different kind. Previous studies have fo-

cused on relationships of dependency: one word

licenses another word, which is tested by asking

whether a language model favors one (grammat-

ically licensed) form over another in a particular

context. Here we focus instead on whether neu-

ral language models show evidence for incremen-

tal syntactic state representations: whether behav-

ior of neural language models reflects the kind

of generalizations that would be captured using a

stack-based incremental parse state in a symbolic

grammar-based model. For example, during the

underlined portion of Example (1), an incremen-

tal language model should represent and maintain

the knowledge that it is currently inside a subordi-

nate clause, implying (among other things) that a

full main clause must follow.
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(1) As the doctor studied the textbook, the

nurse walked into the office.

In this work, we use a targeted evaluation ap-

proach (Marvin and Linzen, 2018) to elicit ev-

idence for syntactic state representations from

language models. That is, we examine language

model behavior on artificially constructed sen-

tences designed to expose behavior that is cru-

cially dependent on syntactic state representa-

tions. In particular, we study complex subordinate

clauses and garden path effects (based on main-

verb/reduced-relative ambiguities and NP/Z am-

biguities). We ask three general questions: (1) Is

there basic evidence for the representation of syn-

tactic state? (2) What textual cues does a neural

language model use to infer changes to syntactic

state? (3) Do the networks maintain knowledge

about syntactic state over long spans of complex

text, or do the syntactic state representations de-

grade?

Among neural language models, we study both

generic sequence models (LSTMs), which have no

explicit representation of syntactic structure, and

an RNN Grammar (RNNG) (Dyer et al., 2016),

which explicitly calculates Penn Treebank-style

context-free syntactic representations as part of

the process of assigning probabilities to words.

This comparison allows us to evaluate the ex-

tent to which explicit representation of syntactic

structure makes models more or less sensitive to

syntactic state. RNNGs have been found to out-

perform LSTMs not only in overall test-set per-

plexity (Dyer et al., 2016), but also in modeling

long-distance number agreement in Kuncoro et al.

(2018) for certain model configurations; our work

extends this comparison to a variety of syntactic

state phenomena.

2 General methods

We investigate neural language model behavior

primarily by studying the surprisal, or log inverse

probability, that a language model assigns to each

word in a sentence:

S(xi) =− log2 p(xi|hi−1),

where xi is the current word or character, hi−1 is

the model’s hidden state before consuming xi, the

probability is calculated from the network’s soft-

max activation, and the logarithm is taken in base

2, so that surprisal is measured in bits. Surprisal

is equivalent to the pointwise contribution to the

language modeling loss function due to a word.

In psycholinguistics, the common practice is to

study reaction times per word (for example, read-

ing time as measured by an eyetracker), as a mea-

sure of the word-by-word difficulty of online lan-

guage processing. These reading times are often

taken to reflect the extent to which humans ex-

pect certain words in context, and may be gener-

ally proportional to surprisal given the comprehen-

der’s probabilistic language model (Hale, 2001;

Levy, 2008; Smith and Levy, 2013; Futrell and

Levy, 2017). In this study, we take language model

surprisal as the analogue of human reading time,

using it to probe the neural networks’ expecta-

tions about what words will follow in certain con-

texts. There is a long tradition linking RNN per-

formance to human language processing (Elman,

1990; Christiansen and Chater, 1999; MacDonald

and Christiansen, 2002) and grammaticality judg-

ments (Lau et al., 2017), and RNN surprisals are

a strong predictor of human reading times (Frank

and Bod, 2011; Goodkind and Bicknell, 2018).

RNNGs have also been used as models of human

online language processing (Hale et al., 2018).

2.1 Experimental methodology

In each experiment presented below, we design

a set of sentences such that the word-by-word

surprisal values will show evidence for syntac-

tic state representations. The idea is that certain

words will be surprising to a language model only

if the model has a representation of a certain syn-

tactic state going into the word. We analyze word-

by-word surprisal profiles for these sentences us-

ing regression analysis. Except where otherwise

noted, all statistics are derived from linear mixed-

effects models (Baayen et al., 2008) with sum-

coded fixed-effect predictors and maximal random

slope structure (Barr et al., 2013). This method lets

us factor out by-item variation in surprisal and fo-

cus on the contrasts between conditions.

2.2 Models tested

We study the behavior of four models of English:

two LSTMs trained on large data, an an RNNG

and an LSTM trained on matched, smaller data

(the Penn Treebank). The models are summarized

in Table 1. All models are trained on a language

modeling objective.

Our first LTSM is the model presented in Joze-

fowicz et al. (2016) as “BIG LSTM+CNN Inputs”,

which we call “JRNN”, which was trained on

the One Billion Word Benchmark (Chelba et al.,

2013) with two hidden layers of 8196 units each
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Model Architecture Training data Data size (tokens) Reference

JRNN LSTM One Billion Word ∼ 800 million Jozefowicz et al. (2016)

GRNN LSTM Wikipedia ∼ 90 million Gulordava et al. (2018)

RNNG RNN Grammar Penn Treebank ∼ 1 million Dyer et al. (2016)

TinyLSTM LSTM Penn Treebank ∼ 1 million —

Table 1: Models tested, by architecture, training data, and training data size.

and CNN character embeddings as input. The sec-

ond large LSTM is the model described in the sup-

plementary materials of Gulordava et al. (2018),

which we call “GRNN”, trained on 90 million to-

kens of English Wikipedia with two hidden layers

of 650 hidden units each.

Our RNNG is trained on syntactically labeled

Penn Treebank data (Marcus et al., 1993), us-

ing 256-dimensional word embeddings for the in-

put layer and 256-dimensional hidden layers, and

dropout probability 0.3. Next-word predictions are

obtained through hierarchical softmax with 140

clusters, obtained with the greedy agglomerative

clustering algorithm of Brown et al. (1992). We

estimate word surprisals using word-synchronous

beam search (Stern et al., 2017; Hale et al., 2018):

at each word wi a beam of incremental parses is

filled, the summed forward probabilities (Stolcke,

1995) of all candidates on the beam is taken as a

lower bound on the prefix probability: Pmin(w1...i),
and the surprisal of the i-th word in the sentence

is estimated as log
Pmin(w1...i)

Pmin(w1...i−1)
. Our action beam is

size 100, and our word beam is size 10. Finally,

to disentangle effects of training set from model

architecture, we use an LSTM trained on string

data from the Penn Treebank training set, which

we call TinyLSTM. For TinyLSTM we use 256-

dimensional word-embedding inputs and hidden

layers and dropout probability 0.3, just as with the

RNNG.

3 Subordinate clauses

We begin by studying subordinate clauses, a key

example of a construction requiring stack-like rep-

resentation of syntactic state. In such construc-

tions, as shown in Example (1), a subordinator

such as “as” or “when” serves as a cue that the

following clause is a subordinate clause, meaning

that it must be followed by some main (matrix)

clause. In an incremental language model, this

knowledge must be maintained and carried for-

ward while processing the words inside subordi-

nate clause. A grammar-based symbolic language

model (e.g., Stolcke, 1995; Manning and Carpen-

ter, 2000) would maintain this knowledge by keep-

ing track of syntactic rules representing the incom-

plete subordinate clause and the upcoming main

clause in a stack data structure. Psycholinguis-

tic research has clearly demonstrated that humans

maintain representations of this kind in syntactic

processing (Staub and Clifton, 2006; Lau et al.,

2006; Levy et al., 2012). Here we ask whether the

string completion probabilities produced by neu-

ral language models show evidence of the same

knowledge.

We can detect the knowledge of syntactic state

in this case by examining whether the network li-

censes and requires a matrix clause following the

subordinate clause. These expectations can be de-

tected by examining surprisal differences between

sentences of the form in Example (2):

(2) a. As the doctor studied the textbook,

the nurse walked into the office.

[SUBordinator, MATRIX]

b. *As the doctor studied the textbook.

[SUB, NO-MATRIX]

c. ?The doctor studied the textbook,

the nurse walked into the office.

[NO-SUBordinator, MATRIX]

d. The doctor studied the textbook.

[NO-SUB, NO-MATRIX]

If the network licenses a matrix clause follow-

ing the subordinate clause—and maintains knowl-

edge of that licensing relationship throughout the

clause, from the subordinator to the comma—then

this should be manifested as lower surprisal at the

matrix clause in (2-a) as compared to (2-c). We

call this the matrix licensing effect: the surprisal

of the condition [SUB, MATRIX] minus [NOSUB,

MATRIX], which will be negative if there is a li-

censing effect. If the network requires a follow-

ing matrix clause, then this will be manifested

as higher surprisal at the matrix clause for (2-b)

compared with (2-d). We call this the no-matrix

penalty effect: the surprisal of [SUB,NOMATRIX]

minus [NOSUB, NOMATRIX], which will be posi-

tive if there is a penalty.
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Figure 1: Effect of subordinator absence/presence on

surprisal of continuations. Red: no-matrix penalty ef-

fect. Blue: matrix licensing effect. In this and all other

figures, unless otherwise noted, error bars represent

95% confidence intervals of the contrasts between con-

ditions shown, computed from the standard error of the

by-item and by-condition mean surprisals after sub-

tracting out the by-item means (Masson and Loftus,

2003).

We designed 23 experimental items on the pat-

tern of (2) and calculated difference in the sum sur-

prisal of the words in the matrix clause.1 Figure 3

shows the matrix licensing effect (in blue) and the

no-matrix penalty effect (in red), averaged across

items. For all models, we see a facilitative matrix

licensing effect (p < .001 for all models), small-

est in TinyLSTM. However, we only find a signif-

icant no-matrix penalty for GRNN and the RNNG

(p < .001 in both): the other models do not sig-

nificantly penalize an ungrammatical continuation

(p = .9 for JRNN; p = .5 for TinyLSTM). That

is, JRNN and TinyLSTM give no indication that

(2-b) is less probable than (2-c).

We found that all models at least partially repre-

sent the licensing relationship between a subordi-

nate and matrix clause. However, in order to fully

represent the syntactic requirements induced by a

subordinator, it seems that a model needs either

large amounts of data (as in GRNN) or explicit

representation of syntax (as in the RNNG, as op-

posed to TinyLSTM).

1Note that it would not be sufficient to look at surprisal
only at the punctuation token, because the comma could in-
dicate the beginning of a conjoined NP.

3.1 Maintenance and degradation of

syntactic state

The foregoing results show that neural language

models use the presence of a subordinator as a

cue to the onset of a subordinate clause, and that

they maintain knowledge that they are in a sub-

ordinate clause throughout the intervening mate-

rial up to the comma. Now we probe the ability

of models to maintain this knowledge over long

spans of complex intervening material. To do so,

we use sentences on the template of (2) and add in-

tervening material modifying the NPs in the subor-

dinate clause. To both of these NPs (in subject and

object position), we add modifiers of increasing

syntactic complexity: PPs, subject-extracted rela-

tive clauses (SRCs), and object-extracted relative

clauses (ORCs), as shown in Figure 2. We study

the extent to which these modifiers weaken the

language models’ expectations about the upcom-

ing matrix clause.

As a summary measure of the strength of lan-

guage models’ expectations about an upcoming

matrix clause, we collapse the two measures of the

previous section into one: the matrix licensing in-

teraction, consisting of the difference between the

no-matrix penalty effect and the matrix licensing

effect (the two bars in Figure 1). A similar mea-

sure was used to detect filler–gap dependencies by

Wilcox et al. (2018).

Figure 3 shows the strength of the matrix li-

censing interaction given sentences with various

modifiers inserted. For the large LSTMs, GRNN

exhibits a strong interaction when the intervening

material is short and syntactically simple, and the

interaction gets progressively weaker as the inter-

vening material becomes progressively longer and

more complex (p < 0.001 for subject postmodi-

fiers and p< 0.01 object postmodifiers). The other

models show less interpretable behavior.

Our results indicate that at least some large

LSTMs, along with the RNNG, are capable of

maintaining a representation of syntactic state over

spans of complex intervening material. Quanti-

fied as a licensing interaction, this representation

of syntactic state exhibits the most clearly un-

derstandable behavior in GRNN, which shows a

graceful degradation of syntactic expectations as

the complexity of intervening material increases.

The representation is maintained most strongly in

the RNNG, except for one particular construction

(object-position SRCs).
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As the doctor
︸ ︷︷ ︸

in a white lab coat (PP)
who was wearing a white lab coat (SRC)

who the administrator had recently hired (ORC)
(Subject interveners)

studied the textbook
︸ ︷︷ ︸

about several recent advances in cancer therapy (PP)
that described several recent advances in cancer therapy (SRC)

that colleagues had written on cancer therapy (ORC)
(Object interveners)

. . .

Figure 2: Scheme for lengthening the subordinate clause in Section 3.1.

4 Garden path effects

The major phenomenon that has been used to

probe incremental syntactic representations in hu-

mans is garden path effects. Garden path effects

arise from local ambiguities, where a context leads

a comprehender to believe one parse is likely, but

then a disambiguating word forces her to dras-

tically revise her beliefs, resulting in high sur-

prisal/reading time at the disambiguating word. In

effect, the comprehender is “led down the garden

path” by a locally likely but ultimately incorrect

parse (Bever, 1970). Garden-pathing in LSTMs

has recently been demonstrated by van Schijndel

and Linzen (2018a,b) in the context of modeling

human reading times.

Garden path effects allow us to detect represen-

tations of syntactic state because if a person or lan-

guage model shows a garden path effect at a word,

that means that the person or model had some be-

lief about syntactic state which was disconfirmed

by that word. In psycholinguistics, these effects

have been used to study the question of what in-

formation determines people’s beliefs about likely

parses given locally ambiguous contexts: for ex-

ample, whether factors such as world knowledge

play a role (Ferreira and Clifton, 1986; Trueswell

et al., 1994).

Here we study two major kinds of local ambigu-

ities inducing garden path effects. For each ambi-

guity, we ask two main questions. First, whether

the network shows the basic garden path effect,

which would indicate that it had a syntactic state

representation that made a disambiguating word

surprising. Second, whether the network is sen-

sitive to subtle lexical cues to syntactic structure

which may modulate the size of the garden path

effect: this question allows us to determine what

information the network uses to determine the be-

ginnings and endings of certain syntactic states.

4.1 NP/Z Ambiguity

The NP/Z ambiguity2 refers to a local ambiguity

in sentences of the form given in Example (3).

2For Noun Phrase/Zero ambiguity. At first the embedded
verb appears to take an NP object, but later it turns out that it
was a zero (null) object.

(3)a. When the dog scratched the vet with his new

assistant took off the muzzle. [TRANSITIVE,

NOCOMMA]

b. When the dog scratched, the vet with his new

assistant took off the muzzle. [TRANSITIVE,

COMMA]

c. When the dog struggled the vet with

his new assistant took off the muzzle.

[INTRANSITIVE, NOCOMMA]

d. When the dog struggled, the vet with

his new assistant took off the muzzle.

[INTRANSITIVE, COMMA]

When a comprehender reads the underlined

phrase “the vet with his new assistant” in (3-a),

she may at first believe that this phrase is the di-

rect object of the verb “scratched” inside the sub-

ordinate clause. However, upon reaching the verb

“took off”, she realizes that the underlined phrase

was not in fact an object of the verb “scratched”,

rather it was the subject of a new clause, and

the subordinate clause in fact ended after the

verb “scratched”. The key region of the sentence

where the garden path disambiguation happens—

called the disambiguator—is the phrase “took

off”, marked in bold.

While a garden path should obtain in (3-a), no

such garden path should exist for (3-b), because

a comma clearly demarcates the end of the sub-

ordinate clause. Therefore a basic garden path ef-

fect would be indicated by the difference in sur-

prisal at the disambiguator for (3-a) minus (3-b).

Furthermore, if a comprehender is sensitive to the

relationship between verb argument structure and

clause boundaries, then there should be no gar-

den path in (3-c), because the verb “struggled”

is INTRANSITIVE: it cannot take an object in En-

glish, so an incremental parser should never be

misled into believing that “the vet...” is its object.

This lexical information about syntactic structure

is subtle enough that there has been controversy

about whether even humans are sensitive to it in

online processing (Staub, 2007).

4.1.1 NP/Z Garden Path Effect

We tested whether neural language models would

show the basic garden path effect and if this ef-
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Figure 3: Size of matrix clause licensing interaction (see text) given various intervening elements in the subordinate

clause. Note that the heatmaps are on different scales across models.

fect would be modulated by verb transitivity. We

constructed 32 items based of the same structure

as (3), based on materials from Staub (2007), ma-

nipulating the transitivity of the embedded verb

(“scratched” vs. “struggled”), and the presence of

a disambiguating comma at the end of the subor-

dinate clause. An NP/Z garden path effect would

show up as increased surprisal at the main verb

“took off” in the absence of a comma. If the net-

works use the transitivity of the embedded verb as

a cue to clause structure, and maintain that infor-

mation over the span of six words between the em-

bedded verb and the main verb, then there should

be a garden path effect for the transitive verb, but

not for the intransitive verb. More generally we

would expect a stronger garden path given the

transitive verb than given the intransitive verb.

Figure 4 shows the mean surprisals at the dis-

ambiguator for all four models, for both transi-

tive and intransitive embedded verbs. The over-

all per-region surprisals, averaged over words in

each region, are shown in Figure 5. We see that

a garden path effect exists in all models (though

very small in TinyLSTM): all models show sig-

nificantly higher surprisal at the main verb when

the disambiguating comma is absent (p < .001 for

all models). However, only the large LSTMs ap-

pear to be sensitive to the transitivity of the em-
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Figure 4: Average garden path effect (surprisal at dis-

ambiguator in NO-COMMA condition minus COMMA

condition) by model and embedded verb transitivity.

bedded verb, showing a smaller garden path effect

for intransitive verbs. Statistically, there is a sig-

nificant interaction of comma presence and verb

transitivity only in GRNN and JRNN (GRNN:

p < .01; JRNN: p < .001; RNNG: p = .3, TinyL-

STM: p = .3).

All models show NP/Z garden path effects, indi-

cating that they are sensitive to some cues indicat-
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Figure 5: Region-by-region surprisal values for NP/Z garden path materials. Surprisal values are averaged across

items and across words in regions. The critical region where the garden path effect is visible is the verb “took off”.

ing end-of-clause boundaries. However, only the

large LSTMs appear to use verb argument struc-

ture information as a cue to these boundaries. The

results suggest that very large amounts of data may

be necessary for current neural models to discover

such fine-grained dependencies between syntactic

properties of verbs and sentence structure.

4.1.2 Maintenance and degradation of state

We can probe the maintenance and degradation

of syntactic state information by manipulating the

length of the intervening material between the on-

set of the local ambiguity and the disambiguator

in examples such as (3). The question is whether

the networks maintain the knowledge, while pro-

cessing the intervening material, that the inter-

vening noun phrase is probably the object of the

embedded verb inside a subordinate clause, or

whether they gradually lose track of this infor-

mation. To study this question we used materials

on the pattern of (4): these materials manipulate

the length of the intervening material (underlined)

while holding constant the distance between the

subordinator (“As”) and the disambiguator (grew).

(4)a. As the author studying Babylon in ancient

times wrote the book grew. [SHORT, NO-

COMMA]

b. As the author studying Babylon in an-

cient times wrote, the book grew. [SHORT,

COMMA]

c. As the author wrote the book describing

Babylon in ancient times grew. [LONG, NO-

COMMA]

d. As the author wrote, the book describing

Babylon in ancient times grew. [LONG,

COMMA]

If neural language models show degradation of

syntactic state, then the garden path effect (mea-

sured as the difference in surprisal between the

COMMA and NO-COMMA conditions at the disam-

biguator) will be smaller for the LONG conditions.

We tested 32 sentences of the form in (4), based

on materials from Tabor and Hutchins (2004). The

garden path effect sizes are shown in Figure 6.

We find a significant garden effect in all mod-

els in the SHORT condition (p < .001 in JRNN

and GRNN; p < .01 in the RNNG and p = .03 in

TinyLSTM). In the long condition, we find the gar-

den path effect in all models except TinyLSTM:

(p < .001 in JRNN; p < .01 in GRNN; p = .02 in

the RNNG; and p = .2 in TinyLSTM). The cru-

cial interaction between length and comma pres-

ence (indicating that syntactic state degrades) is

significant in GRNN (p < .01) and TinyLSTM

(p < .001) but not JRNN (p = .7) nor the RNNG

(p = .6). The pattern is reminiscent of the results

on degradation of state information about subor-

dinate clauses in Section 3, where GRNN and

TinyLSTM showed the clearest evidence of degra-

dation.
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Figure 6: Average garden path effect by model and

length of ambiguous region.

Note that the pattern found here is the opposite

of the pattern of human reading times. Humans ap-

pear to show “digging-in” effects: the longer the

span of time between the introduction of a local

ambiguity and its resolution, the larger the garden

path effect (Tabor and Hutchins, 2004; Levy et al.,

2009).

4.2 Main Verb/Reduced Relative Ambiguity

Next we turn to garden path effects induced by the

classic Main Verb/Reduced Relative (MV/RR)

ambiguity, in which a word is locally ambiguous

between being the main verb of a sentence or in-

troducing a reduced relative clause (reduced RC:

a relative clause with no explicit complementizer,

headed by a passive-participle verb). That ambi-

guity can be maintained over a long stretch of ma-

terial:

(5)a. The woman brought the sandwich from

the kitchen tripped on the carpet.

[REDUCED, AMBIGuous]

b. The woman who was brought the sand-

wich from the kitchen tripped on the carpet.

[UNREDUCED, AMBIG]

c. The woman given the sandwich from

the kitchen tripped on the carpet.

[REDUCED, UNAMBIGuous]

d. The woman who was given the sandwich

from the kitchen tripped on the carpet.

[UNREDUCED, UNAMBIG]

In Example (5-a), the verb “brought” is ini-

tially analyzed as a main verb phrase, but upon
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Figure 7: Garden path effect size for MV/RR ambiguity

by model and verb-form ambiguity.

reaching the verb “tripped”—the disambiguator

in this case—the reader must re-analyze it as an

RC. The garden path should be eliminated in sen-

tences such as (5-b), the UNREDUCED condition,

where the words “who was” clarify that the verb

“brought” is part of an RC, rather than the main

verb of the sentence. Therefore we quantify the

garden path effect as the surprisal at the disam-

biguator for the REDUCED minus UNREDUCED

conditions.

There is another possible cue that the initial verb

is the head of an RC: the morphological form of

the verb. In examples such as (5-c), the the verb

“given” is unambiguously in its past-participle

form, indicating that it cannot be the main verb

of the sentence. If a language model is sensitive

to morphological cues to syntactic structure, then

it should either not show a garden path effect in

this UNAMBIGuous condition, or it should show a

reduced garden path effect.

We constructed 29 experimental items follow-

ing the template of (5). Figure 7 shows the garden

path effect sizes by model and verb-form ambigu-

ity. All networks show the basic garden path effect

(p < .001 in JRNN, GRNN, and RNNG; p < 0.01

in TinyLSTM). However, the garden path effect in

TinyLSTM is much smaller than the other mod-

els: RC reduction causes an additional .3 bits of

surprisal at the disambiguating verb, as compared

to 2.8 bits in the RNNG, 1.9 in JRNN, and 3.6

in GRNN (TinyLSTM’s garden path effect is sig-

nificantly smaller than each other model at p <

0.001).

If the network is using the morphological form
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Phenomenon GRNN JRNN RNNG TinyLSTM

Subordination ✓✓ ✓✗ ✓✓ ✓✗

NP/Z Garden Path ✓✓ ✓✓ ✓✗ ✓✗

MV/RR Garden Path ✓✓ ✓✓ ✓✓ ✓✗

Table 2: Summary of results by model and phenomenon. The first check mark indicates basic evidence of syntactic

state representation. The second check mark indicates the ability to capture more fine-grained phenomena: for

subordination, the no-matrix penalty effect; for the NP/Z garden path, the effect of verb transitivity; and for the

MV/RR garden path, the effect of verb morphology.

of the verb as a cue to syntactic structure, then it

should show the garden path effect more strongly

in the AMBIG condition than the UNAMBIG condi-

tion. The large language models and the RNNG do

show this pattern: at the critical main-clause verb,

surprisal is superadditively highest in the reduced

ambiguous condition (the dotted blue line; a posi-

tive interaction between the reduced and ambigu-

ous conditions is significant in the three models at

p < 0.001). However, TinyLSTM does not show

evidence for superadditive surprisal for the am-

biguous verbform and the reduced RC (p = .45).

The three large LSTMs and the RNNG replicate

the key human-like garden-path disambiguation

effect due to to ambiguity in verb form. But strik-

ingly, even when the participial verbform is un-

ambiguous, there is still a significant garden path

effect in all models (p < 0.01 in all models except

TinyLSTM, where p = .08). Apparently, these

networks treat an unambiguous passive-participial

verb as only a noisy cue to the presence of an RC.

5 General Discussion and Conclusion

In all models studied, we found clear evidence

of basic incremental state syntactic representation.

However, models varied in how well they fully

captured the effects of such state and the poten-

tially subtle lexical cues indicating the beginnings

and endings of such states: only the large LSTMs

could sometimes reliably infer clause boundaries

from verb argument structure (Section 4.1) and

morphological verb-form (Section 4.2), and only

GRNN and the RNNG fully captured the proper

behavior of subordinate clauses. The results are

summarized in Table 2. We suggest that repre-

sentation of course-grained syntactic structure re-

quires either syntactic supervision or large data,

while exploiting fine-grained lexical cues to struc-

ture requires large data.

More generally, we believe that the psycholin-

guistic methodology employed in this paper pro-

vides a valuable lens on the internal represen-

tations of black-box systems, and can form the

basis for more systematic tests of the linguistic

competence of NLP systems. We make all exper-

imental items, results, and analysis scripts avail-

able online at github.com/langprocgroup/nn_

syntactic_state.
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