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Abstract

Self-training is a semi-supervised learning ap-
proach for utilizing unlabeled data to create
better learners. The efficacy of self-training al-
gorithms depends on their data sampling tech-
niques. The majority of current sampling tech-
niques are based on predetermined policies
which may not effectively explore the data
space or improve model generalizability. In
this work, we tackle the above challenges by
introducing a new data sampling technique
based on spaced repetition that dynamically
samples informative and diverse unlabeled in-
stances with respect to individual learner and
instance characteristics. The proposed model
is specifically effective in the context of neu-
ral models which can suffer from overfitting
and high-variance gradients when trained with
small amount of labeled data. Our model
outperforms current semi-supervised learning
approaches developed for neural networks on
publicly-available datasets.

1 Introduction

It is often expensive or time-consuming to ob-
tain labeled data for Natural Language Processing
tasks. In addition, manually-labeled datasets may
not contain enough samples for downstream data
analysis or novelty detection (Wang and Hebert,
2016). To tackle these issues, semi-supervised
learning (Zhu, 2006; Chapelle et al., 2009) has be-
come an important topic when one has access to
small amount of labeled data and large amount of
unlabeled data.

Self-training is a type of semi-supervised learn-
ing in which a downstream learner (e.g. a clas-
sifier) is first trained with labeled data, then the
trained model is applied to unlabeled data to gen-
erate more labeled instances. A select sample of
these instances together with their pseudo (pre-
dicted) labels are added to the labeled data and the

learner is re-trained using the new labeled dataset.
This process repeats until there is no more unla-
beled data left or no improvement is observed in
model performance on validation data (Zhu, 2006;
Zhu and Goldberg, 2009).

Conventional self-training methods often rely
on prediction confidence of their learners to sam-
ple unlabeled data. Typically the most confident
unlabeled instances are selected (HEARST, 1991;
Yarowsky, 1995; Riloff and Jones, 1999; Zhou
et al., 2012). This strategy often causes only
those unlabeled instances that match well with the
current model being selected during self-training,
therefore, the model may fail to best generalize
to complete sample space (Zhang and Rudnicky,
2006; Wu et al., 2018). Ideally, a self-training al-
gorithm should explore the space thoroughly for
better generalization and higher performance. Re-
cently Wu et al. (2018) developed an effective data
sampling technique for “co-training” (Blum and
Mitchell, 1998) methods which require two dis-
tinct views of data. Although effective, this model
can’t be readily applied to some text datasets due
to the two distinct view requirement.

In the context of neural networks, pretraining
is an effective semi-supervised approach in which
layers of a network are first pretrained by learning
to reconstruct their inputs, and then network pa-
rameters are optimized by supervised fine-tuning
on a target task (Hinton and Salakhutdinov, 2006;
Bengio et al., 2007; Erhan et al., 2010). While
pretraining has been effective in neural language
modeling and document classification (Dai and
Le, 2015; Miyato et al., 2016), it has an inherent
limitation: the same neural model or parts thereof
must be used in both pretraining and fine-tuning
steps. This poses a major limitation on the design
choices as some pretraining tasks may need to ex-
ploit several data types (e.g., speech and text), or
might require deeper network architectures.
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The above challenges and intuitions inspire our
work on developing a novel approach for neural
self-training. The core part of our approach is a
data sampling policy which is inspired by find-
ings in cognitive psychology about spaced repeti-
tion (Dempster, 1989; Cepeda et al., 2006; Averell
and Heathcote, 2011); the phenomenon in which
a learner (often a human) can learn efficiently
and effectively by accurately scheduling reviews
of learning materials. In contrast to previous
self-training approaches, our spaced repetition-
based data sampling policy is not predetermined,
explores the entire data space, and dynamically
selects unlabeled instances with respect to the
“strength” of a downstream learner on a target
task, and “easiness” of unlabeled instances. In ad-
dition, our model relaxes the “same model” con-
straint of pretraining-based approaches by natu-
rally decoupling pretraining and fine-tuning mod-
els through spaced repetition.

The contributions of this paper are (a): we pro-
pose an effective formulation of spaced repetition
for self-training methods; to the best of our knowl-
edge, this is the first work that investigates spaced
repetition for semi-supervised learning, (b): our
approach dynamically samples data, is not lim-
ited to predetermined sampling strategies, and nat-
urally decouples pretraining and fine-tuning mod-
els, and (c): it outperforms current state-of-the-art
baselines on large-scale datasets.

Our best model outperforms standard and
current state-of-the-art semi-supervised learning
methods by 6.5 and 4.1 points improvement in
macro-F1 on sentiment classification task, and 3.6
and 2.2 points on churn classification task. Further
analyses show that the performance gain is due to
our model’s ability in sampling diverse and infor-
mative unlabeled instances (those that are different
from training data and can improve model gener-
alizability).

2 Method

Conventional self-training methods employ the
following steps to utilize unlabeled data for semi-
supervised learning: (1) train a learner, e.g. a clas-
sifier, using labeled data, (2) iteratively select un-
labeled instances based on a data sampling tech-
nique, and add the sampled instances (together
with their predicted pseudo labels) to the labeled
data, and (3) iteratively update the learner using
the new labeled dataset.
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Figure 1: Neural Self-training Framework: at every
self-training episode, the network uses current labeled
data to iteratively optimize its parameters against a
target task, and dynamically explores unlabeled data
space through spaced repetition (specifically Leitner
queue) to inform a data sampler that selects unlabeled
data for the next self-training episode. Dashed/Red and
solid/green arrows in Leitner queue indicate instance
movements among queues.

The core difference between self-training algo-
rithms is in the second step: data sampling pol-
icy. In this paper, we develop a new data sampling
technique based on “spaced repetition” which dy-
namically explores the data space and takes into
account instance and learner characteristics (such
as easiness of instances or learner strength on tar-
get task) to sample unlabeled data for effective
self-training.

Figure 1 illustrates our proposed neural self-
training framework. We assume the downstream
learner is a neural network that, at every self-
training episode, (a): takes current labeled and
unlabeled data as input, (b): uses labeled data to
iteratively optimize its parameters with respect to
a target task, and (c): dynamically explores unla-
beled data space through spaced repetition to in-
form a data sampler that selects unlabeled data for
the next self-training episode.

2.1 Spaced Repetition

Spaced repetition (Dempster, 1989; Cepeda et al.,
2006; Averell and Heathcote, 2011) was presented
in psychology and forms the building block of
many educational devices, including flashcards, in
which small pieces of information are repeatedly
presented to a learner on a schedule determined
by a spaced repetition algorithm. Such algorithms
show that humans and machines can better learn
by scheduling reviews of materials so that more
time is spent on difficult concepts and less time
on easier ones (Dempster, 1989; Novikoff et al.,
2012; Amiri et al., 2017).
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In this paper, we focus on a specific spaced rep-
etition framework called Leitner system (Leitner,
1974). Suppose we have n queues {q0, . . . , qn−1}.
In general, Leitner system initially places all in-
stances in the first queue, q0. During training, if
an instance from qi is correctly classified by the
learner, it will be “promoted” to qi+1 (solid/green
arrows in Figure 1), otherwise it will be “demoted”
to the previous queue, qi−1 (dashed/red arrows in
Figure 1). Therefore, as the learner trains through
time, higher queues will accumulate instances that
are easier for the learner, while lower queues will
accumulate harder instances.

To use Leitner system for neural self-training,
we assume our learner is a neural network, place
all unlabeled instances in the first queue of Leitner
system (line 2 in Algorithm 1), and gradually pop-
ulate them to other queues while training the net-
work. Our Leitner system uses iteration-specific
network predictions on unlabeled instances and
current pseudo labels of these instances to move
them between queues (see line 4-5 in Algo-
rithm 1); pseudo labels can be obtained through
posterior predictions generated by any trained
downstream learner (see Section 2.2). Instances
with similar class predictions and pseudo labels
will be promoted to their next queues, and those
with opposite predictions and labels will be de-
moted to lower queues. We note that, errors (e.g.
inaccurate pseudo labels or network predictions)
can inversely affect instance movements among
queues. However, our sampling technique (see be-
low) alleviates this issue because such misleading
instances, if sampled, can’t improve the general-
izability of downstream learners. Details of our
Leitner system is shown in Table 1.

2.2 Self-Training with Leitner Queues

We formulate the data sampling process as a
decision-making problem where, at every self-
training episode, the decision is to select a sub-
set of unlabeled instances for self-training using
information from Leitner queues. A simple, yet
effective, approach to utilize such information is
a greedy one in which instances of the queue
that most improves the performance of the current
model on validation data will be selected. We refer
to this queue as designated queue:

Algorithm 2 shows details of our self-training
approach. At every episode, we use current la-
beled data to train a task-specific neural net-

Algorithm 1. Leitner system
Input:
L,U,V : labeled, unlabeled, and validation data
y : pseudo labels for U
k : number of training epochs
n : number of queues

Output:
Q: Leitner queue populated with U

1 Q = [q0, q1, . . . , qn−1]
2 q0 = [U], qi = [] for i ∈ [1, n− 1]
3 for epoch = 1 to k:
4 model = epoch train(L,V)
5 promos, demos = eval(Q,y,model)
6 Q = schedule(Q, promos, demos)
7 end for
8 return Q

Table 1: Leitner system for neural self-training. All
unlabeled instances are initially placed in the first
queue and then populated to other queues depending
on their easiness and learner (network) performance.
epoch train(.) uses training data to train the net-
work for a single epoch and returns a trained model,
eval(.) applies the current model on unlabeled in-
stances in all queues and, based on given pseudo labels
(treated as gold labels), returns lists of correctly and
incorrectly classified instances, promos and demos
respectively, and schedule(.) moves promos and
demos instances to their next and previous queues re-
spectively, and returns the updated queue.

work (line 2). Here, we weight the loss func-
tion using class size to deal with imbalanced data,
and weight pseudo-labeled instances (as a func-
tion of episodes) to alleviate the effect of poten-
tially wrong pseudo labels while training the net-
work. We then use the trained network to generate
pseudo labels for current unlabeled instances (line
3). These instances are then populated in Leitner
queues as described before (line 4). Given the pop-
ulated Leitner queues, the sample for current self-
training episode is then created using instances
of the designated queue, the queue that most im-
proves the performance of the current network on
validation data (lines 5-8). Instances of the desig-
nated queue will be removed from unlabeled data
and added to labeled data with their pseudo labels
treated as gold labels (lines 9-10).

We note that finding designated queues (lines
5-8 in Algorithm 2) imposes computational com-
plexity on our model. However, in practice, we
observe that designated queues are almost always
among middle or higher queues in Leitner system,
i.e. qi, ∀i ∈ [bn/2c, n− 1] where n in the number
of queues. This can help accelerating the search
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Algorithm 2. Neural Self-training
Input:
L,U,V : labeled, unlabeled, and validation data
K : number of self-training episodes

Output:
M : classification model

1 for episode = 1 to K:
2 ML = train(L,V)
3 y = label(ML,U)
4 Q = Leitner system(L,U,V,y) \\Alg. 1
5 for q in Q:
6 Mq = train(L+

[
q,y[q]

]
,V)

7 end for
8 M, qdesig = get best(MQ,ML)
9 L = L+

[
qdesig,y[qdesig]

]
10 U = U− qdesig
11 end for
12 return M

Table 2: Proposed neural self-training framework.
train(.) uses current labeled data to train the net-
work and returns a trained model, label(.) generates
pseudo labels for unlabeled instances using the trained
model, Leitner system(.) populates current un-
labeled instances in Leitner queue, and get best(.)
compares performance of given models on validation
data and returns the best model in conjunction with the
queue that leads to the best performance, if any. In-
stances of the designated queue will be removed from
unlabeled data and added to labeled data with their
pseudo labels treated as gold labels.

process. In addition, learning a data sampling pol-
icy from movement patterns of instances among
queues may help alleviating/eliminating the need
for such an iterative search; see Section 4.4.

Finally, at test time, we apply the resulting self-
trained network to test data and use the result for
model comparison.

3 Experiments

We compare different self-training approaches in
two settings where learners (neural networks) have
low or high performance on original labeled data.
This consideration helps investigating sensitivity
of different self-training algorithms to the initial
performance of learners.

3.1 Datasets and Evaluation Metric
As datasets, we use movie reviews from IMDb and
short microblog posts from Twitter. These datasets
and their corresponding tasks are described below
and their statistics are provided in Table 3. In
terms of preprocessing, we change all texts to low-
ercase, and remove stop words, user names, and
URLs from texts in these datasets:

Train Val. Test Unlabeled
IMDb 5× 1K 5× 1K 5× 48K 50K
Churn 5× 1K 5× 1K 5× 3K 100K

Table 3: Statistics of dataset used in experiments.

IMDb: The IMDb dataset was developed
by Maas et al. (2011)1 for sentiment classifica-
tion where systems should classify the polarity of
a given movie review as positive or negative. The
dataset contains 50K labeled movie reviews. For
the purpose of our experiments, we randomly sam-
ple 1K, 1K, and 48K instances from this data (with
balanced distribution over classes) and treat them
as labeled (training), validation, and test data re-
spectively. We create five such datasets for robust-
ness against different seeding or data partitions.
This dataset also provides 50K unlabeled reviews.

Churn: This dataset contains more than 5K
tweets about three telecommunication brands and
was developed by Amiri and Daumé III (2015)2

for the task of churn prediction3 where systems
should predict if a twitter post indicates user in-
tention about leaving a brand - classifying tweets
as churny or non-churny with respect to brands.
We replace all target brand names with the key-
word BRAND and other non-target brands with
BRAND-OTHER for the purpose of our experi-
ments. Similar to IMDb, we create five datasets
for experiments. We also crawl an additional
100K tweets about the target brands and treat them
as unlabeled data.

We evaluate models in terms of macro-F1 score,
i.e. the mean of F1-scores across classes.

3.2 Downstream Learner and Settings

As downstream neural networks (referred to as
base classifiers), we consider current state-of-the-
art deep averaging networks (DANs) (Shen et al.,
2018; Iyyer et al., 2015; Joulin et al., 2017; Arora
et al., 2017) for IMDb, and a basic CNN model for
Churn dataset with parameters set from the work
presented in (Gridach et al., 2017) except for pre-
trained embeddings. In terms of DANs, we use
FastText (Joulin et al., 2017) for its high per-

1http://ai.stanford.edu/˜amaas/data/
sentiment/

2https://scholar.harvard.edu/hadi/
chData

3Churn is a term relevant to customer retention in mar-
keting discourse; examples of churny tweets are “my days
with BRAND are numbered,” “debating if I should stay with
BRAND,” and “leaving BRAND in two days.”



25

formance and simplicity. FastText is a feedfor-
ward neural network that consists of an embedding
layer that maps vocabulary indices to embeddings,
an averaging layer that averages word embeddings
of inputs, and several hidden layers (we use two
layers of size 256) followed by a prediction layer
with sigmoid activation.

We use 300-dimensional word embeddings pro-
vided by Google’s word2vec toolkit (Mikolov
et al., 2013). In Algorithm 1, we set the num-
ber of training epochs to k = 32, and stop train-
ing when F1 performance on validation data stops
improving with patience of three continuous iter-
ations, i.e. after three continuous epochs with no
improvement, training will be stopped. In addi-
tion, we set the number of training episodes to
K = 20 and stop training when this number of
episodes is reached or there is no unlabeled data
left for sampling; the latter case is often the rea-
son for stopping in our self-training method. In
addition, we experiment with different number of
Leitner queues chosen from n = {3, 5, 7, 9, 11}.

3.3 Baselines
We consider the following baselines:

• Standard self-training: This approach it-
eratively trains a network on current la-
beled data and applies it to current unlabeled
data; it uses a prediction confidence threshold
to sample unlabeled instances (Zhu, 2006).
We set the best confidence threshold from
{.80,.85,.90,.95} using validation data.

• Autoencoder self-training (Dai and Le,
2015): This approach first pretrains a net-
work using unlabeled data (through a layer-
wise training approach to optimally recon-
struct the inputs), and then fine-tunes it using
labeled data with respect to the target task.

• Adversarial self-training (Miyato et al.,
2016): This model utilizes pretraining as de-
scribed above, but also applies adversarial
perturbations to word embeddings for more
effective learning (perturbation is applied to
embeddings instead of word inputs because
words or their one-hot vectors do not ad-
mit infinitesimal perturbation; the network is
trained to be robust to the worst perturbation).

• Knowledge Transfer self-training (Noroozi
et al., 2018): This model uses a clustering ap-
proach (e.g. k-means) to create clusters of

IMDb Churn
Base Classifier 73.02 65.77
SST (Standard ST) 74.43 65.77
PST (Pretraining ST) 76.36 67.27
AST (Adversarial ST) 76.09 67.70
KST (Knowledge Transfer ST) 77.11 67.06
LST (Leitner ST) 78.27* 69.90*

Table 4: Macro-F1 performance of models across
datasets; Note that Standard ST (SST) samples only
1.4K and 0 instances from IMDb and Churn datasets
respectively; sampling more data decreases SST’s per-
formance down to 66.94 and 57.04 perhaps due to in-
effective exploring of data space. Our model achieves
its best performance on IMDb and Churn datasets with
n = 5 and n = 7 Leitner queues respectively.

unlabeled instances that have similar repre-
sentations, where representations are derived
from standard pretraining as described above.
The model then pretrains a network by learn-
ing to classify unlabeled instances to their
corresponding clusters. The resulting pre-
trained network is then fine-tuned with re-
spect to the target task using labeled data
(with slight modification at prediction layer
which makes the network suitable for target
task). We set the best number of clusters
from {10, 20, . . . , 100} based on model per-
formance on validation data.

3.4 Model Performance
Table 4 reports Macro-F1 performance of different
models; we report average performance across five
random test sets for each task (see Section 3.1 and
Table 3). The performance of base classifiers in
supervised settings, where the networks are only
trained on original labeled datasets, is reasonably
high on IMDb (73.02) and low on Churn (65.77).
Standard ST (SST) improves performance on
IMDb but not on Churn dataset. SST achieves its
best performance (on validation data) in the first
few episodes when, on average, 1.4K and 0 in-
stances are sampled for IMDb and Churn datasets
respectively. Beyond that, the performance con-
siderably decreases down to 66.94 (IMDb) and
57.04 (Churn) respectively. This is perhaps due
to imbalanced class size in Churn dataset, failure
of SST to explore the data space, or classification
mistakes that reinforce each other. Several pre-
vious works also observed no improvement with
SST (Gollapalli et al., 2013; Zhu and Goldberg,
2009; Zhang and Rudnicky, 2006); but some suc-
cessful applications have been reported (Wu et al.,
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2018; Zhou et al., 2012; Riloff and Jones, 1999;
Yarowsky, 1995; HEARST, 1991).

The result also show that pretraining and
adversarial-based training, PST and AST in Ta-
ble 4 respectively, improve the performance of
base classifiers by 3.34 and 3.37 points in macro-
F1 on IMDb, and by 1.5 and 1.93 points on Churn
dataset. In addition, since PST and AST show
comparable performance, we conjecture that when
original labeled data has a small size, adversarial-
based self-training do not considerably improve
pretraining. But, considerable improvement can
be achieved with larger amount of labeled data,
see (Miyato et al., 2016) for detailed comparison
on pretraining and adversarial-based training. The
results also show that knowledge transfer (KST)
outperforms PST and AST on IMDb - indicating
that good initial labels derived through clustering
information could help semi-supervised learning,
even with small amount of seed labeled data.

Table 4 also shows the result of our model,
Leitner ST (LST). The best performance of LST
is obtained using n = 5 and n = 7 queues
for IMDb and Churn datasets respectively. Con-
sidering these queue lengths, our model outper-
forms base classifiers by 5.25 and 4.13 points in
Macro-F1 on IMDb and Churn datasets respec-
tively; similar to PST and AST, our model results
in a greater gain when the learner has higher ini-
tial performance. It also improves the best self-
training baseline, KST for IMDb and AST for
Churn, by 1.16 and 2.2 points in macro-F1 on
IMDb and Churn datasets respectively where both
differences are significant (average ρ-values based
on t-test are .004 and .015 respectively).

4 Model Introspection

We investigate several questions about our model
to shed light on its improved performance. One
partial explanation is that by differentiating in-
stances and augmenting the informative ones, we
are creating a more powerful model that better ex-
plores the space of unlabeled data. In this sec-
tion, we elaborate on the behavior of our model by
conducting finer-grained analysis at queue-level
and investigating the following questions in the
context of challenges of semi-supervised learn-
ing. Due to space limit, we mainly report results
on IMDb and discuss corresponding behaviors on
Churn dataset in the text.

4.1 Queue-level Performance

We analyze queue level performance to under-
stand how instances of different queues contribute
in creating better models during the self-training
process. For this experiment, we train networks
using our Leitner self-training framework as nor-
mal (where, at every iteration, only instances of
the designated queue are added to training data),
and report the average macro-F1 performance of
the network–on validation data–if it is trained with
instances of each queue. Concretely, we report av-
erage macro-F1 performance of models learned at
line 6 of Algorithm 2 (see Mqs in Table 2).

Figures 2(a) and 2(b) show the results on IMDb
and Churn datasets for n = 5 and n = 7 queues
respectively. Note that the last queue for Churn
dataset, q6, has never been reached by any in-
stance. This is perhaps because of the difficulty
of this task4 and low initial performance of the
network on Churn dataset. q2 on IMDb and q4
on Churn dataset result in the best average perfor-
mance across training episodes, both queues are
close to the middle. In addition, the result show
that the highest queues (q4 for IMDb and q5 for
Churn) are often not the best queues. This result
can justify the lower performance of Standard ST
(SST) as instances in these queues are the easiest
(and perhaps most confident ones) for the network;
we further analyze these queues in Section 4.2.5

4.2 What’s the Issue with Highest Queues?

As we discussed before, instances in the highest
queues, although easy to learn for the classifier,
are not informative and do not contribute to train-
ing an improved model; therefore, highest queues
are often not selected by our model. To understand
the reason, we try to quantify how well instances
of these queues match with training data. For this
purpose, we compute cosine similarity between
representations of training instances (see below)
and those in the highest and designated queues

4Churn prediction is a target-dependent task, largely af-
fected by negation and function words, e.g. compare “switch-
ing from” and “switching to,” and language complexity, e.g.
the tweets “hate that I may end up leaving BRAND cause they
have the best service” is a positive yet churny tweet.

5Note that the performance on lower queues (e.g. q1 for
IMDb and q0 for Churn) are higher than expected. This is
because, at the end of each iteration, instances of designated
(best-performing) queues–but not lower queues–are added to
training data; instances of designated queues help creating
better and more robust models which still perform well even
if instances of lower queues are added.
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Figure 2: (a) and (b): Average macro-F1 performance computed over individual queues using validation dataset
across training episodes (average performance of Mqs at line 6 of Algorithm 2). (a): Performance on IMDb with
optimal queue length of n = 5, and (b): performance on Churn with optimal queue length of n = 7: note that none
of unlabeled instances has made it to the last queue. (c): Comparison of highest and designated queues in terms
of instance similarity to training data; high train indicates similarity between (representations of) instances in
the highest queue and training instances, and desig train shows the corresponding values for instances in the
designated queue. + and− signs indicate positive and negative pseudo/gold labels for unlabeled/training instances.

during self-training as follows:

1

K

K∑
e=1

cosine(Te,Qe)

where Te ∈ Rme×d and Qe ∈ Rpe×d indicate
representations of training instances and those of
a given target queue respectively (where d indi-
cates the dimension of representations, and me

and pe indicate number of instances in training
data and target queue at episode e respectively),
and cosine(.,.) computes L2-normalized dot
product of its input matrices. To obtain the above
representations for instances, we compute the out-
put of the last hidden layer (the layer below predic-
tion layer) of the trained network at each episode.
These outputs can be considered as feature repre-
sentations for inputs. For finer-grained compari-
son, we compute similarities with respect to posi-
tive and negative classes.

As the results in Figure 2(c) show, instances in
the highest queue match well with current train-
ing data (and hence the current model), and, there-
fore, are less informative. On the other hand, in-
stances in the designated queues show consider-
ably smaller similarity with training instances in
both positive and negative classes, and, therefore,
do not match well with training data. These in-
stances are more informative, and help the net-
work to better explore the space of unlabeled data
and optimize for the target task.

4.3 Does Diversity Matter?
We analyze different queues to measure the extent
of diversity that each queue introduces to train-
ing data during our normal self-training process
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Figure 3: The amount of diversity that instances of each
queue introduce if added to training data (on IMDb).

where, at every iteration, only instances of the des-
ignated queue are added to training data. Specifi-
cally, we compute the extent of diversity that each
given queue introduces as follows:

1

K

K∑
e=1

1− cosine(Te,concat(Te,Qe))

where, as before, Te and Qe indicate the represen-
tations of training and queue instances at episode
e respectively, and concat(.,.) is a function
that creates a new dataset by vertically concatenat-
ing Te and Qe.

Figure 3 shows the results. On IMDb, q2 and
designated queues show greater diversity to train-
ing data compared to other queues. We note
that q0 carries a greater diversity than q3 and q4,
but, as we observed in Figure 2, instances of q0
do not improve performance of the model, per-
haps due to their difficulty or wrong pseudo la-
bels. We observe similar behavior in case of Churn
dataset where q4 introduces the highest diversity.
From this analysis, we conclude that Leitner self-
training enables sampling diverse sets of instances
that contributes to training an improved model.
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Leitner ST
n = 3 n = 5 n = 7 n = 9 n = 11

IMDb 76.83 76.77 78.03 75.34 80.71
Churn 65.74 64.87 67.06 68.56 65.80

Table 5: Macro-F1 performance of diverse queues
across datasets. Compare these results with those ob-
tained by designated queues in Table 4.

4.3.1 Diverse Queue
Given the above results on diversity, we investi-
gate whether greater diversity can further improve
the performance of our model. For this analysis,
we create a considerably more “diverse” queue at
every self-training episode and treat it as the desig-
nated queue. We create the diverse queue by sam-
pling instances with high prediction confidence
from all queues. In particular, at every episode, we
rank instances of each queue based on their pre-
diction confidence and create a diverse queue by
combining top r% instances of each queue, where
r indicates the rate of adding new instances and set
to r = 10%. We note that a smaller rate is better
for adding instances because it allows the model to
gradually consume unlabeled instances with high
prediction confidence.

Table 5 shows the effect of diverse queues on
the performance of our model on both IMDb and
Churn datasets. The results show that diverse
queues improve the performance of our Leitner
self-training model from 78.27 (reported in Ta-
ble 4) to 80.71 on IMDb, i.e. 2.44 points improve-
ment in macro-F1. However, the correspond-
ing performance on Churn dataset decreases from
69.90 to 68.56, i.e. 1.34 points decrease in macro-
F1. The inverse effect of diverse queues in case
of Churn dataset is because diverse queues suf-
fer from the issue of considerable class imbalance
more than designated queues. This is because
highly confident instances which accumulate in
higher queues are often negative instances in case
of Churn prediction. Although we tackle this is-
sue by weighting the loss function during training,
diverse positive instances which are different from
their training counterparts are still needed for per-
formance improvement.

4.4 Do We Need Better Sampling Policies?

We investigate the challenges associated with our
data sampling policy by conducting finer-grained
analysis on instance movement patterns among
queues. To illustrate, assume that we have a Leit-
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Figure 4: Deviation in instance movements for each
queue (in terms of average standard deviation over all
training episodes). At every episode, we keep track of
instance movements among queues and measure move-
ment variation among instances that ultimately home in
on the same queue.

ner queue of size n = 3 and the following move-
ment patterns for four individual instances that ul-
timately home in on q0 (recall that correct predic-
tion promotes an instance to a higher queue, while
wrong prediction demotes it to a lower queue):

q0 → q0 → q0 → q0 → q0 : always in q0
q0 → q1 → q0 → q0 → q0 : mainly in q0
q0 → q1 → q0 → q1 → q0 : partially in q0
q0 → q1 → q2 → q1 → q0 : partially in q0 & q1.

Although all these instances ultimately home in
on the same queue, they may have different contri-
butions to the training of a model because there is a
considerable difference in the ability of the down-
stream network in learning their labels. There-
fore, if there is a large deviation among move-
ment patterns of instances of the same queue, bet-
ter data sampling policies could be developed, per-
haps through finer-grained queue-level sampling.

For this analyses, we keep track of instance
movements among queues and measure standard
deviation among movement patterns of instances
of the same queue at every self-training episode,
and report the average of these deviations.

Figure 4 shows the results. On both datasets,
there is considerably greater deviation in move-
ments for middle queues than lower/higher
queues. This is meaningful because Leitner sys-
tem (and other spaced repetition schedulers) are
expected to keep easy and hard instances at higher
and lower queues respectively. Since such in-
stances mainly stay at lower or higher queues,
we observe smaller deviation in their movements.
On the other hand, the corresponding values for
middle queues indicate that movements in these
queues are spread out over a larger range of
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queues. From these results, we conjecture that a
data sampling policy that conducts finer-grained
analysis at queue-level (e.g. by taking into account
queue movement patterns) could create better data
samples. Verifying this hypothesis will be the sub-
ject for future work.

5 Related Work

Semi-supervised learning (Zhu, 2006; Chapelle
et al., 2009) is a type of machine learning where
one has access to a small amount of labeled data
and a large amount of unlabeled data. Self-training
is a type of semi-supervised learning to boost the
performance of downstream learners (e.g. classi-
fiers) through data sampling from unlabeled data.
Most data sampling policies rely on prediction
confidence of the downstream learner for sampling
unlabeled data (Zhu and Goldberg, 2009). Self-
training has been successfully applied to various
tasks and domains including word sense disam-
biguation (HEARST, 1991; Yarowsky, 1995), in-
formation extraction (Riloff and Jones, 1999), and
object recognition (Zhou et al., 2012).

In addition, co-training (Blum and Mitchell,
1998; Zhang and Rudnicky, 2006; Wu et al., 2018)
is another type of semi-supervised learning. It
assumes that each instance can be described us-
ing two distinct feature sets that provide differ-
ent and complementary information about the in-
stance. Ideally, the two views should be condi-
tionally independent, i.e., the two feature sets of
each instance are conditionally independent given
the class, and each view should be sufficient, i.e.,
the class of an instance can be accurately predicted
from each view alone. Co-training first learns
separate downstream learners for each view us-
ing a small set of labeled data. The most confi-
dent predictions of each learner on the unlabeled
data are then used to iteratively construct addi-
tional labeled training data. Recently Wu et al.
(2018) developed an effective model based on re-
inforcement learning (specifically, a joint formu-
lation of a Q-learning agent and two co-training
classifiers) to learn data sampling policies and uti-
lize unlabeled data space in the context of co-
training methods.

Effective semi-supervised learning algorithms
based on pretraining techniques (Hinton and
Salakhutdinov, 2006; Bengio et al., 2007; Er-
han et al., 2010) have been developed for
text classification, deep belief networks (Hinton

and Salakhutdinov, 2006), and stacked autoen-
coders (Vincent et al., 2010; Bengio et al., 2007).
In particular, Dai and Le (2015) developed an au-
toencoder for the later supervised learning pro-
cess. Miyato et al. (2016) applied perturbations
to word embeddings and used pretraining tech-
nique and adversarial training for effective semi-
supervised learning. These models although ef-
fective have not been well studied in the context of
semi-supervised learning where models may have
low initial performance or limited amount of la-
beled data. In addition, pretraining is limited by
the same architecture requirement in both pretrain-
ing and fine-tuning steps.

In this work, we extend previous work in
self-training by developing a new and effective
data sampling policy based on spaced repeti-
tion (Dempster, 1989; Cepeda et al., 2006; Averell
and Heathcote, 2011) which addresses some of the
above challenges. In particular, our model’s data
sampling policy is not predetermined, it explores
the entire data space and dynamically selects un-
labeled instances with respect to the strength of
a learner on a target task and easiness of unla-
beled instances, and it relaxes the same model con-
straint of pretraining-based approaches by decou-
pling pretraining and fine-tuning steps.

6 Conclusion and Future Work

We propose a novel method based on spaced rep-
etition to self-train neural networks using small
amount of labeled and large amount of unlabeled
data. Our model can select high-quality unlabeled
data samples for self-training and outperforms cur-
rent state-of-the-art semi-supervised baselines on
two text classification problems. We analyze our
model from various perspectives to explain its im-
provement gain with respect to challenges of semi-
supervised learning. There are several venues for
future work including (a): finer-grained data sam-
pling at queue level, (b): extending our model to
other machine learning algorithms that employ it-
erative training, such as boosting approaches, and
(c): applying this model to areas where neural net-
works have not been investigated, e.g. due to lim-
ited availability of labeled data.
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