
NAACL HLT 2018

The 2018 Conference of the
North American Chapter of the

Association for Computational Linguistics:
Human Language Technologies

Proceedings of the Demonstrations Session

June 2-June 4, 2018
New Orleans, Louisiana

c©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-948087-28-5

ii

Introduction

Welcome to the Demonstrations Session of NAACL HLT 2018 in New Orleans, Louisiana, USA.

The demonstrations session is an opportunity for researchers and developers to present their systems
and programs related to natural language processing. We received 39 outstanding papers, of which we
accepted 20.
These systems will be displayed during the conference.

iii

Organizers:

Yang Liu, Liulishuo Silicon Valley AI Lab (USA)
Tim Paek, Apple (USA)
Manasi Patwardhan, Tata Consultancy Services Research (India)

Program Committee:

Anuj Kumar, Facebook (USA)
Arzucan Özgür, Bogazici University (Turkey)
Ashish Garg, Apple Inc (USA)
Bin Liu, carnegie Mellon University (USA)
Boyang Li, Liulishuo Silicon Valley AI Lab (USA)
Brigitte Krenn, Austrian Research Institute for Artificial Intelligence (OFAI)
Catherine Havasi, Luminoso
Changsong Liu, Michigan State University (USA)
Chen chen, Google Inc. (USA)
Chen Li, Microsoft (USA)
Duc Le, Facebook (USA)
Francisco Guzmán, Facebook (USA)
Girish Palshikar, Tata Consultancy Services Research (India)
Guodong Zhou, Soochow University (China)
Huy Nguyen, University of Pittsburgh (USA)
Indrajit Bhattacharya, Tata Consultancy Services Research (India)
Irene Russo, Italian National Research Council (Italy)
Ivan Vladimir Meza Ruiz,Insituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
(IIMAS-UNAM) (Mexico)
Junyi Jessy Li, University of Texas at Austin (USA)
Keith Carlson, Dartmouth College (USA)
Kirk Roberts, University of Texas Health Science Center at Houston (USA) Le Sun, Chinese
Academy of Sciences (China)
Liang-Chih Yu, Yuan Ze University (Taiwan)
Lipika Dey, Tata Consultancy Services Research (India)
Maarten van Gompel, Radboud University Nijmegen (Netherlands)
Marc Vilain, MITRE Cooperation (USA)
Margaret Mitchell, Google Research and Machine Intelligence (USA)
Marie-Jean Meurs, University of Quebec in Montreal (Canada)
Mark Finlayson, Florida International University (USA)
Masoud Rouhizadeh, Johns Hopkins University (USA)
Minwoo Jeong, Apple (USA)
Montse Cuadros Oller, Vicomtech-IK4 (spain)
Ni Lao, SayMosaic (USA)
Omar Alonso, Microsoft Research (USA)
Patrick Nguyen, Google (USA)
Petya Osenova, Sofia University and IICT-BAS (Bulgaria)
Robby Walker, Apple (USA)
Sebastian Sulger, University of Konstanz (Gernamy)
Sravana Reddy, Spotify (USA) v

Stelios Piperidis, Athena RC/ILSP (Greece)
Stephanie Lukin, US Army Research Laboratory (USA)
Sunil Kumar Kopparapu, Tata Consultancy Services Research (India)
Thierry Declerck, DFKI GmbH (Germany)
Tsuyoshi Okita, Kyushuu Institute of Technology University (Japan)
Xian Li, Facebook (USA)
Xian Qian, Facebook (USA)
Yi Sun, Liulishuo (USA)
Željko Agić, IT University of Copenhagen (Denmark)
Zhuoran Yu, Google (USA)

vi

Table of Contents

NLP Lean Programming Framework: Developing NLP Applications More Effectively
Marc Schreiber, Bodo Kraft and Albert Zündorf .1

Pay-Per-Request Deployment of Neural Network Models Using Serverless Architectures
Zhucheng Tu, Mengping Li and Jimmy Lin . 6

An automated medical scribe for documenting clinical encounters
Gregory Finley, Erik Edwards, Amanda Robinson, Michael Brenndoerfer, Najmeh Sadoughi, James

Fone, Nico Axtmann, Mark Miller and David Suendermann-Oeft .11

CL Scholar: The ACL Anthology Knowledge Graph Miner
Mayank Singh, Pradeep Dogga, Sohan Patro, Dhiraj Barnwal, Ritam Dutt, Rajarshi Haldar, Pawan

Goyal and Animesh Mukherjee . 16

ArgumenText: Searching for Arguments in Heterogeneous Sources
Christian Stab, Johannes Daxenberger, Chris Stahlhut, Tristan Miller, Benjamin Schiller, Christo-

pher Tauchmann, Steffen Eger and Iryna Gurevych . 21

ClaimRank: Detecting Check-Worthy Claims in Arabic and English
Israa Jaradat, Pepa Gencheva, Alberto Barrón-Cedeño, Lluís Màrquez and Preslav Nakov 26

360° Stance Detection
Sebastian Ruder, John Glover, Afshin Mehrabani and Parsa Ghaffari . 31

DebugSL: An Interactive Tool for Debugging Sentiment Lexicons
Andrew Schneider, John Male, Saroja Bhogadhi and Eduard Dragut . 36

ELISA-EDL: A Cross-lingual Entity Extraction, Linking and Localization System
Boliang Zhang, Ying Lin, Xiaoman Pan, Di Lu, Jonathan May, Kevin Knight and Heng Ji41

Entity Resolution and Location Disambiguation in the Ancient Hindu Temples Domain using Web Data
Ayush Maheshwari, vishwajeet kumar, Ganesh Ramakrishnan and J. Saketha Nath 46

Madly Ambiguous: A Game for Learning about Structural Ambiguity and Why It’s Hard for Computers
Ajda Gokcen, Ethan Hill and Michael White . 51

VnCoreNLP: A Vietnamese Natural Language Processing Toolkit
Thanh Vu, Dat Quoc Nguyen, Dai Quoc Nguyen, Mark Dras and Mark Johnson 56

CNNs for NLP in the Browser: Client-Side Deployment and Visualization Opportunities
Yiyun Liang, Zhucheng Tu, Laetitia Huang and Jimmy Lin . 61

Generating Continuous Representations of Medical Texts
graham spinks and Marie-Francine Moens. .66

Vis-Eval Metric Viewer: A Visualisation Tool for Inspecting and Evaluating Metric Scores of Machine
Translation Output

David Steele and Lucia Specia . 71

Know Who Your Friends Are: Understanding Social Connections from Unstructured Text
Lea Deleris, Francesca Bonin, Elizabeth Daly, Stephane Deparis, Yufang Hou, Charles Jochim,

Yassine Lassoued and Killian Levacher . 76

vii

RiskFinder: A Sentence-level Risk Detector for Financial Reports
Yu-Wen Liu, Liang-Chih Liu, Chuan-Ju Wang and Ming-Feng Tsai . 81

SMILEE: Symmetric Multi-modal Interactions with Language-gesture Enabled (AI) Embodiment
Sujeong Kim, David Salter, Luke DeLuccia, Kilho Son, Mohamed R. Amer and Amir Tamrakar86

Decision Conversations Decoded
Lea Deleris, Debasis Ganguly, killian Levacher, Martin Stephenson and Francesca Bonin 91

Sounding Board: A User-Centric and Content-Driven Social Chatbot
Hao Fang, Hao Cheng, Maarten Sap, Elizabeth Clark, Ari Holtzman, Yejin Choi, Noah A. Smith

and Mari Ostendorf . 96

viii

Conference Program

Saturday June 2, 2018

10:30–12:00 Posters and Demos

NLP Lean Programming Framework: Developing NLP Applications More Effec-
tively
Marc Schreiber, Bodo Kraft and Albert Zündorf

Pay-Per-Request Deployment of Neural Network Models Using Serverless Architec-
tures
Zhucheng Tu, Mengping Li and Jimmy Lin

An automated medical scribe for documenting clinical encounters
Gregory Finley, Erik Edwards, Amanda Robinson, Michael Brenndoerfer, Najmeh
Sadoughi, James Fone, Nico Axtmann, Mark Miller and David Suendermann-Oeft

CL Scholar: The ACL Anthology Knowledge Graph Miner
Mayank Singh, Pradeep Dogga, Sohan Patro, Dhiraj Barnwal, Ritam Dutt, Rajarshi
Haldar, Pawan Goyal and Animesh Mukherjee

Saturday June 2, 2018

15:30–17:00 Posters and Demos

ArgumenText: Searching for Arguments in Heterogeneous Sources
Christian Stab, Johannes Daxenberger, Chris Stahlhut, Tristan Miller, Benjamin
Schiller, Christopher Tauchmann, Steffen Eger and Iryna Gurevych

ClaimRank: Detecting Check-Worthy Claims in Arabic and English
Israa Jaradat, Pepa Gencheva, Alberto Barrón-Cedeño, Lluís Màrquez and Preslav
Nakov

360° Stance Detection
Sebastian Ruder, John Glover, Afshin Mehrabani and Parsa Ghaffari

DebugSL: An Interactive Tool for Debugging Sentiment Lexicons
Andrew Schneider, John Male, Saroja Bhogadhi and Eduard Dragut

ix

Sunday June 3, 2018

10:30–12:00 Posters and Demos

ELISA-EDL: A Cross-lingual Entity Extraction, Linking and Localization System
Boliang Zhang, Ying Lin, Xiaoman Pan, Di Lu, Jonathan May, Kevin Knight and
Heng Ji

Entity Resolution and Location Disambiguation in the Ancient Hindu Temples Do-
main using Web Data
Ayush Maheshwari, vishwajeet kumar, Ganesh Ramakrishnan and J. Saketha Nath

Madly Ambiguous: A Game for Learning about Structural Ambiguity and Why It’s
Hard for Computers
Ajda Gokcen, Ethan Hill and Michael White

VnCoreNLP: A Vietnamese Natural Language Processing Toolkit
Thanh Vu, Dat Quoc Nguyen, Dai Quoc Nguyen, Mark Dras and Mark Johnson

Sunday June 3, 2018

15:30–17:00 Posters and Demos

CNNs for NLP in the Browser: Client-Side Deployment and Visualization Opportu-
nities
Yiyun Liang, Zhucheng Tu, Laetitia Huang and Jimmy Lin

Generating Continuous Representations of Medical Texts
graham spinks and Marie-Francine Moens

Vis-Eval Metric Viewer: A Visualisation Tool for Inspecting and Evaluating Metric
Scores of Machine Translation Output
David Steele and Lucia Specia

x

Monday June 4, 2018

10:30–12:00 Posters and Demos

Know Who Your Friends Are: Understanding Social Connections from Unstructured
Text
Lea Deleris, Francesca Bonin, Elizabeth Daly, Stephane Deparis, Yufang Hou,
Charles Jochim, Yassine Lassoued and Killian Levacher

RiskFinder: A Sentence-level Risk Detector for Financial Reports
Yu-Wen Liu, Liang-Chih Liu, Chuan-Ju Wang and Ming-Feng Tsai

Monday June 4, 2018

14:00–15:30 Posters and Demos

SMILEE: Symmetric Multi-modal Interactions with Language-gesture Enabled (AI)
Embodiment
Sujeong Kim, David Salter, Luke DeLuccia, Kilho Son, Mohamed R. Amer and
Amir Tamrakar

Decision Conversations Decoded
Lea Deleris, Debasis Ganguly, killian Levacher, Martin Stephenson and Francesca
Bonin

Sounding Board: A User-Centric and Content-Driven Social Chatbot
Hao Fang, Hao Cheng, Maarten Sap, Elizabeth Clark, Ari Holtzman, Yejin Choi,
Noah A. Smith and Mari Ostendorf

xi

Proceedings of NAACL-HLT 2018: Demonstrations, pages 1–5
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

NLP Lean Programming Framework: Developing NLP Applications
More Effectively

Marc Schreiber
FH Aachen

Jülich, Germany
marc.schreiber@fh-aachen.de

Bodo Kraft
FH Aachen

Jülich, Germany
kraft@fh-aachen.de

Albert Zündorf
University of Kassel

Kassel, Germany
zuendorf@uni-kassel.de

Abstract

This paper presents NLP Lean Program-
ming framework (NLPf), a new framework
for creating custom natural language process-
ing (NLP) models and pipelines by utilizing
common software development build systems.
This approach allows developers to train and
integrate domain-specific NLP pipelines into
their applications seamlessly. Additionally,
NLPf provides an annotation tool which im-
proves the annotation process significantly by
providing a well-designed GUI and sophisti-
cated way of using input devices. Due to
NLPf’s properties developers and domain ex-
perts are able to build domain-specific NLP
applications more efficiently. NLPf is Open-
source software and available at https://
gitlab.com/schrieveslaach/NLPf.

1 Introduction

Nowadays more and more business models rely
on the processing of natural language data, e. g.
companies extract relevant eCommerce data from
domain-specific documents. The required eCom-
merce data could be related to various domains,
e. g. life-science, public utilities, or social media,
depending on the companies’ business models.

Furthermore, the World Wide Web (WWW)
provides a huge amount of natural language data
that provides a wide variety of knowledge to hu-
man readers. This amount of knowledge is un-
manageable for humans and applications try to
make this knowledge more accessible to humans,
e. g. Treude and Robillard (2016) make natural
language text about software programming more
accessible through a natural language processing
(NLP) application.

All these approaches have in common that they
require domain-specific NLP models that have
been trained on a domain-specific and annotated
corpus. These models will be trained by using dif-

ferent NLP frameworks and these models have to
be evaluated for every annotation layer. For exam-
ple, named entity recognition (NER) of Stanford
CoreNLP (Manning et al., 2014) might work bet-
ter than NER of OpenNLP (Reese, 2015, Chap-
ter 1); the chosen segmentation tool, e. g. UD-
Pipe (Straka and Straková, 2017), might work bet-
ter than Stanford CoreNLP’s segmentation tool,
and so on. Existing studies show that domain
specific training and evaluation is a common ap-
proach in the NLP community to determine the
best-performing NLP pipeline (Buyko et al., 2006;
Giesbrecht and Evert, 2009; Neunerdt et al., 2013;
Omran and Treude, 2017).

Developers of NLP applications are forced to
create domain-specific corpora to determine the
best-performing NLP pipeline among many NLP
frameworks. During this process they face various
obstacles:

• The training and evaluation of different NLP
frameworks requires a lot of effort of script-
ing or programming because of incompatible
APIs.

• Domain experts who annotate domain-
specific documents with a GUI tool struggle
with an insufficient user experience.

• There are too many combinations how devel-
opers can combine these NLP tools into NLP
pipelines.

• The generated NLP models as a build artifact
have to be integrated manually into the appli-
cation code.

NLP Lean Programming framework (NLPf) ad-
dresses these issues. NLPf provides a standardized
project structure for domain-specific corpora (see
Section 2), an improved user experience for an-
notators (see Section 3), a common build pro-
cess to train and evaluate NLP models in conjunc-

1

tion with the determination of the best-performing
NLP pipeline (see Section 4), and a convenient
API to integrate the best-performing NLP pipeline
into the application code (see Section 5).

2 Annotated Corpus Project Structure

Maven as a build management tool has standard-
ized the development process of Java applications
by standardizing the build life-cycle, standardiz-
ing the project layout, and standardizing the de-
pendency management. These standardization are
evolved by utilizing convention over configuration
(CoC) as much as possible and developers have to
make less decisions while developing software.

Such conventions are missing for the develop-
ment of domain-specific NLP applications and de-
velopers have to make many decisions and have
to write many scripts to build their applications.
NLPf provides conventions by utilizing Maven
and its project object model (POM). Listing 1
shows the basic project configuration to train and
evaluate domain-specific NLP models with NLPf.

<project>
<modelVersion>4.0.0</modelVersion>

<groupId>your.company</groupId>
<artifactId>domain-specific-corpus</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>nlp-models</packaging>

<build>
<plugins>

<plugin>
<groupId>de.schrieveslaach.nlpf</groupId>
<artifactId>nlp-maven-plugin</artifactId>
<version>1.0.0</version>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

Listing 1: POM of Annotated Corpus

Unlike standard Java projects this project uses
the custom packaging method nlp-models which
configures Maven to use NLPf’s plugin (see
nlp-maven-plugin) which trains and evaluates the
domain-specific models. By convention, each doc-
ument stored in src/main/corpus will be used as an
input document for the training process and each
document stored in src/test/corpus will used to
evaluate the derived NLP models.

NLPf supports multiple document formats
which need to be configured as Maven depen-
dency (see io-odt in Listing 2). Most formats
supported by DKPro Core1 (de Castilho and

1https://dkpro.github.io/dkpro-core/

Gurevych, 2014) are supported by NLPf but we
recommend to use ODT documents because de-
velopers can just paste natural language text into
the ODT documents and then annotate them with-
out preparing specific document formats.

<dependency>
<groupId>de.schrieveslaach.nlpf</groupId>
<artifactId>io-odt</artifactId>
<version>1.0.0</version>

</dependency>

<dependency>
<groupId>de.tudarmstadt.ukp.dkpro.core</groupId>
<artifactId>
de.tudarmstadt.ukp.dkpro.core.opennlp-asl

</artifactId>
<version>1.9.0</version>

</dependency>

Listing 2: Dependencies of Annotated Corpus

Additionally, NLPf supports differ-
ent NLP frameworks which are also
provided as Maven dependency (see
de.tudarmstadt.ukp.dkpro.core.opennlp-asl in List-
ing 2). NLPf supports all NLP frameworks which
provide trainer capabilities of DKPro Core2: Stan-
ford CoreNLP, OpenNLP, and LingPipe. When
the project has been configured, the annotators
can start to annotate the documents.

3 Quick Pad Tagger: Annotate
Documents

NLPf provides the annotation tool Quick Pad Tag-
ger (QPT) which provides a well-designed GUI,
drawing the attention to the essential GUI ele-
ments of the annotation task. Figure 1 provides a
screenshot of the QPT, showing how the user an-
notates named entities (NEs) in a document. At
the bottom of the GUI the part of the document
will be displayed and at the top of the screen the
QPT shows a stream of tokens while the user can
select multiple tokens (see blue boxes) to assign a
NE type. Through the spinner on top of the stream
of tokens the user chooses a type for each of the
NEs.

This design has been implemented conse-
quently for each annotation layer and the design
draws the attention to the actual important annota-
tion task, e. g. assign NE types or part-of-speech
(POS) tags to tokens. Figure 2 compares for the
POS tag annotation layers of the state-of-the-art
tool Webanno (Eckart de Castilho et al., 2016) and
the QPT, showing that the QPT draws the attention

2More information is provided here: https://
github.com/dkpro/dkpro-core/pull/1114

2

Figure 1: QPT Screenshot: NE Tagging

to the annotation task and the document text (the
relevant parts) whereas Webanno draws the atten-
tion to all annotations at once.

The user can use a Xbox 360 controller to an-
notate the structure of natural language. This
type of input device provides a more comfort-
able and playful user experience and in conjunc-
tion with the GUI design the annotation process is
less painful and less exhausting. Additionally, the
QPT provides a semi-automatic annotation pro-
cess (Schreiber et al., 2015) which speeds up the
annotation process further. In summary, the QPT
reduces the required annotation time by half.

4 Install Best-performing NLP Pipeline
Artifact

When documents of the corpus project have been
annotated by annotators, developers can use a sin-
gle command to train all available NLP tools, de-
termine the best-performing NLP pipeline, and
create an artifact which will be used in an NLP ap-
plication (see Section 5). These steps will be per-
formed by mvn install and the custom Maven plu-
gin (see nlp-maven-plugin in Listing 1) passes fol-
lowing customized life-cycle:

• At first, the Maven plugin validates the anno-
tated documents, for example, it ensures that
every or no token of a document have been
annotated with a corresponding POS tag.

• After that, the Maven plugin looks up
all available NLP trainer classes which
are available on the classpath (c. f.
de.tudarmstadt.ukp.dkpro.core.opennlp-asl

in Listing 2). Each discovered trainer class
will be used to create a domain-specific
NLP model if the required annotations are
available and the configuration will be stored
in the target directory. The configurations

(a) Webanno Screenshot

(b) QPT Screenshot

Figure 2: Attention Map of POS Tagging Annota-
tion Tools, Obtained Using the EyeQuant Atten-
tion Analytics Software (www.eyequant.com)

are stored in a format compatible to the
Unstructured Information Management
Architecture (UIMA) framework (Ferrucci
and Lally, 2004).

• If NLP tools do not provide any training,
e. g. the segmentation tool of Stanford
CoreNLP, developers can provide engine fac-
tories which create configurations for these
tools (see Listing 3) which will be stored in
the target directory.

• All available configurations will be used
to create all possible domain-specific NLP
pipeline configurations and each NLP
pipeline will be evaluated with F1 score by
running the pipelines on the test documents
and by comparing the results on the provided
test annotations. The configuration of the
best-performing NLP pipeline will be stored
into the target directory.

• Based on the previous steps the Maven plu-
gin creates a Java archive (JAR) which con-
tains the NLP models and configuration of
the best-performing NLP pipeline.

3

• Finally, the created JAR artifact can be in-
stalled or deployed into any Maven reposi-
tory.

public class StanfordCoreNlpEngineFactory {

public AnalysisEngineDescription
createStanfordSegmenter() throws Exception {↪→

return createEngineDescription(
StanfordSegmenter.class,
StanfordSegmenter.PARAM_LANGUAGE_FALLBACK,

"en");↪→
}

}

Listing 3: Engine Factory for NLP Tools Without
Training Support

5 API Running the Best-performing
NLP Pipeline

When the best-performing NLP pipeline is avail-
able as JAR artifact in a Maven repository, devel-
opers can integrate this artifact as Maven depen-
dency into the NLP application. Therefore, devel-
opers insert the project coordinates of the domain
specific corpus into the application’s POM, illus-
trated by Listing 4. Additionally, developers need
to add the plumping library which provides an API
to execute the best-performing NLP pipeline.

<dependency>
<groupId>your.company</groupId>
<artifactId>domain-specific-corpus</artifactId>
<version>1.0-SNAPSHOT</version>

</dependency>

<dependency>
<groupId>de.schrieveslaach.nlpf</groupId>
<artifactId>plumbing</artifactId>
<version>1.0.0</version>

</dependency>

Listing 4: Dependencies of NLP Application

The provided API integrates seamlessly into the
API of the UIMA framework which provides an
interface to run NLP components on unstructured
data such as natural language text, c. f. method
runPipeline in Listing 5. However, the best-
performing NLP has to be configured manually.
NLPf’s plumping JAR artifact provides the method
createBestPerformingPipelineEngineDescription()

which reads the configuration of the JAR that
contains the configuration and models of the
best-performing NLP pipeline.

CollectionReaderDescription readerDescription =
createReaderDescription(↪→
OdtReader.class,
OdtReader.PARAM_SOURCE_LOCATION, new

File("plain.odt"));↪→

AnalysisEngineDescription writerDescription =
createEngineDescription(↪→
OdtWriter.class,
OdtWriter.PARAM_TARGET_LOCATION, new File("."),
OdtWriter.PARAM_OVERWRITE, true);

runPipeline(readerDescription,
createBestPerformingPipelineEngineDescription(),
// integrate custom engine descriptions here
writerDescription);

Listing 5: Example Application Java Code

The example code provided in Listing 5 per-
forms following steps, executed by runPipeline:

• It reads an ODT file with the name plain.odt,
c. f. readerDescription.

• Then, it runs the best-performing NLP
pipeline which annotates the whole document
with the natural language structure.

• Finally, it stores the annotations into an
ODT file into the current directory, c. f.
writerDescription.

Developers can integrate custom analyses as
they require them (see // integrate custom... in
Listing 5). Therefore, they need to implement
UIMA annotators which use the typesystem of
DKPro Core. The conjunction of UIMA, DKPro
Core, and NLPf allows developers to implement
NLP applications effectively.

6 Summary

This paper provides a demonstration of NLP
Lean Programming framework (NLPf) which en-
ables developers to create domain-specific NLP
pipelines more effectively, making less decisions
through CoC. NLPf provides a standardized en-
vironment and the well-designed annotation tool
Quick Pad Tagger (QPT) with an improved in-
put mechanism to improve the annotation process.
Additionally, the best-performing NLP pipeline
will be determine through the convenient build
tool Maven and the resulting artifact can be inte-
grated as Maven dependency into any application
conveniently.

NLPf is Open-source software, released under
the LGPL version 3, and available at https://
gitlab.com/schrieveslaach/NLPf. All
artifacts are available on Maven central and they
can also be used with Jython in Python programs.

4

References
Ekaterina Buyko, Joachim Wermter, Michael Poprat,

and Udo Hahn. 2006. Automatically adapting an
nlp core engine to the biology domain. In Proceed-
ings of the Joint BioLINK-Bio-Ontologies Meeting.
A Joint Meeting of the ISMB Special Interest Group
on Bio-Ontologies and the BioLINK Special Inter-
est Group on Text Data M ining in Association with
ISMB. pages 65–68.

Richard Eckart de Castilho and Iryna Gurevych. 2014.
A broad-coverage collection of portable NLP com-
ponents for building shareable analysis pipelines. In
Nancy Ide and Jens Grivolla, editors, Proceedings of
the Workshop on Open Infrastructures and Analysis
Frameworks for HLT at COLING 2014. Association
for Computational Linguistics and Dublin City Uni-
versity, Dublin, Ireland, pages 1–11.

Richard Eckart de Castilho, Éva Mújdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Chris Biemann. 2016.
A web-based tool for the integrated annotation of
semantic and syntactic structures. In Proceedings
of the workshop on Language Technology Resources
and Tools for Digital Humanities (LT4DH) at COL-
ING 2016. pages 76–84.

David Ferrucci and Adam Lally. 2004. Uima:
An architectural approach to unstructured infor-
mation processing in the corporate research envi-
ronment. Natural Language Engineering 10(3–
4):327–348. https://doi.org/10.1017/
S1351324904003523.

Eugenie Giesbrecht and Stefan Evert. 2009. Is part-of-
speech tagging a solved task? an evaluation of pos
taggers for the german web as corpus. In Proceed-
ings of the 5th Web as Corpus Workshop. WAC5,
pages 27–35.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations.
pages 55–60.

Melanie Neunerdt, Bianka Trevisan, Michael
Reyer, and Rudolf Mathar. 2013. Part-of-
speech tagging for social media texts. pages
139–150. https://doi.org/10.1007/
978-3-642-40722-2_15.

Fouad Nasser A Al Omran and Christoph Treude.
2017. Choosing an nlp library for analyzing soft-
ware documentation: A systematic literature review
and a series of experiments. In Proceedings of the
14th International Conference on Mining Software
Repositories. IEEE Press, Piscataway, NJ, USA,
MSR ’17, pages 187–197. https://doi.org/
10.1109/MSR.2017.42.

Richard M. Reese. 2015. Natural Language Process-
ing with Java. Packt Publishing Ltd.

Marc Schreiber, Kai Barkschat, Bodo Kraft, and Al-
bert Zündorf. 2015. Quick Pad Tagger: An Efficient
Graphical User Interface for Building Annotated
Corpora with Multiple Annotation Layers. Com-
puter Science & Information Technology 4:131–
143. https://doi.org/10.5121/csit.
2015.50413.

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. Association for Computational Linguistics,
Vancouver, Canada, pages 88–99.

Christoph Treude and Martin P. Robillard. 2016. Aug-
menting api documentation with insights from stack
overflow. In Proceedings of the 38th International
Conference on Software Engineering. ACM, New
York, NY, USA, pages 392–403. https://doi.
org/10.1145/2884781.2884800.

5

Proceedings of NAACL-HLT 2018: Demonstrations, pages 6–10
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

Pay-Per-Request Deployment of Neural Network Models
Using Serverless Architectures

Zhucheng Tu, Mengping Li, and Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo
{michael.tu, m282li, jimmylin}@uwaterloo.ca

Abstract

We demonstrate the serverless deployment of
neural networks for model inferencing in NLP
applications using Amazon’s Lambda service
for feedforward evaluation and DynamoDB
for storing word embeddings. Our architec-
ture realizes a pay-per-request pricing model,
requiring zero ongoing costs for maintaining
server instances. All virtual machine manage-
ment is handled behind the scenes by the cloud
provider without any direct developer inter-
vention. We describe a number of techniques
that allow efficient use of serverless resources,
and evaluations confirm that our design is both
scalable and inexpensive.

1 Introduction

Client–server architectures are currently the domi-
nant approach to deploying neural network models
for inferencing, both in industry and for academic
research. Once a model has been trained, deploy-
ment generally involves “wrapping” the model in
an RPC mechanism (such as Thrift) or a REST
interface (e.g., Flask in Python), or alternatively
using a dedicated framework such as TensorFlow-
Serving (Olston et al., 2017). This approach ne-
cessitates provisioning machines (whether physi-
cal or virtual) to serve the model.

Load management is an important aspect of run-
ning an inference service. As query load increases,
new server instances must be brought online, typ-
ically behind a load-balancing frontend. While
these issues are generally well understood and
industry has evolved best practices and standard
toolsets, the developer still shoulders the burden
of managing these tasks. A server-based architec-
ture, moreover, involves a minimum commitment
of resources, since some server must be running all
the time, even if it is the smallest and cheapest vir-
tual instance provided by a cloud service. Particu-
larly relevant for academic researchers, this means

that a service costs money to run even if no one is
actually using it.

As an alternative, we demonstrate a pay-per-
request serverless architecture for deploying neu-
ral network models for NLP applications. We ap-
plied our approach to two real-world CNNs: the
model of Kim (2014) for sentence classification
and the CNN of Severyn and Moschitti (2015) for
answer selection in question answering (SM CNN
for short). On Amazon Web Services, the models
cost less than a thousandth of a cent per invoca-
tion. Model inference does not require the devel-
oper to explicitly manage machines, and there are
zero ongoing costs for service deployment. We
show that our design can transparently scale to
moderate query loads without requiring any sys-
tems engineering expertise.

2 Serverless Architectures

A serverless architecture does not literally mean
that we can magically perform model inference
without requiring servers; the computation must
happen somewhere! A serverless design simply
means that the developer does not need to explic-
itly manage servers—the cloud provider shoulders
this burden behind the scenes.

Serverless architectures make use of what is
known as function as a service (FaaS), where de-
velopers specify blocks of code with well-defined
entry and exit points and the cloud provider han-
dles the invocation. Typically, function invocation
involves spinning up virtual machine instances and
bootstrapping the execution environment, but all
of these tasks are handled by the cloud provider.
The developer pays per function invocation no
matter the query load; scalability and elasticity
are the responsibility of the cloud provider. In
most cases, these invoked functions are stateless,
with state usually offloaded to another cloud ser-

6

vice. The standard design pattern begins with the
invoked function reading from a persistent store
and writing results back to the same or a differ-
ent store. The serverless paradigm meshes well
with microservice architectures that are in fash-
ion today, and multiple cloud providers (Amazon,
Google, Microsoft) have FaaS offerings.

Recently, Crane and Lin (2017) proposed a
novel search engine built using a serverless archi-
tecture on Amazon Web Services whereby post-
ings lists are stored in DynamoDB and query ex-
ecution is encapsulated in Lambda functions. We
explore how similar techniques can be applied to
neural network models for NLP applications. We
are aware of a recent blog post describing the de-
ployment of NN models using Lambda (Dietz,
2017). However, that work focuses on vision ap-
plications; the additional technical challenge we
overcome is the need to access word embeddings
for NLP applications, which requires more than
just Lambda deployment.

3 Serverless Neural Network Inference

In this work, we selected Amazon Web Services
(AWS) as our deployment platform due to its
market-dominant position, although other cloud
providers have similar offerings.

To enable serverless neural network inference
for NLP, the trained models are packaged together
with the function to be invoked and dependent
software libraries. The cloud provider is respon-
sible for creating the environment for execution.
During inference, the Lambda function takes input
text, which is supplied externally via an API gate-
way. Sentences need to be first transformed into an
embedding matrix constructed using word vectors,
in our case from word2vec (Mikolov et al., 2013).
These are fetched from DynamoDB. Finally, the
Lambda function applies feedforward evaluation
on the embedding matrix according to the supplied
model, yielding a final prediction. Figure 1 illus-
trates this architecture, described in detail below.

3.1 Lambda Deployment Package

A complete Lambda deployment package com-
prises the code of the function as well as its de-
pendencies. In this work, we use PyTorch v0.3.1
for inference. Thus, our deployment package re-
quires PyTorch as well as its dependencies, the
model definition, the model weights, and a han-
dler that specifies how the function should be ex-

Client

API Gateway

Neural Network
Inference

DynamoDB

Lambda Lambda
fetch word vectors

Prediction requests &
results

Word Vector
Uploader

Upload
word

vectors

Client

API Gateway

Neural Network
Inference

Figure 1: Serverless architecture for deploying NNs.

ecuted. Note that although an emerging deploy-
ment pattern is to use PyTorch for training models
and Caffe2 for running inference in a production
environment through the use of ONNX,1 support
for this approach remains immature and thus we
rely on PyTorch for inference as well.

There is a 250 MB limit on the size of the
Lambda deployment package. To stay within this
limit, we had to build PyTorch from source on an
AWS EC2 machine to exclude CUDA and other
unnecessary dependencies. The machines that ex-
ecute Lambda functions do not have GPU capa-
bilities, so this does not incur any performance
penalties. The deployment package is compressed
and uploaded to S3, Amazon’s object storage ser-
vice. In the Lambda execution model, an Ex-
ecution Context is initialized upon invocation of
the Lambda function, which is a runtime environ-
ment that bootstraps the dependencies in the de-
ployment package. The Execution Context may be
costly to set up (as in our case) and therefore the
Lambda API provides hooks that facilitate reuse
for subsequent invocations.

3.2 DynamoDB Storage of Word Vectors
Most neural networks for NLP use pre-trained
word vectors to build an input representation as the
first step in inference. In a serverless architecture,
these word vectors need to be stored somewhere.
Due to the size restrictions described above, the
word vectors cannot be stored in the deployment
package itself.

To overcome this issue, we adopt the solu-
tion of storing the word embedding vectors in
DynamoDB, much like how Crane and Lin (2017)
store postings lists. DynamoDB (DeCandia et al.,
2007) is a hosted “NoSQL” database service that
offers low latency access to arbitrary amounts of
data, as Amazon scales up and down capacity au-

1https://onnx.ai/

7

tomatically. We use DynamoDB as a key–value
store for holding the word vectors, where each
word is the key and its word vector is the value
stored as a List type. Kim CNN uses 300 di-
mensional word vectors from word2vec trained on
the Google News corpus and SM CNN uses 50
dimensional word vectors from word2vec trained
on English Wikipedia. Thus, we created separate
DynamoDB tables for these 50 and 300 dimen-
sional word vectors. For expediency in running
experiments, we only load the word vectors for
words in the vocabulary of the datasets we use.

3.3 Neural Network Inference

Our API for invoking the NN models comprises a
JSON request sent to the AWS API Gateway via
HTTP, which is a proxy that then forwards the re-
quest to Lambda. A request for feedforward infer-
ence using Kim CNN consists of a single sentence
in the request body, whereas for SM CNN, the re-
quest body holds a pair of sentences.

Upon receiving a request, the Lambda handler
first tokenizes and downcases the input. It then is-
sues BatchGetItem requests to DynamoDB to
fetch the word vectors for unique words in the in-
put. These queries retrieve the word vectors in par-
allel to reduce latency. The function then blocks
until all word vectors are retrieved, after which
they are concatenated together to construct a sen-
tence embedding matrix.

In our implementation, the model is initialized
outside of the Lambda handler function scope so
that if an existing Event Context is available, a
previously-loaded model can be reused. If the
model has not been initialized, it will be loaded
from the deployment package. Note that con-
text reuse is completely opaque: unbeknownst to
us, AWS performs caching to support efficient in-
vocations as query load ramps up, but we have
no explicit control over the exact mechanisms for
eviction, warmup, etc. The sentence embeddings
are fed into the model for feedforward evaluation
(handled by PyTorch) and the result is returned as
JSON from the handler.

4 Experiments

We first provide some implementation details:
Kim CNN is a sentence classification model that
consists of convolutions over a single sentence
input matrix and pooling followed by a fully-
connected layer with dropout and softmax out-

put. We used the variant where the word embed-
dings are not fine-tuned via backpropagation dur-
ing training (called the “static” variant). SM CNN
is a model for ranking short text pairs that con-
sists of convolutions using shared filters over both
inputs, pooling, and a fully-connected layer with
one hidden layer in between. We used the variant
described by Rao et al. (2017), which excludes the
similarity matrix (found to increase accuracy) as
well as the additional features that involve inverse
document frequency. In our experiments, we are
focused only on execution performance, which is
not affected by these minor tweaks, primarily for
expediency. All of our code and experiment utili-
ties are open-sourced on GitHub.2

Before detailing our experimental procedure
and results, we need to explain Amazon’s cost
model. Lambda costs are very straightforward,
billed simply by how long each function executes
in increments of 100ms, for a particular amount
of allocated memory that the developer specifies.
DynamoDB’s cost model is more complex: it sup-
ports two modes of operation, termed manual pro-
visioning and auto scaling. In the first mode, the
developer must explicitly allocate read and write
capacity. Amazon provides the capacity, but the
downside is a fixed cost, even if the capacity is
not fully utilized (and over-utilization will result
in timeouts). Thus, this mode is not truly “pay
as you go”. The alternative is what Amazon calls
auto scaling, where the service continuously mon-
itors and adjusts capacity on the fly.

For our experiments, we opted to manually pro-
vision 500 Read Capacity Units (RCUs), which
translates into supporting a DynamoDB query
load of 1000 queries per second (fetching the word
vector for each word constitutes a query). This
choice makes our experimental results easier to in-
terpret, since we have little insight into how Ama-
zon handles auto scaling behind the scenes. Note
however, that we adopted this configuration for ex-
perimental clarity, because otherwise we would be
conflating unknown “backend knobs” in our per-
formance measurements. In production, auto scal-
ing would be the preferred solution.

To evaluate performance, we built a test harness
that dispatches requests in parallel, with a single
parameter to control the number of outstanding re-
quests allowed when issuing queries. We call this

2https://github.com/castorini/
serverless-inference

8

C tput Latency (ms) Cost
(QPS) mean p50 p99 (/106 Q)

5 7.0 700 678 1285 $1.46
10 13.0 740 722 1283 $1.66
20 23.7 802 779 1357 $1.87
30 32.3 845 817 1447 $1.87

Table 1: Latency, throughput, and cost of serverless
Kim CNN under different loads (C).

C tput Latency (ms) Cost
(QPS) mean p50 p99 (/106 Q)

5 12.1 410 381 657 $1.04
10 21.1 468 443 780 $1.04
15 30.8 467 439 827 $1.04
20 38.5 496 486 785 $1.04
25 44.4 530 519 814 $1.25

Table 2: Latency, throughput, and cost of serverless SM
CNN under different loads (C).

the concurrency parameter, which we vary to sim-
ulate different amounts of query load. With dif-
ferent concurrency settings (ramping down from
maximum load), we measured latency (mean, 50th
and 99th percentile) and throughput. For Kim
CNN, we used input sentences from the valida-
tion set of the Stanford Sentiment Treebank (1101
sentences). For SM CNN, we used input sen-
tence pairs from the validation set of the TrecQA
dataset (1148 sentences). We conducted each ex-
perimental trial multiple times before taking mea-
surements to “warm up” the backend.

Results are shown in Table 1 for Kim CNN and
Table 2 for SM CNN. Our deployment package is
bundled with OpenBLAS to take advantage of op-
timized linear algebra routines. In both cases, we
see that latency increases slightly as throughput
ramps up. This suggests that we are not achieving
perfect scale up. In theory, AWS should be propor-
tionally increasing backend resources to maintain
constant latency. It is not clear if this behavior is
due to some nuance in Lambda usage that we are
not aware of, or if there are actual bottlenecks in
our design. Note that Kim CNN is slower because
it is manipulating much larger word vectors (300
vs. 50 dimensions).

The final column in Tables 1 and 2 report
Lambda charges in US dollars per million queries
based on the mean latency. As of February 2018,

for functions allocated 128 MB of memory, the
cost is $0.000000208 for every 100ms of running
time (rounded up). Note that these costs do not in-
clude provisioning DynamoDB, which costs 0.013
cents per Read Capacity Unit per hour. We have
not probed the scalability limits of our current
architecture, but it is likely that our design can
handle even larger query loads without additional
modification.

We performed additional analyses to understand
the latency breakdown: logs show that approxi-
mately 60–70% of time inside each function in-
vocation is spent building the embedding ma-
trix, which requires fetching word vectors from
DynamoDB. In other words, inference latency
is dominated by data fetching. This is no sur-
prise since these queries involve cross-machine re-
quests. The rest of the time is spent primarily
on feedforward evaluation. The amortized cost
of loading the model is negligible since it can be
reused in subsequent invocations.

5 Future Work and Conclusions

We describe a novel serverless architecture for
the deployment of neural networks for NLP tasks.
Our design appears to be feasible, and experi-
ments show that it scales up to moderate query
loads inexpensively. For reference, a sustained
query throughput of 20 queries per second trans-
lates into 1.7 million queries per day. While there
are certainly many web-scale services that handle
larger query loads, our serverless design is able
to achieve this scale with zero engineering effort,
since the cloud provider handles all aspect of load
management without any developer intervention.

In terms of design improvements within our
control, tackling the latency of DynamoDB
queries would yield the biggest impact, since
fetching the word vectors accounts for most of
the request latency. One simple idea would be
to retain a cache of the most frequent words in
the Lambda itself. This would not improve “cold”
startup latency, but would speed up requests once
the cache has been populated. Beyond elements in
our control, further advances in cloud infrastruc-
ture “behind the scenes” will improve usability,
performance, and cost, making serverless architec-
tures increasingly attractive.

Acknowledgments. This research was supported
by the Natural Sciences and Engineering Research
Council (NSERC) of Canada.

9

References
Matt Crane and Jimmy Lin. 2017. An exploration of

serverless architectures for information retrieval. In
Proceedings of the 3rd ACM International Confer-
ence on the Theory of Information Retrieval (IC-
TIR 2017), pages 241–244, Amsterdam, The Nether-
lands.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swami Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s
highly available key-value store. In Proceedings
of the 21st ACM Symposium on Operating Systems
Principles (SOSP 2007), pages 205–220, Stevenson,
Washington.

Michael Dietz. 2017. Serverless deep/machine
learning in production—the pythonic way.
https://blog.waya.ai/deploy-deep-machine-learning-
in-production-the-pythonic-way-a17105f1540e.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014), pages 1746–
1751, Doha, Qatar.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. arXiv:1301.3781.

Christopher Olston, Noah Fiedel, Kiril Gorovoy,
Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu Ra-
jashekhar, Sukriti Ramesh, and Jordan Soyke. 2017.
TensorFlow-Serving: Flexible, high-performance
ML serving. In Workshop on ML Systems at NIPS
2017.

Jinfeng Rao, Hua He, and Jimmy Lin. 2017. Experi-
ments with convolutional neural network models for
answer selection. In Proceedings of the 40th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1217–
1220. ACM.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR 2015), pages 373–382, Santiago, Chile.

10

Proceedings of NAACL-HLT 2018: Demonstrations, pages 11–15
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

An automated medical scribe for documenting clinical encounters∗

Greg P. Finley, Erik Edwards, Amanda
Robinson, Najmeh Sadoughi, James Fone,

Mark Miller, David Suendermann-Oeft
EMR.AI Inc.

San Francisco, CA, USA
greg.finley@emr.ai

Michael Brenndoerfer
University of California

Berkeley, CA, USA

Nico Axtmann
DHBW, Karlsruhe, Germany

Abstract

A medical scribe is a clinical professional who
charts patient–physician encounters in real
time, relieving physicians of most of their ad-
ministrative burden and substantially increas-
ing productivity and job satisfaction. We
present a complete implementation of an au-
tomated medical scribe. Our system can serve
either as a scalable, standardized, and econom-
ical alternative to human scribes; or as an as-
sistive tool for them, providing a first draft of a
report along with a convenient means to mod-
ify it. This solution is, to our knowledge, the
first automated scribe ever presented and re-
lies upon multiple speech and language tech-
nologies, including speaker diarization, medi-
cal speech recognition, knowledge extraction,
and natural language generation.

1 Introduction

A recent study from the University of Wisconsin
concluded that primary care physicians spend al-
most two hours on tasks related to electronic med-
ical record (EMR) systems for every one hour of
direct patient care (Arndt et al., 2017). This result
illustrates the omnipresent complaint that medical
practitioners are overly burdened by the adminis-
trative overhead of their work.

One solution to this issue is to have someone
other than the physician take care of most of the
EMR-related work associated with patient care. In
particular, a medical scribe assumes the role of a
clinical paraprofessional entering information into
and, in some cases, extracting required informa-
tion from EMR systems during patient–physician
encounters (Earls et al., 2017). Scribes produce
data entries in real time, entering narrative and dis-
crete data points into templates of the EMR sys-
tem. They can be either physically present in the
physician’s office or connected through phone or

∗Patent pending.

internet, interacting with the EMR system offline
or by way of remote desktop connections. The lat-
ter are referred to as “virtual scribes.”

Several studies show that the use of human
scribes saves physicians substantial time on doc-
umentation, improves their work-life balance, and
enhances clinicians’ productivity. The resulting
revenue increase has the potential to be multiple
times higher than the cost of the scribe (Koshy
et al., 2010; Bastani et al., 2014; Earls et al., 2017).

Despite these considerable advantages, there
are some drawbacks to using medical scribes:

• scribes require extended training time and
cost before developing their full potential—
e.g., Walker et al. (2016) found the average
training cost to be $6,317;

• scribes are often medical or premedical stu-
dents (Walker et al., 2016) who, after being
sufficiently exposed to the training experi-
ence the position of a scribe offers, tend to
move on to attend medical school full time1;
this fast-paced turnover in conjunction with
the aforementioned training time and cost
greatly reduces their effectiveness;

• scribes are costly: Earls et al. (2017) states
that their scribes are paid $39,750 p.a.;
Walker et al. (2016) quotes an average salary
of $15.91 per hour for their virtual scribes
which equals approximately $29,000 p.a.;
Brady and Shariff (2013) estimates the an-
nual cost of an on-site scribe to be $49,000
and for a virtual scribe $23,000.

In order to mitigate these disadvantages while pre-
serving the strengths of employing scribes in the

1E.g., Stanford University’s scribe program is purpose-
fully limited to 12 months and is designed to prepare future
medical students (Lin et al., 2017).

11

first place, we have developed a fully automated
scribe, a prototype of which is presented here. It
makes use of a full stack of state-of-the-art speech
and natural language processing (NLP) compo-
nents which are concisely described in this paper.
To the best of the authors’ knowledge, this is the
very first automated scribe implementation ever
presented to the scientific community.

We see at least two main avenues for deploy-
ing this technology. The first is to serve as a di-
rect stand-in for human scribes—useful in cases
where hiring scribes is either economically or lo-
gistically infeasible. In this case, the output of our
system would be subject to review and correction
by the physician. The second is as an assistive tool
to (human) virtual scribes: our system displays
an inital draft of the report and a summary of the
information present in the conversation. The vir-
tual scribe will be able to make any necessary cor-
rections either to this information, in which case
the report can be re-generated, or directly to the
text. Either way, the availability of our automated
system promises to streamline the human scribe’s
work and increase their throughput dramatically.
Note that a similar workflow is commonplace for
transcribing dictated clinical reports: the dictation
is passed through an automatic speech recognition
(ASR) and formatting system, then manually cor-
rected by professional transcriptionists off-site.

2 Design

The automated scribe features a linear processing
pipeline of speech-processing modules followed
by NLP modules. We briefly introduce and moti-
vate all modules in this section, then describe each
individually in the following sections.

The initial stages transform the recorded con-
versation into a text format: first, a speaker
diarization module determines who is speaking
when and uses this information to break the audio
recording into segments coded for speaker, which
are then passed through a medical ASR stage.
These steps are described in Sections 3 and 4.

Following ASR, the scribe must convert a tran-
scribed spontaneous conversation into a concise
and fully formatted report. This goal is exem-
plified in Figure 1, which shows an excerpt of a
conversation and its realization in the report. The
system does not perform this translation directly—
this would require enormous amounts of parallel
data to solve, end to end, with any single tech-

nique. Instead, we employ a two-stage approach
in which the scribe mines the conversation for in-
formation and saves it in a structured format, then
exports this structured data to the final report. In
this way, the bulk of the NLP work is divided into
two well-studied problems: knowledge extraction
(KE; Section 5) and natural language generation
(NLG; Section 7). (Between these two stages,
structured data is processed directly to prepare it
for export [Section 6].) Generating structured data
as an intermediate step has numerous other advan-
tages: it can be kept in the patient’s history for
reference to improve results on future episodes; it
can be used by other systems that process struc-
tured data (e.g. billing, decision support); and it
can be corrected manually if needed, which can be
less error-prone than correcting final text directly.

3 Speaker diarization

Speaker diarization is the “who spoke when” prob-
lem, also called speaker indexing (Wellekens,
2001; Miró et al., 2012; Moattar and Homayoun-
pour, 2012). The input is audio features sampled
at 100 Hz frame rate, and the output is frame-
labels indicating speaker identify for each frame.
Four labels are possible: speaker 1 (e.g. the doc-
tor), speaker 2 (e.g. the patient), overlap (both
speakers), and silence (within-speaker pauses and
between-speaker gaps). Note that the great ma-
jority of doctor-patient encounters involve exactly
two speakers. Although our method is easily gen-
eralizable to more speakers, we currently report on
the two-speaker problem.

The diarization literature broadly distinguishes
“bottom-up” vs. “top-down” approaches. The for-
mer (Gish et al., 1991) operate by merging neigh-
boring frames by similarity (clustering); we found
initial results unsatisfactory. The later operate
with a prior model such as HMM–GMM (Hidden
Markov, Gaussian mixture model) to represent the
likely audio features and timing (transition) char-
acteristics of dialogs. We have introduced our own
top-down approach that utilizes a modified expec-
tation maximization (EM) algorithm at decoding
time to learn the current speaker and background
silence characteristics in real time. It is coded in
plain C for maximum efficiency and currently op-
erates at ∼50 × real-time factor.

Diarization requires an expanded set of audio
features compared to ASR. In ASR, only phoneme
identity is of final interest, and so audio features

12

Conversation Report

Dr: “okay great and in terms of your past medical history do you
have any other medical conditions you have”

FAMILY MEDICAL HISTORY
The patient’s aunt had lung cancer.

Pt: “no i have not had any medical conditions but my auntie actually
she had lung cancer so that’s why i kind of. . . ”

Figure 1: An excerpt from a typical input and output for the NLP segment of the scribe. Note that the ASR output
has no punctuation or case; the doctor (‘Dr.’) and patient (‘Pt.’) identifiers illustrate the contribution of the diarizer.

are generally insensitive to speaker characteris-
tics. By contrast, in diarization, only speaker iden-
tity is of final interest. Also note that diariza-
tion performs a de facto speech activity detection
(SAD), since states 1–3 vs. state 4 are speech vs.
silence. Therefore features successful for SAD
(Sadjadi and Hansen, 2013) are helpful to diariza-
tion as well. Accordingly, we use an expanded set
of gammatone-based audio features for the total
SAD + diarization + ASR problem (details to be
reported elsewhere).

4 Speech recognition

ASR operates on the audio segments produced by
the diarization stage, where each segment con-
tains one conversational turn (1 speaker + possi-
bly a few frames of overlap). Currently, the di-
arization and ASR stages are strictly separated and
the ASR decoding operates by the same neural
network (NN) methodology that we recently re-
ported for general medical ASR (Edwards et al.,
2017). In brief, the acoustic model (AM) con-
sists of a NN trained to predict context-sensitive
phones from the audio features; and the language
model (LM) is a 3- or 4-gram statistical LM pre-
pared with methods of interpolation and pruning
that we developed to address the massive medical-
vocabulary challenge. Decoding operates in real
time by use of weighted finite-state transducer
(WFST) methodology (Mohri et al., 2002; Al-
lauzen et al., 2007; Povey et al., 2011) coded in
C++. Our current challenge is to adapt the AM and
LM to medical conversations, which have some-
what different statistics compared to dictations.

5 Knowledge extraction

Extracting information from spontaneous conver-
sational speech is a notoriously difficult prob-
lem. There has been some recent work on extract-
ing keywords (Habibi and Popescu-Belis, 2013)
or facts such as biographical details (Jing et al.,
2007), but it is unclear whether known methods
are effective for clinical conversation specifically.

We apply a novel strategy to simplify the KE
problem by tagging sentences and turns in the
conversation based upon the information they are
likely to contain. These classes overlap largely
with sections in the final report—chief complaint,
medical history, etc. Then, we apply a variety of
strategies, depending on the type of information
being extracted, on filtered sections of text.

We use hierarchical recurrent neural networks
(RNNs) to tag turns and sentences with their pre-
dicted class; each sentence is represented by a
single vector encoded by a word-level RNN with
an attention mechanism. (Our approach is simi-
lar to the influential document classification strat-
egy of Yang et al. (2016), although we classify the
sentences individually rather than the entire docu-
ment.) In most cases, we can generate a sentence
vector from an entire speech turn; for longer turns,
however, we have to detect sentence boundaries.
This is essentially a punctuation restoration task,
which we have successfully undertaken previously
using RNNs with attention (Salloum et al., 2017).

To extract information from tagged sentences,
we apply one or more of several strategies:

• Complete or partial string match to identify
terms from ontologies. This is effective for
concepts which do not vary much in repre-
sentation, such as certain medications.

• Extractive rules using regular expressions,
which are well suited to predictable elements
such as medication dosages, or certain tem-
poral expressions (e.g. dates and durations).

• Other unsupervised or knowledge-based
strategies, such as Lesk-style approaches
(Lesk, 1986) in which semantic overlap with
dictionary definitions of terms is used to nor-
malize semantically equivalent phrases, as
has been done successfully for medical con-
cepts (Melton et al., 2010). This might be
suitable for concepts that usually vary in ex-
pression, such as descriptions of symptoms.

13

• Fully supervised machine learning ap-
proaches, which we employ for difficult
or highly specialized tasks—for example,
identifying when a patient complains of
symptoms generally worsening.

The KE stage also relies on extractive summary
techniques where necessary, in which entire sen-
tences may be copied directly if they refer to in-
formation that is relevant but difficult to represent
in our structured type system—for example, a de-
scription of how a patient sustained a workplace
injury. (To handle such cases using natural lan-
guage understanding is a highly complex problem
requiring a domain-general solution, which is be-
yond the scope of the medical scribe.) At a later
stage, extracted text is processed to fit seamlessly
into the final report (e.g. changing pronouns).

6 Processing structured data

Following the information extraction stage is a
module which performs several functions to val-
idate the structured knowledge and prepare it for
NLG. This often entails correcting for any gaps
or inconsistencies in the extracted knowledge, as
may occur when there is critical information that
is not explicitly mentioned during the encounter
(as is frequently the case), or if there are errors in
diarization, ASR, or KE. Typically, problems can
be resolved through a series of logical checks or
by relying on other structured data in the patient’s
history (when available). If not, conflicts or grave
omissions can be flagged for the user.

Wherever appropriate, data is also encoded in
structures compatible with the HL7 FHIR v3 stan-
dard (Bender and Sartipi, 2013) to facilitate inter-
operability with other systems. As a concrete ex-
ample, if the physician states an intent to prescribe
a medication, a FHIR MedicationRequest resource
is generated. The output of this stage can be made
available to the user if he or she wishes to amend
the structured information, and any changes can be
propagated instantly to NLG.

7 Natural language generation

The NLG module produces and formats the final
report. Medical reports follow a loosely standard-
ized format, with sections appearing in a gener-
ally predictable order and with well-defined con-
tent within each section. Our strategy is a data-
driven templatic approach supported by a finite-
state “grammar” of report structure.

The template bank consists of sentence tem-
plates annotated for the structured data types nec-
essary to complete them. We fill this bank by clus-
tering sentences from a large corpus of medical re-
ports according to semantic and syntactic similar-
ity. The results of this stage are manually curated
to ensure that strange or imprecise sentences can-
not be generated by the system, and to ensure par-
simony in the resulting type system. Kondadadi
et al. (2013) employ a similar method of cluster-
ing and manual review to quickly and effectively
generate a full template bank from data.

Using the same reports, we induce the grammar
using a probabilistic finite-state graph, where each
arc outputs a sentence and a single path through
the graph represents one actual or possible report.
Decoding optimizes the maximal use of structured
data and the likelihood of the path chosen. The
grammar helps to improve upon one common crit-
icism of templatic NLG approaches, which is the
lack of variation in sentences (van Deemter et al.,
2005), in a way that does not require any “infla-
tion” of the template bank with synonyms or para-
phrases: during decoding, different semantically
equivalent templates may be selected based on
context and the set of available facts, thus replicat-
ing the flow of natural language in existing notes.

Note that, as format can vary considerably by
note type, specialty, and healthcare provider, we
build separate NLG models to handle each type of
output.

Finally, all notes pass through a processor that
handles reference and anaphora (e.g. replacing
some references to the patient with gender pro-
nouns), truecasing, formatting, etc.

8 Conclusion

The presented automated scribe can take over or
supplement the role of human scribes document-
ing encounters between patients and physicians.
At the current stage, the system is still limited in its
functionality and scope, and major enhancements
are being made to improve performance and con-
tent coverage of several of the involved compo-
nents. In particular, we plan to expand the use
of machine learning techniques as soon as enough
data has been accumulated in various pilot studies
currently underway. Additionally, we are working
to compile a large set of parallel inputs and out-
puts to allow for a true end-to-end evaluation of
the system.

14

References
C Allauzen, M Riley, J Schalkwyk, and M Mohri.

2007. OpenFst: a general and efficient weighted
finite-state transducer library. In Proc CIAA, volume
LNCS 4783, pages 11–23. Springer.

BG Arndt, JW Beasley, MD Watkinson, JL Temte, W-J
Tuan, CA Sinsky, and VJ Gilchrist. 2017. Tethered
to the EHR: primary care physician workload assess-
ment using EHR event log data and time-motion ob-
servations. Ann Fam Med, 15(5):419–426.

A Bastani, B Shaqiri, K Palomba, D Bananno, and
W Anderson. 2014. An ED scribe program is able
to improve throughput time and patient satisfaction.
Am J Emerg Med, 32(5):399–402.

D Bender and K Sartipi. 2013. HL7 FHIR: an Agile
and RESTful approach to healthcare information ex-
change. In Proc Int Symp CBMS, pages 326–331.
IEEE.

K Brady and A Shariff. 2013. Virtual medical scribes:
making electronic medical records work for you. J
Med Pract Manage, 29(2):133–136.

K van Deemter, M Theune, and E Krahmer. 2005. Real
versus template-based natural language generation:
a false opposition? Comput Linguist, 31(1):15–24.

ST Earls, JA Savageau, S Begley, BG Saver, K Sul-
livan, and A Chuman. 2017. Can scribes boost
FPs’ efficiency and job satisfaction? J Fam Pract,
66(4):206–214.

E Edwards, W Salloum, GP Finley, J Fone, G Cardiff,
M Miller, and D Suendermann-Oeft. 2017. Medical
speech recognition: reaching parity with humans. In
Proc SPECOM, volume LNCS 10458, pages 512–
524. Springer.

H Gish, M-H Siu, and JR Rohlicek. 1991. Segregation
of speakers for speech recognition and speaker iden-
tification. In Proc ICASSP, volume 2, pages 873–
876. IEEE.

M Habibi and A Popescu-Belis. 2013. Diverse key-
word extraction from conversations. In Proc ACL,
volume 2, pages 651–657. ACL.

H Jing, N Kambhatla, and S Roukos. 2007. Extract-
ing social networks and biographical facts from con-
versational speech transcripts. In Proc ACL, pages
1040–1047. ACL.

R Kondadadi, B Howald, and F Schilder. 2013. A sta-
tistical NLG framework for aggregated planning and
realization. In Proc ACL, pages 1406–1415. ACL.

S Koshy, PJ Feustel, M Hong, and BA Kogan. 2010.
Scribes in an ambulatory urology practice: patient
and physician satisfaction. J Urol, 184(1):258–262.

ME Lesk. 1986. Automatic sense disambiguation us-
ing machine readable dictionaries: how to tell a pine
cone from an ice cream cone. In Proc SIGDOC,
pages 24–26. ACM.

S Lin, K Osborn, A Sattler, I Nelligan, D Svec,
A Aaronson, and E Schillinger. 2017. Creating
the medical school of the future through incremen-
tal curricular transformation: the Stanford Health-
care Innovations and Experiential Learning Direc-
tive (SHIELD). Educ Prim Care, 28(3):180–184.

GB Melton, S Moon, M Bridget, and S Pakhomov.
2010. Automated identification of synonyms in
biomedical acronym sense inventories. In Proc
Louhi Workshop, pages 46–52. ACL.

XA Miró, S Bozonnet, N Evans, C Fredouille, G Fried-
land, and O Vinyals. 2012. Speaker diarization: a re-
view of recent research. IEEE Trans Audio Speech
Lang Process, 20(2):356–370.

MH Moattar and MM Homayounpour. 2012. A re-
view on speaker diarization systems and approaches.
Speech Commun, 54(10):1065–1103.

M Mohri, FCN Pereira, and M Riley. 2002. Weighted
finite-state transducers in speech recognition. Com-
put Speech Lang, 16(1):69–88.

D Povey, G Boulianne, L Burget, O Glembek,
NK Goel, M Hannemann, P Motlı́cek, Y Qian,
P Schwarz, and J Silovsky. 2011. The Kaldi speech
recognition toolkit. In Proc ASRU, pages 1–4. IEEE.

SO Sadjadi and JHL Hansen. 2013. Unsupervised
speech activity detection using voicing measures
and perceptual spectral flux. IEEE Signal Process
Lett, 20(3):197–200.

W Salloum, GP Finley, E Edwards, M Miller, and
D Suendermann-Oeft. 2017. Deep learning for
punctuation restoration in medical reports. In Proc
Workshop BioNLP, pages 159–164. ACL.

KJ Walker, W Dunlop, D Liew, MP Staples, M John-
son, M Ben-Meir, HG Rodda, I Turner, and
D Phillips. 2016. An economic evaluation of the
costs of training a medical scribe to work in emer-
gency medicine. Emerg Med J, 33(12):865–869.

CJ Wellekens. 2001. Seamless navigation in audio
files. In Proc Odyssey, pages 9–12. ISCA.

Z Yang, D Yang, C Dyer, X He, A Smola, and E Hovy.
2016. Hierarchical attention networks for document
classification. In Proc NAACL-HLT, pages 1480–
1490. ACL.

15

Proceedings of NAACL-HLT 2018: Demonstrations, pages 16–20
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

CL Scholar: The ACL Anthology Knowledge Graph Miner

Mayank Singh, Pradeep Dogga∗, Sohan Patro∗, Dhiraj Barnwal∗, Ritam Dutt∗,
Rajarshi Haldar, Pawan Goyal and Animesh Mukherjee

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur, WB, India

mayank.singh@cse.iitkgp.ernet.in

Abstract

We present CL Scholar, the ACL Anthol-
ogy knowledge graph miner to facilitate high-
quality search and exploration of current re-
search progress in the computational linguis-
tics community. In contrast to previous works,
periodically crawling, indexing and process-
ing of new incoming articles is completely au-
tomated in the current system. CL Scholar
utilizes both textual and network information
for knowledge graph construction. As an
additional novel initiative, CL Scholar sup-
ports more than 1200 scholarly natural lan-
guage queries along with standard keyword-
based search on constructed knowledge graph.
It answers binary, statistical and list based
natural language queries. The current system
is deployed at http://cnerg.iitkgp.
ac.in/aclakg. We also provide REST
API support along with bulk download facility.
Our code and data are available at https:
//github.com/CLScholar.

1 Introduction

ACL Anthology1 is one of the popular initiatives
of the Association for Computational Linguistics
(ACL) to curate all publications related to compu-
tational linguistics and natural language process-
ing at one common place. At present, it hosts
more than 44,000 papers and is actively updated
and maintained by Min Yen Kan. Since its in-
ception, ACL Anthology functions as a repository
with the collection of papers from ACL and related
organizations in computational linguistics. How-
ever, it does not provide any additional statistics
about authors, papers, venues, and topics. Also, it
lacks advance search features such as article rank-
ing by factoring in popularity or relevance, natu-
ral language query support, author profiles, topical
search etc.

∗*These authors contributed equally to the study.
1https://aclweb.org/anthology/

1.1 Previous systems built on ACL anthology

Owing to above limitations, ACL anthology re-
mained an archival repository for quite a long
time. Bird et al. (2008) developed the ACL An-
thology Reference Corpus (ACL ARC) as a collab-
orative attempt to provide a standardized testbed
reference corpus based on the ACL Anthology.
Later, Radev et al. (2009) have invested humon-
gous manual efforts to construct The ACL Anthol-
ogy Network Corpus (AAN). AAN consists of a
manually curated database of citations, collabora-
tions, and summaries and statistics about the net-
work. They have utilized two OCR processing
tools PDFBox2 and ParsCit (Councill et al., 2008)
for curation. AAN was continuously updated till
2013 (Radev et al., 2013). Recently, this project
has been moved to Yale University as part of the
new LILY group3.

1.2 The computational linguistic knowledge
graph

As a similar initiative, in this paper, we demon-
strate the development of CL Scholar which au-
tomatically mines ACL anthology and constructs
computational linguistic knowledge graph (here-
after ‘CLKG’). The current framework automati-
cally crawls new articles, processes, indexes, con-
structs knowledge graph and generates searchable
statistics without involving tedious manual anno-
tations. We leverage state-of-the-art scientific ar-
ticle processing tool OCR++ (Singh et al., 2016)
for robust and automatic information extraction
from scientific articles. OCR++ is an open-source
framework that can extract from scholarly articles
the metadata, the structure and the bibliography.

The constructed CLKG is modeled as a hetero-
geneous graph (Sun et al., 2009) consisting of four

2https://pdfbox.apache.org/
3http://tangra.cs.yale.edu/newaan/

16

Figure 1: Data processing flow diagram.

entities: author, paper, venue, and field. We utilize
metapaths (Sun and Han, 2012) to implement the
query retrieval framework.

1.3 Natural language queries
In the first-of-its-kind initiative, we extend the
functionalities of CL Scholar to answer natural
language queries (hereafter ‘NLQ’) along with
standard keyword-based queries. Currently, it
answers binary, statistical and list based NLQ.
Overall, we handle more than 1200 variations of
NLQ.
Outline: The rest of the paper is organized as
follows. Section 2 describes the ACL Anthology
dataset. Section 3 details step by step extraction
procedure for CLKG construction. In section 4,
we describe CLKG. We describe our framework
in section 5. We conclude in section 6 and identify
future work.

Table 2: General statistics about the ACL Anthology
dataset.

Number of papers 42,069
Year range 1965–2017
Total authors 37,752
Total unique authors 33,372
Total unified venues 33

2 Dataset

CL Scholar uses metadata and full-text PDF re-
search articles crawled from ACL Anthology.
ACL Anthology consists of more than 40,000 re-
search articles published in more than 33 computa-
tional linguistic events (venues) including confer-
ences, workshops, and journals. Table 2 presents
general statistics of the crawled dataset.

We crawl both metadata information (unique ar-
ticle identifier, article title, authors’ names, and
venue) as well as full-text PDF articles. Next, we
describe in detail several pre-processing steps and
knowledge graph construction methodology.

3 Pre-processing and knowledge graph
construction

We process full-text PDFs using state-of-the-art
extraction tool OCR++ (Singh et al., 2016). We
extract references, citation contexts, author affil-
iations and URLs from full-text. OCR++ also
provides reference to citation contexts mapping.
Raw information with several variations like au-
thor names, venue names and affiliations are as-
signed unique identifiers using standard indexing
approaches. We only consider those reference pa-
pers that are present in ACL anthology. This rich
textual, as well as citation relationship informa-
tion, is utilized in the construction of CLKG. Fig-
ure 1 presents the CLKG construction from meta-
data and full-text PDF files crawled from ACL an-
thology.

4 Computational linguistic knowledge
graph

Computational linguistic knowledge graph
(CLKG) is a heterogeneous graph (Sun et al.,
2009) consisting of four entities: author (A),
paper (P), venue (V) and field (F) as nodes.
Each entity is associated with few properties,
for example, properties of P are publication
year, title, abstract, etc. Similarly, properties
of A are name, publication trend, affiliation
etc. We utilize metapaths (Sun and Han, 2012)
between entities to express semantic relations. For

17

example, simple metapaths like A→P and V→P
represent “author of” and “published at” relations
respectively, whereas complex metapaths like
V→A→P and F→A→P represent “authors of
papers published at” and “authors of papers in”
relations respectively. We leverage metapaths
to develop CL Scholar (described in the next
section).

Figure 3: CL Scholar framework.

5 CL Scholar

CL scholar fetches information from CLKG as
per the input query from the user. The current
framework is divided into two modules – 1) nat-
ural language based query retrieval, and 2) en-
tity specific query retrieval. Figure 3 shows CL
Scholar framework.

5.1 Natural language query retrieval
The first module answers natural language queries
(NLQ). It consists of two sub-modules, 1) the
query classifier, and 2) the NL query processor.
Query classifier classifies user input into one of
the three basic types of NLQ using regular ex-
pression patterns. NL query processor processes
query based on its type determined by query clas-
sifier. Given an input natural language query, we
utilize longest subsequence match to identify en-
tity instances. The three types of NLQ are:

1. Binary queries: These represent a set of
queries for which user demands a ‘yes’ or

‘no’ type answer. Table 4 lists few interest-
ing binary queries.

2. Statistical queries: These represent set of
queries which the knowledge base returns
with some statistics. Currently, we sup-
port three types of statistics – 1) temporal,
2) cumulative, and 3) comparison. Tem-
poral represents year-wise statistics, cumu-
lative represents overall statistics and com-
parison represents comparative statistics be-
tween two or more instances of the same en-
tity type. Table 4 lists few representative sta-
tistical queries.

3. List queries: These represent set of queries
for which the knowledge base returns a list of
papers, authors or venues. Table 4 also enu-
merates few representative list queries.

5.2 Entity specific query retrieval

CL scholar also supports entity specific retrieval.
As described in section 4, CLKG consists of four
entities: paper, author, venue, and field. Currently,
our system supports three4 entity specific retrieval
schemes handled by three sub-modules:

1. Paper specific: This sub-module returns pa-
per specific information. Currently, we re-
trieve and display author names and affilia-
tions, abstract, publication year and venue,
cumulative and year-wise citations, list of ref-
erences, citer papers, co-cited papers present
in ACL anthology and list of URLs present
in the paper text. We also show average sen-
timent score received by the queried paper
by utilizing incoming citation contexts. Ta-
ble 5 shows three representative paper spe-
cific queries.

2. Author specific: This sub-module handles
author specific queries. Given an author
name, the system shows its cumulative and
year-wise publication and citation count, col-
laborator list with an average number of col-
laborations, current and temporal H-index
and temporal topic distribution. We also list
author’s publications in ACL anthology. Ta-
ble 5 lists three author specific queries with
first name, last name and full name respec-
tively.

3. Venue specific: We also answer venue spe-
cific queries. For each venue specific query,
the system shows cumulative and year-wise

4The fourth sub-module is still under development.

18

Table 4: Representative queries from three natural language query classes. A represents author, P represents paper,
V represents venue and F represents field. The list of supported queries is available online at CL Scholar portal.

Binary queries Statistical queries List queries

1. Is V accepting papers from F How many F papers are pub-
lished in V over the years

List the papers from F ac-
cepted in V

2. Has A published any paper How many papers are pub-
lished by A

List the papers published by
A

3. Does A publish papers on F How many papers are pub-
lished by A in F

List the papers published by
A on F

4. Are there any papers pub-
lished by A1 and A2 together

How many papers are pub-
lished by A1 and A2 together

List the papers published by
A1 and A2 together

5. Are there any papers of A
with positive sentiment

How many papers are there
of A with positive sentiment

List of papers with positive
sentiment of A

publication and citation count, 2-year impact
factor, recently held year and list of collabo-
rating venues. Table 5 shows three represen-
tative venue specific queries.

Table 5: Representative entity specific queries.

Paper
specific

Author
specific

Venue
specific

OCR Chris NAACL
Deep learning Singh SIGDAT

Word embeddings Aravind Joshi ACL

5.3 Additional insights

We provide two additional insights by analyzing
incoming citation contexts. First, we present a
summary generated from incoming the citation
contexts (Qazvinian and Radev, 2008). Currently,
we show five summary sentences against each pa-
per. Second, we also compute sentiment score of
each citation context by leveraging a standard sen-
timent analyzer (Athar and Teufel, 2012). We ag-
gregate by averaging over the sentiment score of
all the incoming citation contexts.

5.4 Ranking

Currently, we employ popularity based ranking of
retrieved results. We utilize current citation count
as a measure of popularity. In future, we plan
to deploy other ranking schemes like recency, im-
pact, sentiment, relevance, etc.

5.5 Deployment

CL Scholar is developed using ReactJS frame-
work. The system also supports REST API re-
quests which are powered by a NodeJS server with
data being served using MongoDB. It is currently

accessible at our research group page5. More in-
formation about API usage is available at API
support page6. In addition, the entire knowledge
graph can also be easily downloaded in a plain
text format. Figure 6 shows a snapshot of the CL
Scholar landing page.

Figure 6: Snapshot of CL Scholar landing page.

The current system is still under development.
Currently, we assume that spellings are correct for
NLQ. We do not support instant query search. We
also do not support query recommendations.

6 Conclusion

In this paper, we propose a fully automatic ap-
proach for the development of computational lin-
guistic knowledge graph from full-text PDF arti-
cles available in ACL Anthology. We also de-
velop first-of-its-kind academic natural language
query retrieval system. Currently, our system can
answer three different types of natural language
queries. In future, we plan to extend the query
set. We also plan to append structural information
within knowledge graphs such as section labeling
of citations, figure and table captions etc. We also
plan to conduct extensive evaluation to compare
CL Scholar with state-of-the-art systems.

5http://cnerg.iitkgp.ac.in/aclakg
6http://cnerg.iitkgp.ac.in/aclakg/api

19

References
Awais Athar and Simone Teufel. 2012. Context-

enhanced citation sentiment detection. In Proceed-
ings of the 2012 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL
HLT ’12, pages 597–601, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Steven Bird, Robert Dale, Bonnie J Dorr, Bryan Gib-
son, Mark Thomas Joseph, Min-Yen Kan, Dongwon
Lee, Brett Powley, Dragomir R Radev, and Yee Fan
Tan. 2008. The acl anthology reference corpus: A
reference dataset for bibliographic research in com-
putational linguistics.

Isaac G Councill, C Lee Giles, and Min-Yen Kan. 2008.
Parscit: an open-source crf reference string parsing
package. In LREC, volume 8, pages 661–667.

Vahed Qazvinian and Dragomir R. Radev. 2008. Sci-
entific paper summarization using citation summary
networks. In Proceedings of the 22Nd International
Conference on Computational Linguistics - Volume
1, COLING ’08, pages 689–696, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Dragomir R Radev, Pradeep Muthukrishnan, and Va-
hed Qazvinian. 2009. The acl anthology network
corpus. In Proceedings of the 2009 Workshop on
Text and Citation Analysis for Scholarly Digital

Libraries, pages 54–61. Association for Computa-
tional Linguistics.

DragomirR. Radev, Pradeep Muthukrishnan, Vahed
Qazvinian, and Amjad Abu-Jbara. 2013. The acl an-
thology network corpus. Language Resources and
Evaluation, pages 1–26.

Mayank Singh, Barnopriyo Barua, Priyank Palod,
Manvi Garg, Sidhartha Satapathy, Samuel Bushi,
Kumar Ayush, Krishna Sai Rohith, Tulasi Gamidi,
Pawan Goyal, and Animesh Mukherjee. 2016.
Ocr++: A robust framework for information extrac-
tion from scholarly articles. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
3390–3400, Osaka, Japan. The COLING 2016 Or-
ganizing Committee.

Yizhou Sun and Jiawei Han. 2012. Mining heteroge-
neous information networks: principles and method-
ologies. Synthesis Lectures on Data Mining and
Knowledge Discovery, 3(2):1–159.

Yizhou Sun, Yintao Yu, and Jiawei Han. 2009.
Ranking-based clustering of heterogeneous informa-
tion networks with star network schema. In Pro-
ceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data min-

ing, pages 797–806. ACM.

20

Proceedings of NAACL-HLT 2018: Demonstrations, pages 21–25
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

ArgumenText: Searching for Arguments in Heterogeneous Sources

Christian Stab and Johannes Daxenberger and Chris Stahlhut and Tristan Miller
Benjamin Schiller and Christopher Tauchmann and Steffen Eger and Iryna Gurevych

Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universität Darmstadt

https://www.ukp.tu-darmstadt.de/

Abstract

Argument mining is a core technology for en-
abling argument search in large corpora. How-
ever, most current approaches fall short when
applied to heterogeneous texts. In this pa-
per, we present an argument retrieval system
capable of retrieving sentential arguments for
any given controversial topic. By analyzing
the highest-ranked results extracted from Web
sources, we found that our system covers 89%
of arguments found in expert-curated lists of
arguments from an online debate portal, and
also identifies additional valid arguments.

1 Introduction

Information retrieval (IR) and question answering
(QA) are mature NLP technologies that excel at
finding factual information relevant to a given query.
But not all information needs can be satisfied with
factual information. In many search scenarios,
users are not seeking a universally accepted ground
truth, but rather an overview of viewpoints and
arguments surrounding a controversial topic. For
example, in a legal dispute, an attorney might have
to search for precedents and multifaceted legal
opinions supporting the case at hand, and anticipate
counterarguments that opposing counsel will make.
Similarly, a policymaker will survey pros and cons
of prospective legislation before she proposes or
votes on it. While IR and QA can help with such
argument search tasks, they provide no specialized
support for them.

Despite its obvious applications, argument search
has attracted relatively little attention in the argu-
ment mining community. In this paper, we present
ArgumenText, which we believe is the first system
for topic-relevant argument search in heterogeneous
texts. It takes a large collection of arbitrary Web
texts, automatically identifies arguments relevant to
a given topic, classifies them as “pro” or “con”, and

presents them ranked by relevance in an intuitive
interface. The system thereby eases much of the
manual effort involved in argument search.

We present an evaluation of our system in which
its top-ranked search results are compared with
arguments aggregated and curated by experts on a
popular online debate portal. The results show that
our system has high coverage (89%) with respect
to the expert-curated lists. Moreover, it identifies
many additional valid arguments omitted or over-
looked by the human curators, affording users a
more complete overview of the controversy sur-
rounding a given topic. Nonetheless, precision
remains an issue, with slightly less than half (47%)
the results being irrelevant to the topic or misclas-
sified with respect to argument stance.

2 Related Work

Most existing approaches consider argumentmining
at the discourse level and address tasks like argu-
ment unit identification (Ajjour et al., 2017), com-
ponent classification (Mochales-Palau and Moens,
2009), or argument structure identification (Eger
et al., 2017). These approaches focus on recog-
nizing arguments within a single text but do not
consider relevance to user-defined topics.
Until now, there has been little work on identi-

fying topic-relevant arguments. Wachsmuth et al.
(2017) present a generic framework for argument
search that relies on pre-structured arguments from
debate portals. Levy et al. (2014) present a system
designed specifically for detecting topic-relevant
claims from Wikipedia, which was later extended
to mine supporting statements for claims (Rinott
et al., 2015). The MARGOT system (Lippi and
Torroni, 2015) is trained on Wikipedia data and
extracts claims and evidence from user-provided
texts. However, all these systems focus on specific
text types and are not yet able to extract arguments

21

Segmented
documents

Topic-relevant
documents

Pro and con
arguments

topic
topic

Online processing

Sentence
segmentation

Offline processing

Indexing Document
Retrieval

Argument
Recognition Web-Interface

Apache UIMA Elasticsearch Tensorflow / Keras HTML / JavascriptDocuments User

Figure 1: System architecture.

from a large collection of arbitrary texts. The ap-
proach most similar to ours, introduced by Hua and
Wang (2017), extracts claim-relevant arguments
from different text types, but is limited to sentential
“pro” arguments.

3 System Description

Our system allows searching for arguments relevant
to a user-defined topic. A topic is some matter of
controversy that can be concisely expressed through
keywords. We define an argument as a sentence
expressing evidence or reasoning that can be used
to either support or oppose a given topic. For
example, “It carries a risk of genetic defects.” is
a “con” argument for the topic “cloning” while
“Cloning should be permitted.” is not an argument
at all since it lacks a relevant reason.

Retrieving arguments from a large document col-
lection is computationally expensive. In particular,
argument mining methods that consider the rele-
vance to a specific topic need to be applied for each
query individually, resulting in poor response times
if the collection is too big. To address this challenge,
our system first retrieves a list of documents rele-
vant to a given topic and then applies an argument
mining model to the top-ranked documents. The
system’s architecture (Fig. 1) is split into offline
and online processing parts. The offline process-
ing consists of components not depending on the
user’s query such as boilerplate removal, sentence
segmentation, and document indexing. The online
processing covers all components that depend on
the user-defined topic and thus need to be applied
for each query. The following subsections describe
each of these components in detail.

3.1 Data
As our objective is to search for arguments in any
text domain, we build upon the English part of
CommonCrawl,1 the largest Web corpus available
to date. Before further processing, we followed

1http://commoncrawl.org/

Habernal et al. (2016) for de-duplication, boiler-
plate removal using jusText (Pomikálek, 2011), and
language detection.2 This left us with 400 mil-
lion heterogeneous plain-text documents in English,
with an overall size of 683GiB.

3.2 Tokenization and Sentence Segmentation
Each document is segmented into sentences with
an Apache UIMA pipeline using components from
DKPro Core (Eckart de Castilho and Gurevych,
2014). To facilitate processing of other languages
in future work, we chose Apache OpenNLP which
currently supports six languages. The modular
nature of our setup allows us to easily integrate
other sentence segmentation methods for currently
unsupported languages. Finally, the document text,
the tokenized sentences, and the metadata (e.g.,
document titles and timestamps) are converted into
a JSON format for indexing.

3.3 Indexing and Retrieval
To retrieve documents relevant to a given topic,
we index the data using Elasticsearch.3 The entire
offline processing of our data, using 40 parallel
processes on a server equipped with two Intel Xeon
E5-2699 v4 CPUs (22 cores each) and 512GiB of
memory, required 19 days in total.
For each request, Elasticsearch scores all doc-

uments containing the keywords of the topic ac-
cording to BM25 (Robertson et al., 1994). It then
returns the top-ranked documents, including the
segmented sentences and metadata, in the afore-
mentioned JSON format. We can optionally restrict
the search to specific fields in the metadata, such as
the publication date or source domain.

3.4 Argument Identification and Stance
Recognition

For extracting topic-relevant arguments from the
list of retrieved documents, we build on the corpus
of Stab et al. (2018), which includes annotated

2We use the Language Detection Library available at
https://github.com/shuyo/language-detection.

3https://www.elastic.co/

22

Filter by URL: Found 164 arguments (98 pro; 66 con) in 20 documents (classified 621 sentences in 2.921 ms)

PRO: Thanks to vehicle-to-vehicle and vehicle-to-
infrastructure communication systems, autonomous cars
and trucks could significantly reduce traffic congestion and
traffic accidents. (0.9771)

http://www.futurist.com/2013/11/13/greener-future-self-driving-cars/

PRO: Self-driving vehicles can contribute to reducing
infrastructure investments and enrich city life in other ways,
such as by reducing emissions, and improving air quality
and traffic safety. (0.9709)

http://www.multivu.com/mnr/64153-volvo-self-driving-cars-unique-swedish-project

PRO: Autonomous vehicles and a smarter infrastructure will
bring us another step closer to even safer traffic and an
improved environment. (0.9711)

http://www.multivu.com/mnr/64153-volvo-self-driving-cars-unique-swedish-project

PRO: This technology can also improve safety significantly,
reduce fuel consumption and congestion. (0.9669)

http://www.multivu.com/mnr/64153-volvo-self-driving-cars-unique-swedish-project

PRO: This technology can also improve safety significantly,
reduce fuel consumption and congestion. (0.9667)

http://www.multivu.com/mnr/64153-volvo-self-driving-cars-unique-swedish-project

CON: Because self-driving cars are powered by computers
and computers can inevitably be hacked, there are some
serious security concerns here. (0.9592)

http://gizmodo.com/whats-keeping-self-driving-cars-off-the-road-1450916024

CON: However, it's important to point out that self-driving
cars could also pose some unique safety problems of their
own. (0.9545)

http://blog.cjponyparts.com/2014/08/are-we-road-self-driving-cars-infographic/

CON: For example, we haven't built self-driving cars to deal
with intense conditions like busy city driving and extreme
weather. (0.9204)

http://gizmodo.com/whats-keeping-self-driving-cars-off-the-road-1450916024

CON: The technology's not quite thereThe most obvious
hurdle for self-driving cars is the technology that makes
them drive themselves. (0.8659)

http://gizmodo.com/whats-keeping-self-driving-cars-off-the-road-1450916024

CON: But they've come a long way from the early DARPA
challenges when they were stalling, crashing, and mostly
getting overwhelmed in simple desert settings. (0.8959)

http://www.extremetech.com/extreme/118863-nevada-embraces-the-future-approves-
self-driving-cars

1 2 3 4 5 6 7 Next

self-driving cars SearchSearch

Pro/Con List Weights Docs

✔✔ multivu.com (21)

✔✔ futurist.com (18)

✔✔ gizmodo.com (15)

✔✔ blog.cjponyparts.com (13)

✔✔ self-drivecar.com (11)

ideas.time.com (10)

✔✔ businessinsider.com (9)

bgr.com (9)

✔✔ thetruthaboutcars.com (7)

✔✔ extremetech.com (7)

✔✔ hybridcars.com (6)

computerworld.com (6)

✔✔ dailybits.com (6)

✔✔ autoworldnews.com (6)

✔✔ whogotfunded.com (5)

✔✔ mobilenapps.com (5)

✔✔ slashgear.com (4)

✔✔ wopular.com (3)

✔✔ ubergizmo.com (2)

✔✔ aktualnosti.net (1)

Home • Privacy Policy • Contact

Figure 2: The UI’s Pro/Con view, showing “pro” and “con” arguments for the query “self-driving cars”.

sentences for eight topics. To cover a wider range
of topics, we extended the corpus with 41 addi-
tional topics, such as “self-driving cars” and “basic
income”, using the same procedure: we queried
Google for each topic, extracted 600 sentences
for each topic from the search results, and had
seven crowd workers annotate each sentence as
either a “pro” argument, a “con” argument, or not
an argument. As in Stab et al. (2018), we used
MACE (Hovy et al., 2013) with a threshold of 0.9
to merge the annotations. This process provided us
with an additional 22,691 annotated sentences, of
which 27% are annotated as “pro” arguments, 18%
as “con” arguments, and 55% as not an argument.
Using this extended corpus, we first trained the

attention-based neural network presented by Stab
et al. (2018) which classifies each sentence as argu-
ment or no argumentwith respect to the user-defined
topic. Second, we apply a BiLSTM model to deter-
mine the stance (pro or con) of each topic-relevant
argument.4 To evaluate these models, we conduct a
leave-one-topic-out evaluation—i.e., we trained the
models on n − 1 topics and evaluated their perfor-
mance on the left-out topic. The results show that
the models benefit from the broader range of topics
in our extended corpus. In particular, the perfor-
mance of argument identification improves to 73.84
macro F-score as compared to 65.8 macro F-score
when trained on the initial corpus with eight topics.

4Using two different models gave us slightly better results
than using a single three-label model.

The stance model is trained on the “pro” and “con”
arguments and achieves an average macro F-score
of 76.61 across all topics. It outperforms by a large
margin a logistic regression baseline with unigram
features achieving 67.92 macro F-score.

3.5 User Interface
The user interface resembles a typical search engine
and allows queries for any controversial topic. To
provide the user with arguments of the highest con-
fidence, the retrieved arguments are sorted by the
average confidence score of the argument extraction
and stance recognition model. The user can choose
between three argument-based views (1–3) and a
document-based view (4):
(1) Pro/Con view. This view (Fig. 2) presents the

user with a ranked list of “pro” and “con” ar-
guments next to each other. To provide access
to the origin and context of arguments, the
document URL is displayed for each argument
as well as the average confidence score.

(2) List view. This view provides the same in-
formation as the Pro/Con view, but shows all
arguments interleaved in a single list instead
of as two separate lists.

(3) Attention Weights view. To show which words
most influence the classifier in its decision, we
visualize attention weights for each word of an
argumentative sentence. Important words are
underlined in the view; the more intense the
colour of the underlining, the more important

23

Topic # pro # con
cellphones 75 102
social networking 224 64
animal testing 455 609

Table 1: Arguments considered in the evaluation study.

the word is to the topic. The view is otherwise
structured like the Pro/Con view.

(4) Documents view. This view ranks documents
by the number of arguments they contain. It
shows the number of “pro” and “con” argu-
ments in bar charts next to the document titles,
which can be expanded to list their arguments.

Each view features a filtering function for excluding
arguments from specific sources (e.g., websites the
user considers unreliable—see left side of Fig. 2).
By default, arguments from all sources are shown.

4 Evaluation
As we believe that our system will be beneficial
for a broad range of applications, we decided not
to focus on a particular use case for the evaluation.
Rather, we compared the output of the system
against expert-created argument summaries from
the online debate platform ProCon.org. For three
randomly selected topics excluded from our training
data, we extracted 1529 arguments from our system
output (see Table 1). For the same topics, we
then collected all expert-created “pro” and “con”
arguments from ProCon.org.
In a manual evaluation study with three under-

graduate and graduate students of computer science,
we assessed the perceived quality of the system-
discovered arguments and their overlap with expert-
created arguments from ProCon.org.5 Each student
went through the entire list of system-discovered ar-
guments and decided whether each one (i) could be
mapped to one or more of the expert-created “pro”
arguments; (ii) could be mapped to one or more of
the expert-created “con” arguments; (iii) was not
an argument, was nonsensical, or had the wrong
stance; or (iv) was a completely new argument.
Since our interest is in the perceived usefulness of
the system rather than its ability to precisely match
a carefully crafted gold standard, we simply aggre-
gated votes for each of the above categories and
averaged them for the three participants of the study.

5For the sake of comparison, we considered only the Pro-
Con.org summary sentence of each argument—e.g., “Animal
testing is cruel and inhumane.”

The results provided some high-level insights about
the potential and limitations of the system.
First, we discovered that our system’s coverage

(i.e., the percentage of expert-created arguments
mapped to one or more arguments from our system)
is very high—89% across the three topics. “Social
networking”, with 46 unique expert-curated argu-
ments, was the only topic with less than perfect ar-
gument coverage (78%). Second, 12% of the aggre-
gated votes indicated that a sentence is a completely
new argument (i.e., a valid argument, not necessar-
ily unique, with no expert-created counterpart)—a
strong indicator that our system is not just usable
to detect arguments for a broader range of topics as
compared to expert-curated platforms, but also to
get a more complete picture about individual top-
ics. Third, we also discovered that on average 47%
of arguments fell into category (iii), meaning that
while the coverage of our system is high, precision
is still a problem.
We also assessed the ranking by repeating the

evaluation for only the top 10, 50, and 100 argu-
ments. The percentage of system-discovered new
arguments is identical across ranks. As for coverage,
a bit more than 40% of expert-curated arguments
can be found among the first ten results on aver-
age, while 71% can be found among the first 50
and 79% among the first 100. While nonsensical
sentences were more common at lower ranks, the
percentage of both non-arguments and arguments
with incorrect stance remains stable across ranks at
about 30% and 12%, respectively.

5 Conclusion and Future Work
We have presented ArgumenText,6 an argument
search system capable of retrieving “pro” and “con”
arguments relevant to a given topic from hetero-
geneous sources.7 By comparing the top-ranked
results to arguments from debate portals, we have
shown that our system achieves a high coverage
compared to expert-created lists of arguments, and
that it is even capable of finding additional valid
arguments. In future work, we aim to improve the
precision of the system by employing more sophis-
ticated deep learning architectures like adversarial
neural networks, to experiment with other argument
ranking methods, and to adapt the approach to other
languages such as German.

6Available at http://www.argumentsearch.com
7This work has been supported by the German Federal

Ministry of Education and Research (BMBF) under the pro-
motional reference 03VP02540 (ArgumenText).

24

References
Yamen Ajjour, Wei-Fan Chen, Johannes Kiesel, Hen-

ning Wachsmuth, and Benno Stein. 2017. Unit seg-
mentation of argumentative texts. In Proceedings
of the 4th Workshop on Argument Mining. Asso-
ciation for Computational Linguistics, pages 118–
128. http://www.aclweb.org/anthology/W17-
5115.

Richard Eckart de Castilho and Iryna Gurevych. 2014.
A broad-coverage collection of portable NLP com-
ponents for building shareable analysis pipelines. In
Proceedings of the Workshop on Open Infrastruc-
tures and Analysis Frameworks for HLT . Association
for Computational Linguistics and Dublin City Uni-
versity, pages 1–11. http://www.aclweb.org/
anthology/W14-5201.

Steffen Eger, Johannes Daxenberger, and Iryna
Gurevych. 2017. Neural end-to-end learning for com-
putational argumentation mining. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics, pages 11–
22. http://aclweb.org/anthology/P17-1002.

Ivan Habernal, Omnia Zayed, and Iryna Gurevych.
2016. C4Corpus: Multilingual Web-size cor-
pus with free license. In Proceedings of the
10th International Conference on Language
Resources and Evaluation. European Language
Resources Association (ELRA), pages 914–922.
http://www.lrec-conf.org/proceedings/
lrec2016/pdf/388_Paper.pdf.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, pages 1120–1130. http://www.aclweb.
org/anthology/N13-1132.

Xinyu Hua and Lu Wang. 2017. Understanding and
detecting supporting arguments of diverse types. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers). Association for Computational Lin-
guistics, pages 203–208. http://aclweb.org/
anthology/P17-2032.

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud
Aharoni, and Noam Slonim. 2014. Context depen-
dent claim detection. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers. Dublin City
University and Association for Computational Lin-
guistics, pages 1489–1500. http://www.aclweb.
org/anthology/C14-1141.

Marco Lippi and Paolo Torroni. 2015. MARGOT: A
web server for argumentation mining. Expert Sys-
tems with Applications 65:292–303. https://doi.
org/10.1016/j.eswa.2016.08.050.

Raquel Mochales-Palau and Marie-Francine Moens.
2009. Argumentation mining: The detection, clas-
sification and structure of arguments in text. In
Proceedings of the 12th International Conference
on Artificial Intelligence and Law. Association for
Computing Machinery, pages 98–107. https://
doi.org/10.1145/1568234.1568246.

Jan Pomikálek. 2011. Removing Boilerplate and Du-
plicate Content from Web Corpora. Doctoral the-
sis, Masaryk University, Faculty of Informatics,
Brno, Czech Republic. https://is.muni.cz/th/
45523/fi_d/phdthesis.pdf.

Ruty Rinott, Lena Dankin, Carlos Alzate Perez,
MiteshM.Khapra, EhudAharoni, andNoamSlonim.
2015. Show me your evidence – An automatic
method for context dependent evidence detection. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 440–450.
http://aclweb.org/anthology/D15-1050.

Stephen E. Robertson, Steve Walker, Susan Jones,
Micheline M. Hancock-Beaulieu, and Mike Gat-
ford. 1994. Okapi at TREC-3. In Proceedings of
the Third Text REtrieval Conference. NIST, pages
109–126. http://trec.nist.gov/pubs/trec3/
papers/city.ps.gz.

Christian Stab, Tristan Miller, and Iryna Gurevych.
2018. Cross-topic argument mining from heteroge-
neous sources using attention-based neural networks.
arXiv preprint 1802.05758. https://arxiv.org/
abs/1802.05758.

Henning Wachsmuth, Martin Potthast, Khalid
Al Khatib, Yamen Ajjour, Jana Puschmann, Jiani
Qu, Jonas Dorsch, Viorel Morari, Janek Beven-
dorff, and Benno Stein. 2017. Building an argu-
ment search engine for the Web. In Proceedings of
the 4th Workshop on Argument Mining. Association
for Computational Linguistics, pages 49–59. http:
//www.aclweb.org/anthology/W17-5106.

25

Proceedings of NAACL-HLT 2018: Demonstrations, pages 26–30
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

ClaimRank: Detecting Check-Worthy Claims in Arabic and English

Israa Jaradat1, Pepa Gencheva2

Alberto Barrón-Cedeño1, Lluís Màrquez3∗ and Preslav Nakov1

1 Qatar Computing Research Institute, HBKU, Qatar
2 Sofia University “St. Kliment Ohridski”, Bulgaria

3 Amazon, Barcelona, Spain
{ijaradat, albarron, pnakov}@hbku.edu.qa pepa.k.gencheva@gmail.com lluismv@amazon.com

Abstract

We present ClaimRank, an online system for
detecting check-worthy claims. While origi-
nally trained on political debates, the system
can work for any kind of text, e.g., interviews
or regular news articles. Its aim is to facili-
tate manual fact-checking efforts by prioritiz-
ing the claims that fact-checkers should con-
sider first. ClaimRank supports both Arabic
and English, it is trained on actual annota-
tions from nine reputable fact-checking orga-
nizations (PolitiFact, FactCheck, ABC, CNN,
NPR, NYT, Chicago Tribune, The Guardian,
and Washington Post), and thus it can mimic
the claim selection strategies for each and any
of them, as well as for the union of them all.

1 Introduction

The proliferation of fake news demands the at-
tention of both investigative journalists and scien-
tists. The need for automated fact-checking sys-
tems rises from the fact that manual fact-checking
is both effort- and time-consuming. The first step
towards building an automated fact-checking sys-
tem is to identify the claims that are worth fact-
checking.

We introduce ClaimRank, an automatic sys-
tem to detect check-worthy claims in a given text.
ClaimRank is multilingual and at the moment it
is available for both English and Arabic. To the
best of our knowledge, it is the only such system
available for Arabic. ClaimRank is trained on ac-
tual annotations from nine reputable fact-checking
organizations (PolitiFact, FactCheck, ABC, CNN,
NPR, NYT, Chicago Tribune, The Guardian, and
Washington Post), and thus it can be used to pre-
dict the claims by each of the individual sources,
as well as their union. This is the only system we
are aware of that offers such a capability.

∗Work conducted while this author was at QCRI.

2 Related Work

ClaimBuster is the first work to target check-
worthiness (Hassan et al., 2015). It is trained
on data annotated by students, professors, and
journalists, and uses features such as sentiment,
TF.IDF-weighted words, part-of-speech tags, and
named entities. In contrast, (i) we have much
richer features, (ii) we support English and Ara-
bic, (iii) we learn from choices made by nine rep-
utable fact-checking organizations, and (iv) we
can mimic the selection strategy of each of them.

In our previous work, we focused on de-
bates from the US 2016 Presidential Campaign
and we used pre-existing annotations from on-
line fact-checking reports by professional journal-
ists (Gencheva et al., 2017). Here we use roughly
the same features, with some differences (see be-
low). However, (i) we train on more debates
(seven instead of four for English, and also Arabic
translations for two debates), (ii) we add support
for Arabic, and (iii) we deploy a working system.

Patwari et al. (2017) focused on the 2016 US
Election campaign as well and independently ob-
tained their data in a similar way. However, they
used less features, they did not mimic any specific
website, nor did they deploy a working system.

3 System Overview

The run-time model is trained on seven English
political debates and on the Arabic translations of
two of the English debates. For evaluation pur-
poses, we need to reserve some data for testing,
and thus the model is trained on five English de-
bates, and tested on the other two (either origi-
nal English or their Arabic translations). In both
cases, the data is first preprocessed and passed to
the feature extraction module. The feature vectors
are then fed to the model to generate predictions.

26

Figure 1: System architecture.

3.1 General Architecture

Figure 1 illustrates our general architecture.
ClaimRank is accessible via a Web browser. When
a user submits a text, the server handles the re-
quest by first detecting the language of the text
using Python’s langdetect. Then, the text is
split into sentences using NLTK for English and a
custom splitter for Arabic. An instance of the sen-
tence list is stored in a session after being JSON-
fied. After that, features are extracted for each sen-
tence and fed into the model, which in turn gener-
ates the check-worthiness score for each sentence.
Scores are displayed in the client next to each sen-
tence, along with their corresponding color codes.
Scores are also stored in the session object along
with the sentence list as parallel arrays. In case the
user wants the sentences sorted by their scores, or
wants to mimic one of the annotation sources strat-
egy in sentence selection, the server gets the text
from the session, and re-scores/orders it and sends
it back to the client.

3.2 Features

Here we do not propose new features, but rather
reuse features that have been previously shown
to work well for check-worthiness (Hassan et al.,
2015; Gencheva et al., 2017).

From (Hassan et al., 2015), we include TF.IDF-
weighted bag of words, part-of-speech tags,
named entities as recognized by Alchemy API,
sentiment scores, and sentence length (in tokens).

From (Gencheva et al., 2017), we adopt lexi-
con features, e.g., for bias (Recasens et al., 2013),
for sentiment (Liu et al., 2005), for assertive-
ness (Hooper, 1974), and also for subjectivity.

We further use structural features, e.g., for loca-
tion of the sentence within the debate/intervention,
LDA topics (Blei et al., 2003), word embed-
dings (Mikolov et al., 2013), and discourse re-
lations with respect to the neighboring sen-
tences (Joty et al., 2015). More detail about the
features can be found in the corresponding paper.

3.3 Model
In order to rank the English claims, we re-use the
model from (Gencheva et al., 2017). In particular,
we use a neural network with two hidden layers.
We provide the features, which give information
not only about the claim but also about its con-
text, as an input to the network. The input layer is
followed by the first hidden layer, which is com-
posed of two hundred ReLU neurons (Glorot et al.,
2011). The second hidden layer contains fifty neu-
rons with the same ReLU activation function. Fi-
nally, there is a sigmoid unit, which classifies the
sentence as check-worthy or not.

Apart from the class prediction, we also need
to rank the claims based on the likelihood of their
check-worthiness. For this, we use the probabil-
ity that the model assigns to a claim to belong to
the positive class. We train the model for 100 iter-
ations using Stochastic Gradient Descent (LeCun
et al., 1998).

3.4 Adaptation to Arabic
To handle Arabic along with English, we in-
tegrated some new tools. First, we had to
add a language detector in order to use the ap-
propriate sentence tokenizer for each language.
For English, NLTK’s (Loper and Bird, 2002)
sent_tokenize handles splitting the text into
sentences. However, for Arabic it can only split
text based on the presence of the period (.) char-
acter. This is because other sentence endings —
such as question marks— are different characters
(e.g., the Arabic question mark is ‘?’, and not ‘?’).
Hence, we used our custom regular expressions to
split the Arabic text into sentences.

Next comes tokenization. For English, we
used NLTK’s tokenizer (Bird et al., 2009), while
for Arabic we used Farasa’s segmenter (Abde-
lali et al., 2016). For Arabic, tokenization is not
enough; we also need word segmentation since
conjunctions and clitics are commonly attached to
the main word, e.g., Â ¢þ + Âþtya� + Á¤ (‘and his
house’, lit. “and house his”). This causes explo-
sion in the vocabulary size and data sparseness.

27

Figure 2: Screenshot of ClaimRank’s output for an English presidential debate, in natural order.

We further needed a part-of-speech (POS) tagger
for Arabic, for which we used Farasa (Abdelali
et al., 2016), while we used NLTK’s POS tagger
for English (Bird et al., 2009). This yields dif-
ferent tagsets: for English, this is the Penn Tree-
bank tagset (Marcus et al., 1993), while for Ara-
bic this the Farasa tagset. Thus, we had to further
map all POS tags to the same tagset: the Universal
tagset (Petrov et al., 2012).

3.5 Evaluation

We train the system on five English political de-
bates, and we test on two debates: either English
or their Arabic translations. Note that, compared
to our original model (Gencheva et al., 2017), here
we use more debates: seven instead of four. More-
over, here we exclude some of the features, namely
some debate-specific information (e.g., speaker,
system messages), in order to be able to process
any free text, and also discourse parse features, as
we do not have a discourse parser for Arabic.

One of the most important components of the
system that we had to port across languages were
the word embeddings. We experimented with the
following cross-language embeddings:
– VecMap: we used a parallel English-Arabic cor-
pus of TED talks1 (Cettolo et al., 2012) to generate
monolingual embeddings (Arabic and English) us-
ing word2vec (Mikolov et al., 2013). Then we pro-
jected these embeddings into a joint vector space
using VecMap (Artetxe et al., 2017).

1We used TED talks as they are conversational large cor-
pora, which is somewhat close to the debates we train on.

– MUSE embeddings: In a similar fashion, we
generated cross-language embeddings from the
same TED talks using Facebook’s supervised
MUSE model (Lample et al., 2017) to project the
Arabic and the English monolingual embeddings
into a joint vector space.
– Attract-Repel embeddings: we used the pre-
trained English-Arabic embeddings from Attract-
Repel (Mrkšić et al., 2017).

Table 1 shows the system performance when
predicting claims by any of the sources, using
word2vec and the cross-language embeddings.2

All results are well above a random baseline.
We can see some drop in MAP for English when

using VecMap or MUSE, which is to be expected
as the model needs to balance between preserv-
ing the original embeddings and projecting them
into a joint space. The Attract-Repel vectors per-
form better for English, which is probably due to
the monolingual synonymy/antonymy constraints
that they impose (Vulić et al., 2017), thus yielding
better vectors, even for English.

The overall MAP results for Arabic are com-
petitive, compared to English. The best model is
MUSE, while Attract-Repel is way behind, proba-
bly because, unlike VecMap and MUSE, its word
embeddings are trained on unsegmented Arabic,
which causes severe data sparseness issues.

2Note that these results are not comparable to those
in (Gencheva et al., 2017) as we use a different evaluation
setup: train/test split vs. cross-validation, debates that in-
volve not only Hillary Clinton and Donald Trump, and we
also disable the metadata and the discourse parse features.

28

Figure 3: Screenshot of ClaimRank’s output for an Arabic news article, sorted by score.

English Arabic
System MAP R-Pr P@5 P@10 P@20 P@50 MAP R-Pr P@5 P@10 P@20 P@50
word2vec 0.323 0.330 0.80 0.60 0.45 0.38 — — — — — —
VecMap 0.298 0.333 0.30 0.40 0.45 0.44 0.291 0.324 0.10 0.25 0.35 0.41
MUSE 0.319 0.332 0.40 0.45 0.50 0.49 0.302 0.331 0.10 0.25 0.38 0.48
Attract-Repel 0.342 0.385 0.40 0.45 0.50 0.46 0.263 0.312 0.10 0.15 0.30 0.41
Random 0.161 0.161 0.10 0.20 0.13 0.08

Table 1: Performance when using different cross-language embeddings.

In the final system, we use MUSE vectors for
both languages, which perform best overall: not
only for MAP, but also P@20, and P@50, which
are very important measures assuming that man-
ual fact-checking can be done for up to 20 or up to
50 claims only (in fact, statistics show that eight
out of our nine fact-checking organizations had no
more than 50 claims checked per debate).

4 The System in Action

ClaimRank is available online.3 Our systems’ user
interface consists of three views:
– The text entry view: composed of a text box, and
a submit button.
– The results view shows the text split into sen-
tences with scores reflecting the degree of check-
worthiness, and each sentence has a color intensity
that reflects its score range, as shown in Figure 2.
The user can sort the results, or choose to mimic
different media.
– The sorted results view shows the most check-
worthy sentences first, as Figure 3 shows.

3http://claimrank.qcri.org

5 Conclusion and Future Work

We have presented ClaimRank —an online sys-
tem for prioritizing check-worthy claims. Claim-
Rank can help professional fact-checkers and jour-
nalists in their work as it can help them identify
where they should focus their efforts first. The
system learns from selections by nine reputable
fact-checking organizations, and as a result, it can
mimic the sentence selection strategies as applied
by each and any of them, as well as for the union
of them all.

While originally trained on a collection of po-
litical debates, ClaimRank can also work for other
kinds of text, e.g., interviews or just regular news
articles. Moreover, even though initially devel-
oped for English, the system was subsequently
adapted to also support Arabic, using a combina-
tion of manual training data translation and cross-
language embeddings.

In future work, we wold like to train the models
on more political debates and speeches, as well as
on other genres. We further plan to add support
for more languages.

29

References
Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and

Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for Arabic. In Proceedings of the Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics, NAACL-
HLT ’16, pages 11–16, San Diego, CA, USA.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.
Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL ’17, pages 451–462, Vancouver,
Canada.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python, 1st edi-
tion. O’Reilly Media, Inc.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent Dirichlet allocation. Journal of Ma-
chine Learning Research, 3(Jan):993–1022.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. WIT3: Web inventory of transcribed
and translated talks. In Proceedings of the 16th Con-
ference of the European Association for Machine
Translation, EAMT ’12, pages 261–268, Trento,
Italy.

Pepa Gencheva, Preslav Nakov, Lluís Màrquez, Al-
berto Barrón-Cedeño, and Ivan Koychev. 2017.
A context-aware approach for detecting worth-
checking claims in political debates. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing, RANLP ’17, pages
267–276, Varna, Bulgaria.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Pro-
ceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, PMLR ’15,
pages 315–323, Fort Lauderdale, FL, USA.

Naeemul Hassan, Chengkai Li, and Mark Tremayne.
2015. Detecting check-worthy factual claims in
presidential debates. In Proceedings of the 24th
ACM International Conference on Information and
Knowledge Management, CIKM ’15, pages 1835–
1838, Melbourne, Australia.

Joan B. Hooper. 1974. On Assertive Predicates. Indi-
ana University Linguistics Club. Indiana University
Linguistics Club.

Shafiq Joty, Giuseppe Carenini, and Raymond T. Ng.
2015. CODRA: A novel discriminative frame-
work for rhetorical analysis. Comput. Linguist.,
41(3):385–435.

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2017. Unsupervised
machine translation using monolingual corpora
only. arXiv preprint arXiv:1711.00043.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Bing Liu, Minqing Hu, and Junsheng Cheng. 2005.
Opinion observer: Analyzing and comparing opin-
ions on the web. In Proceedings of the 14th Interna-
tional Conference on World Wide Web, WWW ’05,
pages 342–351, New York, NY, USA.

Edward Loper and Steven Bird. 2002. NLTK: The
natural language toolkit. In Proceedings of the
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Com-
putational Linguistic, ETMTNLP ’02, pages 63–70,
Philadelphia, PA, USA.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional linguistics, 19(2):313–330.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, NIPS ’13, pages 3111–3119, Lake Tahoe,
CA, USA.

Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira
Leviant, Roi Reichart, Milica Gašić, Anna Korho-
nen, and Steve Young. 2017. Semantic special-
isation of distributional word vector spaces using
monolingual and cross-lingual constraints. Transac-
tions of the Association for Computational Linguis-
tics, 5:309–324.

Ayush Patwari, Dan Goldwasser, and Saurabh Bagchi.
2017. TATHYA: A multi-classifier system for de-
tecting check-worthy statements in political debates.
In Proceedings of the ACM on Conference on In-
formation and Knowledge Management, CIKM ’17,
pages 2259–2262, Singapore.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings
of the Eight International Conference on Language
Resources and Evaluation, LREC ’12, pages 2089–
2096, Istanbul, Turkey.

Marta Recasens, Cristian Danescu-Niculescu-Mizil,
and Dan Jurafsky. 2013. Linguistic models for ana-
lyzing and detecting biased language. In Proceed-
ings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, ACL ’13, pages
1650–1659, Sofia, Bulgaria.

Ivan Vulić, Nikola Mrkšić, Roi Reichart, Diarmuid
Ó Séaghdha, Steve Young, and Anna Korhonen.
2017. Morph-fitting: Fine-tuning word vector
spaces with simple language-specific rules. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL ’17, pages
56–68, Vancouver, Canada.

30

Proceedings of NAACL-HLT 2018: Demonstrations, pages 31–35
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

360° Stance Detection

Sebastian Ruder, John Glover, Afshin Mehrabani, Parsa Ghaffari
Aylien Ltd., Dublin, Ireland

{sebastian,john,afshin,parsa}@aylien.com

Abstract

The proliferation of fake news and filter bub-
bles makes it increasingly difficult to form an
unbiased, balanced opinion towards a topic.
To ameliorate this, we propose 360° Stance
Detection, a tool that aggregates news with
multiple perspectives on a topic. It presents
them on a spectrum ranging from support to
opposition, enabling the user to base their
opinion on multiple pieces of diverse evidence.

1 Introduction

The growing epidemic of fake news in the wake
of the election cycle for the 45th President of the
United States has revealed the danger of staying
within our filter bubbles. In light of this devel-
opment, research in detecting false claims has re-
ceived renewed interest (Wang, 2017). However,
identifying and flagging false claims may not be
the best solution, as putting a strong image, such
as a red flag, next to an article may actually en-
trench deeply held beliefs (Lyons, 2017).

A better alternative would be to provide addi-
tional evidence that will allow a user to evaluate
multiple viewpoints and decide with which they
agree. To this end, we propose 360° Stance De-
tection, a tool that provides a wide view of a topic
from different perspectives to aid with forming a
balanced opinion. Given a topic, the tool aggre-
gates relevant news articles from different sources
and leverages recent advances in stance detection
to lay them out on a spectrum ranging from sup-
port to opposition to the topic.

Stance detection is the task of estimating
whether the attitude expressed in a text towards
a given topic is ‘in favour’, ‘against’, or ‘neutral’.
We collected and annotated a novel dataset, which
associates news articles with a stance towards a
specified topic. We then trained a state-of-the-art

stance detection model (Augenstein et al., 2016)
on this dataset.

The stance detection model is integrated into the
360° Stance Detection website as a web service.
Given a news search query and a topic, the tool
retrieves news articles matching the query and an-
alyzes their stance towards the topic. The demo
then visualizes the articles as a 2D scatter plot on
a spectrum ranging from ‘against’ to ‘in favour’
weighted by the prominence of the news outlet
and provides additional links and article excerpts
as context.1

The interface allows the user to obtain an
overview of the range of opinion that is exhib-
ited towards a topic of interest by various news
outlets. The user can quickly collect evidence by
skimming articles that fall on different parts of this
opinion spectrum using the provided excerpts or
peruse any of the original articles by following the
available links.

2 Related work

Until recently, stance detection had been mostly
studied in debates (Walker et al., 2012; Hasan and
Ng, 2013) and student essays (Faulkner, 2014).
Lately, research in stance detection focused on
Twitter (Rajadesingan and Liu, 2014; Mohammad
et al., 2016; Augenstein et al., 2016), particu-
larly with regard to identifying rumors (Qazvinian
et al., 2011; Lukasik et al., 2015; Zhao et al.,
2015). More recently, claims and headlines in
news have been considered for stance detection
(Ferreira and Vlachos, 2016), which require rec-
ognizing entailment relations between claim and
article.

1The demo can be accessed here: http://bit.do/
aylien-stance-detection-demo. A screencast of
the demo is available here: https://www.youtube.
com/watch?v=WYckOr2NhFM.

31

Figure 1: Interface provided to annotators. Annotation instructions are not shown.

3 Dataset

3.1 Task definition
The objective of stance detection in our case is
to classify the stance of an author’s news article
towards a given topic as ‘in favour’, ‘against’, or
‘neutral’. Our setting differs from previous instan-
tiations of stance detection in two ways: a) We
focus on excerpts from news articles, which are
longer and may be more complex than tweets; and
b) we do not aim to classify a news article with re-
gard to its agreement with a claim or headline but
with regard to its stance towards a topic.

3.2 Data collection
We collect data using the AYLIEN News API2,
which provides search capabilities for news ar-
ticles enriched with extracted entities and other
metadata. As most extracted entities have a neutral
stance or might not be of interest to users, we take
steps to compile a curated list of topics, which we
detail in the following.

Topics We define a topic to include named
entities, but also more abstract, controversial
keywords such as ‘gun control’ and ‘abortion’.
We compile a diverse list of topics that people
are likely to be interested in from several sources:
a) We retrieve the top 10 entities with the most
mentions in each month from November 2015
to June 2017 and filter out entities that are not
locations, persons, or organizations and those that
are generally perceived as neutral; b) we manually
curate a list of current important political figures;
and c) we use DBpedia to retrieve a list of
controversial topics. Specifically, we included
all of the topics mentioned in the Wikipedia

2https://newsapi.aylien.com/

Topic type # topics Examples

Popular 44 Arsenal F.C., Russia
Controversial 300 Abortion, Polygamy
Political 22 Ted Cruz, Xi Jinping

Total 366

Table 1: Types and numbers of retrieved topics.

list of controversial issues3 and converted
them to DBpedia resource URIs (e.g. http:
//en.wikipedia.org/wiki/Abortion
→ http://dbpedia.org/resource/
Abortion) in order to facilitate linking between
topics and DBpedia metadata. We then used
DBpedia types (Auer et al., 2007) to filter out all
entities of type Place, Person and Organisation.
Finally, we ranked the remaining topics based on
their number of unique outbound edges within the
DBpedia graph as a measure of prominence, and
picked the top 300. We show the final composition
of topics in Table 1. For each topic, we retrieve
the most relevant articles using the News API
from November 2015 to July 2017.

Annotation For annotation, we need to trade-
off the complexity and cost of annotation with the
agreement between annotators. Annotating en-
tire news articles places a large cognitive load on
the annotator, which leads to fatigue and inaccu-
rate annotations. For this reason, we choose to
annotate excerpts from news articles. In internal
studies, we found that providing a context win-
dow of 2-3 sentences around the mention of the
entity together with the headline provides suffi-

3https://en.wikipedia.org/wiki/
Wikipedia:List_of_controversial_issues

32

Figure 2: 360° Stance Detection interface. News articles about a query, i.e. ‘Ireland AND brexit’ are
visualized based on their stance towards a specified topic, i.e. ‘ireland’ and the prominence of the source.
Additional information is provided in a table on the right, which allows to skim article excerpts or follow
a link to the source.

cient context to produce a reliable annotation. If
the entity is not mentioned explicitly, we provide
the first paragraph of the article and the headline
as context. We annotate the collected data using
CrowdFlower with 3 annotators per example using
the interface in Figure 1. We retain all examples
where at least 2 annotators agree, which amounts
to 70.5% of all examples.

Final dataset The final dataset consists of
32,227 pairs of news articles and topics annotated
with their stance. In particular, 47.67% examples
have been annotated with ‘neutral’, 21.9% with
‘against’, 19.05% with ‘in favour’, and 11.38%
with ‘unrelated‘. We use 70% of examples for
training, 20% for validation, and 10% for testing
according to a stratified split. As we expect to en-
counter novel and unknown entities in the wild, we
ensure that entities do not overlap across splits and
that we only test on unseen entities.

4 Model

We train a Bidirectional Encoding model (Augen-
stein et al., 2016), which has achieved state-of-
the-art results for Twitter stance detection on our
dataset. The model encodes the entity using a bidi-

rectional LSTM (BiLSTM)4, which is then used to
initialize a BiLSTM that encodes the article and
produces a prediction. To reduce the sequence
length, we use the same context window that was
presented to annotators for training the LSTM.
We use pretrained GloVe embeddings (Pennington
et al., 2014) and tune hyperparameters on a vali-
dation set. The best model achieves a test accu-
racy of 61.7 and a macro-averaged test F1 score of
56.9.5 It significantly outperforms baselines such
as a bag-of-n-grams (accuracy: 46.3; F1: 44.2).

5 360° Stance Detection Demo

The interactive demo interface of 360° Stance
Detection, which can be seen in Figure 2, takes
two inputs: a news search query, which is used
to retrieve news articles using News API, and a
stance target topic, which is used as the target of
the stance detection model. For good results, the
stance target should also be included as a keyword
in the news search query. Multiple keywords can
be provided as the query by connecting them with

4We tried other encoding strategies, such as averaging
pretrained embeddings, but this performed best.

5These scores are comparable to those achieved in (Au-
genstein et al., 2016). Compared to tweets, stance in news is
often more subtle and thus more challenging to detect, while
our dataset contains more diverse entities than previous ones.

33

(a) Query: Trump AND “gun control”;
topic: gun control

(b) Query: kneeling AND “national an-
them”; topic: kneeling

(c) Query: “global warming” AND
“Paris agreement”; topic: Paris agree-
ment

Figure 3: 360° Stance Detection visualizations for example queries and topics.

Figure 4: Visualization distribution of stance to-
wards Donald Trump and number of CNN news
articles mentioning Donald Trump from August
2016 to January 2018.

‘AND’ or ‘OR’ as in Figure 2.
When these two inputs are provided, the appli-

cation retrieves a predefined number of news arti-
cles (up to 50) that match the first input, and ana-
lyzes their stance towards the target (the second in-
put) using the stance detection model. The stance
detection model is exposed as a web service and
returns for each article-target entity pair a stance
label (i.e. one of ‘in favour’, ‘against’ or ‘neutral’)
along with a probability.6

The demo then visualizes the collected news ar-
ticles as a 2D scatter plot with each (x,y) coordi-
nate representing a single news article from a par-
ticular outlet that matched the user query. The x-
axis shows the stance of the article in the range
[−1, 1]. The y-axis displays the prominence of the
news outlet that published the article in the range
[1, 1000000], measured by its Alexa ranking7. A
table displays the provided information in a com-
plementary format, listing the news outlets of the
articles, the stance labels, confidence scores, and

6We leave confidence calibration (Guo et al., 2017) for
future work.

7https://www.alexa.com/

prominence rankings. Excerpts of the articles can
be scanned by hovering over the news outlets in
the table and the original articles can be read by
clicking on the source.

360° Stance Detection is particularly useful to
gain an overview of complex or controversial top-
ics and to highlight differences in their perception
across different outlets. We show visualizations
for example queries and three controversial top-
ics in Figure 3. By extending the tool to enable
retrieval of a larger number of news articles and
more fine-grained filtering, we can employ it for
general news analysis. For instance, we can high-
light the volume and distribution of the stance of
news articles from a single news outlet such as
CNN towards a specified topic as in Figure 4.

6 Conclusion

We have introduced 360° Stance Detection, a tool
that aims to provide evidence and context in order
to assist the user with forming a balanced opinion
towards a controversial topic. It aggregates news
with multiple perspectives on a topic, annotates
them with their stance, and visualizes them on a
spectrum ranging from support to opposition, al-
lowing the user to skim excerpts of the articles or
read the original source. We hope that this tool
will demonstrate how NLP can be used to help
combat filter bubbles and fake news and to aid
users in obtaining evidence on which they can base
their opinions.

Acknowledgments

Sebastian Ruder is supported by the Irish Re-
search Council Grant Number EBPPG/2014/30
and Science Foundation Ireland Grant Number
SFI/12/RC/2289.

34

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web, Springer, pages 722–735.

Isabelle Augenstein, Tim Rocktäschel, Andreas Vla-
chos, and Kalina Bontcheva. 2016. Stance Detec-
tion with Bidirectional Conditional Encoding. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. http:
//arxiv.org/abs/1606.05464.

Adam Faulkner. 2014. Automated classification of
stance in student essays: An approach using stance
target information and the wikipedia link-based
measure. Science 376(12):86.

William Ferreira and Andreas Vlachos. 2016. Emer-
gent: a novel data-set for stance classification. In
Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: Human language technologies.
pages 1163–1168.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On Calibration of Modern Neural
Networks. Proceedings of ICML 2017 http://
arxiv.org/abs/1706.04599.

Kazi Saidul Hasan and Vincent Ng. 2013. Stance
classification of ideological debates: Data, mod-
els, features, and constraints. In Proceedings of
the Sixth International Joint Conference on Natural
Language Processing. pages 1348–1356.

Michal Lukasik, Trevor Cohn, and Kalina Bontcheva.
2015. Classifying tweet level judgements
of rumours in social media. arXiv preprint
arXiv:1506.00468 .

Tessa Lyons. 2017. News Feed FYI: Replacing Dis-
puted Flags with Related Articles. https://
bit.ly/2BTVuOx.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.
Semeval-2016 task 6: Detecting stance in tweets. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016). pages 31–41.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global Vectors
for Word Representation. Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing pages 1532–1543. https://
doi.org/10.3115/v1/D14-1162.

Vahed Qazvinian, Emily Rosengren, Dragomir R
Radev, and Qiaozhu Mei. 2011. Rumor has it: Iden-
tifying misinformation in microblogs. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, pages 1589–1599.

Ashwin Rajadesingan and Huan Liu. 2014. Identi-
fying users with opposing opinions in twitter de-
bates. In International conference on social comput-
ing, behavioral-cultural modeling, and prediction.
Springer, pages 153–160.

Marilyn A Walker, Pranav Anand, Robert Abbott, and
Ricky Grant. 2012. Stance classification using dia-
logic properties of persuasion. In Proceedings of the
2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Com-
putational Linguistics, pages 592–596.

William Yang Wang. 2017. ”Liar , Liar Pants on Fire”:
A New Benchmark Dataset for Fake News Detec-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (ACL
2017).

Zhe Zhao, Paul Resnick, and Qiaozhu Mei. 2015. En-
quiring minds: Early detection of rumors in social
media from enquiry posts. In Proceedings of the
24th International Conference on World Wide Web.
International World Wide Web Conferences Steering
Committee, pages 1395–1405.

35

Proceedings of NAACL-HLT 2018: Demonstrations, pages 36–40
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

DebugSL: An Interactive Tool for Debugging Sentiment Lexicons

Andrew T. Schneider, John N. Male, Saroja Bhogadhi, Eduard C. Dragut
Temple University, Philadelphia, PA

Computer and Information Sciences Department
atschneider, john.male, tug63697, edragut@temple.edu

Abstract

We introduce DebugSL, a visual (Web) de-
bugging tool for sentiment lexicons (SLs). Its
core component implements our algorithms
for the automatic detection of polarity incon-
sistencies in SLs. An inconsistency is a set of
words and/or word-senses whose polarity as-
signments cannot all be simultaneously satis-
fied. DebugSL finds inconsistencies of small
sizes in SLs and has a rich user interface which
helps users in the correction process.

1 Introduction

The problem of Sentiment Analysis (SA) is that
of identifying the polarity (positive, negative, neu-
tral) of the speaker towards the topic of a given
piece of text. SA techniques are facilitated by Sen-
timent Lexicons (SLs), which are lists of words
or word-senses tagged with their a priori polar-
ity probability values. A tag may be a single
value, e.g., positive, or it may be a distribution.The
large number of SLs and methods to generate them
renders errors and disagreements inevitable (Liu,
2015; Feldman, 2013). Numerous works raise
the issue of polarity disagreements between SLs
and its negative impact on SA tasks (Potts, 2011;
Emerson and Declerck, 2014; Liu, 2015). Schnei-
der and Dragut (2015) gives examples of SLs that
disagree on up to 78% of their annotations and
shows that the accuracy of an SA task can improve
by 8.5% by correcting a modest number of incon-
sistencies in an SL.

Dragut et al. (2012) introduces the Polarity
Consistency Problem (PCP) which provides a
framework for identifying inconsistent polarity
annotations in SLs based on the interaction be-
tween words and their underlying shared senses
(synsets). Dragut et al. (2015); Dragut and Fell-
baum (2014); Schneider and Dragut (2015) further
developed the theoretical basis of the PCP.

In this work we present DebugSL, an SL con-
sistency checker and debugger system that imple-
ments the methods developed in those works for
solving the PCP, in a user friendly environment.
Given an SL as input, DebugSL automatically de-
tects entries with potentially incorrect polarity tags
and displays these entries in a bipartite graph to
facilitate correction efforts. DebugSL interfaces
with external sources, such as Dictionary.com, to
assist in the debugging process.

2 Background

We give a brief overview of the PCP and our
methods to solve it in this section. The inter-
ested reader is directed to Dragut et al. (2012,
2015); Dragut and Fellbaum (2014); Schneider
and Dragut (2015) for full details.

2.1 Polarity Probability
Every word and synset is taken to have an under-
lying discrete probability distribution, called a po-
larity distribution, carrying the a priori probabil-
ity it is used with a positive, negative, or neutral
sense, P+, P− and P0, respectively, with the re-
quirements that P+, P−, P0 ≥ 0 and

∑
p Pp =

1. For instance, the synset “worthy of reliance
or trust” of the adjective reliable has P+ =
.375, P− = .0 and P0 = .625 in the SL Senti-
WordNet (Baccianella et al., 2010). The polar-
ity distribution of a word is a weighted sum over
the polarity distributions of its senses. For word
w: Pp(w) =

∑
s∈S(w) f(w, s) · Pp(s), where

Pp(s) is the polarity value of synset s with polar-
ity p ∈ {+,−, 0}, S(w) is the set of all synsets of
w, and f(w, s) denotes the weight between word
w and sense s. The weights may be the word–
synset usage frequencies; they may also be drawn
from uniform, Zipfian, or geometric distributions.
In all cases the weights are normalized so that∑

s∈S(w) f(w, s) = 1 for all w.

36

2.2 Word Polarity Value
Word SLs often only give a discrete annotation tag
for a word, one of the values: positive(+), nega-
tive(-), or neutral(0). We call this a polarity value.
We determine polarity value for a word as follows:

polarity(w) =

+ if P+ > P− + P0,
− if P− > P+ + P0,
0 otherwise

Schneider and Dragut (2015) discusses alterna-
tives for these equations.

2.3 Polarity Consistency
In this context, the PCP amounts to the following
question:

Given a set of words and polarity tags from an
SL, does there exist an assignment of polarities to
the word senses such that all of the word polarity
values agree with the SL tags?

If the answer is yes we say the SL in question
is consistent. If the answer is no we say the SL is
inconsistent.

Figure 1 shows a network of 4 words with their
annotation tags from (Opinion Finder) OF (Wil-
son et al., 2005) and their related synsets which
comprise a connected component. w3 : pertinac-
ity and w4 : tenacity are tagged − and +, respec-
tively. Since both words share only one synset, s3,
there is no polarity distribution for s3 which can
simultaneously satisfy the polarity value demands
of both w3 and w4. Hence this component is in-
consistent.

2.4 Solving the PCP via Linear Programming
Using the above definitions, the conversion to an
LP problem follows a direct procedure. We re-
fer the interested reader to Schneider and Dragut
(2015) for the details.
DebugSL supports both discrete and continu-

ous polarity distributions of the synsets. In the
discrete case, the synset polarity distributions are
restricted to the set {0,1}, i.e., exactly one of P+,
P−, or P0 is 1 and the other two are 0, for each
synset; this corresponds to an integer LP problem.
For the continuous case, each of P+, P−, or P0

is in the range [0, 1], which corresponds to a gen-
eral LP problem over real numbers. In the discrete
case PCP is NP-complete, while for the contin-
uous case the problem is solvable in polynomial
time (Dragut et al., 2012; Schneider and Dragut,
2015).

perseverance
w1 : +

persistence
w2 : 0

pertinacity
w3 : −

tenacity
w4 : +

s3 : “persistent
determination”

s2 : “the property
of a continuous
period of time”

s1 : “the act
of persisting or

persevering”

0.5 0.29
1 10.5

0.7
0.01

Figure 1: A network of 4 words and 3 synsets.
Edges represent word–synset relations, weighted
by frequency.

3 Supporting SL Debugging

A key capability of DebugSL is that of isolat-
ing a (small) subset of words/synsets that is po-
larity inconsistent, but becomes consistent if one
element is removed; we call this an Irreducible
Polarity Inconsistent Subset (IPIS). Fixing an SL
via IPIS isolation proceeds iteratively: (1) isolate
an IPIS, (2) determine a repair for this IPIS, (3)
if the model is still infeasible, return to step 1.
DebugSL can deterministically identify an IPIS,
but it cannot deterministically decide which incon-
sistent words and/or senses to adjust as this is sim-
ply not an objective decision. Much like a soft-
ware debugger, which can identify a known pro-
gramming error, say the use of an undefined vari-
able,but cannot assign a value to the variable, our
debugger can identify inconsistent components,
but it does not decide which elements to adjust.
In Figure 1, minimally one of pertinacity(-)
and tenacity(+) must be adjusted, but the deci-
sion as to which requires user feedback.

The example of Figure 1 belies the complexity
of the PCP. DebugSL employs a divide and con-
quer approach, dividing an instance of PCP into
the connected components of the bipartite word–
synset graph, then solving for each component
separately. Running DebugSL on OF generates
1178 such components for adjectives alone; the
largest component has 914 unique words and 1880
unique synsets. Manually checking such SLs is
unrealistic.

4 System Overview

DebugSL follows a four-step procedure to iden-
tify and reduce lexicon inconsistency. (1) The user
uploads a formatted SL to the DebugSL system.
(2) A server-side program uses the lexical database
WordNet(WN) (Fellbaum, 1998) to form the un-
derlying word–synset graph of the SL and checks
for inconsistencies. (3) Inconsistent components
are returned to the client and they are displayed

37

Polarity Consistency
Checking

Display
Graphically

Detect
Causes of

Inconsistency

Adjust Polarities and
Indicate Missing

Senses

OF

AL
GI

Input Sentiment
Dictionaries

Suggestions
to WordNet

Figure 2: DebugSL process flow

graphically for inspection. (4) The user dynami-
cally interacts with the components, such as look-
ing up information on the words/synsets and ad-
justing their polarities. The user can repeat the
process as desired.

1. Input. The user begins by uploading an SL
to DebugSL and specifying various interface op-
tions, such as the part of speech and the version
of WN to use. After the lexicon has been success-
fully uploaded, the user can download the (modi-
fied) lexicon, or save it in the system.

2. Lexicon Inconsistency Checking. A server-
side Java program builds the connected compo-
nents of word–synset linkage. DebugSL checks
the consistency of each connected component. In-
consistent components are returned to the client.

3. Component Display. A JavaScript pro-
cess receives the inconsistent components from
the server and formats them to be understood by
the graphing library SigmaJS which displays the
inconsistent components to the user.

4. Interactive Viewing and User Analysis.
The interactive viewing is essential to our tool be-
cause it allows a user to focus on a small set of
inconsistent words or synsets, make adjustments,
and re-run the program to see the effects.

5 Software

DebugSL is developed using web technologies.
Client side work is completed using HTML 5,
CSS, and JavaScript. The graphs are structured
using the open source JavaScript library SigmaJS.
The client-side program is programmed in Java
and is called through a Java Servlet. For linear pro-
gramming DebugSL employs the GUROBI LP
solver (www.gurobi.com). Apache Tomcat is
used as the local server.

5.1 Interactive Features

Customizable Polarity Display. DebugSL dis-
plays the word polarities from the uploaded SL on
the word–synset graph. By default, the polarities
are shown by node color: green, red, and grey
for positive, negative, and neutral, respectively.
These color choices are customizable. The user
can switch to display polarities by symbols: +, −,
and 0, instead, or use both symbols and colors.

Component and Word Selection. Inconsistent
components are listed on the left represented by
the first word of each component. An ellipsis in-
dicates the presence of additional words. When a
component is selected, its words are expanded into
a sublist (Figure 3a on the left).

All Viewing and Progressive Viewing. Two
modes of viewing the graph are available. In All
Viewing mode all checked words and synsets are
visible. Clicking on a word or synset hides any
edges not associated with that word or synset.

Progressive Viewing mode allows the user to
build the desired connected graph by progressively
adding words. Clicking a word node hides other
words and reveals its associated synsets. Clicking
a revealed synset hides all but the associated words
and edges. The user may use any selected word or
synset as a base for building the graph. Holding
shift allows words to be added progressively.

Dictionary Query. The user may look up
the senses of any word from an online dictio-
nary by right-clicking. This functionality is
currently implemented to interface with three
online dictionaries: Merriam-Webster (www.
merriam-webster.com), Dictionary.com
(www.dictionary.com), and the Free Dic-
tionary (www.thefreedictionary.com).
The dictionary appears to the right of the graph
window with the results of the word lookup.
Right-clicking a new word, automatically updates
the dictionary area.

5.2 Identifying Missing Senses in WordNet

In some cases, when an inconsistency is identified,
the user may decide that the polarity assignments
are correct and the error is in fact due to a missing
sense in WN. DebugSL allows the user to check
for potentially missing senses in WN. As an ex-
ample, the verbs “tantalize” and “taunt,” have pos-
itive and negative polarities, respectively, in Opin-
ion Finder (Wilson et al., 2005). They also have
a shared, unique sense in WN. By our formula-

38

(a) DebugSL debugging (b) DebugSL comparison

Figure 3: DebugSL screenshots

tion, this leads to a contradiction. In this case the
Free Dictionary gives a second sense of tantalize
that is missing from WN: “to be strongly attrac-
tive to. . . ”. This sense conveys a positive polar-
ity. Hence, tantalize conveys a positive sentiment
when used with this sense, and the inconsistency
is not due to a mislabeling in the SL.

When the user utilizes the online dictionary
lookup feature, the dictionary senses (definitions)
of the word are automatically matched to their
corresponding best matching synsets in the WN
graph, using the Levenshtein edit distance and the
Gale-Shapley stable marriage matching algorithm
(Gale and Shapley, 1962). If a relevant sense ap-
pears to be missing from WN, the user can log
a note of the missing synset with us and we can,
in turn, provide this information to the WN team
(Dragut and Fellbaum, 2014).

6 Demonstration

We present two main scenarios to demonstrate
the practical usefulness of DebugSL, screenshots
of which are shown in Figure 3. The source
code is available at https://github.com/
atschneid/DebugSL.

1. Iterative SL Debugging: This commences
with a user uploading an SL, L. The user must
turn a few knobs, e.g., select the part of speech,
weighting scheme, and WN version. DebugSL
displays the discovered sets of polarity inconsis-
tencies on the left side. Let I be an IPIS the user
has selected. This demo scenario has two paths:

Debugging. The user attempts to correct polar-
ity values assigned to the entries in I. Most IPISs
consist of up to 4 words; very few have more than
8. This aids in holding the user’s focus. The user
can use the bipartite view in DebugSL to analyze
the words and their sense and determine if some
entries in I have wrong polarity tags. Upon iden-

tifying a mislabeled entry in I, the user can edit its
polarity value (see Figure 3a), then repeat the con-
sistency check again on the revised SL, and ana-
lyze any new or remaining IPISs. At any time, the
user can save, revisit, and eventually download the
revised version of L.

Missing Senses. If all the entries in I have the
correct polarity tags, there remains the possibility
that WN has incomplete information. DebugSL
allows the user to compare the synsets of a word
w in I with those of w in several online dictionar-
ies (Figure 3a, see the popup menu in the center).
The user selects a dictionary to reference and the
senses of w from this dictionary will appear beside
the graph. DebugSL matches the WN synsets
with the dictionary senses (see Figure 3). The user
can suggest via DebugSL a sense present in Dic-
tionary.com for w that is missing in WN. We store
all the suggestions.

2. Comparing Two SLs: This second demo
scenario uncovers the disagreement between two
SLs: typically one word annotating, Sw, (e.g., OF)
and one synset annotating, Ss, (e.g., SentiWord-
Net). The formal procedure for this functional-
ity is described at length in Schneider and Dragut
(2015). The output is the collection of graphs
of components with inconsistencies. DebugSL
can also compare two word annotating SLs or two
sense annotating SLs wherein DebugSL checks
for agreement.

7 Conclusion

In this paper we have presented the system
DebugSL and described its usage. The project
source code is available at https://github.
com/atschneid/DebugSL and a screencast
can be viewed at https://cis.temple.
edu/˜edragut/DebugSL.webm. The sys-
tem will be deployed online for use by the public.

39

References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. SentiWordNet 3.0: An Enhanced Lex-
ical Resource for Sentiment Analysis and Opinion
Mining. In LREC.

Eduard Dragut and Christiane Fellbaum. 2014. The
role of adverbs in sentiment analysis. In Proceed-
ings of Frame Semantics in NLP: A Workshop in
Honor of Chuck Fillmore (1929-2014).

Eduard Dragut, Hong Wang, Prasad Sistla, Clement
Yu, and Weiyi Meng. 2015. Polarity consistency
checking for domain independent sentiment dictio-
naries. IEEE TKDE, 27(3):838–851.

Eduard C. Dragut, Hong Wang, Clement Yu, Prasad
Sistla, and Weiyi Meng. 2012. Polarity consistency
checking for sentiment dictionaries. In ACL.

Guy Emerson and Thierry Declerck. 2014. Sen-
timerge: Combining sentiment lexicons in a
bayesian framework. In workshop at COLING.

Ronen Feldman. 2013. Techniques and applications
for sentiment analysis. Commun. ACM, 56(4).

Christiane Fellbaum. 1998. WordNet: An On-Line Lex-
ical Database and Some of its Applications. MIT
Press.

David Gale and Lloyd S. Shapley. 1962. College ad-
missions and the stability of marriage. AMM, 69.

Bing Liu. 2015. Sentiment Analysis: Mining Opinions,
Sentiments, and Emotions. Cambridge University
Press.

Christopher Potts. 2011. Sentiment symposium tuto-
rial: Lexicons.

Andrew T. Schneider and Eduard C. Dragut. 2015. To-
wards debugging sentiment lexicons. In ACL.

T. Wilson, J. Wiebe, and P. Hoffmann. 2005. Recog-
nizing contextual polarity in phrase-level sentiment
analysis. In HLT/EMNLP.

40

Proceedings of NAACL-HLT 2018: Demonstrations, pages 41–45
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

ELISA-EDL: A Cross-lingual Entity Extraction, Linking and Localization
System

Boliang Zhang1, Ying Lin1, Xiaoman Pan1, Di Lu1, Jonathan May2,
Kevin Knight2, Heng Ji1

1 Rensselaer Polytechnic Institute
{zhangb8,liny9,panx2,lud2,jih}@rpi.edu

2 Information Sciences Institute
{jonmay,knight}@isi.edu

Abstract

We demonstrate ELISA-EDL, a state-of-the-art
re-trainable system to extract entity mentions
from low-resource languages, link them to ex-
ternal English knowledge bases, and visualize
locations related to disaster topics on a world
heatmap. We make all of our data sets1, re-
sources and system training and testing APIs2

publicly available for research purpose.

1 Introduction

Our cross-lingual entity extraction, linking and lo-
calization system is capable of extracting named
entities from unstructured text in any of 282
Wikipedia languages, translating them into En-
glish, and linking them to English Knowledge
Bases (Wikipedia and Geonames). This system
then produces visualizations of the results such
as heatmaps, and thus it can be used by an En-
glish speaker for monitoring disasters and coordi-
nating rescue and recovery efforts reported from
incident regions in low-resource languages. In the
rest of the paper, we will present a comprehensive
overview of the system components (Section 2 and
Section 3), APIs (Section 4), interface3(Section 5),
and visualization4 (Section 6).

2 Entity Extraction

Given a text document as input, the entity ex-
traction component identifies entity name men-
tions and classifies them into pre-defined types:
Person (PER), Geo-political Entity (GPE), Orga-
nization (ORG) and Location (LOC). We con-
sider name tagging as a sequence labeling prob-
lem, to tag each token in a sentence as the Be-
ginning (B), Inside (I) or Outside (O) of an en-

1https://elisa-ie.github.io/wikiann
2https://elisa-ie.github.io/api
3https://elisa-ie.github.io
4https://elisa-ie.github.io/heatmap

tity mention with a certain type. Our model is
based on a bi-directional long short-term mem-
ory (LSTM) networks with a Conditional Random
Fields (CRFs) layer (Chiu and Nichols, 2016). It
is challenging to perform entity extraction across
a massive variety of languages because most lan-
guages don’t have sufficient data to train a ma-
chine learning model. To tackle the low-resource
challenge, we developed creative methods of de-
riving noisy training data from Wikipedia (Pan
et al., 2017), exploiting non-traditional language-
universal resources (Zhang et al., 2016) and cross-
lingual transfer learning (Cheung et al., 2017).

3 Entity Linking and Localization

After we extract entity mentions, we link GPE and
LOC mentions to GeoNames5, and PER and ORG
mentions to Wikipedia6. We adopt the name trans-
lation approach described in (Pan et al., 2017) to
translate each tagged entity mention into English,
then we apply an unsupervised collective infer-
ence approach (Pan et al., 2015) to link each trans-
lated mention to the target KB. Figure 2 shows an
example output of a Hausa document. The ex-
tracted entity mentions “Stephane Dujarric” and
“birnin Bentiu” are linked to their corresponding
entries in Wikipedia and GeoNames respectively.

Compared to traditional entity linking, the
unique challenge of linking to GeoNames is that
it is very scarce, without rich linked structures
or text descriptions. Only 500k out of 4.7 mil-
lion entities in Wikipedia are linked to GeoN-
ames. Therefore, we associate mentions with en-
tities in the KBs in a collective manner, based on
salience, similarity and coherence measures (Pan
et al., 2015). We calculate topic-sensitive PageR-
ank scores for 500k overlapping entities between

5http://www.geonames.org
6https://www.wikipedia.org

41

APIs Description
/status Retrieve the current server status, including supported languages, language iden-

tifiers, and the state (offline, online, or pending) of each model.
/status/{identifier} Retrieve the current status of a given language.
/entity discovery and linking/
{identifier}

Main entry of the EDL system. Take input in either plain text or *.ltf format,
tag names that are PER, ORG or LOC/GPE, and link them to Wikipedia.

/name transliteration/
{identifier}

Transliterate a name to Latin script.

/entity linking/{identifier} Query based entity linking. Link each mention to KBs.
/entity linking amr English entity linking for Abstract Meaning Representation (AMR) style in-

put (Pan et al., 2015). AMR (Banarescu et al., 2013) is a structured semantic
representation scheme. The rich semantic knowledge in AMR boosts linking per-
formance.

/localize/{identifier} Localize a LOC/GPE name based on GeoNames database.

Table 1: RUN APIs description.

APIs Description
/status An alias of /status
/status/{identifier} Query the current status of a model being trained.
/train/{identifier} Train a new name tagging model for a language. A model id is automatically generated

and returned based on model name, and time stamp.

Table 2: TRAIN APIs description.

Figure 1: Cross-lingual Entity Extraction and Linking Interface

Figure 2: Cross-lingual Entity Extraction and Linking Testing Result Visualization

42

Figure 3: Heatmap Visualization

Language F1 (%) Language F1 (%)
Arabic 51.9 Bengali 74.8
Chechen 58.9 Persian 58.4
Hausa 70.2 Hungarian 60.2
Oromo 81.3 Russian 63.7
Somali 67.6 Tamil 65.9
Thai 69.8 Tigrinya 73.2
Tagalog 78.7 Turkish 74.4
Uyghur 72.3 Uzbek 71.8
Vietnamese 68.5 Yoruba 50.1

Table 3: Name Tagging Performance on Low-Resource
Languages

GeoNames and Wikipedia as their salience scores.
Then we construct knowledge networks from
source language texts, where each node repre-
sents a entity mention, and each link represents a
sentence-level co-occurrence relation. If two men-
tions cooccur in the same sentence, we prefer their
entity candidates in the GeoNames to share an ad-
ministrative code and type, or be geographically
close in the world, as measured in terms of lati-
tude and longitude.

Table 3 shows the performance of our system
on some representative low-resource languages for
which we have ground-truth annotations from the
DARPA LORELEI7 programs, prepared by the
Linguistic Data Consortium.

7https://www.darpa.mil/program/
low-resource-languages-for-emergent-incidents

4 Training and Testing APIs

In this section, we introduce our back-end APIs.
The back-end is a set of RESTful APIs built with
Python Flask8, which is a light weight framework
that includes template rendering and server host-
ing capabilities. We use Swagger for documen-
tation management. Besides the on-line hosted
APIs, we also publish our Docker copy9 at Dock-
erhub for software distribution.

In general, we categorize the APIs into two sec-
tions: RUN and TRAIN. The RUN section is re-
sponsible for running the pre-trained models for
282 languages, and the TRAIN section provides
a re-training function for users who want to train
their own customized name tagging models using
their own datasets. We also published our train-
ing and test data sets, as well as resources related
to at morphology analysis and name translation at:
https://elisa-ie.github.io/wikiann. Ta-
ble 1 and Table 2 present the detailed functional-
ity and usages of the APIs of these two sections.
Besides the core components as described in Sec-
tion 2 and Section 3, we also provide the APIs
of additional components, including a re-trainable
name transliteration component (Lin et al., 2016)
and a universal name and word translation compo-
nent based on word alignment derived from cross-

8http://flask.pocoo.org
9https://hub.docker.com/r/elisarpi/

elisa-ie/

43

lingual Wikipedia links (Pan et al., 2017). More
detailed usages and examples can be found in our
Swagger10 documentation: https://elisa-ie.
github.io/api.

5 Testing Interface

Figure 1 shows the test interface, where a user
can select one of the 282 languages, enter a text
or select an example document, and run the sys-
tem. Figure 2 shows an output example. In addi-
tion to the entity extraction and linking results, we
also display the top 5 images for each entity re-
trieved from Google Image Search11. In this way
even when a user cannot read a document in a low-
resource language, s/he will obtain a high-level
summary of entities involved in the document.

6 Heatmap Visualization

Using disaster monitoring as a use case, we de-
tect the following ten topics from the input multi-
lingual data based on translating 117 English dis-
aster keywords via PanLex12: (1) water supply,
(2) food supply, (3) medical assistance, (4) ter-
rorism or other extreme violence, (5) utilities,
energy or sanitation, (6) evacuation, (7) shelter,
(8) search and rescue, (9) civil unrest or wide-
spread crime, and (10) infrastructure, as defined
in the NIST LoreHLT2017 Situation Frame detec-
tion task13. If a sentence includes one of these top-
ics and also a location or geo-political entity, we
will visualize the entity on a world heatmap using
Mapbox14 based on its coordinates in the GeoN-
ames database obtained from the entity linker. We
also show the entire context sentence and its En-
glish translation produced from our state-of-the-
art Machine Translation system for low-resource
languages (Cheung et al., 2017). Figure 3 illus-
trates an example of the visualized heatmap.

We use different colors and icons to stand for
different languages and frame topics respectively
(e.g., the bread icon represents “food supply”).
Users can also specify the language or frame topic
or both to filter out irrelevant results on the map.
By clicking an icon, its context sentence will be
displayed in a pop-up with automatic translation

10https://swagger.io
11https://images.google.com
12http://panlex.org
13https://www.nist.gov/itl/iad/mig/

lorehlt-evaluations
14https://www.mapbox.com

and highlighted mentions and keywords. We pro-
vide various map styles (light, dark, satellite, and
streets) for different needs, as shown in Figure 4.

Figure 4: Different Map Styles

7 Related Work

Some recent work has also focused on low-
resource name tagging (Tsai et al., 2016; Littell
et al., 2016; Zhang et al., 2016; Yang et al., 2017)
and cross-lingual entity linking (McNamee et al.,
2011; Spitkovsky and Chang, 2011; Sil and Flo-
rian, 2016), but the system demonstrated in this
paper is the first publicly available end-to-end sys-
tem to perform both tasks and all of the 282
Wikipedia languages.

8 Conclusions and Future Work

Our publicly available cross-lingual entity extrac-
tion, linking and localization system allows an En-
glish speaker to gather information related to en-
tities from 282 Wikipedia languages. In the fu-
ture we will apply common semantic space con-
struction techniques to transfer knowledge and
resources from these Wikipedia languages to all
thousands of living languages. We also plan to sig-
nificantly expand entities to the thousands of fine-
grained types defined in YAGO (Suchanek et al.,
2007) and WordNet (Miller, 1995).

Acknowledgments

This work was supported by the U.S. DARPA
LORELEI Program No. HR0011-15-C-0115. The
views and conclusions contained in this document
are those of the authors and should not be inter-
preted as representing the official policies, either
expressed or implied, of the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

44

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In ACL Workshop on Linguistic An-
notation and Interoperability with Discourse.

Leon Cheung, Thamme Gowda, Ulf Hermjakob, Nel-
son Liu, Jonathan May, Alexandra Mayn, Nima
Pourdamghani, Michael Pust, Kevin Knight, Niko-
laos Malandrakis, Pavlos Papadopoulos, Anil Ra-
makrishna, Karan Singla, Victor Martinez, Colin
Vaz, Dogan Can, Shrikanth Narayanan, Kenton
Murray, Toan Nguyen, David Chiang, Xiaoman
Pan, Boliang Zhang, Ying Lin, Di Lu, Lifu Huang,
Kevin Blissett, Tongtao Zhang, Heng Ji, Ondrej
Glembek, Murali Karthick Baskar, Santosh Kesir-
aju, Lukas Burget, Karel Benes, Igor Szoke, Karel
Vesely, Jan “Honza” Cernocky, Camille Goudese-
une, Mark Hasegawa Johnson, Leda Sari, Wenda
Chen, and Angli Liu. 2017. ELISA system descrip-
tion for lorehlt 2017. In Proc. LoReHLT2017.

Jason P. C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. Trans-
actions of the Association for Computational Lin-
guistics 4:357–370.

Ying Lin, Xiaoman Pan, Aliya Deri, Heng Ji, and
Kevin Knight. 2016. Leveraging entity linking
and related language projection to improve name
transliteration. In Proc. ACL2016 Workshop on
Named Entities.

Patrick Littell, Kartik Goyal, David Mortensen, Alexa
Little, Chris Dyer, and Lori Levin. 2016. Named en-
tity recognition for linguistic rapid response in low-
resource languages: Sorani Kurdish and Tajik. In
Proc. of the 26th International Conference on Com-
putational Linguistics (COLING2016).

Paul McNamee, James Mayfield, Dawn Lawrie, Dou-
glas W. Oard, and David Doermann. 2011. Cross-
language entity linking. In Proc. of 5th International
Joint Conference on Natural Language Processing
(IJCNLP2011).

George A. Miller. 1995. WordNet: A lexical
database for english. Communications of the ACM
38(11):39–41.

Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji,
and Kevin Knight. 2015. Unsupervised entity link-
ing with abstract meaning representation. In Proc.
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics Human Language Technologies (NAACL-HLT
2015).

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proc. the 55th Annual Meeting of the Association
for Computational Linguistics (ACL2017).

Avirup Sil and Radu Florian. 2016. One for all: To-
wards language independent named entity linking.
In Proc. of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL2016).

Valentin I Spitkovsky and Angel X Chang. 2011.
Strong baselines for cross-lingual entity linking. In
Proc. of the Text Analysis Conference (TAC2011).

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proc. of the 16th international conference
on World Wide Web (WWW2017).

Chen-Tse Tsai, Stephen Mayhew, and Dan Roth. 2016.
Cross-lingual named entity recognition via wiki-
fication. In Proc. of the 20th SIGNLL Confer-
ence on Computational Natural Language Learning
(CoNLL2016).

Zhilin Yang, Ruslan Salakhutdinov, and William W
Cohen. 2017. Transfer learning for sequence tag-
ging with hierarchical recurrent networks. In Proc.
of the 5th International Conference on Learning
Representations (ICLR2017).

Boliang Zhang, Xiaoman Pan, Tianlu Wang, Ashish
Vaswani, Heng Ji, Kevin Knight, and Daniel Marcu.
2016. Name tagging for low-resource incident lan-
guages based on expectation-driven learning. In
Proc. of the 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT 2016).

45

Proceedings of NAACL-HLT 2018: Demonstrations, pages 46–50
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

Entity Resolution and Location Disambiguation in the Ancient Hindu Temples
Domain using Web Data

Ayush Maheshwari, Vishwajeet Kumar, Ganesh Ramakrishnan
Indian Institute of Technology Bombay

Mumbai, India
{ayushm,vishwajeet,ganesh}@cse.iitb.ac.in

J. Saketha Nath ∗

IIT Hyderabad
Hyderabad, India

saketha@iith.ac.in

Abstract

We present a system for resolving entities and
disambiguating locations based on publicly avail-
able web data in the domain of ancient Hindu
Temples. Scarce, unstructured information poses
a challenge to Entity Resolution(ER) and snippet
ranking. Additionally, because the same set of en-
tities may be associated with multiple locations,
Location Disambiguation(LD) is a problem. The
mentions and descriptions of temples1 exist in
the order of hundreds of thousands, with such
data generated by various users in various forms
such as text (Wikipedia pages), videos (YouTube
videos), blogs, etc. We demonstrate an integrated
approach using a combination of grammar rules
for parsing and unsupervised (clustering) algo-
rithms to resolve entity and locations with high
confidence. A demo of our system is accessible
at tinyurl.com/templedemos2. Our
system is open source and available on GitHub3.

1 Introduction

Entity Resolution (ER) is the process of associating
mentions of entities in text with a dictionary of entities.
Here the dictionary might be either manually curated
(such as Wikipedia) or constructed in an unsupervised
manner (Bhattacharya and Getoor, 2007). It is a well
studied problem with wide applications. This problem
is of particular significance for domains in which the
information available on the Web is relatively scarce.

In the domain of ancient Hindu Temples4, which
are present in the order of hundreds of thousands, the
corresponding sources of information are often diverse
and scarce. There are more than six hundred thousand
temples in the country:however, sufficient information
exists only for a few of them on the Web. Furthermore,

∗This work was done while author was at IIT Bombay
1Throughout the paper by ‘temples’ we mean entities in the

domain of ancient Hindu Temples.
2Demo of the Snippet Ranking system can be accessed at

tinyurl.com/entityr
3https://github.com/vishwajeet93/

templeSearch
4Note: Here Temple is an entity with two attributes viz., 1)

Temple Name and 2) Temple Location

Figure 1: Sample descriptions (posts) from YouTube
videos on various temples. Irrelevant posts are
snippets which cannot be associated with any temple,
whereas the relevant posts are about Giriraj Dham,
Ammachiveedu Muhurthi, Shivalokathyagar and
Gorakhnath temples respectively.

a significant fraction of such data (∼60%), is generated
by the crowd over social multi-media platforms such as
YouTube and Twitter. This data is ridden with subjective
evaluations, opinions, and speculations. See Figure 1
for examples which we contrast with relatively objective
and factual passages. The irrelevant posts in Figure 1
are speculative, subjective/opinionated or irrelevant.
Our initial challenge is to weed out such speculative
information carefully while holding on to sparse, factual
and historical information. Additionally, the problem
becomes more complex when the information about
the domain is either poorly structured or unstructured.
In Figure 2 we present an example snippet containing
multiple temple names and multiple temple locations.
We observe that a snippet can sometimes contain mul-
tiple mentions of similar temple names and temple
locations. Due to similar temple names present at mul-
tiple locations, we also face the problem of Location
Disambiguation (LD).
In this work, we present a novel approach to perform
ER and LD for ancient temples using text and multime-
dia content publicly available on the Web. We retrieve
information about temples from various sources such as
Google Maps, YouTube etc., and preprocess it. Using

46

Figure 2: An example of temple name and location
disambiguation. Snippet contain multiple mentions
of same temple. Temple is present at multiple locations
which makes disambiguation challenging.

this information, we extract videos present on YouTube
about the temples along with its metadata such as title
and description, and map videos to the corresponding
temple. Next, we rank various textual snippets pertain-
ing to the same temple on the basis of the relevance of
each snippet. We demonstrate our approach through a
system that accurately disambiguates videos to temples
and ranks results in order of their relevance to a user
query. We measure the effectiveness of our approach
in terms of precision, recall and F-score. Our main
contributions are as follows:
• A novel approach to perform ER and LD for

temples using evidence from multiple snippets
extracted from various web sources. Evidence
may actually be subjective evaluations, opinions
or speculations, not actual facts. We design
heuristics with low false positive rates that help
us filter out such misleading instances.
• A method to disambiguate temple and location

names, and accurately associate relevant videos.
• A novel CNN-based(Convolutional Neural Net-

work) technique to rank multiple snippets pertain-
ing to the same temple by computing similarities.
• A system to search information (snippets, location,

videos etc.) about temples.

2 Related Work

(Getoor and Machanavajjhala, 2013; Benjelloun et al.,
2009; Wang et al., 2012) proposed to use crowd sourced

data to resolve entities. (Wang et al., 2012) propose
a hybrid human-machine approach to determine the
most relevant, matching entity pairs. Instead of directly
asking users to resolve entities, the system adopts a
two-step approach; the system estimates the most likely
mentions for an entity. This information is presented to
the users to verify matching pairs of entities.
(Inkpen et al., 2017) proposed a set of heuristic rules
to disambiguate location names in Twitter5 messages.
Their heuristics rely on geographical (latitude-longitude,
geographic hierarchy) and demographic information
(population of a region). (Awamura et al., 2015) used
spatial proximity and temporal consistency clues to
disambiguation location names. Our approach jointly
resolves entity and disambiguate location names using
publicly available web data.

3 Our Approach

We propose a novel technique to address the problem
of entity resolution and location disambiguation. To
extract the basic location and video data related to each
temple, we use the Google Maps6 and YouTube API7

respectively. We disambiguate the name and location
of each temple using publicly available data on the
Web and leverage Google Maps to assign videos to
the correct temple.

The temples names and temple locations are
extracted from the snippets using text processing
techniques. Thereafter, we use the K-medoids
algorithm8 to cluster snippets belonging to the same
temple. Given a new temple, we retrieve the set of
snippets related to the temple. These snippets are fed
as input to a CNN based ranking system to score and
rank snippets based on the queried temple.

3.1 Data collection
Most information pertaining to temples, as available
on the Web is in the form of videos uploaded by
individuals on video sharing websites such as YouTube,
blogs, and Wikipedia pages. In most cases, the content
uploaded by a user either (i) does not contain the
specific name or location of the temple or (ii) contains
multiple temple names and locations. In contrast,
moderated content on sites such as Wikipedia is
well-organized and contains unambiguous information.

Additionally, descriptions of temples are splintered
over personal websites, Google Maps9 and government
websites, just to name a few sources. We crawled the
Web to fetch mentions of temple names. We extracted

5https://www.twitter.com
6https://developers.google.com/maps/
7https://developers.google.com/youtube/
8https://en.wikipedia.org/wiki/K-medoids
9https://maps.google.com

47

temples and their locations from place annotations
available on Google Maps. Through this, we were able
to enlist over four hundred thousand temples located
across the country. We use temple name and location
to extract information about the temples present in
YouTube10 videos.

3.2 Temple Name and Location Disambiguation
We manually designed and wrote rules for parsing
the textual data (from sources mentioned earlier) and
extracted temple names. For this, we employed the
JAPE grammar in the GATE tool (Cunningham et al.,
2002). For illustration, consider the sentence: The
Shankaracharya temple is housed in the Srinagar
district on the hill known as Takht-e-Suleiman. In this
illustration, the temple name and location (highlighted
in bold) are extracted using manually composed
parsing rules based on JAPE grammar.

Owing to user subjectivity, consistency and quality
of the content varies widely. In our case, snippets
within the corpus are replete with distinct mentions of
the same entity. There are multiple variants of a single
temple name in a single snippet. For example, Vaishno
Devi Mandir, Vaishno Devi Temple or shrine of Mata
Vaishno Devi are variants of the same temple name. To
correctly attribute multiple variants to a single temple
name (such as Vaishno Devi Temple), we pre-process
these mentions and map them to a canonical temple
entity by following a two-step approach. First, we
build a vocabulary containing spelling variants and syn-
onyms. As an example, sh and h are commonly used
interchangeably (eg: Shiva and Siva). Similarly, temple
and mandir are used interchangeably as synonyms
(the latter being a word from Samskrit). Second, we
wrote JAPE Grammar rules to parse temple names into
their canonical forms. For instance, Vaishno uniquely
identifies variants of the Vaishno Devi Temple. We
follow a similar technique to disambiguate locations.

3.3 Mapping Videos to Temple
For most queries, videos retrieved in the top search
results are unrelated to the temple name and its location.
This leads to the need to map videos to a correct temple.
User generated content needs to be analyzed and
filtered to remove unrelated videos. We achieve this by
fetching the top-15 videos for each temple and extract-
ing their title and description. We store each title and
description pair into a document, say d. We repeat this
for each video-temple pair to form a set of document
D = d1,d2,...,dn. Below, we describe our approach
to map videos to temples with high confidence.

1. Extract temple name and temple location from
the document di using disambiguation methods.

10https://youtube.com

1: input: set of snippets S, mentions of temple
name t1,t2,..,tn and location l1,l2,..,ln

2: Build a vocabulary of t and l.
3: Add generic variants of t and l to the vocabulary
4: Apply JAPE Grammar rules to parse temple

mentions to canonical forms
Clustering Algorithm

5: Form query set q as a cross-product of t and l.
Each query will have two fields, viz., ‘temple:t,
location:l’

6: Based on CNN similarity scores, generate top-k
matches for every query in q on all snippets S

7: for all si∈S do
8: Assign membership score of each snippet sj

to si
9: Assign the top-k scoring snippets to cluster

containing si
10: Identify snippets belonging to cluster Ci using

score matrix
11: output: Snippets classification into c clusters

Figure 3: Pseudo-code for temple name and location
disambiguation and clustering algorithm for processing
textual snippets.

2. Use Google Maps API to list temple names
located around the extracted temple location. The
temple names and temple location form a tuple
t stored in set T .

3. For each element t ∈ T , we calculate TF-IDF
score for tuple t over each document d ∈ D,
where D is the indexed set of documents.

4. We rank documents based on TF-IDF scores for
each query t∈T and map the top ranked d to the
temple.

3.4 Snippet Clustering

Textual snippets retrieved from publicly available data
on the web are pre-processed to remove stop words
before giving input to the text processing engine. We
use a CNN-based ranking method, explained in Section
3.5, which produces a score matrix for each snippet
in the cluster. We label each cluster using a snippet
that we determine to be the centroid of that cluster and
select the corresponding Temple name and location pair
that identifies the cluster. The score matrix is finally
sorted to determine the top-k snippets belonging to
that cluster. Pseudo-code for the clustering algorithm
is described in Figure 3.

3.5 Snippet Ranking

We use a CNN-based architecture to score and rank
snippets such that the CNN assigns the highest score to
the snippet having maximum overlap with the queried
temple. More formally the similarity between query

48

q and snippet s is computed as:
sim(q,s)=qTWs (1)

For our CNN model, we use the short text ranking
system proposed by Severyn (Severyn and Moschitti,
2015). The convolution filter width is set to 5, the
feature map size to 150, and the batch size to 50. We
set the dropout parameter to 0.5. We initialized word
vectors using pre-trained word embeddings. Before
passing our input to the CNN, we pre-process the text
and exclude plural nouns, cardinal numbers and foreign
words from the snippets. Pre-processing helps us
handle out of vocabulary words. We use the Stanford
Part of Speech (POS) (Toutanova et al., 2003) tagger to
annotate each word with its POS tag. As an example,
consider the following input snippet: Temple of Lord
Somnath one of Jyotirlinga temple of Lord Shiva is
situated near the town of Veraval in Western part of
Gujarat whose present structure is built in 1951. The
PoS tagger annotates words like Lord , Somnath, Shiva,
Veraval, Gujarat as proper nouns. We provide the
query-temple pair as an input to the CNN which outputs
the associated similarity score. The highest score
represents the most relevant snippet for the temple.

4 Experiments and Results

4.1 Data Set
Our dataset11 consists of more than four hundred
thousand temple names with their locations extracted
from Google Places. It also contains more than two
hundred thousand videos fetched from YouTube.

Model (Values in %) Ground Truth
Temple ∼Temple

Predicted as Temple 77 12
Predicted as∼Temple 9 2

Precision = 0.863, Recall = 0.89, F = 0.876

Table 1: Precision, recall and F measure for the mapped
entities

4.2 Results
We sample 1000 videos randomly from the complete
video set to compute precision, recall and F-measure
and evaluate the performance of videos mapped to the
temple as shown in Table 1. 77% of YouTube videos
are mapped to the correct temple with its location, 9%
videos are mapped incorrectly. 12% videos are not
mapped to any temple while 2% videos are false nega-
tives. False negatives correspond to videos not relevant
to a temple though retrieved from YouTube. Overall,
we observe good performance in terms of precision

11Our annotated data is available for further academic research
on request

and recall numbers, despite the association of a single
temple name with multiple locations and despite the
presence of multiple temples in the same location.

5 Demonstration Details

When a user enters a query in the search box (annotated
with Temple Search in Figure 4(b)), the system returns
a list of temples. On selecting the temple, the system
provides location annotations in the Map tab. The
system also provides list of relevant videos for the
query temple in the Videos tab (Figure 4(c)). In our
Snippet ranking demo 12, the user can select a temple
from the drop-down list and view the description
of extracted snippets. Additionally, a user can view
snippet clusters for a temple along with the snippet
ranking score (as shown in Figure 4(a)).

6 Conclusion

In this paper, we focused on the problem of ER and LD
in a domain where data is scarce, mostly unstructured
and user generated. We presented a novel approach
to disambiguate temple names and locations. We also
addressed the problem of mapping videos to temples
using ER and LD techniques. We leverage evidence
from user generated content to map videos to their
correct temple and rank snippets. We also presented a
novel CNN-based technique for snippet clustering and
ranking. Furthermore, we evaluated the effective-ness
of our mapping techniques. In the future, we would like
to resolve attributes such as the date of establishment,
main deity, etc. from the ambiguous text.

References
Takashi Awamura, Daisuke Kawahara, Eiji Aramaki,

Tomohide Shibata, and Sadao Kurohashi. 2015. Loca-
tion name disambiguation exploiting spatial proximity
and temporal consistency. In Proceedings of the
Third International Workshop on Natural Language
Processing for Social Media, pages 1–9.

Omar Benjelloun, Hector Garcia-Molina, David Men-
estrina, Qi Su, Steven Euijong Whang, and Jennifer
Widom. 2009. Swoosh: a generic approach to entity
resolution. The VLDB JournalThe International
Journal on Very Large Data Bases, 18(1):255–276.

Indrajit Bhattacharya and Lise Getoor. 2007. Collective
entity resolution in relational data. ACM Transactions
on Knowledge Discovery from Data (TKDD), 1(1):5.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva,
and Valentin Tablan. 2002. GATE: A Framework
and Graphical Development Environment for Robust
NLP Tools and Applications. In Proceedings of

12tinyurl.com/entityr

49

Figure 4: Snapshots of the system

the 40th Anniversary Meeting of the Association for
Computational Linguistics (ACL’02).

Lise Getoor and Ashwin Machanavajjhala. 2013. Entity
resolution for big data. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1527–1527. ACM.

Diana Inkpen, Ji Liu, Atefeh Farzindar, Farzaneh Kazemi,
and Diman Ghazi. 2017. Location detection and
disambiguation from twitter messages. Journal of
Intelligent Information Systems, 49(2):237–253.

Aliaksei Severyn and Alessandro Moschitti. 2015. Learn-
ing to rank short text pairs with convolutional deep neu-
ral networks. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 373–382. ACM.

Kristina Toutanova, Dan Klein, Christopher D Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceed-
ings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguis-
tics on Human Language Technology-Volume 1, pages
173–180. Association for Computational Linguistics.

Jiannan Wang, Tim Kraska, Michael J Franklin, and
Jianhua Feng. 2012. Crowder: Crowdsourcing entity
resolution. Proceedings of the VLDB Endowment,
5(11):1483–1494.

50

Proceedings of NAACL-HLT 2018: Demonstrations, pages 51–55
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

Madly Ambiguous:
A Game for Learning about Structural Ambiguity

and Why It’s Hard for Computers

Ajda Gokcen
Department of Linguistics
University of Washington

Seattle, WA 98195
ajdag@uw.edu

Ethan Hill
IBM Watson Health

Cleveland, OH 44114
ehill@us.ibm.com

Michael White
Department of Linguistics
The Ohio State University

Columbus, OH 43210
mwhite@ling.osu.edu

Abstract
Madly Ambiguous is an open source, online
game aimed at teaching audiences of all ages
about structural ambiguity and why it’s hard
for computers. After a brief introduction to
structural ambiguity, users are challenged to
complete a sentence in a way that tricks the
computer into guessing an incorrect interpre-
tation. Behind the scenes are two different
NLP-based methods for classifying the user’s
input, one representative of classic rule-based
approaches to disambiguation and the other
representative of recent neural network ap-
proaches. Qualitative feedback from the sys-
tem’s use in online, classroom, and science
museum settings indicates that it is engaging
and successful in conveying the intended take
home messages.

1 Introduction

Madly Ambiguous is an open source,1 in-browser
online game2 aimed at teaching audiences of all
ages about structural ambiguity and some of the
difficulties it poses for natural language process-
ing. Users are introduced to the spunky Mr. Com-
puter Head (Figure 1), a character who gives them
an introduction to structural ambiguity and then
challenges them to complete a sentence with a
prepositional phrase attachment ambiguity in a
way that he will misinterpret (Figures 4–5). After
playing a round of the game, users may read more
about how Mr. Computer Head and systems like
him are trained to deal with tasks of ambiguity.
Bringing Madly Ambiguous to fruition required
an integration of NLP capabilities, cross-platform
compatibility, and accessible pedagogical expla-
nation of some fairly complex linguistic and com-
putational concepts, the last of which proved to be
the biggest challenge.

1https://github.com/ajdagokcen/
madlyambiguous-repo

2http://madlyambiguous.osu.edu

Figure 1: Mr. Computer Head, who acts as the oppo-
nent in the game, also narrates the introduction and ex-
planation.

Madly Ambiguous has been developed as an
outreach component of a project whose aim is to
develop methods for avoiding ambiguity in nat-
ural language generation and for using disam-
biguating paraphrases to crowd source interpreta-
tions of structurally ambiguous sentences (Duan
and White, 2014; Duan et al., 2016; White et al.,
2017). The game was initially intended solely as
an iPad demo outside of Ohio State’s Language
Sciences Research Lab, or “Language Pod,” a
fully functional research lab embedded within the
Columbus Center of Science and Industry (COSI),
one of the premier science centers in the country
(Wagner et al., 2015). The COSI research pods
are glass-enclosed research spaces where museum
visitors can observe actual scientific research as it
is occurring, creating excitement in children about
science and encouraging scientific careers. Out-
side the pod, Ohio State graduate and undergradu-
ate students (the “explainers”) provide educational
explanations to both adult and child COSI visitors
about the work being conducted within the pod as
well as language science in general. The explain-

51

Figure 2: An illustration of why interpreting the sen-
tence Jane ate spaghetti with a fork as the fork be-
ing part of the dish (instead of a utensil) is ridiculous
and easy for a human to dismiss (albeit still a potential
source of confusion for a computer).

Figure 3: A zoomed-in view of a t-SNE plot show-
ing some of the clusters of similar input phrases
to the word2vec model. Phrases like “an Italian”
and “her Italian passion” have different interpretations
(COMPANY and MANNER, respectively), but are very
close to one another on this plot, showing that even the
more advanced method has its difficulties.

ers receive extensive training on how to talk about
science to a general audience via courses offered
at OSU and also from the COSI educational team.

The Language Pod organizers were enthusiastic
about the development of Madly Ambiguous since
they were aware of no general audience demos
that dealt with syntax-related linguistic phenom-
ena. After gathering feedback on the initial iPad
version of Madly Ambiguous at COSI, it was com-
pletely redesigned as an in-browser demo that can
be used on iPad, Android, and desktop browsers,
both for informal science learning and undergrad-
uate classroom use, as well as a stand-alone demo
on the web. Qualitative feedback on the revamped
Madly Ambiguous suggests that it is educational
and engaging for all ages.

2 Design

2.1 Interface

Madly Ambiguous’s interface is implemented us-
ing Node.js3 as a single dynamic web page. It
includes three primary sections: the introduction,
the game, and the explanation of how it works.
The introduction discusses the more general prin-
ciples of structural ambiguity as well as the par-
ticular rules of the game, including interactive el-
ements and humorous examples to make the in-
structions more interesting (Figure 2). The expla-
nation of how it works can be read once the user
has gone through at least one round of the game;
it gives the basics of the two different methods the
system uses for classifying the input, as described
further in the next subsection.

The game itself has two phases of user inter-
action. First, users fill in the blank in the sen-
tence, “Jane ate spaghetti with .” (See Figure 4.)
The system gives a waiting screen depicting a con-
templative Mr. Computer Head as it processes and
classifies their input, and then displays the guess
for users to confirm or deny based on their in-
tended interpretation, as shown in Figure 5. Four
different interpretations are possible, with one ad-
ditional selection if the user feels none of the four
capture the meaning. Once the user selects an an-
swer, s/he is given the option to play again, possi-
bly switching between basic and advanced mode.

As we discovered during trials of the initial ver-
sion of the system, the main challenge of the inter-
face was in presenting the different possible inter-
pretations to users in a way that those with no prior
understanding of linguistics could quickly grasp.
In the current version, this is accomplished by pre-
senting each option not just with a paraphrase of
the sentence that captures the same meaning in a
less ambiguous way, but also with a picture depict-
ing the interpretation. Note that the pictures that
accompany each meaning are based on the sen-
tences in the introduction as opposed to the user’s
input, so even if the user enters a utensil such as a
silver spoon, the picture for the UTENSIL interpre-
tation always shows a fork.

Given the importance of illustrative pictures in
making the demo accessible, along with the diffi-
culty of staging such pictures, the current version
includes only the sentence for which we have cor-
responding photos for each interpretation.

3https://nodejs.org

52

Figure 4: The main screen of the game, where users
are asked to complete the ambiguous sentence in a way
that the system will misinterpret.

2.2 The NLP
Behind the scenes, the system classifies the user’s
completion of the sentence “Jane ate spaghetti
with ” as having one of the following four
semantic roles, as represented by keywords and
paraphrases:

• UTENSIL: Jane used to eat spaghetti.

• PART: Jane had spaghetti and .

• MANNER: Jane exhibited while eating spaghetti.

• COMPANY: Jane ate spaghetti in the presence of .

There are two different methods of analysis that
can be employed. Basic mode represents a clas-
sic rule-based approach to NLP, utilizing part-
of-speech tagging, lemmatization, and WordNet
(Miller, 1995) to arrive at an answer. This requires
some heuristics based on the part-of-speech tags
and lemmas in order to decide what the “most im-
portant” word of the input phrase is for cases like
Jane ate spaghetti with a bowl full of meatballs.
The most important word (or multiword phrase) is
then looked up in WordNet and its hypernyms are
used to choose the category, much as with how se-
lectional restrictions have been traditionally used
(e.g. Allen et al., 2001).

Advanced mode uses methods closer to the cur-
rent state-of-the-art for modern NLP, namely word
embeddings (Mikolov et al., 2013). The gensim
implementation of word2vec (Řehůřek and Sojka,
2010) is used with vectors that have been pre-
trained on the Google News corpus. A training
set of phrases and interpretation labels is used
to create clusters for each of the four interpreta-
tions. Inputs are then classified based on the near-
est neighbor in the model to the average of all of
the word vectors in the input phrase, not unlike
in recent memory-based approaches to one-shot
learning (Vinyals et al., 2016).

Figure 5: Once users complete the sentence, they’re
shown the system’s guess for the sentence’s meaning
and can confirm or deny its veracity.

The explanation of how it works additionally
covers common sources of interpretation errors.
In basic mode, infrequent word senses listed in
WordNet can cause confusion; for example, trump
is listed as an archaic form of trumpet, leading
Mr. Computer Head to conjecture that President
Trump is a utensil. In advanced mode, the blend-
ing of unrelated senses in word embeddings can
cause trouble; for example, as shown in the vi-
sualization of the clusters in Figure 3, the food
and manner senses represented in the embedding
for relish can lead to mistakes, as tons of relish
is closer to one of the MANNER cluster centroids
than the intended FOOD clusters.

3 Educational Objectives and Feedback

For informal science learning, like at COSI, the
presentation of Madly Ambiguous can and should
be tailored to different audiences. For all ages,
the critical take home message is that sentences
can have more than one meaning (even when the
meaning of the words remains constant), and that
while people are adept at using the context to de-
termine what’s intended, this can be very hard for

53

computers.4 Depending on the audience, the ex-
plainers might also skip the intro and jump right
into the game with the pitch, Hey, do you want to
try to trick a computer?

To separate the notion of intended meaning
from the form of the sentence, users of the demo
are encouraged to visualize the meaning they have
in their head before clicking to see how Mr. Com-
puter Head interprets their sentence completion.
With more advanced audiences, the explainers will
discuss how linguists use technical tools (like de-
pendency trees) to analyze structural ambiguities
and go over how the basic and advanced mode
work. Finally, by discussing the kinds of errors the
system makes, the explainers can broach the topic
of why computers remain so much worse at am-
biguity resolution than people. Classroom use can
be similar, but with more background knowledge,
students can be challenged to come up with ways
to improve upon the system’s current strategies.

Since the demo went live in Summer 2017, Mr.
Computer Head’s accuracy against user judgments
is currently 64% for basic mode and 70% for ad-
vanced mode, well above the majority baseline of
29% despite most users trying hard to fool him.5

Qualitatively, a high level of engagement with the
demo can be observed by examining the lengths to
which users go to win, cleverly coming up exam-
ples like a cucumber dressed as a person as COM-
PANY rather than FOOD, pins and needles as MAN-
NER rather than UTENSIL, and very British reserve
as MANNER rather than COMPANY, all of which
fool Mr. Computer Head in one mode or the other.

Madly Ambiguous received more widespread
community feedback after popular linguistics blog
All Things Linguistic made a post about it, describ-
ing it as “a nice intro to automatic sentence pro-
cessing” (McCulloch, 2017). From there the link
was shared across Twitter, Facebook, and beyond.
Translation platform Smartcat reached out to learn
more about computational linguistics in a webcast
interview (Banffy, 2017; Academy, 2017), while
other computational linguistics pages like UW-
CLMS discussed it on Facebook (CLMS, 2017).

Teachers of courses related to language and
computers have also made posts about using
Madly Ambiguous in the classroom, making com-
ments such as, “I actually cannot believe I showed

4Indeed, PP-attachment ambiguities have remained a pri-
mary source of parser errors (Kummerfeld et al., 2012).

5To our surprise, the youngest users of Madly Ambiguous
often want to help Mr. Computer Head get the right answer!

word2vec visualizations in a 100 level course –
some people were at least nodding, and they are
not all from [a] CS background. Absolutely loved
using it as a pedagogical tool, and the students also
seemed to have understood better” (Vajjala, 2017).

4 Summary and Future Work

In this paper we have introduced Madly Ambigu-
ous, a game aimed at teaching audiences of all
ages about structural ambiguity and demonstrating
why it’s hard for computers—an important lesson
that serves to demystify natural language process-
ing at a time when AI in general is arguably over-
hyped, risking societal overreactions to the tech-
nology. Although Madly Ambiguous is complete
and publicly available as-is, there are still more di-
rections it could be taken in, as well as improve-
ments to be made. Since the system saves the data
from each round played, there are, as of February
2018, over 13,000 user inputs and judgments col-
lected, which could be used as dynamic feedback
for training future versions or possibly as data for
other studies of structural ambiguity.

The game could be extended to include other
sentences and types of structural ambiguity, such
as with coordination (e.g., The old dogs and cats
went to the vet, where old may modify dogs and
cats or dogs alone). This may call for addi-
tional illustrative pictures, however. Other ex-
pansions might incorporate different successful
vector-based methods into the word2vec mode to
make it even more sophisticated. Compositional
character models, as in Ling et al. (2015), could
allow the system to meaningfully model even out-
of-vocabulary words; syntactically/semantically
compositional models as in Socher et al. (2012)
could yield a single vector for multi-word phrases
that composes the representations for each word
rather than averaging them, potentially providing
more separation between clusters. Another direc-
tion would be to dynamically generate explana-
tions. It is an open source project, so anyone could
contribute to the code!

Acknowledgments
We thank David King, Matt Metzger, and Kaleb White for
their contributions to the interface and advanced mode func-
tionality. The interactive demo materials were contributed
by Laura Wagner and Victoria Sevich. Special thanks also
to Kathryn Campbell-Kibler and Christy Doran for helpful
suggestions, and to Yasemin Gokcen and Jessica Findsen for
modeling with spaghetti as Jane and Mary. Madly Ambigu-
ous was funded in part through NSF Grant 1319318.

54

References
Smartcat Academy. 2017. Computational lin-

guistics. https://www.crowdcast.io/e/
computational-linguistics.

James F Allen, Donna K Byron, Myroslava Dzikovska,
George Ferguson, Lucian Galescu, and Amanda
Stent. 2001. Toward conversational human-
computer interaction. AI magazine, 22(4):27.

Octávio Banffy. 2017. Madly ambiguous linguistic
game. https://community.smartcat.ai/
topic/792-madly-ambiguous-
linguistic-game/.

UW CLMS. 2017. Uw professional master’s in
computational linguistics: A fun game from
ohio state. https://www.facebook.com/
uwclma/posts/10155182653273246.

Manjuan Duan, Ethan Hill, and Michael White. 2016.
Generating disambiguating paraphrases for struc-
turally ambiguous sentences. In Proceedings of the
10th Linguistic Annotation Workshop held in con-
junction with ACL 2016 (LAW-X 2016), pages 160–
170, Berlin, Germany. Association for Computa-
tional Linguistics.

Manjuan Duan and Michael White. 2014. That’s Not
What I Meant! Using Parsers to Avoid Structural
Ambiguities in Generated Text. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 413–423, Baltimore, Maryland. Asso-
ciation for Computational Linguistics.

Jonathan K. Kummerfeld, David Hall, James R. Cur-
ran, and Dan Klein. 2012. Parser showdown at the
wall street corral: An empirical investigation of error
types in parser output. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natu-
ral Language Learning, pages 1048–1059, Jeju Is-
land, South Korea. Association for Computational
Linguistics.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1520–1530.

Gretchen McCulloch. 2017. Madly ambiguous is
a fill-in-the-blank game that teaches you about
ambiguity while you try to trick a computer.
http://allthingslinguistic.com/
post/165950061882/madly-ambiguous-
is-a-fill-in-the-blank-game-that.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50,
Valletta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 joint conference on empirical
methods in natural language processing and com-
putational natural language learning, pages 1201–
1211. Association for Computational Linguistics.

Sowmya Vajjala. 2017. Teaching Notes —
Teaching about ‘What is NLP?’. https://
nishkalavallabhi.github.io/LandC5/.

Oriol Vinyals, Charles Blundell, Timothy P. Lilli-
crap, Koray Kavukcuoglu, and Daan Wierstra. 2016.
Matching networks for one shot learning. CoRR,
abs/1606.04080.

Laura Wagner, Shari R. Speer, Leslie C. Moore, Eliza-
beth A. McCullough, Kiwako Ito, Cynthia G. Clop-
per, and Kathryn Campbell-Kibler. 2015. Linguis-
tics in a science museum: Integrating research,
teaching, and outreach at the language sciences re-
search lab. Language and Linguistics Compass,
9(10):420–431.

Michael White, Manjuan Duan, and David L. King.
2017. A simple method for clarifying sentences with
coordination ambiguities. In Proceedings of the
1st Workshop on Explainable Computational Intel-
ligence (XCI 2017). Association for Computational
Linguistics.

55

Proceedings of NAACL-HLT 2018: Demonstrations, pages 56–60
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

VnCoreNLP: A Vietnamese Natural Language Processing Toolkit

Thanh Vu1, Dat Quoc Nguyen2, Dai Quoc Nguyen3, Mark Dras4 and Mark Johnson4

1Newcastle University, United Kingdom; 2The University of Melbourne, Australia;
3Deakin University, Australia; 4Macquarie University, Australia

thanh.vu@newcastle.ac.uk, dqnguyen@unimelb.edu.au,
dai.nguyen@deakin.edu.au, {mark.dras, mark.johnson}@mq.edu.au

Abstract

We present an easy-to-use and fast toolkit,
namely VnCoreNLP—a Java NLP annota-
tion pipeline for Vietnamese. Our VnCoreNLP
supports key natural language processing
(NLP) tasks including word segmentation,
part-of-speech (POS) tagging, named entity
recognition (NER) and dependency parsing,
and obtains state-of-the-art (SOTA) results for
these tasks. We release VnCoreNLP to provide
rich linguistic annotations to facilitate research
work on Vietnamese NLP. Our VnCoreNLP
is open-source and available at: https://
github.com/vncorenlp/VnCoreNLP.

1 Introduction

Research on Vietnamese NLP has been actively
explored in the last decade, boosted by the suc-
cesses of the 4-year KC01.01/2006-2010 national
project on Vietnamese language and speech pro-
cessing (VLSP). Over the last 5 years, standard
benchmark datasets for key Vietnamese NLP tasks
are publicly available: datasets for word segmen-
tation and POS tagging were released for the first
VLSP evaluation campaign in 2013; a dependency
treebank was published in 2014 (Nguyen et al.,
2014); and an NER dataset was released for the
second VLSP campaign in 2016. So there is a need
for building an NLP pipeline, such as the Stanford
CoreNLP toolkit (Manning et al., 2014), for those
key tasks to assist users and to support researchers
and tool developers of downstream tasks.

Nguyen et al. (2010) and Le et al. (2013) built
Vietnamese NLP pipelines by wrapping exist-
ing word segmenters and POS taggers including:
JVnSegmenter (Nguyen et al., 2006), vnTokenizer
(Le et al., 2008), JVnTagger (Nguyen et al., 2010)
and vnTagger (Le-Hong et al., 2010). However,
these word segmenters and POS taggers are no
longer considered SOTA models for Vietnamese
(Nguyen and Le, 2016; Nguyen et al., 2016b).

Figure 1: In pipeline architecture of VnCoreNLP, an-
notations are performed on an Annotation object.

Pham et al. (2017) built the NNVLP toolkit for
Vietnamese sequence labeling tasks by applying a
BiLSTM-CNN-CRF model (Ma and Hovy, 2016).
However, Pham et al. (2017) did not make a com-
parison to SOTA traditional feature-based mod-
els. In addition, NNVLP is slow with a processing
speed at about 300 words per second, which is not
practical for real-world application such as dealing
with large-scale data.

In this paper, we present a Java NLP toolkit for
Vietnamese, namely VnCoreNLP, which aims to
facilitate Vietnamese NLP research by providing
rich linguistic annotations through key NLP com-
ponents of word segmentation, POS tagging, NER
and dependency parsing. Figure 1 describes the
overall system architecture. The following items
highlight typical characteristics of VnCoreNLP:

• Easy-to-use – All VnCoreNLP components
are wrapped into a single .jar file, so users
do not have to install external dependencies.
Users can run processing pipelines from ei-
ther the command-line or the Java API.

• Fast – VnCoreNLP is fast, so it can be used
for dealing with large-scale data. Also it ben-
efits users suffering from limited computa-
tion resources (e.g. users from Vietnam).

• Accurate – VnCoreNLP components obtain
higher results than all previous published re-
sults on the same benchmark datasets.

56

2 Basic usages

Our design goal is to make VnCoreNLP simple to
setup and run from either the command-line or the
Java API. Performing linguistic annotations for a
given file can be done by using a simple command
as in Figure 2.

$ java -Xmx2g -jar VnCoreNLP.jar -fin

input.txt -fout output.txt

Figure 2: Minimal command to run VnCoreNLP.

Suppose that the file input.txt in Figure
2 contains a sentence “Ông Nguyễn Khắc Chúc
đang làm việc tại Đại học Quốc gia Hà Nội.”
(MrÔng Nguyen Khac Chuc isđang workinglàm_việc
attại Vietnam Nationalquốc_gia Universityđại_học
HanoiHà_Nội). Table 1 shows the output for this
sentence in plain text form.

1 Ông Nc O 4 sub
2 Nguyễn_Khắc_Chúc Np B-PER 1 nmod
3 đang R O 4 adv
4 làm_việc V O 0 root
5 tại E O 4 loc
6 Đại_học N B-ORG 5 pob
7 Quốc_gia N I-ORG 6 nmod
8 Hà_Nội Np I-ORG 6 nmod
9 . CH O 4 punct

Table 1: The output in file output.txt for the sen-
tence ‘Ông Nguyễn Khắc Chúc đang làm việc tại Đại
học Quốc gia Hà Nội.” from file input.txt in Fig-
ure 2. The output is in a 6-column format representing
word index, word form, POS tag, NER label, head in-
dex of the current word, and dependency relation type.

Similarly, we can also get the same output by
using the API as easy as in Listing 1.
VnCoreNLP pipeline = new VnCoreNLP() ;
Annotation annotation = new Annotation("

Ông Nguyễn Khắc Chúc đang làm việc
tại Đại học Quốc gia Hà Nội.");

pipeline.annotate(annotation);
String annotatedStr = annotation.

toString();

Listing 1: Minimal code for an analysis pipeline.

In addition, Listing 2 provides a more realistic
and complete example code, presenting key com-
ponents of the toolkit. Here an annotation pipeline
can be used for any text rather than just a single
sentence, e.g. for a paragraph or entire news story.

3 Components

This section briefly describes each component of
VnCoreNLP. Note that our goal is not to develop

import vn.pipeline.*;
import java.io.*;
public class VnCoreNLPExample {
public static void main(String[] args)

throws IOException {
// "wseg", "pos", "ner", and "parse"

refer to as word segmentation, POS
tagging, NER and dependency

parsing, respectively.
String[] annotators = {"wseg", "pos",

"ner", "parse"};
VnCoreNLP pipeline = new VnCoreNLP(

annotators);
// Mr Nguyen Khac Chuc is working at

Vietnam National University, Hanoi
. Mrs Lan, Mr Chuc’s wife, is also
working at this university.

String str = "Ông Nguyễn Khắc Chúc
đang làm việc tại Đại học Quốc gia
Hà Nội. Bà Lan, vợ ông Chúc, cũng
làm việc tại đây.";

Annotation annotation = new Annotation
(str);

pipeline.annotate(annotation);
PrintStream outputPrinter = new

PrintStream("output.txt");
pipeline.printToFile(annotation,

outputPrinter);
// Users can get a single sentence to

analyze individually
Sentence firstSentence = annotation.

getSentences().get(0);
}

}

Listing 2: A simple and complete example code.

new approach or model for each component task.
Here we focus on incorporating existing mod-
els into a single pipeline. In particular, except a
new model we develop for the language-dependent
component of word segmentation, we apply tradi-
tional feature-based models which obtain SOTA
results for English POS tagging, NER and depen-
dency parsing to Vietnamese. The reason is based
on a well-established belief in the literature that
for a less-resourced language such as Vietnamese,
we should consider using feature-based models to
obtain fast and accurate performances, rather than
using neural network-based models (King, 2015).

• wseg – Unlike English where white space
is a strong indicator of word boundaries,
when written in Vietnamese white space is
also used to separate syllables that constitute
words. So word segmentation is referred to
as the key first step in Vietnamese NLP. We
have proposed a transformation rule-based
learning model for Vietnamese word segmen-
tation, which obtains better segmentation ac-
curacy and speed than all previous word seg-
menters. See details in Nguyen et al. (2018).

57

• pos – To label words with their POS tag,
we apply MarMoT which is a generic CRF
framework and a SOTA POS and morpholog-
ical tagger (Mueller et al., 2013).1

• ner – To recognize named entities, we apply
a dynamic feature induction model that au-
tomatically optimizes feature combinations
(Choi, 2016).2

• parse – To perform dependency parsing,
we apply the greedy version of a transition-
based parsing model with selectional branch-
ing (Choi et al., 2015).3

4 Evaluation

We detail experimental results of the word seg-
mentation (wseg) and POS tagging (pos) compo-
nents of VnCoreNLP in Nguyen et al. (2018) and
Nguyen et al. (2017b), respectively. In particular,
our word segmentation component gets the high-
est results in terms of both segmentation F1 score
at 97.90% and speed at 62K words per second.4

Our POS tagging component also obtains the high-
est accuracy to date at 95.88% with a fast tagging
speed at 25K words per second, and outperforms
BiLSTM-CRF-based models. Following subsec-
tions present evaluations for the NER (ner) and
dependency parsing (parse) components.

4.1 Named entity recognition

We make a comparison between SOTA feature-
based and neural network-based models, which, to
the best of our knowledge, has not been done in
any prior work on Vietnamese NER.

Dataset: The NER shared task at the 2016
VLSP workshop provides a set of 16,861 manu-
ally annotated sentences for training and develop-
ment, and a set of 2,831 manually annotated sen-
tences for test, with four NER labels PER, LOC,
ORG and MISC. Note that in both datasets, words
are also supplied with gold POS tags. In addition,
each word representing a full personal name are
separated into syllables that constitute the word.
So this annotation scheme results in an unrealis-
tic scenario for a pipeline evaluation because: (i)

1http://cistern.cis.lmu.de/marmot/
2https://emorynlp.github.io/nlp4j/

components/named-entity-recognition.html
3https://emorynlp.github.io/nlp4j/

components/dependency-parsing.html
4All speeds reported in this paper are computed on a per-

sonal computer of Intel Core i7 2.2 GHz.

gold POS tags are not available in a real-world ap-
plication, and (ii) in the standard annotation (and
benchmark datasets) for Vietnamese word seg-
mentation and POS tagging (Nguyen et al., 2009),
each full name is referred to as a word token (i.e.,
all word segmenters have been trained to output a
full name as a word and all POS taggers have been
trained to assign a label to the entire full-name).

For a more realistic scenario, we merge those
contiguous syllables constituting a full name to
form a word.5 Then we replace the gold POS tags
by automatic tags predicted by our POS tagging
component. From the set of 16,861 sentences, we
sample 2,000 sentences for development and using
the remaining 14,861 sentences for training.

Models: We make an empirical comparison be-
tween the VnCoreNLP’s NER component and the
following neural network-based models:

• BiLSTM-CRF (Huang et al., 2015) is a se-
quence labeling model which extends the
BiLSTM model with a CRF layer.

• BiLSTM-CRF + CNN-char, i.e. BiLSTM-
CNN-CRF, is an extension of BiLSTM-CRF,
using CNN to derive character-based word
representations (Ma and Hovy, 2016).

• BiLSTM-CRF + LSTM-char is an exten-
sion of BiLSTM-CRF, using BiLSTM to de-
rive the character-based word representations
(Lample et al., 2016).

• BiLSTM-CRF+POS is another extension to
BiLSTM-CRF, incorporating embeddings of
automatically predicted POS tags (Reimers
and Gurevych, 2017).

We use a well-known implementation which
is optimized for performance of all BiLSTM-
CRF-based models from Reimers and Gurevych
(2017).6 We then follow Nguyen et al. (2017b,
Section 3.4) to perform hyper-parameter tuning.7

Main results: Table 2 presents F1 score and
speed of each model on the test set, where Vn-
CoreNLP obtains the highest score at 88.55% with
a fast speed at 18K words per second. In particu-
lar, VnCoreNLP obtains 10 times faster speed than

5Based on the gold label PER, contiguous syllables such
as “Nguyễn/B-PER”, “Khắc/I-PER” and “Chúc/I-PER” are
merged to form a word as “Nguyễn_Khắc_Chúc/B-PER.”

6https://github.com/UKPLab/
emnlp2017-bilstm-cnn-crf

7We employ pre-trained Vietnamese word vectors from
https://github.com/sonvx/word2vecVN.

58

Model F1 Speed
VnCoreNLP 88.55 18K
BiLSTM-CRF 86.48 2.8K

+ CNN-char 88.28 1.8K
+ LSTM-char 87.71 1.3K

BiLSTM-CRF+POS 86.12 _
+ CNN-char 88.06 _
+ LSTM-char 87.43 _

Table 2: F1 scores (in %) on the test set w.r.t. gold word-
segmentation. “Speed” denotes the processing speed of
the number of words per second (for VnCoreNLP, we
include the time POS tagging takes in the speed).

the second most accurate model BiLSTM-CRF +
CNN-char.

It is initially surprising that for such an iso-
lated language as Vietnamese where all words
are not inflected, using character-based represen-
tations helps producing 1+% improvements to the
BiLSTM-CRF model. We find that the improve-
ments to BiLSTM-CRF are mostly accounted for
by the PER label. The reason turns out to be sim-
ple: about 50% of named entities are labeled with
tag PER, so character-based representations are
in fact able to capture common family, middle
or given name syllables in ‘unknown’ full-name
words. Furthermore, we also find that BiLSTM-
CRF-based models do not benefit from additional
predicted POS tags. It is probably because BiL-
STM can take word order into account, while with-
out word inflection, all grammatical information
in Vietnamese is conveyed through its fixed word
order, thus explicit predicted POS tags with noisy
grammatical information are not helpful.

4.2 Dependency parsing
Experimental setup: We use the Vietnamese
dependency treebank VnDT (Nguyen et al., 2014)
consisting of 10,200 sentences in our experiments.
Following Nguyen et al. (2016a), we use the last
1020 sentences of VnDT for test while the remain-
ing sentences are used for training. Evaluation
metrics are the labeled attachment score (LAS)
and unlabeled attachment score (UAS).

Main results: Table 3 compares the dependency
parsing results of VnCoreNLP with results re-
ported in prior work, using the same experimen-
tal setup. The first six rows present the scores with
gold POS tags. The next two rows show scores of
VnCoreNLP with automatic POS tags which are
produced by our POS tagging component. The last

Model LAS UAS Speed

G
ol

d
PO

S

VnCoreNLP 73.39 79.02 _
VnCoreNLP–NER 73.21 78.91 _
BIST-bmstparser 73.17 79.39 _
BIST-barchybrid 72.53 79.33 _
MSTParser 70.29 76.47 _
MaltParser 69.10 74.91 _

A
ut

o
PO

S VnCoreNLP 70.23 76.93 8K
VnCoreNLP–NER 70.10 76.85 9K
jPTDP 69.49 77.68 700

Table 3: LAS and UAS scores (in %) computed on all
tokens (i.e. including punctuation) on the test set w.r.t.
gold word-segmentation. “Speed” is defined as in Ta-
ble 2. The subscript “–NER” denotes the model without
using automatically predicted NER labels as features.
The results of the MSTParser (McDonald et al., 2005),
MaltParser (Nivre et al., 2007), and BiLSTM-based
parsing models BIST-bmstparser and BIST-barchybrid
(Kiperwasser and Goldberg, 2016) are reported in
Nguyen et al. (2016a). The result of the jPTDP model
for Vietnamese is mentioned in Nguyen et al. (2017b).

row presents scores of the joint POS tagging and
dependency parsing model jPTDP (Nguyen et al.,
2017a). Table 3 shows that compared to previously
published results, VnCoreNLP produces the high-
est LAS score. Note that previous results for other
systems are reported without using additional in-
formation of automatically predicted NER labels.
In this case, the LAS score for VnCoreNLP with-
out automatic NER features (i.e. VnCoreNLP–NER
in Table 3) is still higher than previous ones. No-
tably, we also obtain a fast parsing speed at 8K
words per second.

5 Conclusion

In this paper, we have presented the VnCoreNLP
toolkit—an easy-to-use, fast and accurate process-
ing pipeline for Vietnamese NLP. VnCoreNLP
provides core NLP steps including word segmen-
tation, POS tagging, NER and dependency pars-
ing. Current version of VnCoreNLP has been
trained without any linguistic optimization, i.e. we
only employ existing pre-defined features in the
traditional feature-based models for POS tagging,
NER and dependency parsing. So future work will
focus on incorporating Vietnamese linguistic fea-
tures into these feature-based models.

VnCoreNLP is released for research and edu-
cational purposes, and available at: https://
github.com/vncorenlp/VnCoreNLP.

59

References
Jinho D. Choi. 2016. Dynamic Feature Induction: The

Last Gist to the State-of-the-Art. In Proceedings of
NAACL-HLT . pages 271–281.

Jinho D. Choi, Joel Tetreault, and Amanda Stent. 2015.
It Depends: Dependency Parser Comparison Using
A Web-based Evaluation Tool. In Proceedings of
ACL-IJCNLP. pages 387–396.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

Benjamin Philip King. 2015. Practical Natural Lan-
guage Processing for Low-Resource Languages.
Ph.D. thesis, The University of Michigan.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and Accurate Dependency Parsing Using Bidi-
rectional LSTM Feature Representations. Transac-
tions of the Association for Computational Linguis-
tics 4:313–327.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural Architectures for Named Entity Recognition.
In Proceedings of NAACL-HLT . pages 260–270.

Hong Phuong Le, Thi Minh Huyen Nguyen, Azim
Roussanaly, and Tuong Vinh Ho. 2008. A hybrid
approach to word segmentation of Vietnamese texts.
In Proceedings of LATA. pages 240–249.

Ngoc Minh Le, Bich Ngoc Do, Vi Duong Nguyen, and
Thi Dam Nguyen. 2013. VNLP: An Open Source
Framework for Vietnamese Natural Language Pro-
cessing. In Proceedings of SoICT . pages 88–93.

Phuong Le-Hong, Azim Roussanaly, Thi Minh Huyen
Nguyen, and Mathias Rossignol. 2010. An empiri-
cal study of maximum entropy approach for part-of-
speech tagging of Vietnamese texts. In Proceedings
of TALN.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end Se-
quence Labeling via Bi-directional LSTM-CNNs-
CRF. In Proceedings of ACL (Volume 1: Long Pa-
pers). pages 1064–1074.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of ACL
2014 System Demonstrations. pages 55–60.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online Large-margin Training of De-
pendency Parsers. In Proceedings of ACL. pages
91–98.

Thomas Mueller, Helmut Schmid, and Hinrich
Schütze. 2013. Efficient Higher-Order CRFs for
Morphological Tagging. In Proceedings of EMNLP.
pages 322–332.

Cam-Tu Nguyen, Trung-Kien Nguyen, et al. 2006.
Vietnamese Word Segmentation with CRFs and
SVMs: An Investigation. In Proceedings of
PACLIC. pages 215–222.

Cam-Tu Nguyen, Xuan-Hieu Phan, and Thu-
Trang Nguyen. 2010. JVnTextPro: A Java-
based Vietnamese Text Processing Tool.
http://jvntextpro.sourceforge.net/.

Dat Quoc Nguyen, Mark Dras, and Mark Johnson.
2016a. An empirical study for Vietnamese depen-
dency parsing. In Proceedings of ALTA. pages 143–
149.

Dat Quoc Nguyen, Mark Dras, and Mark Johnson.
2017a. A Novel Neural Network Model for Joint
POS Tagging and Graph-based Dependency Pars-
ing. In Proceedings of the CoNLL 2017 Shared
Task. pages 134–142.

Dat Quoc Nguyen, Dai Quoc Nguyen, Son Bao Pham,
Phuong-Thai Nguyen, and Minh Le Nguyen. 2014.
From Treebank Conversion to Automatic Depen-
dency Parsing for Vietnamese. In Proceedings of
NLDB. pages 196–207.

Dat Quoc Nguyen, Dai Quoc Nguyen, Thanh Vu, Mark
Dras, and Mark Johnson. 2018. A Fast and Accu-
rate Vietnamese Word Segmenter. In Proceedings
of LREC. page to appear.

Dat Quoc Nguyen, Thanh Vu, Dai Quoc Nguyen, Mark
Dras, and Mark Johnson. 2017b. From Word Seg-
mentation to POS Tagging for Vietnamese. In Pro-
ceedings of ALTA. pages 108–113.

Phuong Thai Nguyen, Xuan Luong Vu, et al. 2009.
Building a Large Syntactically-Annotated Corpus of
Vietnamese. In Proceedings of LAW. pages 182–
185.

Tuan-Phong Nguyen and Anh-Cuong Le. 2016. A Hy-
brid Approach to Vietnamese Word Segmentation.
In Proceedings of RIVF. pages 114–119.

Tuan Phong Nguyen, Quoc Tuan Truong, Xuan Nam
Nguyen, and Anh Cuong Le. 2016b. An Experimen-
tal Investigation of Part-Of-Speech Taggers for Viet-
namese. VNU Journal of Science: Computer Sci-
ence and Communication Engineering 32(3):11–25.

Joakim Nivre, Johan Hall, et al. 2007. MaltParser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering
13(2):95–135.

Thai-Hoang Pham, Xuan-Khoai Pham, Tuan-Anh
Nguyen, and Phuong Le-Hong. 2017. NNVLP: A
Neural Network-Based Vietnamese Language Pro-
cessing Toolkit. In Proceedings of the IJCNLP 2017
System Demonstrations. pages 37–40.

Nils Reimers and Iryna Gurevych. 2017. Report-
ing Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tag-
ging. In Proceedings of EMNLP. pages 338–348.

60

Proceedings of NAACL-HLT 2018: Demonstrations, pages 61–65
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

CNNs for NLP in the Browser: Client-Side Deployment
and Visualization Opportunities

Yiyun Liang, Zhucheng Tu, Laetitia Huang, and Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo
{yiyun.liang, michael.tu, laetitia.huang, jimmylin}@uwaterloo.ca

Abstract

We demonstrate a JavaScript implementation
of a convolutional neural network that per-
forms feedforward inference completely in the
browser. Such a deployment means that mod-
els can run completely on the client, on a wide
range of devices, without making backend
server requests. This design is useful for ap-
plications with stringent latency requirements
or low connectivity. Our evaluations show the
feasibility of JavaScript as a deployment tar-
get. Furthermore, an in-browser implemen-
tation enables seamless integration with the
JavaScript ecosystem for information visual-
ization, providing opportunities to visually in-
spect neural networks and better understand
their inner workings.

1 Introduction

Once trained, feedforward inference using neu-
ral networks (NNs) is straightforward: just a se-
ries of matrix multiplications, application of non-
linearities, and other simple operations. With
the rise of model interchange formats such as
ONNX, we now have clean abstractions that sepa-
rate model training from model inference. In this
context, we explore JavaScript as a deployment
target of neural networks for NLP applications.
To be clear, we are not concerned with training,
and simply assume the existence of a pre-trained
model that we wish to deploy for inference.

Why JavaScript? We provide two compelling
reasons. First, JavaScript is the most widely de-
ployed platform in the world since it resides in ev-
ery web browser. An implementation in JavaScript
means that a NN can be embedded in any web
page for client-side execution on any device that
has a browser—from laptops to tablets to mobile
phones to even potentially “smart home” gadgets.
Performing inference on the client also obviates

the need for server requests and the associated la-
tencies. With such a deployment, NLP applica-
tions that have high demands on responsiveness
(e.g., typeahead prediction, grammar correction)
or suffer from low connectivity (e.g., remote lo-
cations or developing countries) can take advan-
tage of NN models. Such a deployment also pro-
tects user privacy, since user data does not leave
the client. Second, the browser has emerged as
the dominant platform for information visualiza-
tion, and JavaScript-based implementations sup-
port seamless integration with modern techniques
and existing toolkits (e.g., D3.js). This provides
opportunities to visually inspect neural networks.

We demonstrate a prototype implementation of
a convolutional neural network for sentence classi-
fication, applied to sentiment analysis—the model
of Kim (2014)—in JavaScript, running completely
inside a web browser. Not surprisingly, we
find that inference performance is significantly
slower compared to code running natively, but the
browser is nevertheless able to take advantage of
GPUs and hardware acceleration on a variety of
platforms. Our implementation enables simple
visualizations that allow us to gain insights into
what semantic n-gram features the model is ex-
tracting. This is useful for pedagogy (teaching stu-
dents about neural networks) as well as research,
since understanding a model is critical to improv-
ing it. Overall, our visualizations contribute to an
emerging thread of research on interpretable ma-
chine learning (Lipton, 2016).

2 Background and Related Work

Browser-based neural networks are by no means
new. Perhaps the best illustration of their poten-
tial is the work of Smilkov et al. (2016a), who
illustrate backpropagation on simple multi-layer
perceptrons with informative visualizations. This

61

work, however, can be characterized as focusing
on toy problems and useful primarily for peda-
gogy. More recently, Google Brain introduced
TensorFlow.js (formerly deeplearn.js), an open-
source library that brings NN building blocks to
JavaScript. We take advantage of this library in
our implementation.

Our work overcomes a technical challenge that
to date remains unaddressed—working with word
embeddings. Most NNs for NLP applications be-
gin by converting an input sentence into an em-
bedding matrix that serves as the actual input to
the network. Embeddings can be quite large, of-
ten gigabytes, which makes it impractical to store
directly in a web page. Following Lin (2015),
we overcome this challenge by using an HTML
standard known as IndexedDB, which allows word
vectors to be stored locally for efficient access
(more details below).

3 Technical Implementation

The convolutional neural network of Kim (2014)
is a sentence classification model that consists
of convolutions over a single sentence input em-
bedding matrix with a number of feature maps
and pooling followed by a fully-connected layer
with dropout and softmax output. Since it has a
straightforward architecture, we refer the reader to
Kim’s original paper for details. The starting point
for this work is a PyTorch reimplementation of the
model, which achieves accuracy comparable to the
original reported results.1

Since our demonstration focuses on inference
performance, we simply used a pre-trained model
for sentiment analysis based on the Stanford Senti-
ment Treebank. We manually exported all weights
from PyTorch and hand-coded the model archi-
tecture in TensorFlow.js, which at startup im-
ports these weights. Since Kim CNN has a rela-
tively simple architecture, this implementation is
straightforward, as TensorFlow.js provides primi-
tives that are quite similar to those in PyTorch. Be-
cause our implementation is pure JavaScript, the
entire model can be directly included in the source
of any web page, and, for example, connect to
text entry boxes for input and DOM-manipulating
code for output. However, there is one additional
technical hurdle to overcome:

Nearly all neural networks for NLP applications
make use of pre-trained word vectors to build an

1https://github.com/castorini/Castor

input representation (the embedding matrix) as the
first step in inference. For a non-toy vocabulary,
these word vectors consume many gigabytes. It is
impractical to embed these data directly within a
web page or as an external resource due to mem-
ory limitations, since all JavaScript code and as-
sociated resources are loaded into memory. Even
if this were possible, all data would need to be
reloaded every time the user refreshes the browser
tab, leading to long wait times and an awkward
user experience.

To address this challenge, we take advantage of
IndexedDB, which is a low-level API for client-
side storage of arbitrary amounts of data. Since
IndexedDB is an HTML5 standard, it does not re-
quire additional plug-ins (assuming a standards-
compliant browser). Although IndexedDB has
a rich API, for our application we use it as a
simple key–value store, where the key is a word
and the value is its corresponding word vec-
tor. In Google’s Chrome browser (which we
use for our experiments), IndexedDB is supported
by LevelDB, an on-disk key–value store built
on the same basic design as the Bigtable tablet
stack (Chang et al., 2006). In other words, in-
side every Chrome browser there is a modern data
management platform that is directly accessible
via JavaScript.

With IndexedDB, prior to using the model for
inference, the user must first download and store
the word embeddings locally. For convenience,
the model weights are treated the same way. Note
that this only needs to be performed once, and all
data are persisted on the client until storage is ex-
plicitly reclaimed. This means that after a one-
time setup, model inference happens locally in the
browser, without any need for external connectiv-
ity. This enables tight interaction loops that do not
depend on unpredictable server latencies.

4 Performance Evaluation

The first obvious question we tackle is the per-
formance of our JavaScript implementation. How
much slower is it than model inferencing per-
formed natively? We evaluated in-browser infer-
ence on a 2015 MacBook Pro laptop equipped
with an Intel Core i5-5257U processor (2 cores),
running MacOS 10.13. We compared perfor-
mance with the desktop machine used to train the
model, which has an Intel Core i7-6800K proces-
sor (6 cores) and an NVIDIA GeForce GTX 1080

62

Latency (ms) / batch
1 32 64 128

PyTorch
Desktop GPU (Ubuntu 16.04) 2.9 3.0 3.1 3.1
Desktop CPU (Ubuntu 16.04) 4.3 43 86 130

Chrome Browser
Desktop GPU (Ubuntu 16.04) 30 56 100 135
Desktop CPU (Ubuntu 16.04) 783 47900 110000 253000
MacBook Pro GPU (MacOS 10.13) 33 180 315 702
MacBook Pro CPU (MacOS 10.13) 779 56300 126000 297000
iPad Pro (iOS 11) 170 472 786 1283
Nexus 6P (Android 8.1.0) 103 541 1117 1722
iPhone 6 (iOS 11) 400 1336 3055 7324

Table 1: Latency of our CNN running in Chrome on
different devices for a batch of N sentences.

GPU (running Ubuntu 16.04). Our model was im-
plemented using PyTorch v0.3.0 running CUDA
8.0. All experiments were performed on the Stan-
ford Sentiment Treebank validation set. Due to the
asynchronous nature of JavaScript execution in the
browser, the TensorFlow.js API applies inference
to batches of input sentences at a time. Thus, we
measured latency per batch for batches of 1, 32,
64, and 128 sentences.

Evaluation results are shown in Table 1. The
first block of the table shows the performance of
PyTorch running on the desktop, with and without
GPU acceleration. As expected, the GPU is able
to exploit parallelism for batch inferencing, but
on individual sentences, the CPU is only slightly
slower. In the bottom block of the table, we report
results of running our JavaScript implementation
in Google Chrome (v64). We compared the desk-
top and the laptop, with and without GPU accel-
eration. For the most common case (inference on
a single sentence), the browser is about an order
of magnitude slower with the GPU. Without the
GPU, performance drops by another ∼25×.

The above figures include only inference time.
Loading the word vectors takes 7.4, 214, 459,
and 1184 ms, for batch sizes of 1, 32, 64, and
128, respectively, on the MacBook Pro. As ex-
plained previously, using IndexedDB requires a
one-time download of the word vectors and the
model weights. This step takes approximately
16s on our MacBook Pro for 16,271 word vectors
(for simplicity, we only download the vocabulary
needed for our experiments). Loading the model
itself takes approximately one second.

Because our implementation is in JavaScript,
our model runs in any device that has a web
browser. To demonstrate this, we evaluated per-
formance on a number of other devices we had

convenient access to: an iPad Pro with an Apple
A10X Fusion chip, a Nexus 6P with a Qualcomm
Snapdragon 810 octa-core CPU, and an iPhone 6
with an Apple A8 chip. These results are also
shown in Table 1. As expected, performance on
these devices is lower than our laptop, but inter-
estingly, batch inference on these devices is faster
than batch inference in the browser without GPU
acceleration. This indicates that hardware accel-
eration is a standard feature on many devices to-
day. These experiments illustrate the feasibility of
deploying neural networks on a wide range of de-
vices, exploiting the ubiquity of JavaScript.

5 Visualization of Feature Maps

Another major advantage of in-browser JavaScript
implementations of neural networks is seamless
integration with modern browser-based informa-
tion visualization techniques and toolkits (e.g.,
D3.js), which we describe in this section. Visu-
alizations are useful for two purposes: First, they
serve as intuitive aids to teach students how neu-
ral networks function. Although there are plenty
of pedagogical resources for deep learning, noth-
ing beats the convenience of an interactive neu-
ral network directly embedded in a web page that
students can manipulate. Second, contributing to
growing interest in “interpretable” machine learn-
ing (Lipton, 2016), visualizations can help us un-
derstand how various network components con-
tribute to producing the final predictions.

Although there are many examples of neural
network visualizations (Smilkov et al., 2016a; Bau
et al., 2017; Olah et al., 2018), they mostly focus
on vision applications, where inputs and feature
maps are much easier to interpret visually. The
fundamental challenge with NLP applications is
that word embeddings (and by extension, feature
maps) exist in an abstract semantic space that has
no inherent visual meaning. How to best visualize
embeddings remains an open question (Smilkov
et al., 2016b; Rong and Adar, 2016).

Nevertheless, feature maps in CNNs can be
thought of as n-gram feature detectors. For our
sentiment analysis application (and more gener-
ally, sentence classification), we designed visu-
alizations to answer two related questions: First,
given a sentence, what feature maps are highly ac-
tivated and where? Second, given a particular fea-
ture map, what token sequence activates it in a cor-
pus of sentences?

63

4/12/2018 word2vec Demo

file:///Users/isa/Documents/University_of_Waterloo/URA/3A-Jimmy%20Lin/kim-cnn-vis/kimcnn-demo.html 1/1

anchored
by

friel
and

williams
's

exceptional
performances

,
the
film
's

power
lies
in
its

complexity
.

word2vec Filter Demo
The following demo searches word2vecs. Be sure to build the index (indexing-
demo.html) first!

Finished processing sentence in: 491.5000000000873ms.

anchored by friel and williams 's e Run

width=3 width=4 width=5

×

Figure 1: Visualization of feature map activations.

The visualization in Figure 1 is designed to an-
swer the first question. Running down the left
edge is the sentence that we are examining; ex-
amples in this section are taken from the devel-
opment set of the Stanford Sentiment Treebank.
Each column represents feature maps of a particu-
lar width; each cell is aligned with the first token
from the corresponding n-gram of the sentence
over which the feature map applies. The heatmap
(i.e., blue saturation) corresponds to maximum ac-
tivation across all feature maps on that particu-
lar n-gram in the sentence. In our interactive vi-
sualization, when we mouse over a cell, it be-
comes enlarged and slightly offset to indicate fo-
cus, and the corresponding n-gram in the sentence
is highlighted in bold. For this sentence, we see
that filters of width three are most highly acti-
vated by the n-gram sequence [’s exceptional per-
formance]. There are multiple ways to use color
to summarize the activation of the feature maps,
but we have found MAX to be the most insight-
ful. From this visualization, we can see that fea-
ture maps of widths four and five activate on dif-
ferent parts of the sentence.

From the visualization in Figure 1, we see that
some feature map activates highly on the n-gram
[’s exceptional performance]. But which one? To
answer this question, we can pivot over to the vi-
sualization shown in Figure 2, where we see that
the answer is Filter 12: we show the n-grams that
trigger the highest activation from sentences in the

Filter 12 (width = 3, bias = 0.01)
4/4 ... this chamber drama is superbly acted by the deeply appealing ...

3/4 a superbly acted and funny gritty fable of ...

3/4 a rigorously structured and exquisitely filmed drama about a father ...

4/4 uses sharp humor and insight into human ...

4/4 ... friel and williams 's exceptional performances , the film 's ...

4/4 ... of elling , and gets fine performances from his two leads ...

4/4 an exquisitely crafted and acted tale .

4/4 ... mueller , the film gets great laughs , but never at the ...

3/4 ... glides through on some solid performances and witty dialogue .

3/4 ... and buoyed by three terrific performances , far from ...

Figure 2: Visualization of the n-grams that a particular
feature map most highly activates on.

development set. The n-grams are aligned in a
keyword-in-context format for easy browsing. To
the left of each sentence we show x/y, where x is
the ground truth label and y is the predicted label.
Here, we clearly see that all the n-grams are re-
lated to positive aspects of performances, and this
gives us some insight into the semantics captured
by this feature map. From this visualization, we
can click on any sentence and pivot back to the
sentence-focused visualization in Figure 1.

6 Future Work and Conclusions

We describe a JavaScript implementation of a con-
volutional neural network that runs completely in
the browser. Unsurprisingly, in-browser inference
is significantly slower. However, for many ap-
plications, such a performance tradeoff may be
worthwhile given the advantages of a JavaScript
implementation—the ability to embed a neural
network in any web page, the ability to run on a
wide variety of devices and without internet con-
nectivity, and opportunities for visualizations that
help us interpret the model.

Ongoing work focuses on better integration of
model training and browser deployment. Cur-
rently, porting a PyTorch model into JavaScript
requires tediously rewriting the model into Ten-
sorFlow.js by hand. Although the library sup-
ports reading TensorFlow models, importers for
PyTorch do not exist yet, as far as we are aware.
Provided that the right adaptors are built, the
ONNX model interchange format could provide
an interlingua to support seamless integration, en-
abling a future where running neural networks in
JavaScript becomes routine.

Acknowledgments. This research was supported
by the Natural Sciences and Engineering Research
Council (NSERC) of Canada.

64

References
David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva,

and Antonio Torralba. 2017. Network dissection:
Quantifying interpretability of deep visual represen-
tations. In Proceedings of the 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR 2017), pages 6541–6549, Honolulu, Hawaii.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-
son C. Hsieh, Deborah A. Wallach, Michael Bur-
rows, Tushar Chandra, Andrew Fikes, and Robert
Gruber. 2006. Bigtable: A distributed storage sys-
tem for structured data. In Proceedings of the 7th
USENIX Symposium on Operating System Design
and Implementation (OSDI 2006), pages 205–218,
Seattle, Washington.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014), pages 1746–
1751, Doha, Qatar.

Jimmy Lin. 2015. Building a self-contained search en-
gine in the browser. In Proceedings of the ACM In-
ternational Conference on the Theory of Information
Retrieval (ICTIR 2015), pages 309–312, Northamp-
ton, Massachusetts.

Zachary C. Lipton. 2016. The mythos of model inter-
pretability. arXiv:1606.03490.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan
Carter, Ludwig Schubert, Katherine Ye, and Alexan-
der Mordvintsev. 2018. The building blocks of inter-
pretability. Distill.

Xin Rong and Eytan Adar. 2016. Visual tools for de-
bugging neural language models. In Proceedings of
the ICML 2016 Workshop on Visualization for Deep
Learning, New York, New York.

Daniel Smilkov, Shan Carter, D. Sculley, Fernanda B.
Viégas, and Martin Wattenberg. 2016a. Direct-
manipulation visualization of deep networks. In
Proceedings of the ICML 2016 Workshop on Visu-
alization for Deep Learning, New York, New York.

Daniel Smilkov, Nikhil Thorat, Charles Nicholson,
Emily Reif, Fernanda B. Viégas, and Martin Wat-
tenberg. 2016b. Embedding projector: Interac-
tive visualization and interpretation of embeddings.
arXiv:1611.05469.

65

Proceedings of NAACL-HLT 2018: Demonstrations, pages 66–70
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

Generating Continuous Representations of Medical Texts

Graham Spinks
Department of Computer Science

KU Leuven, Belgium
graham.spinks@cs.kuleuven.be

Marie-Francine Moens
Department of Computer Science

KU Leuven, Belgium
sien.moens@cs.kuleuven.be

Abstract

We present an architecture that generates med-
ical texts while learning an informative, con-
tinuous representation with discriminative fea-
tures. During training the input to the system
is a dataset of captions for medical X-Rays.
The acquired continuous representations are
of particular interest for use in many ma-
chine learning techniques where the discrete
and high-dimensional nature of textual input
is an obstacle. We use an Adversarially Reg-
ularized Autoencoder to create realistic text
in both an unconditional and conditional set-
ting. We show that this technique is applicable
to medical texts which often contain syntactic
and domain-specific shorthands. A quantita-
tive evaluation shows that we achieve a lower
model perplexity than a traditional LSTM gen-
erator.

1 Introduction

The main focus of this paper is the generation of
realistic samples with a similar quality to those in a
training set of medical texts. At the same time, an
informative, continuous representation is created
from the textual input.

Obtaining a good representation for medical
texts may prove vital to building more sophisti-
cated generative, discriminative or semantic mod-
els for the field. One of the obstacles is the dis-
crete nature of text that makes it difficult to em-
ploy in many machine learning algorithms. This
is the case for Generative Adversarial Networks
(GANs), which are not adequate to generate text
as it is difficult to backpropagate the error to dis-
crete symbols (Goodfellow, 2016).

The ability of GANs to learn the underlying
distribution, rather than repeating examples in the
training data, has led to the successful generation
of intricate high-resolution samples in computer
vision (Zhang et al., 2017). Conditional GANs

in particular, where the class or label is passed to
both generator and discriminator, implicitly learn
relevant ancillary information which leads to more
detailed outputs (Gauthier, 2014; Mirza and Osin-
dero, 2014). If we had a better understanding
of how to train GANs with discrete data, some
of those developments might be directly applica-
ble to detailed text generation applications—such
as image caption generation, machine translation,
simplification of text, and text summarization—
especially when dealing with noisy texts.

Another impediment is the nature of clinical
data, which is often unstructured and not well-
formed, yet commonly has a high and important
information density. Textual reports often don’t
follow regular syntax rules and contain very spe-
cific medical terminology. Moreover, the amount
of training data is often limited and each physician
has a personal writing style. Simply reusing pre-
trained continuous representations, such as vector-
based word embeddings (Turian et al., 2010), is
therefore not always feasible for medical datasets.

The approach to text generation has mainly
been dominated by Long Short-Term Memory net-
works (LSTMs). While LSTMs are successful in
creating realistic samples, no actionable smooth
representation is created of the text and thus there
are limited possibilities to manipulate or employ
the representations in additional applications that
require continuous inputs. While the creation of
continuous representations of text usually involves
an autoencoder, the results mostly lack enough se-
mantic information to be particularly useful in an
alternate task.

Kim et al. (2017) have shown how to achieve
text generation with a continuous representation
by implementing an Adversarially Regularized
Autoencoder (ARAE). They combine the training
of a rich discrete space autoencoder with recur-
rent neural networks (RNNs) and the training of

66

Figure 1. Overview of the ARAE architecture. The
encoder enc creates a new continuous representa-
tion t̂ from the input text t. The decoder dec tries
to reconstruct the original text. Conjointly a gen-
erator G and discriminator D are trained in an ad-
versarial setup. z is a random normal noise vector.

more simple, fully connected networks to generate
samples in the continuous space. With adversarial
(GAN) training, both the distribution of the gen-
erated as well as the encoded samples are encour-
aged to converge. The outcome is that a smooth
representation is learned as well as a generator that
can build realistic samples in the continuous space.

In this paper, we explore this methodology in
the context of medical texts, more specifically cap-
tions for chest X-Rays. Analogous to conditional
GANs, we also extend the network of Kim et al.
(2017) by generating samples conditioned on cat-
egorical, medical labels (for example ’healthy’).
We refer to this method as conditional ARAE.
In a quantitative evaluation, the perplexity of the
conditional ARAE outperforms both the uncondi-
tional ARAE as well as a traditional LSTM.

2 Methodology

For this demo we use the chest X-Ray dataset from
the Indiana University hospital network (Demner-
Fushman et al., 2015). The dataset consists of
7470 X-Ray images for 3851 patients with corre-
sponding textual findings. In this paper, the im-
ages are not used. We retain a maximum of 30
words per caption and pad shorter sentences. All
words are transformed to lowercase and those with
a frequency below 5 are removed and replaced
by an out-of-vocabulary marker. The dataset
also contains Medical Subject Headings (MeSH)
which are essentially labels that indicate the main
diagnoses for each patient report.

2.1 GAN

In a GAN, the loss is defined as a two-player min-
max game between the generator (G) and the dis-
criminator (D). The discriminator gradually im-
proves its capacity to distinguish a sample from

the real distribution from one of the generated dis-
tribution. The generator is trained on its ability to
fool the discriminator into classifying its output as
real data. The loss function can be described as:

min
G

max
D
LGAN (D,G) = Ex∼pd [log(D(x))]+

Ez∼pz [log(1−D(G(z)))] (1)

where x represents a sample from the real data dis-
tribution pd and z is a noise vector sampled from
the distribution pz , typically a random normal dis-
tribution, which serves as the input for G. In a
traditional GAN, the discriminator and generator
are trained alternately in the hope that their per-
formance improves each iteration. The setup of
a traditional GAN is essentially illustrated by the
top row in figure 1, where t̂ would be a sample x
from the real distribution and z is the noise vector.

To ensure convergence while training a GAN,
we use an improved loss function, the Earth-
Mover distance (EM) (Arjovsky et al., 2017). The
formulation of a GAN in equation 1 minimizes the
Kullback-Leibler divergence (KL-divergence) be-
tween the real and generated distributions. This
formulation leads to infinite losses when the dis-
tribution of the generator maps to zero probability
in the support of the real distribution. The Earth-
Mover distance defines a more sensible distance
measure for the convergence of two distributions
x and y as specified in equation 2. It can be in-
terpreted as a measure of the minimal amount of
effort that is needed to move the mass of one dis-
tribution to match that of another.

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ
[
‖x− y‖

]
(2)

where Π(Pr, Pg) is the set of all joint distributions
γ with marginal distributions Pr and Pg. Com-
puting the EM distance exactly is not tractable but
Arjovsky et al. (2017) show that the Wasserstein
GAN (WGAN) formulation (equation 3) leads to
a theoretically sound and practical optimization of
the EM distance if the parameters of D are re-
stricted to a set of 1-Lipschitz functions, which in
practice requires the weights to be constrained to
an interval [-c,c]. In our experiments, c was set to
1 rather than a smaller value as we observe faster
convergence during training.

min
G

max
D
LW (D,G) = Ex∼pd [D(x)]−

Ez∼pz [D(G(z))] (3)

67

Figure 2. A screenshot of the demo. Random unconditional samples are generated from a noise vector z.

2.2 ARAE
In the traditional setup, GANs need to be fully
differentiable to function. The error cannot ade-
quately backpropagate when a series of discrete
input variables are used. To alleviate this prob-
lem, an Adversarially Regularized Autoencoder
(ARAE) is used (Kim et al., 2017). The input text
is mapped to a continuous representation t̂ with
a discrete, word-based autoencoder. The encoder
enc maps a text t onto t̂ while the decoder im-
plements the conditional probability distribution
p(t|t̂). Both encoder and decoder are single-layer
LSTMs. The loss is computed as the cross-entropy
over the word reconstruction (equation 4).

Lrec(enc, dec) = −log(p(t)|enc(t))) (4)

The discriminator of the ARAE now tries to deter-
mine which samples derive from the real distribu-
tion of encoded texts, t̂, and which are generated
from a noise distribution, z. While D improves,
the encoder enhances the representation t̂ to con-
tain more discriminative information. To avoid
divergence between encoder and decoder, only a
portion λ of the loss is backpropagated to enc. In
our program we set λ to 0.05. The loss for the
ARAE can then be described by equation 5.

min
G

max
D,enc

LW (D,G, enc) =

Et∼pd [D(enc(t))]− Ez∼pz [D(G(z))] (5)

Both discriminator and generator are fully con-
nected networks. The continuous representation is
built with an autoencoder consisting of an LSTM
for both encoder and decoder. The entire training
process now consists of three steps: train the au-
toencoder on its reconstruction, train the discrim-
inator and encoder to maximize the ability of the

network to discriminate between real and gener-
ated samples, and finally, train the generator to try
to fool the discriminator.

1. min
enc,dec

Lrec

2. min
D,enc

LD = max
D,enc

LW (D,G, enc)

3. min
G
LG = min

G
LW (D,G, enc)

The outcome of this setup is both the creation of
continuous representations as well as the genera-
tion of realistic captions. The architecture is illus-
trated in figure 1.

2.3 Conditional ARAE

Additionally, the above setup of the ARAE is ex-
tended to allow content generation conditioned on
input labels. From the MeSH labels in the dataset,
we create three simple categories of diagnoses:
normal, cardiomegaly and other (which includes
a vast array of diagnoses ranging from pleural ef-
fusion, opacity, degenerative disease, and so on).

During the training of the conditional ARAEs,
the class or label is passed to both generator and
discriminator. The formulation in equation (5) is
supplemented by mentioning the conditional vari-
able c in G(z, c) and D(enc(t), c). During train-
ing the discriminator is presented with real sam-
ples t̂ in combination with real labels cr as well
as in combination with wrong labels cw that don’t
match the samples. Finally it is also presented
with fake samples t̄ in combination with the la-
bels cr. The discriminator is encouraged to learn
that only the first combination is correct, while the
generator tries to create samples that fool the dis-
criminator given designated labels.

68

label generated caption
normal (+) heart size within normal limits . no alveolar consolidation , no findings of pleural effusion or

pulmonary edema . no pneumothorax . no pleural effusions .
normal (-) stable appearance of previous xxxx sternotomy . clear lungs bilaterally . redemonstration of disc

disease of the thoracic spine . no pneumothorax or pleural effusion . clear lung volumes .
cardiomegaly (+) heart size is enlarged . stable tortuous aorta . no pneumothorax , pleural effusion or suspicious

airspace opacity . prior granulomatous disease .
cardiomegaly (-) clear lungs . no infiltrates or suspicious pulmonary opacity . no pleural effusion or pneumothorax .

cardiomediastinal silhouette within normal limits . calcified granulomas calcified granulomas .
other (+) he heart size and pulmonary vascularity appear within normal limits . right pleural effusion is

present and appears increased . the osseous structures appear intact .
other (-) heart size and mediastinal contours are normal in appearance . no oov airspace consolidation . no

pleural effusion or pneumothorax . the visualized bony structures are unremarkable in appearance .

Table 1. Examples of captions generated by the the conditional ARAE from a random vector z and a class
label. For each label an example of a correct (+) caption and a wrong (-) caption is given respectively.

LSTM ARAE ARAE
(uncondit.) (condit.)

perplexity 150.0 148.4 125.4

Table 2. Perplexity scores for each of the models.

3 Demonstration

In figure 2 some captions are presented that are
generated by the ARAE. Both during training and
generation, sampling is performed with a temper-
ature of 0.1. These examples qualitatively demon-
strate that it is possible to generate text that mimics
the complexity of medical reports.

In table 1 we show some randomly chosen re-
sults for a network that produces text conditional
on the class label. It becomes apparent that for the
different labels, the network will produce wrong
captions as well, especially for the label ’car-
diomegaly’ which has significantly less training
examples. Empirically, the training is difficult and
diverges a lot. We attribute the difficult conver-
gence to two main factors. Firstly, despite the sim-
ple labels, the texts in different categories contain
a large amount of overlap. Secondly, the condi-
tional ARAE has many objective functions and
four different networks (enc, dec,G,D) to opti-
mize and balance in order to learn both what an in-
formative representation looks like as well as how
to generate it.

In order to assess the performance of the sys-
tem, we also train a baseline language model that
consists of a 1-layer LSTM. The perplexity of the
different models are presented in table 2. From
the results we see that while both ARAE mod-
els achieve a lower perplexity than the LSTM, the
conditional ARAE performs significantly better.

We built a demo interface with the main goal

of illustrating the quality and the diversity of the
generated text1. Upon starting the demo, the
trained ARAE networks can be loaded by press-
ing ’Load models’. Once loaded, the user can in-
teract in three ways. Firstly, sentences can be gen-
erated without conditional labels from a random
noise vector by pressing ’Generate uncond’. Sec-
ondly, sentences can be generated from a random
noise vector conditioned on one of the three labels
(normal, cardiomegaly, other) by pressing ’Gen-
erate cond’. Finally, when pressing ’Discrimina-
tor game’, a game starts where the user can at-
tempt to fool the discriminator by inputting a short
caption that might belong to an X-Ray. When the
user presses ’enter’, the system outputs whether
the discriminator classifies it as a real caption or
not. A screenshot of the interface is shown in fig-
ure 2 where unconditional sentences were gener-
ated.

4 Conclusion

With an Adversarially Regularized Autoencoder, a
continuous text representation is learned of med-
ical captions that can be useful in further appli-
cations. GANs are models that learn the under-
lying distribution while generating detailed con-
tinuous data. Therefore the successful training of
a GAN on discrete data in the ARAE setup fore-
bodes success for text generation as well. We il-
lustrate the potential of GANs for discrete inputs
by extending the ARAE architecture to create text
conditioned on simple class labels, similar to con-
ditional GANs. A quantitative evaluation shows
that the conditional ARAE achieves a lower per-
plexity than both the unconditional ARAE and an
LSTM baseline.

1Demo available at https://liir.cs.kuleuven.be/software.php

69

References
Martin Arjovsky, Soumith Chintala, and Léon Bot-

tou. 2017. Wasserstein gan. arXiv preprint
arXiv:1701.07875.

Dina Demner-Fushman, Marc D Kohli, Marc B Rosen-
man, Sonya E Shooshan, Laritza Rodriguez, Sameer
Antani, George R Thoma, and Clement J McDon-
ald. 2015. Preparing a collection of radiology ex-
aminations for distribution and retrieval. Journal
of the American Medical Informatics Association,
23(2):304–310.

Jon Gauthier. 2014. Conditional generative adversar-
ial nets for convolutional face generation. Class
Project for Stanford CS231N: Convolutional Neural
Networks for Visual Recognition, Winter semester,
2014(5):2.

Ian Goodfellow. 2016. Nips 2016 tutorial: Gen-
erative adversarial networks. arXiv preprint
arXiv:1701.00160.

Yoon Kim, Kelly Zhang, Alexander M Rush, Yann
LeCun, et al. 2017. Adversarially regularized au-
toencoders for generating discrete structures. arXiv
preprint arXiv:1706.04223.

Mehdi Mirza and Simon Osindero. 2014. Condi-
tional generative adversarial nets. arXiv preprint
arXiv:1411.1784.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 384–394. Association for
Computational Linguistics.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang,
Xiaolei Huang, Xiaogang Wang, and Dimitris
Metaxas. 2017. Stackgan: Text to photo-realistic
image synthesis with stacked generative adversar-
ial networks. In IEEE Int. Conf. Comput. Vision
(ICCV), pages 5907–5915.

70

Proceedings of NAACL-HLT 2018: Demonstrations, pages 71–75
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

Vis-Eval Metric Viewer: A Visualisation Tool for Inspecting and
Evaluating Metric Scores of Machine Translation Output

David Steele and Lucia Specia
Department of Computer Science

University of Sheffield
Sheffield, UK

dbsteele1,l.specia@sheffield.ac.uk

Abstract

Machine Translation systems are usually eval-
uated and compared using automated evalua-
tion metrics such as BLEU and METEOR to
score the generated translations against human
translations. However, the interaction with the
output from the metrics is relatively limited
and results are commonly a single score along
with a few additional statistics. Whilst this
may be enough for system comparison it does
not provide much useful feedback or a means
for inspecting translations and their respective
scores. Vis-Eval Metric Viewer (VEMV) is a
tool designed to provide visualisation of mul-
tiple evaluation scores so they can be easily in-
terpreted by a user. VEMV takes in the source,
reference, and hypothesis files as parameters,
and scores the hypotheses using several popu-
lar evaluation metrics simultaneously. Scores
are produced at both the sentence and dataset
level and results are written locally to a se-
ries of HTML files that can be viewed on a
web browser. The individual scored sentences
can easily be inspected using powerful search
and selection functions and results can be vi-
sualised with graphical representations of the
scores and distributions.

1 Introduction

Automatic evaluation of Machine Translation
(MT) hypotheses is key for system development
and comparison. Even though human assessment
ultimately provides more reliable and insight-
ful information, automatic evaluation is faster,
cheaper, and often considered more consistent.

Many metrics have been proposed for MT that
compare system translations against human refer-
ences, with the most popular being BLEU (Pa-
pineni et al., 2002), METEOR (Denkowski and
Lavie, 2014), TER (Snover et al., 2006), and, more
recently, BEER (Stanojevic and Sima’an, 2014).
These and other automatic metrics are often criti-

cised for providing scores that can be non-intuitive
and uninformative, especially at the sentence level
(Zhang et al., 2004; Song et al., 2013; Babych,
2014). Additionally, scores across different met-
rics can be inconsistent with each other. This in-
consistency can be an indicator of linguistic prop-
erties of the translations which should be further
analysed. However, multiple metrics are not al-
ways used and any discrepancies among them tend
to be ignored.

Vis-Eval Metric Viewer (VEMV) was devel-
oped as a tool bearing in mind the aforementioned
issues. It enables rapid evaluation of MT output,
currently employing up to eight popular metrics.
Results can be easily inspected (using a typical
web browser) especially at the segment level, with
each sentence (source, reference, and hypothesis)
clearly presented in interactive score tables, along
with informative statistical graphs. No server or
internet connection is required. Only readily avail-
able packages or libraries are used locally.

Ultimately VEMV is an accessible utility that
can be run quickly and easily on all the main plat-
forms.

Before describing the technical specification of
the VEMV tool and its features in Section 3, we
give an overview of existing metric visualisation
tools in Section 2.

2 Related Tools

Several tools have been developed to visualise the
output of MT evaluation metrics that go beyond
displaying just single scores and/or a few statistics.

Despite its criticisms and limitations, BLEU is
still regarded as the de facto evaluation metric used
for rating and comparing MT systems. It was one
of the earliest metrics to assert a high enough cor-
relation with human judgments.

Interactive BLEU (iBleu) (Madnani, 2011) is

71

a visual and interactive scoring environment that
uses BLEU. Users select the source, reference, and
hypothesis files using a graphical user interface
(GUI) and these are scored. The dataset BLEU
score is shown alongside a bar chart of sentence
scores. Users can select one of the sentences by
clicking on the individual bars in the chart. When
a sentence is selected its source and hypothesis
translation is also shown, along with the standard
BLEU statistics (e.g. score and n-gram informa-
tion for the segment). Whilst iBLEU does provide
some interactivity, using the graph itself to choose
the sentences is not very intuitive. In addition the
tool provides results for only one metric.

METEOR is another popular metric used to
compute sentence and dataset-level scores based
on reference and hypothesis files. One of its
main components is to word-align the words in
the reference and hypothesis. The Meteor-X-Ray
tool generates graphical output with visualisation
of word alignments and scores. The alignments
and score distributions are used to generate simple
graphs (output to PDF). Whilst the graphs do pro-
vide extra information there is little in the way of
interactivity.

MT-ComparEval (Klejch et al., 2015) is a dif-
ferent evaluation visualisation tool, available to
be used online1 or downloaded locally. Its pri-
mary function is to enable users, via a GUI, to
compare two (or more) MT system outputs, us-
ing BLEU as the evaluation metric. It shows re-
sults at both the sentence and dataset level high-
lighting confirmed, improving, and worsening n-
grams for each MT system with respect to the
other. Sentence-level metrics (also n-gram) in-
clude precision, recall, and F-Measure informa-
tion as well as score differences between MT sys-
tems for a given sentence. Users can upload their
own datasets to view sentence-level and dataset
scores, albeit with a very limited choice of met-
rics. The GUI provides some interaction with the
evaluation results and users can make a number of
preference selections via check boxes.

The Asiya Toolkit (Giménez et al., 2010) is a
visualisation tool that can be used online or as a
stand-alone tool. It offers a comprehensive suite of
metrics, including many linguistically motivated
ones. Unless the goal is to run a large number of
metrics, the download version is not very practi-
cal. It relies on many external tools such as syn-

1http://wmt.ufal.cz/

tactic and semantic parsers. The online tool2 aims
to offer a more practical solution, where users can
upload their translations. The tool offers a mod-
ule for sentence-level inspection through interac-
tive tables. Some basic dataset-level graphs are
also displayed and can be used to compare system
scores.

In comparison to the other software described
here, VEMV is a light yet powerful utility, which
offers a wide enough range of metrics and can
be easily extended to add other metrics. It has
a very specific purpose in that it is designed for
rapid and simple use locally, without the need for
servers, access to the internet, uploads, or large
installs. Users can quickly get evaluation scores
from a number of mainstream metrics and view
them immediately in easily navigable interactive
score tables. We contend that currently there is no
other similar tool that is lightweight and offers this
functionality and simplicity.

3 Vis-Eval Metric Viewer Software &
Features

This section provides an overview of the VEMV
software and outlines the required input param-
eters, technical specifications, and highlights a
number of the useful features.

3.1 The Software

VEMV is essentially a multi-metric evaluation
tool that uses three tokenised text files (source, ref-
erence, and hypothesis) as input parameters and
scores the hypothesis translation (MT system out-
put) using up to eight popular metrics: BLEU,
MT-Eval3 (MT NIST & MT BLEU), METEOR,
BEER, TER, Word Error Rate (WER), and Edit
Distance (E-Dist).4 All results are displayed via
easily navigable web pages that include details
of all sentences and scores (shown in interactive
score tables - Figure 1). A number of graphs show-
ing various score distributions are also created.

The key aims of VEMV are to make the eval-
uation of MT system translations easy to under-
take and to provide a wide range of feedback that
helps the user to inspect how well their system per-
formed, both at the sentence and dataset level.

2At the time of writing the online version did not work.
3https://www.nist.gov/
4A WER like metric that calculates the Levenshtein (edit)

distance between two strings, but at the character level.

72

Figure 1: A screenshot of an interactive score table showing two example sentences and their respective scores.

3.2 Input and Technical Specification

VEMV is written in Python 3 (also compatible
with Python 2.7). To run the tool, the following
software needs to be installed:

• Python >= 2.7 (required)

• NLTK5 >= 3.2.4 (required)

• Numpy (required)

• Matplotlib / Seaborn (optional - for graphs)

• Perl (optional - for MT BLEU, MT NIST)

• Java (optional - for METEOR, BEER, TER)

With the minimum required items installed the
software will generate scores for standard BLEU,
WER, and E-Dist. The optional items enable a
user to run a wider range of metrics and produce
nearly 200 graphs during evaluation.

The input commands to run the software can be
typed directly into the command-line on any plat-
form, or passed as arguments in an interactive de-
velopment environment (IDE) such as Spyder.6

Once the software has been run (see Section
3.5), a folder containing all of the generated
HTML, text, and image files is produced. A user
will typically explore the output by opening the
‘main.html’ file in a browser (Chrome, Firefox,
and Opera have been tested) and navigating it like
with any (offline) website. The text files contain
the output for the various metric scores and can be
inspected in detail. The graphs are output as im-
age files (PNGs), which are primarily viewed in
the HTML pages, but can also be used separately
for reports (e.g. Figure 3 in Section 3.4)

5http://www.nltk.org
6https://github.com/spyder-ide/spyder/

releases

3.3 Main Features

Here we outline some key features of the Vis-Eval
Metric Viewer tool:

Scoring with multiple evaluation metrics

Currently VEMV uses eight evaluation met-
rics to score individual sentences and the whole
document. All results are shown side by side for
comparison purposes and can be inspected at a
granular level (Figure 1).

A glance at the two sentences in Figure 1 al-
ready provides numerous points for analysis. For
example, the MT in sentence 2 is a long way
from the reference and receives low metric scores.
However, whilst not identical to the reference, the
MT is correct and could be interchanged with the
reference without losing meaning. For sentence 1
the MT is only a single word away from the refer-
ence and receives good scores, (much higher than
sentence 2) although the meaning is incorrect. The
interactive display enables the user to easily exam-
ine such phenomena in a given dataset.

Clear and easily navigable output

The main output is shown as a series of web
pages and can be viewed in modern browsers.
The browsers themselves also have a number of
powerful built-in functions, such as page search,
which are applicable to any of the output pages,
adding an extra layer of functionality.

The output consists of easily navigable interac-
tive score tables and graphs, logically organised
across web pages. The tool includes its own search
facility (for target and source sentences) and the
option to show or hide metric scores to aid clarity,
especially useful for comparing only a selection of
metrics. All of the segment level metric scores can
be sorted according to the metric of interest.

73

Figure 2: A screenshot of the VisEval Metric Viewer main page.

Results saved locally

Once scored, the generated text files, images, and
HTML pages are saved locally in a number of
organised folders. The majority of the text files
are made up from the standard raw output of the
metrics themselves. The image files are statistical
graphs produced from the metric scores. Both the
text and image files can be inspected directly on a
metric by metric basis and used for reference. The
VEMV tool brings together the text and images in
the HTML files to form the main viewable output.

Runtime user options

The minimal default settings will quickly
produce scores for standard BLEU, WER and
E-Dist. Numerous parameters can be set on the
command line enabling the user to choose any or
all of the additional metrics and whether or not to
generate graphs.

A number of the metrics (especially BLEU and
METEOR) have a plethora of parameters, which
can be selected. To avoid the need for complex
command line inputs the metric level parameters
can be placed in an easily editable text based con-
figuration file, which in turn is passed to the com-
mand line.

In addition, the user can choose which metric
will be the dominant one for sorting and display
purposes (the default is BLEU) and there is an op-
tion for selecting how many score bins or pages
to use to show the sentences. The default is 100
pages (one for every percentage point), but some
users may prefer fewer pages (e.g. 10 or 20) in
order to simplify the main interface and general
navigation.

An accessibility flag has also been added. It re-
moves some of the colour formatting from the dis-
plays making it easier for users with visual impair-
ments (e.g colour blindness).

3.4 Viewing the Actual Output

Figure 2 shows the main page of the software. In
this case all eight metrics were used as shown by
the mini graph icons. Each of these mini graph
icons act as a link. Ten score bins (circular icons)
were selected as a parameter.

Users can click on any of the links/icons to nav-
igate to the various pages. Clicking on the circular
icons opens the sentence level score pages (Fig-
ure 1) showing individual sentences with a given
score. Clicking on the mini graph icons takes the
user to the graph display web pages for the respec-
tive metrics or the general document wide statis-
tics. Figure 3, for example, is a metric graph show-
ing the distribution of standard BLEU scores for
the dataset. In this case the chart in Figure 3 would
be accessed by clicking on the very left hand mini
graph icon on the main page shown in Figure 2.

Figure 3: A graph showing the distribution of standard
BLEU scores.

74

3.5 Downloading and Running the Tool
Vis-Eval Metric Viewer can currently be down-
loaded from the following location on GitHub:
https://github.com/David-Steele/
VisEval_Metric_Viewer.

The associated README file provides instruc-
tions on how to get started with using the tool, and
what to do if you run into any problems.

In terms of hardware requirements, a computer
with at least 2GB of RAM and 300MB of available
storage is needed to run the software.

A short video demonstration of these and other
features of the Vis-Eval Metric Viewer software
can be found online at: https://youtu.be/
nUmdlXGYeMs.

4 Conclusion and Future Work

The Vis-Eval Metric Viewer tool was designed
with three main aims:

• To provide a useful tool that is easy to install
(using readily available packages), and sim-
ple to use and run on a local machine without
the need for a server or internet connection.

• To offer a single place for scoring translations
using multiple popular metrics.

• To provide in depth visual feedback making it
easy to examine segment level metric scores.

The tool offers a light weight solution that
makes it easy to compare multiple-metric scores
in a clear manner. Feedback can be interactively
explored and searched rapidly with ease, whilst
numerous graphs provide additional information.
The tool can be run locally on any platform. All
results are saved in self-contained folders for easy
access.

We plan to add the following functionalities to
VEMV in the future:

• Dynamic graphs, enabling users to select (in
real time) variables to compare, and other
features such as zooming in/out.

• Inclusion of a few additional popular light-
weight evaluation metrics. The modular de-
sign of the software means that adding new
metrics is a relatively trivial process.

• Using the saved output from the tool to com-
pare multiple MT systems against one an-
other.

References
Bogdan Babych. 2014. Automated mt evaluation met-

rics and their limitations. Tradumàtica, (12):464–
470.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Giménez, Jesús Màrquez, and Lluı́s. 2010. Asiya:
An open toolkit for automatic machine translation
(meta-)evaluation. The Prague Bulletin of Mathe-
matical Linguistics, 94:77–86.

Ondřej Klejch, Eleftherios Avramidis, Aljoscha Bur-
chardt, and Martin Popel. 2015. MT-compareval:
Graphical evaluation interface for machine transla-
tion development. The Prague Bulletin of Mathe-
matical Linguistics, (104):63–74.

Nitin Madnani. 2011. ibleu: Interactively debugging
& scoring statistical machine translation systems. In
Proceedings of the Fifth IEEE International Confer-
ence on Semantic Computing, pages 213–214.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, pages 311–318, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In In Proceedings of Association for Machine
Translation in the Americas, pages 223–231.

Xingyi Song, Trevor Cohn, and Lucia Specia. 2013.
BLEU deconstructed: Designing a better MT eval-
uation metric. International Journal of Computa-
tional Linguistics and Applications, (4):29–44.

Milos Stanojevic and Khalil Sima’an. 2014. Beer: Bet-
ter evaluation as ranking. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages ”414–419”. ”Association for Computational
Linguistics”.

Ying Zhang, Stephan Vogel, and Alex Waibel. 2004.
Interpreting bleu/nist scores: How much improve-
ment do we need to have a better system. In Pro-
ceedings of Language Resources and Evaluation,
pages 2051–2054.

75

Proceedings of NAACL-HLT 2018: Demonstrations, pages 76–80
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

Know Who Your Friends Are:
Understanding Social Connections from Unstructured Text

Léa A. Deleris, Francesca Bonin, Elizabeth Daly, Stéphane Deparis,
Yufang Hou, Charles Jochim, Yassine Lassoued and Killian Levacher

IBM Research - Ireland
Dublin , Ireland

lea.deleris, fbonin, edaly, stephane.deparis
yhou, charlesj, ylassoued, killian.levacher @ie.ibm.com

Abstract

Having an understanding of interpersonal re-
lationships is helpful in many contexts. Our
system seeks to assist humans with that task,
using textual information (e.g., case notes,
speech transcripts, posts, books) as input.
Specifically, our system first extracts quali-
tative and quantitative information elements
(which we call signals) about interactions
among persons, aggregates those to provide a
condensed view of relationships and then en-
ables users to explore all facets of the resulting
social (multi-)graph through a visual interface.

1 Introduction

The social network of a person plays a vital role
in their well being providing access to assistance,
resources, support (Wellman and Wortley, 1990)
and even influencing health (Christakis and Fowler,
2007). Understanding the quality of the social rela-
tionships, beyond the simple existence of a relation-
ship or its demographic nature (family or not), pro-
vides a better perspective on the context and is es-
sential in a variety of situations that extends beyond
social media such as criminal investigations (iden-
tifying suspects and acolytes), sales (connecting
to the right persons in target companies), political
analysis (understanding the evolution of alliances)
and human resources (improving team dynamics).
For instance, Yose et al. (2018) analysed a medieval
text to get novel insights into the hostilities during
the battle of Clontarf of 1014.

The initial motivation for this work comes from
the domain of social care. One essential task for
care workers is to identify who plays a supportive
or disruptive role in a patient’s environment at a
given time. Problems emerge when details get lost
within notes of the multiple persons composing
the care team. Significant details may have been
recorded but are locked inside free-text narratives,

requiring other parties to invest a great deal of time
to gain a full understanding of the situation.

In this paper, we present a system designed to
assist humans with the understanding of interper-
sonal relationships. Specifically, the system takes
as input a collection of texts and automatically ex-
tracts a multigraph representation of the relation-
ships (and their quality). From that information, we
provide an interface to enable users to gain insights
into the relationships, from aggregated information
to fine-grained analysis of temporal patterns and
emotions.

2 Background

Our work builds upon two areas: social graph
identification and qualitative relationship analysis.
Most of the research within the former attempts
to build ontologies of relations between individu-
als based on information extracted from text (e.g.,
social networks, dialogues, novels) (Hauffa et al.,
2011). Mori et al. (2006) try to enhance social net-
work extraction from the web, considering a range
of entities beyond just persons. They identify the
nature of entities (e.g., person, firm, geopolitical
entity) and their relations (e.g., mayor of).

The second area instead explores how to con-
struct a qualitative representation of the relation-
ship between individuals. Bracewell et al. (2011)
for example determine the collegiality between two
persons, as exhibited in a text. Srivastava et al.
(2016) attempt to identify the polarity of relations
(cooperative or conflictual) between characters in
narrative summaries, using textual and structural
features. Iyyer et al. (2016) model how the fictional
relationship between two characters changes over
time using deep recurrent autoencoders.

Altogether, while the first field enables the ex-
traction of complex multi-party social graphs, links
representing interpersonal relationships within

76

these graphs often lack a more nuanced represen-
tation (Hauffa et al., 2011). On the other hand,
techniques from qualitative relationship analysis
lead to a more extensive understanding of relation-
ships yet they are typically applied to minimal set-
tings consisting of two or three individuals at most.
Our work brings both fields together by produc-
ing larger multi-party social graphs with qualitative
links identified between the individuals.

3 Modeling Relationships

We model interpersonal relationships, or simply
relationships between two entities by analyzing
a list of associated relationship signals (hereafter
signals) which are extracted by an NLP system. At
this point, we focus on four kinds of signals:

• Direct Speech - A person addressing another
one without mentioning him/her, e.g., Phoebe
(to Monica): “The weather is nice today”.

• Direct Reference - A person addressing an-
other one and mentioning him/her explicitly,
e.g., Phoebe (to Monica): “I hate you”.

• Indirect Reference - A person mentioning a
third party, i.e., someone who is not present,
e.g., Phoebe: “I like Rachel”.

• Third-Party Reference - The description, by
a third-party, of any kind of relation between
two entities, e.g., Phoebe: “Ross has been in
love with Rachel forever”.

While we focus in our examples on humans, enti-
ties could also include corporations, governmental
organizations, products, brands and animals (e.g.,

“Toyota allies with Intel in bid to overtake GM.”).
For each detected signal, our system seeks to

present a qualitative description including senti-
ment, emotion such as anger, disgust, joy, etc.,
other qualitative aspects such as intensity, formal-
ity, cooperative vs. adversarial along with in-
formation about the context such as geographi-
cal location, settings (one-on-one vs. group dis-
cussion), whether face-to-face or remote, whether
synchronous or asynchronous interactions.

In turn, through a model to aggregate those sig-
nals together and over time, this enables us to at-
tach qualitative metrics to relationships for instance
sentiment and emotions – so as to differentiate
between supportive relationships and negative re-
lationships – but also volatility of sentiment and

emotions, intensity/frequency 1 and recency.
The logic underneath the aggregation model can

vary by situation, but is typically based on weighted
counts of the various signals. For instance, in the
sentence “You, Frankie, you are a liar”, the sys-
tem would extract at the atomic level one direct
speech signal from the speaker towards Frankie
and three direct references as well. When aggre-
gating, it may be that the three direct references
are counted as one rather than three, being all from
the same utterance and that the direct reference
takes priority over the direct speech signal which
could be discarded. However, in some scenario, it
may be relevant to keep track at the level of each
atomic signal. Our system provides the flexibility
to design bespoke models of how signals map to
relationships. From an engineering perspective, we
rely on Solr2 to index each signal with all inferred
facets such as entities, sentiment and type.

4 NLP System

Our system combines NLP tools to perform en-
tity mention resolution and then extracts signals
between these entities.3 Our entity mention resolu-
tion borrows from named-entity recognition, men-
tion detection, coreference resolution, and entity
linking. We address more than just named entities
(i.e., we are interested in all (person) entity men-
tions), and look at not only coreferred ones. To get
a complete picture of the connection for a person,
we want to identify all possible references to them,
whether named entities (e.g., Ross Geller, Ross) or
not (e.g., him, you, that guy, his son, the professor).

Entity Mention Detection. We use named-
entity recognition and coreference resolution to
identify mentions of entities (people) in the text
and supplement that with tools for identifying com-
mon roles (e.g., professions), titles, or relations
(e.g., brother or neighbor).

Entity Linking and Resolution. We leverage
social graph information to resolve the detected en-
tity mentions. This involves, for example, making
use of family relationships to find or disambiguate
new mentions of entities in the text. When no
social graph is provided, this step includes build-
ing the graph from a knowledge source or to boot-
strap social graph creation using the output of the

1Granovetter observes that “the more frequently persons
interact with one another, the stronger their sentiments of
friendship for one another are apt to be” (Granovetter, 1973)

2http://lucene.apache.org/solr/
3As mentioned, we focus primarily on person entities.

77

entity mention detection. For those cases, fur-
ther named-entity disambiguation may be needed
(Pabico, 2014; Han and Zhao, 2009).

Relationship Signal Detection. Using the re-
solved entity mentions we detect relationship sig-
nals between entities and characterize the signal
type (Section 3). In addition, we perform targeted
sentiment and emotion analysis between entities.

Figure 1 illustrates how the different modules
are articulated. The dashed arrow going from the
graph-based mention resolution towards the text-
level mention detection module indicates that infor-
mation from the graph can further contribute in dis-
ambiguating and enriching the text-level mention
detection steps (for instance pronoun resolution).

The output of the NLP extraction pipeline com-
prises a list of entity mentions and a list of rela-
tionship signals between those entities. These con-
tribute to enrich our understanding of the social
graph among the entities (or create one if none
were provided as input). From this combined infor-
mation we draw the relationship graph.

5 Visual Interface Features

Our current system enables users to (i) Aggregate
information (over time, over sentiment categories),
(ii) Visualize temporal relations over time and (iii)
Scrutinize each atomic signal underneath each re-
lationship (with the possibility of editing or cor-
recting it). Another task that we are considering
enabling is the ability to reason over the graph
(knowledge propagation e.g., if A “admires” B and
B “admires” C, it is likely that A “admires” C).

Our current interface hinges on three primary
views. Network overview (Fig. 2) which pro-
vides a snapshot of the social relationships using
visual cues to summarise them graphically. The
average sentiment is indicated through the color
of the links, red for negative, green for positive
where thickness gives an indication of the strength,
the thicker the link, the more positive or negative
the sentiment. The UI supports visualising the net-
work as an overview or over specific time intervals.
Next version will include a representation of inten-
sity (through dashes) along with an indication of
volatility by replacing the line with a sinusoidal
curve. Recency will be captured through the place-
ment relative to the ego node, people who more
recently interacted with the person are closer.

The Personal network view (Fig. 3) supports
a view of the two-hop interpersonal relationships

of the individual along with a summary view of
the person in terms of general emotions expressed
(donut chart in the bottom right quadrant of the
screen). The view can show the overall sentiment
and intensity of how they interact with others.

Finally, the Relationship view (Fig. 4) consists
of a stream graph presenting the five primary emo-
tions, anger, disgust, joy, fear and sadness as they
change over time. It can be used to see the inten-
sity of the relationships either by type, sentiment
or emotions. Drill down support is provided where
the user may hover over peak areas of interest in
the graph to inspect the snippets of text from the in-
put corpus that support the inferred emotions. The
emotions are directional where the upper part of
the stream graph represents the signals from En-
tity X to Entity Y and the lower part of the graph
represents Entity Y towards Entity X.

6 Demo Flow

Ideally, we would have relied on anonymized care-
worker notes to demonstrate our system. However,
privacy restrictions made access to such notes chal-
lenging and for our proof of concept, we have used
the transcripts from the Friends TV series, whose
theme, i.e. the interactions among a core group
of friends is well aligned with our objective. We
specifically focus on the first two seasons and lever-
age the character identification corpus created by
Chen and Choi (2016), which includes entity anno-
tation of personal mentions4.

A natural starting page for an analysis is the
(messy) social graph for all characters over all
episodes of Season 1. Fig. 2 shows the overall
social network when narrowing down to Season 1
Episode 2. From this place, a user can further dive
into one specific character (selecting a node), or
rather explore a relationship (selecting a link).

Assuming the user selects to focus on Ross then
his personal network view (Fig. 3) would be dis-
played. The dominating emotion conveyed in this
episode is joy, both in quantity and in strength
(represented through length of the arc and radius
respectively), followed by sadness and fear. In this
episode, Ross learns from his now-lesbian ex-wife
Carol that she is pregnant with his child. In terms of
relationship, the graph shows mostly negative sen-
timents towards other characters, especially Barry,
though positive ones towards Rachel.

4https://github.com/emorynlp/
character-mining

78

Figure 1: Overview of the NLP Interaction Extraction System

Figure 2: Overview of Social Relationships [S1E2]

Figure 3: Personal Network for Ross [S1E2]

Selecting a relationship (eg. the one between
Ross and Rachel) the user will be shown a stream
graph as in Fig. 4. The graph shows the five primary
emotions as they change over time during the se-
ries. The x axis represents the progressive episodes’
numbers and the y axis the intensity of the emotion.
Above the x axis the relation Ross towards Rachel
is shown, below the relation Rachel towards Ross.
We can observe the distinctive asymmetry of the
relationship. For instance, in Episode 11, there
is no specific emotion from Rachel towards Ross
though quite a mix of emotions expressed by Ross
towards Rachel. In this episode, Ross is jealous of
Rachel’s boyfriend Paolo and confides his feelings
and love troubles towards Rachel to Chandler’s

Figure 4: Stream graph of Relationship over time be-
tween Ross and Rachel [Season 1]

mother. In Episode 16, sentiments of anger, fear
and disgust are present in Ross towards Rachel, but
not viceversa.

As part of the actual demonstration, we will chal-
lenge users with a short information retrieval task
aimed at illustrating the types of questions that our
approach supports. For fact-based questions, we
will give participants a set amount of time (i.e. 2
minutes) and will maintain a leaderboard of the
fastest information finders (with participants’ con-
sent). Sample questions would be “Whose mother
did Ross kiss during season 1?”, or “How long
did Rachel go out with Paolo?”. For questions
that require interpretation (e.g. ‘Does Chandler
like Frankie?”), we would let participants tell us
their opinion before and after using the tool and
ask them if the system was helpful in gaining con-
fidence about their final answer.

7 Conclusion

This paper presents a system to support the anal-
ysis and understanding of interpersonal relation-
ships. Relationships are described along multiple
quantitative and qualitative dimensions which are
automatically populated from relationship signals
extracted from text by a NLP system. The associ-
ated interface enables a user to quickly focus on a
specific person or pair of persons and to investigate
how the relationship evolves over time.

79

References

David B Bracewell, Marc Tomlinson, Ying Shi, Jeremy
Bensley, and Mary Draper. 2011. Who’s playing
well with others: Determining collegiality in text.
In Proceedings of the 5th IEEE International Con-
ference on Semantic Computing (ICSC 2011), pages
21–26. IEEE.

Yu-Hsin Chen and Jinho D. Choi. 2016. Character
identification on multiparty conversation: Identify-
ing mentions of characters in TV shows. In Proceed-
ings of the SIGDIAL 2016 Conference, The 17th An-
nual Meeting of the Special Interest Group on Dis-
course and Dialogue, pages 90–100. The Associa-
tion for Computer Linguistics.

Nicholas A Christakis and James H Fowler. 2007.
The spread of obesity in a large social network
over 32 years. New England journal of medicine,
357(4):370–379.

Mark S Granovetter. 1973. The strength of weak ties.
American journal of sociology, pages 1360–1380.

Xianpei Han and Jun Zhao. 2009. Named entity disam-
biguation by leveraging wikipedia semantic knowl-
edge. In Proceedings of the 18th ACM Conference
on Information and Knowledge Management, CIKM
’09, pages 215–224, New York, NY, USA. ACM.

Jan Hauffa, Gottlieb Bossert, Nadja Richter, Florian
Wolf, Nora Liesenfeld, and Georg Groh. 2011. Be-
yond foaf: Challenges in characterizing social rela-
tions. In Privacy, Security, Risk and Trust (PASSAT)
and 2011 IEEE Third International Conference on
Social Computing (SocialCom), 2011 IEEE Third In-
ternational Conference on, pages 790–795. IEEE.

Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jor-
dan Boyd-Graber, and Hal Daumé III. 2016. Feud-
ing families and former friends: Unsupervised learn-
ing for dynamic fictional relationships. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1534–1544.

Junichiro Mori, Takumi Tsujishita, Yutaka Matsuo, and
Mitsuru Ishizuka. 2006. Extracting relations in so-
cial networks from the web using similarity between
collective contexts. The Semantic Web-ISWC 2006,
pages 487–500.

Jaderick P. Pabico. 2014. An analysis of named en-
tity disambiguation in social networks. Asia Pacific
Journal of Multidisciplinary Research, 2(4).

Shashank Srivastava, Snigdha Chaturvedi, and Tom M
Mitchell. 2016. Inferring interpersonal relations in
narrative summaries. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, pages
2807–2813.

Barry Wellman and Scot Wortley. 1990. Different
strokes from different folks: Community ties and so-
cial support. American journal of Sociology, pages
558–588.

Joseph Yose, Ralph Kenna, Máirín MacCarron, and
Pádraig MacCarron. 2018. Network analysis of
the viking age in ireland as portrayed in cogadh
gaedhel re gallaibh. Royal Society Open Science,
5(1):171024.

80

Proceedings of NAACL-HLT 2018: Demonstrations, pages 81–85
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

RiskFinder: A Sentence-level Risk Detector for Financial Reports

Yu-Wen Liu†, Liang-Chih Liu∗, Chuan-Ju Wang‡, Ming-Feng Tsai†∧
†Dept. of Computer Science, National Chengchi University

∗Dept. of Information and Finance Management, National Taipei University of Technology
‡Research Center of Information Technology Innovation, Academia Sinica
∧MOST Joint Research Center for AI Technology and All Vista Healthcare

g10435@cs.nccu.edu.tw, lcliu@ntut.edu.tw,
cjwang@citi.sinica.edu.tw, mftsai@nccu.edu.tw

Abstract

This paper presents a web-based information
system, RiskFinder, for facilitating the analy-
ses of soft and hard information in financial
reports. In particular, the system broadens the
analyses from the word level to sentence level,
which makes the system useful for practitioner
communities and unprecedented among finan-
cial academics. The proposed system has
four main components: 1) a Form 10-K risk-
sentiment dataset, consisting of a set of risk-
labeled financial sentences and pre-trained sen-
tence embeddings; 2) metadata, including ba-
sic information on each company that pub-
lished the Form 10-K financial report as well
as several relevant financial measures; 3) an
interface that highlights risk-related sentences
in the financial reports based on the latest sen-
tence embedding techniques; 4) a visualization
of financial time-series data for a correspond-
ing company. This paper also conducts some
case studies to showcase that the system can
be of great help in capturing valuable insight
within large amounts of textual information.
The system is now online available at https:
//cfda.csie.org/RiskFinder/.

1 Introduction

A great deal of mass media outlets such as newspa-
pers and magazines, or financial reports required by
authorities such as the SEC1-mandated Form-10Q
and Form-10K, play an important role in dissemi-
nating information to participants in financial mar-
kets. The spread of this information may quickly
or slowly influence the sentiment of market partic-
ipants and thus reshape their perspectives on eco-
nomic numbers, such as stock prices and interest
rate levels. This information comes in two types:
soft information, usually referring to textual infor-
mation such as opinions and market commentary;

1Securities and Exchange Commission

and hard information, that is, numerical informa-
tion such as historical time series of stock prices.

Due to the strong relation between the textual in-
formation and numerical measures, there has been
a growing body of studies in the fields of finance
and data science that adopt the techniques of natu-
ral language processing (NLP) and machine learn-
ing to examine the interaction between these two
types of information (e.g., Kogan et al., 2009; Tsai
et al., 2016; Tsai and Wang, 2017; Rekabsaz et al.,
2017). For example, Loughran and McDonald
(2011) and Jegadeesh and Wu (2013) investigate
how the disclosures of finance sentiment or risk
keywords in SEC-mandated financial reports af-
fect investor expectations about a company’s future
stock prices. Moreover, Kogan et al. (2009) and
Tsai and Wang (2017) exploit sentiment analysis
of 10-K reports for financial risk analysis. Further-
more, in Liu et al. (2016), a web-based information
system, FIN10K, is proposed for financial report
analysis and visualization.

However, these studies and systems all focus on
word-level analyses, which likely yield biased re-
sults or explanations because the usage of words in
finance context, especially in financial reports, is
usually complicated and sometimes includes tricks
to hide original sentiment (Liu et al., 2016). One of
the prominent examples is the negations of positive
words to frame negative statements (Loughran and
McDonald, 2016); moreover, we also find that the
word “offset” is usually used to hide negative infor-
mation with positive sentiment words. Therefore,
to advance the understanding of financial textual
information, this paper further constructs an infor-
mation system based on sentence-level analysis
to assist practitioners to capture more precise and
meaningful insight within large amounts of textual
information in finance.

There have been several studies proposed to pro-
duce distributed representations of words, such as

81

word2vec (Mikolov et al., 2013). In recent years,
there have also been several studies that extend the
proportion from word level to sentence, paragraph,
or even document level, such as doc2vec (Mikolov
et al., 2013), FastText (Bojanowski et al., 2017),
and Siamese-CBOW (Kenter et al., 2016). Fol-
lowing the fruitful progress of these techniques of
word and sentence embeddings, this paper presents
a web-based information system, RiskFinder, that
broadens the content analysis from the word level
to sentence level for financial reports.

The proposed system contains four main parts: 1)
a Form 10-K risk-sentiment dataset, consisting of
a set of risk-labeled financial sentences and pre-
trained sentence embeddings; 2) metadata that sum-
marizes the basic information about each financial
report; 3) an interface that highlights risk-related
sentences in the financial reports; 4) a visualiza-
tion of financial time-series data associated with
the corresponding financial reports. In the pro-
posed system, we use the 10-K Corpus (Liu et al.,
2016) which contains 40,708 financial reports from
year 1996 to 2013. In addition to the 10-K corpus,
we also construct a set of labeled financial sen-
tences with respect to financial risk by involving 8
financial specialists including accountants and fi-
nancial analysts to ensure the quality of the labeling.
With the labeled sentences and the large collection
of financial reports, we apply FastText (Bojanowski
et al., 2017) and Siamese-CBOW (Kenter et al.,
2016) to sentence-level textual analysis. Due to the
superior performance of FastText, the system high-
lights high risk sentences in those reports via using
FastText. For comparison purposes, the system
shows the numbers of these highlighted high-risk
sentences for the selected report, and we at the
same time display the time-aligned relevant quanti-
tative information such as the historical stock prices
of the selected company to visualize its financial
risk, which considerably facilitates case studies in
the field of finance and accounting. Finally, we pub-
lish the pre-trained sentence vectors trained on the
10-K corpus and our constructed labeled sentences.

2 System Description

Figure 1 illustrates the user interface of the pro-
posed RiskFinder system. In the system, there are 4
major components for risk detection, the details of
which are provided in the following subsections.

2.1 Form 10-K Risk-sentiment Dataset

The first component is the collection of the Form
10-K risk-sentiment dataset. This work provides
the financial risk-sentiment dataset that consists of
two types of data: a set of risk-labeled financial
sentences and the pre-trained sentence embeddings.
There are in total 432 labeled financial sentences in
the dataset, which were selected from the MD&A2

sections of the 10-K corpus. When selecting the
candidate sentences, we first used the six finan-
cial sentiment lexicons proposed by Loughran and
McDonald (2011) to filter sentences and randomly
chose 24 sentences per year for annotation, yielding
in total 432 sentences for 18 years (1996 to 2013).
To construct the risk-labeled dataset, eight financial
specialists including accountants, financial analysts
and consultants participated in the annotation task
to ensure the quality of the labeling. In the annota-
tion process, each of the candidate sentences was
labeled by three different annotators, and then the
rule of majority was used to determine the degree
of risk of the sentence. A total of 138 sentences out
of the 432 sentences are identified as high-risk sen-
tences, and Cronbach’s alpha, which is regarded as
an indicator to determine the internal consistency,
showed the reliability of 0.784. In addition, the
dataset also includes the pre-trained sentence vec-
tors, each of which is a 100-dimension real-valued
vector, trained by FastText and Siamese-CBOW on
the 10-K corpus.3

2.2 The Metadata

The second component of the proposed system is
the metadata of the companies in the Form 10-K
corpus. A user can first select the company in the
list (1) (e.g., AEP INDUSTRIES INC in Figure 1).
Following the selection, the MD&A section of the
report and all fiscal years of the chosen company
are then automatically loaded in the window (2)
and timeline (3), respectively. A user can select
their interesting fiscal year in timeline (3). Then,
our system simultaneously displays in table (4) the
following metadata which summarizes the basic
information of the corresponding company:

1. the company name;
2. the company’s CUSIP number, which facil-

itates the retrieval of information associated
2Management Discussion and Analysis of Financial Con-

dition and Results of Operations
3The dataset is available at https://cfda.csie.

org/RiskFinder/ upon publication.

82

Figure 1: The user interface of the RiskFinder system

Siamese-CBOW FastText

Accuracy 0.656 0.813
Precision 0.776 0.774
Recall 0.438 0.621
F1-measure 0.558 0.684

Table 1: Performance for risk sentence classification

with this company from other widely used
databases (e.g., Compustat and CRSP4);

3. the report release date;
4. the annualized post-event return volatilities;5

5. the number and the percentage of highlighted
risk-related sentences in this report.

2.3 Risk-related Sentence Detection
To examine a company’s financial risk given the
textual information in its financial reports on
Form 10-K, the proposed system focuses on the
sentence-level investigation into the MD&A sec-
tion, which is considered a major part where the
firm managements are most likely to reveal in-
formation (Loughran and McDonald, 2011). To
obtain representative sentence representations, we
adopt two sentence embedding techniques to con-

4CRSP is the abbreviation for the Center for Research in
Security Prices.

5The postevent return volatility is the root-mean square
error from a Fama-French three-factor model (Loughran and
McDonald, 2011; Tsai et al., 2016).

duct sentence-level textual analyses: FastText, a
linear classifier that enables efficient sentence clas-
sification and yields performance on par with other
deep learning classifiers, and Siamese-CBOW, a
neural network architecture that obtains word em-
beddings, directly optimized for sentence repre-
sentations. Since Siamese-CBOW, the second ap-
proach, produces only sentence embedding (by sim-
ply averaging the word embedding of each word
in a sentence), we then employ a logistic regres-
sion to construct a binary classifier to detect high-
risk sentences. Table 1 tabulates the performance
tested on the 87 sentences in terms of accuracy,
precision, recall, and F1-measure with 4-fold cross-
validation. Note that the 432 sentences are split into
the training data and the testing data with 345 and
87 sentences, respectively, where the proportions
of high-risk sentences are kept the same in training
and testing sets. Due to the significant superior
performance of FastText, we adopt it to highlight
high-risk sentences in the reports in the proposed
system. Furthermore, the number and percentage
of highlighted high-risk sentences in each report
are summarized in table (4) of Figure 1.

2.4 Visualization for Financial Measures

Our system attempts to facilitate the analysis of
textual information and capture more insight into
the financial risk associated with the announcement

83

Figure 2: A positive word in a high-risk sentence

Figure 3: The tone transition word

of each financial report. Therefore, in addition to
highlight the high-risk sentences, our system also
displays time-aligned quantitative information for
comparison purposes, such as historical prices and
trading volumes of the selected company’s stock,
as shown in the chart (5) of Figure 1. In particular,
the release date of the report is highlighted through
a red vertical line in the chart; users can adjust
the window (6) to show the corresponding quanti-
tative information for a certain period. Note that
two types of historical stock prices are provided
in the proposed system: the original stock prices
and those adjusted due to stock splits and dividend
payouts; the mode can be altered through (7).

3 Case Study

Framing negative or high-risk information through
negations of positive financial sentiment words is
prevalent among the drafters of financial corpora.
Such type of expression could alleviate the adverse
effect on market participants’ sentiment, but that
makes the identification of high-risk statements far
more complicated than the discussions in extant
finance and accounting literature. From word-level
to sentence-level analysis, our proposed RiskFinder
system can effectively recognize high-risk informa-
tion padded with positive words. The positive word
“dividend” in stock markets is a notable example;
Figure 2 shows that Caliper Life Science Inc.’s
stock prices trend downward after the announce-
ment of its year 2004 financial report stating that
“we have never declared or paid any dividends on
our capital stock” In a more complex form
of the expressions with the positive words “favor-

able,” the system identifies the information “we
cannot assure you that these markets will continue
to grow or remain favorable to the life science in-
dustry . . . ” as a high-risk sentence. Moreover, our
system also detects the tendency that the drafters
of 10-K financial reports use the word “offset” to
hide high-risk information behind the low-risk one.
For instance, Figure 3 shows that AES CORP.’s
stock prices trend downward within 2 months after
the announcement of its year 2005 financial report
stating that “. . . an increase of million in revenues
at ipalco were partially offset by a million decline
in revenues” These examples show that our
system can greatly facilitate case studies and be of
great help for practitioners in capturing meaningful
insight within large amounts of textual information
in finance from the sentence-level point of view.

4 Conclusions

In this paper, we introduce RiskFinder to broaden
the textual analysis of financial reports from the
word level to sentence level. This extension is es-
sential for the analytics of financial reports because
the sentences are usually long and complicated,
and high-risk information is sometimes hided with
positive sentiment words. Built on financial reports
in the 10-K Corpus with a set of risk-labeled sen-
tences, this proposed system applies FastText to
automatically identify high-risk sentences in those
reports. For comparison purposes, the system even
displays the time-aligned relevant quantitative in-
formation to visualize the financial risk associated
with the announcement of each report.

This work is a preliminary study, the purpose of
which is to demonstrate the importance of sentence-
level analysis and the integration of soft and hard
information in finance. Therefore, in the future, we
will continue to extend the system, with an empha-
sis on incorporating more state-of-the-art learning
algorithms or developing new algorithms to better
detect risk-related sentences. In addition, one of
our future work is to obtain more labeled sentences
with respect to financial risk or even different fi-
nancial aspects, which should further enhance the
performance and usability of the proposed system.

Acknowledgments

This research was partially supported by the Min-
istry of Science and Technology of Taiwan under
the grants MOST 106-3114-E-009-011 and 107-
2634-F-002-011.

84

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion of Computational Linguistics, 5(1):135–146.

Narasimhan Jegadeesh and Di Wu. 2013. Word power:
A new approach for content analysis. Journal of Fi-
nancial Economics, 110(3):712–729.

Tom Kenter, Alexey Borisov, and Maarten de Rijke.
2016. Siamese cbow: Optimizing word embeddings
for sentence representations. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
’16, pages 941–951.

Shimon Kogan, Dimitry Levin, Bryan R Routledge, Ja-
cob S Sagi, and Noah A Smith. 2009. Predicting risk
from financial reports with regression. In Proceed-
ings of the 2009 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, NAACL ’09, pages 272–280.

Yu-Wen Liu, Liang-Chih Liu, Chuan-Ju Wang, and
Ming-Feng Tsai. 2016. Fin10k: A web-based in-
formation system for financial report analysis and
visualization. In Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowl-
edge Management, CIKM ’16, pages 2441–2444.

Tim Loughran and Bill McDonald. 2011. When is a
liability not a liability? textual analysis, dictionaries,
and 10-ks. Journal of Finance, 66(1):35–65.

Tim Loughran and Bill McDonald. 2016. Textual anal-
ysis in accounting and finance: A survey. Journal of
Accounting Research, 54(4):1187–1230.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems,
NIPS ’13, pages 3111–3119.

Navid Rekabsaz, Mihai Lupu, Artem Baklanov, Allan
Hanbury, Alexander Dür, and Linda Anderson. 2017.
Volatility prediction using financial disclosures sen-
timents with word embedding-based IR models. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL ’17, pages 1712–1721.

Ming-Feng Tsai and Chuan-Ju Wang. 2017. On the
risk prediction and analysis of soft information in
finance reports. European Journal of Operational
Research, 257(1):243–250.

Ming-Feng Tsai, Chuan-Ju Wang, and Po-Chuan
Chien. 2016. Discovering finance keywords
via continuous-space language models. ACM
Transactions on Management Information Systems,
7(3):7:1–7:17.

85

Proceedings of NAACL-HLT 2018: Demonstrations, pages 86–90
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

SMILEE: Symmetric Multi-modal Interactions with Language-gesture
Enabled (AI) Embodiment

Sujeong Kim, David Salter, Luke DeLuccia, Kilho Son, Mohamed R. Amer and Amir Tamrakar∗
SRI International, 201 Washington Rd, Princeton, NJ08540

https://sites.google.com/view/smilee

Abstract

We demonstrate an intelligent conversational
agent system designed for advancing human-
machine collaborative tasks. The agent is able
to interpret a user’s communicative intent from
both their verbal utterances and non-verbal be-
haviors, such as gestures. The agent is also it-
self able to communicate both with natural lan-
guage and gestures, through its embodiment
as an avatar thus facilitating natural symmet-
ric multi-modal interactions. We demonstrate
two intelligent agents with specialized skills in
the Blocks World as use-cases of our system.

1 Introduction

Recent advances in speech recognition and natu-
ral language processing techniques have resulted
in increasing use of intelligent assistants, such
as Google Assistant, Siri, and Alexa, in our
daily lives, replacing keyboard or touch interfaces.
However, the interactions with these assistants are
still limited to just the verbal modality.

In this paper, we present an intelligent conver-
sational agent system (SMILEE) designed to ad-
vance the state of the art in human-machine in-
teraction. The main idea underlying this sys-
tem is the observation that non-verbal behavior
(primarily gestures) encodes information that both
complements and supplements speech in human-
to-human communication. Our studies in the
Blocks-World (BW) have shown that gestures are
frequently used with speech taking on both com-
plementary roles (reinforcing the meaning) and
supplementary roles (adding information to what
was verbalized), and contribute towards facilitat-
ing communication (Kim et al., 2018). Thus we
assert that gestures need to be taken into account
when deducing the meaning of complex ideas ex-
changed during communication and this has to be

∗amir.tamrakar@sri.com

done in a joint-inferencing process along with the
natural language understanding process.

In the same vein, we also assert that commu-
nication between humans and computers should
be symmetric and multi-modal in both directions
for it to be truly natural. Thus, in order to fa-
cilitate the communication of a machines com-
plex ideas to the human, the machine’s utter-
ances also need to be embellished with appropri-
ate non-verbal behaviors. This argues for using a
computer-generated avatar for embodying the ma-
chine. Only then will humans be able to naturally
communicate with machines, as they do with other
humans. Not only will this ease the communi-
cation but it also allow the communication to be
more accurate.

In the following sections, we summarize vari-
ous components of SMILEE and demonstrate two
preliminary use-cases we have built.

2 Related Work

(Foster et al., 2009) explores different strategies
for generating instructions given to the users by
the robot for collaborative toy assembly type of
tasks. (Perera et al., 2017) propose a system to
learn new concepts (e.g., unseen structure) in BW
environments from the descriptions of its proper-
ties. (She et al., 2014) propose a method to teach
a robotic arm new actions for placing blocks us-
ing dialogues. There have also been efforts to un-
derstand language in the BW domain. Human-
generated instructions in virtual blocks world are
collected by (Bisk et al., 2016). Using this dataset,
a neural-network model for 3D spatial operations
has proposed (Krishnaswamy et al., 2018). In
terms of non-verbal behaviors, (Salter et al., 2015)
present a dataset containing two people building
structures with basic shapes while only communi-
cating with non-verbal queues.The key difference

86

Figure 1: The Functional Architecture of the BW Apparatus. See text for details.

of our work from these work is that we use speech
and gestures together for understanding human in-
tents.

3 The Blocks World (BW) Apparatus

Figure 2: Blocks World Apparatus Physical setup (left)
and a virtual setup (right).

The Blocks World Apparatus (Figs.1 & 2) is a
computer vision based platform to provide I/O
abilities for AI agents (Son et al., 2015). It was
designed for the purpose of having intelligent con-
versations about blocks on a table, i.e., the Blocks
World. The platform acts as the eyes and ears
for the AI agent, tracking not only the blocks on
the table (Son et al., 2016) but also multi-modal
behaviors of the human interacting with it, both
verbal and non-verbal (Siddique et al., 2015). It
also provides an embodiment of the machine in the
form of a simple humanoid avatar for the users to
interact with. The Apparatus provides a number of
APIs for the conversational AI agents to interface
with the system.

The apparatus is also available as a virtual sys-
tem (Fig. 2). The virtual version was developed
using Unity (Unity, 2017) as an option for users
who are not able to setup the full physical system.
It allows the users to use the same exact APIs to
interact with the apparatus. The virtual system is
also deployed as a web app for remote users. This
system is publicly available for use by the research
community (Salter et al., 2017)1.

1https://sites.google.com/view/playwithsmilee/home

4 SMILEE

SMILEE is the realization of our goal to allow
natural verbal and non-verbal communication be-
tween a human and a conversational AI agent. Al-
though the current system has been built for hav-
ing conversations in the Blocks World, it is not
restricted to this use case. We have used The
Rochester Interactive Planning System (TRIPS)
architecture (Ferguson and Allen, 1998) for re-
alizing our system. The TRIPS framework ap-
proaches conversations as collaborative problem
solving tasks. It provides a parser and an interpre-
tation manager to normalize many forms of utter-
ances into logical forms (LF) which is then formed
into problem solving acts represented in AKRL.
The TRIPS agent architecture utilizes a loose cou-
pling of a number of independent agents commu-
nicating with each other via standardized KQML
messages. In this section, we describe various
agents that compose the SMILEE system (Fig. 3).

4.1 Scene Perception Agent
The scene perception agent processes the block
tracking information from the BW apparatus to
generate perceptual interpretations of the overall
structure defined by the collection of positions and
orientations of the tracked blocks. The percep-
tual interpretations include geometric relations be-
tween blocks, physical constraints, and perceptual
grouping of blocks into larger substructures (such
as row, stack, columns, etc). This grouping can
also be done based on an attribute of the blocks,
such as color, to generate other sub-grouping pro-
posals to aid in the communication. The set of
these relations are used to describe the scene.

4.2 Deictic Gesture Interpretation Agent
The gesture interpretation agent interprets the raw
human communication signals from the BW appa-
ratus. Current implementation of our gesture inter-

87

Figure 3: The SMILEE conversational AI Agent and its interactions with BW Apparatus and TRIPS modules. The modules
highlighted with green are our own agents while the modules in blue are preexisting modules in the TRIPS system.

Figure 4: Real-time deictic gesture recognition. (Right)
The block pointed by the user is highlighted with bold edges.
(Bottom) The words from the live speech recognition. (Left-
Top) Raw video input (Left-middle) facial behavior recogni-
tion.

pretation module converts the tokenized emblem-
atic gestures directly into verbal utterances and al-
lows them to be parsed in the normal manner. For
deictic gesture interpretation, we use a real-time
ASR engine for the verbal input and temporally
align it with the information from the deictic ges-
ture recognition stream to perform reference res-
olution (Fig.4). The pronoun-resolved utterance
string goes through the parser to the rest of the
interpretation modules. Our system is capable of
tracking both the pointing and touching types of
deictic gestures.

4.3 Co-speech Gesture Generation Agent
This agent is responsible for generating communi-
cation behaviors for the AI embodiment, in terms
of deciding ‘what to say’ and ‘what to do’. We
approach this problem in two separate steps (Kim
and Tamrakar, 2017). First, we convert the tar-
geted instruction (machine computed plan step)
into a fully verbal utterance and optimize it using
appropriate contexts. Next, we explore the pos-
sibility of replacing parts of this utterance with
gestures or simply supplementing them for better

communication.
Below, we show various utterances generated

by the agent for the same instruction “put a block
at a position (x, y, z)”, along with the cost (com-
plexity) of the instruction. The spatial and task-
related contexts significantly lowers the complex-
ity.

cost = 0, Please put a block on top of it
cost = 0.5, Please put a new block on top of the block
you just placed
cost = 0.5, Please put a new block behind the stack you
just made
cost = 1, Please put a new block on top of the block on
the top
cost = 2, Please put a new block on top of the block that
is at the back and on the left

Deictic gestures also increase the chance of cor-
rect and efficient communication, by simplifying
the dialogue or by confining the region of interest.
Note that even when a gesture increases the length
of the utterance, the communication can still be
more effective. For example, “put a block on top
of the stack there” can make it easier for the user
to locate the stack than just saying “put a block on
top of the stack”.

4.4 SRI-BW Behavioral Agent (BA)
This behavioral agent (BA) is the main agent that
enables the continuous interactions between the
user and the machine. When the agent understands
the user’s intent without ambiguity, it performs an
appropriate action. Otherwise, the agent asks clar-
ifying questions to resolve missing or ambiguous
information. For example:

USR: Put a block on the table.
SYS: Where on the table?

88

USR: Right there. [points to a location].
SYS: OK. I am putting a block at (0, 0, 0)
USR: Put another block next to it.
SYS: Can you be more specific? in front of/behind it? or
to the right or left of it? or on top of it?
USR: Put it to the left of it.
SYS: But there is already a block there. Do you mean to
the right of it?
USR: Yes.
SYS: Ok. I am putting a block at (1, 0, 0).

The behavior agent consists of the following
modules:
TRIPS protocol Interface handles the TRIPS
choreography. It routes messages to the appropri-
ate Problem Solving Agents.
Interaction Manager manages the state machines
for dialogs/interactions.
Context Vault keeps track of all the states and
contexts for the Problem Solving Agents (PSAs).
The BW PSAs are the domain specific problem
solving agents for the Blocks World in the TRIPS
architecture. They contain problem-specific gen-
eral knowledge including appropriate representa-
tions and specific capabilities needed to carry out
the actions requested by the user. They also keep
track of the state of the problem.

We demonstrate use-cases in Section 5.

5 Use cases

We demonstrate two use-cases of specialized
PSAs, namely, the general blocks-world PSA and
the symmetry game PSA. Please see the videos on
the website for more details.

5.1 The General Blocks-World PSA
The general blocks-world agent has knowledge
about general tasks and properties of the BW en-
vironment. The properties of the world consist of
physical properties like measurements, counts of
the blocks with particular attributes and/or in par-
ticular locations, and spatial relationships between
the sub-structures, etc. The tasks are related to
manipulating blocks to build a structure, such as
putting or moving blocks to certain positions. Ei-
ther the user or the machine can take initiative to
ask the other to perform a task-related actions.

5.2 The Symmetry Game PSA
The symmetry game is a collaborative turn-based
game in the Blocks World. The user and the com-
puter collaborates to create a symmetric structure
out of the blocks. Both the user and the agent have

total creative control on the building process but
they can also choose to collaborate towards a com-
mon goal. The structure should be symmetric at
the end of each turn.

The symmetry game agent understands the con-
cept of symmetry within the blocks world and per-
forms tasks like evaluating symmetry of an arbi-
trary structure. The agent utilizes a planner to
formulate moves (plans) to construct symmetric
structures, predicting potential solutions several
steps ahead of the current step. The symmetry
game agent also utilizes a state machine to keep
track of the game state based on the rules of the
game.

One of the highlights of the symmetry game
agent is that it is capable of explaining itself – ex-
plaining its plans and the reasonings for its actions.

6 Conclusion and Future Work

We have demonstrated a system for symmetric
natural communication with a computer which can
interact with its users with verbal and non-verbal
communication allowing it to have more robust
conversation. We demonstrated two use cases in
the BW domain. These use cases are like skills
that can be rapidly expanded upon.

We are working on expanding our capabilities
for interpreting additional non-verbal cues such
as iconic and pantomimed gestures. We are also
working on generating natural behaviors for the
avatar such as dynamically reacting to the user’s
actions.

We are also working on performing studies to
evaluate the system in terms of the task perfor-
mance and user experience based on the criteria
described in (Kozierok et al., 2018). The SMILEE
web page (see Section 3 for detail) is open to pub-
lic and collects feedback from the users.

Acknowledgments

This work was funded by the Defense Advanced
Research Projects Agency (DARPA) under agree-
ment number W911NF-15-C-9244. The views,
opinions, and/or conclusions contained in this pa-
per are those of the author and should not be in-
terpreted as representing the official views or poli-
cies, either expressed or implied of the DARPA or
the DoD. We would like to thank Lucian Galescu
of IHMC for his help with TRIPS system. We also
thank MITRE for providing the feedback about the
system and evaluations.

89

References
Y. Bisk, D. Marcu, and W. Wong. 2016. Towards

a dataset for human computer communication via
grounded language acquisition. In Proc. AAAI
Workshop on Symbolic Cognitive Systems.

George Ferguson and James F. Allen. 1998. Trips: An
integrated intelligent problem-solving assistant. In
Proceedings of the Fifteenth National/Tenth Confer-
ence on Artificial Intelligence/Innovative Applica-
tions of Artificial Intelligence, AAAI ’98/IAAI ’98,
pages 567–572, Menlo Park, CA, USA. American
Association for Artificial Intelligence.

Mary Ellen Foster, Manuel Giuliani, Amy Isard, Colin
Matheson, Jon Oberlander, and Alois Knoll. 2009.
Evaluating description and reference strategies in a
cooperative human-robot dialogue system. IJCAI.

Sujeong Kim, David Salter, Timur Almaev, Tim Meo,
and Amir Tamrakar. 2018. Dataset of human-human
interactions while engaging in a tower-building task
in the blocks world. Technical report, SRI Interna-
tional.

Sujeong Kim and Amir Tamrakar. 2017. Co-speech
gesture generation for communication in the blocks
world. Technical report, SRI International.

Robyn Kozierok, Lynette Hirschman, John Aberdeen,
Cheryl Clar, Christopher Garay, Bradley Goodman,
Tonia Korves, and Matthew Peterson. 2018. Darpa
communicating with computers: Program goals and
hallmarks.

Nikhil Krishnaswamy, Pradyumna Narayana, Isaac
Wang, Kyeongmin Rim, Rahul Bangar, Dhruva
Patil, Gururaj Mulay, J. Ross Beveridge, Jaime Ruiz,
Bruce A. Draper, and James Pustejovsky. 2018.
Learning interpretable spatial operations in a rich 3d
blocks world. Association for the Advancement of
Artificial Intelligence (AAAI).

Ian E. Perera, James F. Allen, Lucian Galescu,
Choh Man Teng, Mark H. Burstein, Scott E. Fried-
man, David D. McDonald, and Jeffrey M. Rye.
2017. Natural language dialogue for building and
learning models and structures. In AAAI.

D. A. Salter, A. Tamrakar, B. Siddiquie, M. R. Amer,
A. Divakaran, B. Lande, and D. Mehri. 2015. The
tower game dataset: A multimodal dataset for an-
alyzing social interaction predicates. In 2015 Inter-
national Conference on Affective Computing and In-
telligent Interaction (ACII), pages 656–662.

David Salter, Sujeong Kim, and Amir Tamrakar. 2017.
A virtual blocks world apparatus for the darpa cwc
program. Technical report, SRI International.

Lanbo She, Shaohua Yang, Yu Cheng, Yunyi Jia,
Joyce Yue Chai, and Ning Xi. 2014. Back to the
blocks world: Learning new actions through situated
human-robot dialogue. In SIGDIAL Conference.

Behjat Siddique, David Salter, Gregory Ho, Amir Tam-
rakar, and Ajay Divakaran. 2015. A blocks world
apparatus for the darpa cwc program. Technical re-
port, SRI International.

Kilho Son, David Salter, Tim Sheilds, Tim Meo, Jihua
Huang, Sujeong Kim, and Amir Tamrakar. 2015. A
blocks world apparatus for the darpa cwc program.
Technical report, SRI International.

Kilho Son, David Salter, and Amir Tamrakar. 2016.
Accurate block structure understanding in real-time
with time-of-flight cameras. Technical report, SRI
International.

Unity. 2017. Unity engine (5.6.3).

90

Proceedings of NAACL-HLT 2018: Demonstrations, pages 91–95
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

Decision Conversations Decoded

Léa A. Deleris, Debasis Ganguly, Killian Levacher, Martin Stephenson, Francesca Bonin
IBM Research - Ireland

Dublin, Ireland
lea.deleris, debasis.ganguly1, killian.levacher,

martin stephenson, fbonin@ie.ibm.com

Abstract

We describe the vision and current version of
a Natural Language Processing system aimed
at group decision making facilitation. Borrow-
ing from the scientific field of Decision Anal-
ysis, its essential role is to identify alternatives
and criteria associated with a given decision,
to keep track of who proposed them and of the
expressed sentiment towards them. Based on
this information, the system can help identify
agreement and dissent or recommend an alter-
native. Overall, it seeks to help a group reach
a decision in a natural yet auditable fashion.

1 Our Vision

Decision Analysis is the scientific discipline that
formally studies decisions: procedures, methods,
and tools for identifying, representing, and assess-
ing important aspects of a decision, ultimately to
recommend actions to the decision maker (Mathe-
son and Howard, 1977). One of the focus of deci-
sion analysis is on practical aspects of formulating
the decision problem (rather than focusing solely
on its mathematical resolution). This includes (i)
defining the utility function of the decision maker
including criteria, risk attitudes and trade-offs, (ii)
identifying the relevant uncertainties and (iii) in-
vestigating the benefits of gathering additional in-
formation. In order to achieve this, the deci-
sion analysis process needs certain inputs, specif-
ically alternatives (options available to the deci-
sion maker), criteria (values, risk preferences, and
time preferences of the decision maker), frame in-
cluding the constraints associated with the deci-
sion (Howard and Abbas, 2015).

Many decisions are taken collaboratively,
whether truly collaboratively (where everyone has
a voice) or rather when a decision maker consults
with a group of trusted advisers. For instance, for
complex cases in medicine, it is common to have

multiple experts meet to discuss the patient’s sit-
uation and come up with a recommended course
of action. When recruiting, different perspectives
are typically taken into account to help inform a
final manager of her decision to make an offer
to a candidate. In large projects, multiple stake-
holders can take part of important architectural
decisions. However, collaborative decision dis-
cussions are typically unstructured, inefficient and
can be frustrating for all participants, as illustrated
by the Abilene Paradox 1.

With the proliferation of recording devices in
our professional and personal lives (e.g., telecon-
ferencing, intelligent personal assistant or group
chat exchanges such as Slack), it would be help-
ful to develop NLP-based engines to automatically
extract decisions related concepts such as alterna-
tives and criteria from decision conversations and
make use of that information to facilitate the deci-
sion discussions. As a starting point, such a tech-
nology could provide the input to generate a visu-
alisation of the decision discussion so that a group
can consult it to identify underdeveloped ideas or
options, and to recall points of consensus and dis-
sent. It would serve as a summary, enabling people
who have missed a decision discussion to catch up
or more simply reminding a decision maker of the
arguments that were raised so she can make her
decision at a later time.

The system output can also be used to docu-
ment the decision making process in a structured
way. This information in turn is key to better un-
derstanding power plays and negotiation in group
decision making. More practically, it can be es-
sential to prove compliance with processes, e.g.,
a financial advisor proving she has presented rea-
sonable investment alternatives to her customers.

Note that our objective is to follow how a de-
1https://en.wikipedia.org/wiki/

Abilene_paradox retrieved on February 15th 2018

91

cision is made, rather than focusing solely on its
outcome i.e., the final choice (though this is a by-
product).

2 Related works

Decisions are often presented as one of the most
important outcomes of business meetings (Whit-
taker et al., 2006). Banerjee et al. (2005) show
that updates about the decisions of a meeting are
beneficial for persons who had missed the meeting
to prepare for the next one. Interest on meeting de-
velopments is shown also by the large amount of
corpus collections on the topic, e.g., ICSI (Janin
et al., 2004) , AMI (Carletta et al., 2005), CHIL
(Mostefa et al., 2007) or VACE (Chen et al.,
2006). While some annotations in these corpora
consider decisions from meetings, the annotated
labels (text spans) are either too specific (dialogue
acts) or too general (meeting summaries) to study
the decision making process.

Some studies have investigated automatic de-
tection of decisions. Hsueh and Moore (2007) at-
tempted to identify patterns of the decision
gists, relying on the relevant annotated Dialogue
Acts (DAs) in meeting transcripts. Fernández
et al. (2008) extended the annotations with new
decision-related DAs, and formulated the problem
as a classification problem for each class of DAs.
They designed an annotation scheme that takes
into account the different roles that DAs play in
the decision-making process, for instance to ini-
tiate a discussion by raising a topic, to propose a
resolution, or to express agreement. However, in
all this work, the objective was to detect the span
of the conversation where the decision is taken.
We intend to go further and identify the elements
that belong to the content of decision-making pro-
cesses, whether or not a final decision is taken.
Cadilhac et al. (2012), while focusing more specif-
ically on the representation of preferences, have
proposed an approach to extract what we refer to
as alternatives and which in their framework is de-
scribed as outcomes. They do not pursue the ex-
traction of criteria.

3 System Architecture

3.1 Overall
The various components, that together enable to
decode decision conversations, are presented in
Figure 1. In this diagram, we present both com-
ponents that are currently implemented along with

others that are in development (italics).
Input Processing Module. Input to the system

is in the form of text. This text can originally come
from a recording or live dialog, which is converted
to text using Speech-To-Text technology. Speaker
attribution is also performed as part of this step.
Alternatively, input can come from text entered via
the UI or from a set of pre-existing transcripts. The
text is then pre-processed so as to provide a clean
transcript with speakers identified to the Extrac-
tion and Summarization module.

Resources. The main part of the resources con-
sists in a set of Machine Learning (ML) algo-
rithms, which are described in Section 3.2. An-
notated data used for training models can be en-
riched via user feedback of already identified cri-
teria and alternatives, i.e the user can verify or re-
fute an identified criteria or alternative. This anno-
tated data can then be used to re-train the models.
External resources, such as DBpedia and WordNet
are also leveraged in the pipeline.

Extraction and Summarization Module. This
module constitutes the core of the NLP pipeline
and is composed of multiple sub-components. A)
Decision Segmentation - As more than one de-
cision may be discussed in a conversation, this
component segments the conversation into the cor-
responding multiple discussion threads. B) De-
cision Topic Analysis - This component deter-
mines the topic of the decision. C) Decision El-
ement Extraction - Using ML models, this com-
ponent identifies the location of the decision al-
ternatives and criteria in the text. D) Semantic
Grouping - This component clusters semantically
similar alternatives and criteria. E) Mapping Al-
ternative to criteria - This component associates
identified alternatives to criteria. F) Wikification
- This component further enriches the transcript
by linking words and phrases to external resources
(e.g., Wikipedia). G) Identification of Expressed
Sentiment - This component determines the ex-
pressed sentiment of speakers towards extracted
alternatives and criteria.

Finally, the output of this text processing is
recorded in a JSON data structure called Struc-
tured Decision Summary Output.

Summary Analysis Module. This module
analyses the Structured Decision Summary Output
based on the following two components. First the
recommendation module can make use of the in-
formation to identify which alternative seems the

92

Figure 1: Architecture of our System

most supported by the group. Similarly, it can
search for dominated alternatives and suggest they
be discarded. Second the consensus and dissent
module analyzes where and when in the discus-
sion people agree and disagree on the proposed al-
ternatives.

User Interface. Its main functions are to allow
the user to input text directly for analysis and to
subsequently present him/her with the alternative
and criteria extraction output, in addition to the op-
tion to cluster and/or summarise this output as de-
scribed in Section 4. Finally, it enables the user to
accept or refute identified alternatives and/or cri-
teria identified by the system.

3.2 Machine Learning Module
Corpus. We leverage the AMI (Augmented
Multi-party Interaction) (Carletta et al., 2005) cor-
pus, which we annotated with alternative and
criteria. Description of our annotation process
along with access to the corpus is summarised
in (Deleris et al., 2018). We use supervised
classification settings, where 80% sentences from
the AMI corpus are used for training the mod-
els and the rest for testing. Sequence Predic-
tion. Our automatic identification of alternative
and criteria is based on standard sequence pre-
diction approaches. We experimented with many
common models namely naive Bayes, MaxEnt,
SVM, CRF and LSTM based RNN. As expected
the bag-of-words based models (with fixed length
context features), i.e. naive Bayes, MaxEnt and
SVM were outperformed by the sequence mod-
els, namely CRF and RNN. The linear CRF is cur-
rently our model with the highest performance as
outlined in Table 1 (due to space constraints the
results of other models are not shown).

Label Precision Recall F-score

Alternative 0.6311 0.4667 0.5366
Criteria 0.7368 0.3394 0.4647

Table 1: Performance of the CRF model (based on to-
ken level evaluation on the AMI corpus).

4 Demonstration Flow

4.1 Describing Interface

Our demo interface starts from a text box where a
user can enter the transcript to be analyzed as pre-
sented on Fig. 2. Clicking on the button Analyze
Text located underneath the text box will run the
topic analysis and extraction algorithms whose re-
sults will then be shown to the user underneath the
text box.

Figure 2: Initial Screen into the System

Specifically the topic analysis provides back-
ground information about the main themes of
the decision discussion and more importantly de-
scribes the frame for the decision that is being dis-
cussed, specifically the decision topic e.g. Can
you recommend any places or attractions which
are especially interesting for the kids?, and the
context of this decision, e.g., Dear Community, we
are planning to spend a long weekend in Dublin
end of May with our three kids. The results of

93

the extraction algorithm results are then displayed.
The input text is presented with sections high-
lighted to indicate detected alternatives and de-
tected criteria, as shown on Fig. 3.

Figure 3: Alternatives and Criteria Extraction

While this representation of the output of the
NLP algorithms is instructive to understand how
the system operates, we feel a more useful sum-
mary to effectively guide decision discussions
should be based on grouping alternatives and cri-
teria by person as in Fig 4 and also grouping alter-
natives and criteria by semantic topic. Those two
subsequent analyses are obtained by clicking on
Show Summary Table and Cluster Results shown
in Fig. 2. Note that the summary table format
also allows to indicate the expressed sentiment of
the person towards the alternative or criteria (as
represented by the smiley faces). Finally when a
user hovers over a detected fragment, we show in
an overlay window the part of the transcripts from
where it was extracted, so as to provide context for
its interpretation if needed.

Figure 4: Summarization in a Table with Sentiment and
Context Overlay

4.2 Examples of Analyses
In this section, we provide some illustrative results
of the use of our technologies on diverse kinds of
discussions. Note that we have slightly edited the
text, mainly changing the names of the speakers

and cutting some long utterances.

Figure 5 top shows an excerpt from the AMI
Corpus (Carletta et al., 2005) which corresponds
to face-to-face discussions about remote control
design (specifically ES 2012). Figure 5 middle re-
lates to a discussion about a visit to Machu Pichu
on a travel website where a user has requested ad-
vice from other users. Finally, the text in Figure
5 bottom is extracted from the discussions of the
European Parliament, using the Europarl Corpus
(Koehn, 2005).

Figure 5: Examples (top: AMI Corpus - ES 2012; mid-
dle: Travel Forum Discussion; bottom: European Par-
liament - September 18th 1996)

5 Conclusion

We make countless decisions every day, some of
which are bound to be collaborative, making the
decision process all the more challenging. Our
system proposes to automatically follow the de-
cision process. It tracks the options being consid-
ered, why they are proposed (i.e., which criteria
are brought up), by whom and with whose sup-
port. It then organizes all collective thoughts into a
summary in order to facilitate further discussions,
guide the final decision, explain how a decision
was made or make recommendations.

As a virtual facilitator, the system objective is to
augment collaborative decision making, empow-
ering all stakeholders involved to contribute their
perspective and making the decision making pro-
cess effective and transparent.

94

References
Satanjeev Banerjee, Carolyn Penstein Rosé, and

Alexander I. Rudnicky. 2005. The necessity of a
meeting recording and playback system, and the
benefit of topic-level annotations to meeting brows-
ing. In INTERACT.

Anaı̈s Cadilhac, Nicholas Asher, Farah Benamara,
Vladimir Popescu, and Mohamadou Seck. 2012.
Preference extraction from negotiation dialogues. In
Proceedings of the 20th European Conference on
Artificial Intelligence, pages 211–216. IOS Press.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike
Flynn, Mael Guillemot, Thomas Hain, Jaroslav
Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa
Kronenthal, et al. 2005. The ami meeting corpus:
A pre-announcement. In International Workshop
on Machine Learning for Multimodal Interaction,
pages 28–39. Springer.

Lei Chen, R. Travis Rose, Ying Qiao, Irene Kimbara,
Fey Parrill, Haleema Welji, Tony Xu Han, Jilin Tu,
Zhongqiang Huang, Mary Harper, Francis Quek,
Yingen Xiong, David McNeill, Ronald Tuttle, and
Thomas Huang. 2006. Vace multimodal meeting
corpus. In Proceedings of the Second International
Conference on Machine Learning for Multimodal
Interaction, MLMI’05, pages 40–51, Berlin, Heidel-
berg. Springer-Verlag.

Lea A Deleris, Tuan Tran, Francesca Bonin, Debasis
Ganguly, and Killian Levacher. 2018. Preparing a
dataset for extracting decision elements from a meet-
ing transcript corpus. Technical report, IBM Re-
search.

Raquel Fernández, Matthew Frampton, Patrick Ehlen,
Matthew Purver, and Stanley Peters. 2008. Mod-
elling and detecting decisions in multi-party dia-
logue. In Proceedings of the 9th SIGdial Workshop
on Discourse and Dialogue, pages 156–163. ACL.

Ronald A Howard and Ali E Abbas. 2015. Foundations
of decision analysis. Pearson.

Pei-Yun Hsueh and Johanna D Moore. 2007. Auto-
matic decision detection in meeting speech. In Inter-
national Workshop on Machine Learning for Multi-
modal Interaction, pages 168–179. Springer.

Adam Janin, Jeremy Ang, Sonali Bhagat, Rajdip
Dhillon, Jane Edwards, Javier Macas-guarasa, Nel-
son Morgan, Barbara Peskin, Elizabeth Shriberg,
Andreas Stolcke, Chuck Wooters, and Britta Wrede.
2004. The icsi meeting project: Resources and re-
search. In in Proc. of ICASSP 2004 Meeting Recog-
nition Workshop. Prentice Hall.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86.

James E Matheson and Ronald A Howard. 1977.
An introduction to decision analysis. In Miller

Howards, Matheson, editor, Readings in Decision
Analysis, chapter 1, pages 9–43. Stanford Research
Institute, California.

D. Mostefa, N. Moreau, K. Choukri, G. Potamianos,
S. Chu, A. Tyagi, J. Casas, J. Turmo, L. Cristofore-
tti, F. Tobia, A. Pnevmatikakis, V. Mylonakis, F. Ta-
lantzis, S. Burger, R. Stiefelhagen, K. Bernardin,
and C. Rochet. 2007. The chil audiovisual corpus
for lecture and meeting analysis inside smart rooms.
Language resources and evaluation, 41(3):389–407.

Steve Whittaker, Rachel Laban, and Simon Tucker.
2006. Analysing Meeting Records: An Ethno-
graphic Study and Technological Implications.
Springer Berlin Heidelberg, Berlin, Heidelberg.

95

Proceedings of NAACL-HLT 2018: Demonstrations, pages 96–100
New Orleans, Louisiana, June 2 - 4, 2018. ©2018 Association for Computational Linguistics

Sounding Board: A User-Centric and Content-Driven Social Chatbot

Hao Fang∗ Hao Cheng∗ Maarten Sap† Elizabeth Clark† Ari Holtzman†
Yejin Choi† Noah A. Smith† Mari Ostendorf∗

University of Washington
∗{hfang,chenghao,ostendor}@uw.edu

†{msap,eaclark7,ahai,yejin,nasmith}@cs.washington.edu

Abstract

We present Sounding Board, a social chatbot
that won the 2017 Amazon Alexa Prize. The
system architecture consists of several com-
ponents including spoken language process-
ing, dialogue management, language genera-
tion, and content management, with emphasis
on user-centric and content-driven design. We
also share insights gained from large-scale on-
line logs based on 160,000 conversations with
real-world users.

1 Introduction

Researchers in artificial intelligence (AI) have long
been interested in the challenge of developing a
system that can have a coherent conversation with
humans: early systems include Parry (Colby et al.,
1971), Eliza (Weizenbaum, 1966), and Alice (Wal-
lace, 2009). The Loebner Prize1 is a Turing test for
conversational AI that has challenged researchers
since 1990. Recent work has addressed tasks where
passing the Turing test is not a concern. Goal-
oriented conversational systems facilitate natural
user interaction with devices via text and spoken
language. These AI assistants typically focus on
short interactions, as in commercial products such
as Amazon Alexa, Microsoft Cortana, Google As-
sistant, and Apple Siri. General conversational
systems, called chatbots, have constrained social
interaction capabilities but have difficulty generat-
ing conversations with long-term coherence (Ser-
ban et al., 2017; Sato et al., 2017; Shao et al., 2017;
Tian et al., 2017; Ghazvininejad et al., 2018).

The Alexa Prize sets forth a new challenge: creat-
ing a system that can hold a coherent and engaging
conversation on current events and popular topics
such as sports, politics, entertainment, fashion and
technology (Ram et al., 2017). Our system, Sound-

1
http://aisb.org.uk/events/loebner-prize

Turn User Sounding Board

1 Let's chat Hi! This is an Alexa Prize socialbot. How's your

day?

2 I'm five. Glad to hear it! We could talk about robots,

Batman, or Superman. Say "next", to chat about

other things.

3 Superman. It looks like you wanna chat about Superman. I

was high up in the cloud when I realized: If

people don't recognize Clark Kent as Superman

because of his glasses, does his eye doctor know

his true identity?

4 I guess so. Did you know that Henry Cavill almost missed the

call for the role of Superman cause he was

playing "World of Warcraft"
5 Really, I

didn't know

that.

Weird, right? Speaking of Superman, Did you see:

Superman? It was released in 1997. It's a

comedy.

6 Yes, it was

hilarious.

I'm glad you feel this is hilarious. Which part do

you like best about this movie?

7 The part

when he

met Lewis

Leah.

Interesting. Meccartin and Raffi co-directed this

film. The movie has a 6.3 out of 10 on IMDB.

which seems pretty good! do you like the movie's

director?

Figure 1: A sample dialog. Suspected speech recogni-
tion errors in the user utterances are underlined.

ing Board,2 demonstrates that it is feasible to build
an agent that can engage in long-term conversation
when backed by rich content and knowledge of the
user obtained through interaction. Sounding Board
won the inaugural Amazon Alexa Prize with an
average score of 3.17 on a 5-point scale and an
average conversation duration of 10:22, evaluated
by a panel of independent judges.3

There are two key design objectives of Sounding
Board: to be user-centric and content-driven. Our
system is user-centric in that users can control the
topic of conversation, while the system adapts re-
sponses to the user’s likely interests by gauging the
user’s personality. Sounding Board is also content-
driven, as it continually supplies interesting and
relevant information to continue the conversation,

2
https://sounding-board.github.io

3
https://developer.amazon.com/alexaprize/

2017-alexa-prize

96

enabled by a rich content collection that it updates
daily. It is this content that can engage users for
a long period of time and drive the conversation
forward. A sample conversation is shown in Fig. 1.

We describe the system architecture in §2, share
our insights based on large scale conversation logs
in §3, and conclude in §4.

2 System Architecture

Sounding Board uses a modular framework as
shown in Fig. 2. When a user speaks, the system
produces a response using three modules: natu-
ral language understanding (NLU), dialog manager
(DM), and natural language generation (NLG). The
NLU produces a representation of the current event
by analyzing the user’s speech given the current dia-
log state (§2.1). Then, based on this representation,
the DM executes the dialog policy and decides the
next dialog state (§2.2). Finally, the NLG uses the
content selected by the DM to build the response
(§2.3), which is returned to the user and stored as
context in the DM. During the conversation, the
DM also communicates with a knowledge graph
that is stored in the back-end and updated daily by
the content management module (§2.4).

2.1 Natural Language Understanding

Given a user’s utterance, the NLU module extracts
the speaker’s intent or goals, the desired topic or po-
tential subtopics of conversation, and the stance or
sentiment of a user’s reaction to a system comment.
We store this information in a multidimensional
frame which defines the NLU output.

To populate the attributes of the frame, the NLU
module uses ASR hypotheses and the voice user
interface output (Kumar et al., 2017), as well as
the dialog state. The dialog state is useful for cases
where the system has asked a question with con-
straints on the expected response. A second stage
of processing uses parsing results and dialog state
in a set of text classifiers to refine the attributes.

2.2 Dialog Management

We designed the DM according to three high-level
objectives: engagement, coherence, and user expe-
rience. The DM takes into account user engage-
ment based on components of the NLU output and
tries to maintain user interest by promoting diver-
sity of interaction strategies (conversation modes).
Each conversation mode is managed by a miniskill
that handles a specific type of conversation seg-

ment. The DM tries to maintain dialog coherence
by choosing content on the same or a related topic
within a conversation segment, and it does not
present topics or content that were already shared
with the user. To enhance the user experience, the
DM uses conversation grounding acts to explain
(either explicitly or implicitly) the system’s action
and to instruct the user with available options.

The DM uses a hierarchically-structured, state-
based dialog model operating at two levels: a mas-
ter that manages the overall conversation, and a
collection of miniskills that handle different types
of conversation segments. This hierarchy enables
variety within specific topic segments. In the Fig. 1
dialog, Turn 3 was produced using the Thoughts
miniskill, Turn 4 using the Facts miniskill, and
Turns 5–7 using the Movies miniskill. The hierar-
chical architecture simplifies updating and adding
new capabilities. It is also useful for handling high-
level conversation mode changes that are frequent
in user interactions with socialbots.

At each conversation turn, a sequence of pro-
cessing steps are executed to identify a response
strategy that addresses the user’s intent and meets
the constraints on the conversation topic, if any.
First, a state-independent processing step checks
if the speaker is initiating a new conversation seg-
ment (e.g., requesting a new topic). If not, a sec-
ond processing stage executes state-dependent dia-
log policies. Both of these processing stages poll
miniskills to identify which ones are able to satisfy
constraints of user intent and/or topic. Ultimately,
the DM produces a list of speech acts and corre-
sponding content to be used for NLG, and then
updates the dialog state.

2.3 Natural Language Generation

The NLG module takes as input the speech acts
and content provided by the DM and constructs a
response by generating and combining the response
components.
Phrase Generation: The response consists of
speech acts from four broad categories: ground-
ing, inform, request, and instruction. For instance,
the system response at Turn 7 contains three speech
acts: grounding (“Interesting.”), inform (the IMDB
rating), and request (“do you like the movie’s di-
rector?”). As required by the hosting platform, the
response is split into a message and a reprompt.
The device always reads the message; the reprompt
is optionally used if the device does not detect a

97

Figure 2: System architecture. Front-end: Amazon’s Automatic Speech Recognition (ASR) and Text-to-Speech
(TTS) APIs. Middle-end: NLU, DM and NLG modules implemented using the AWS Lambda service. Back-end:
External services and AWS DynamoDB tables for storing the knowledge graph.

response from the user. The instruction speech acts
are usually placed in the reprompt.
Prosody: We make extensive use of speech syn-
thesis markup language (SSML) for prosody and
pronunciation to convey information more clearly.
to communicate. We use it to improve the nat-
uralness of concatenated speech acts, to empha-
size suggested topics, to deliver jokes more ef-
fectively, to apologize or backchannel in a more
natural-sounding way, and to more appropriately
pronounce unusual words.
Utterance Purification: The constructed response
(which may repeat a user statement) goes through
an utterance purifier that replaces profanity with a
non-offensive word chosen randomly from a list of
innocuous nouns, often to a humorous effect.

2.4 Content Management

Content is stored in a knowledge graph at the back-
end, which is updated daily. The knowledge graph
is organized based on miniskills so that query and
recommendation can be carried out efficiently by
the DM. The DM drives the conversation forward
and generates responses by either traversing links
between content nodes associated with the same
topic or through relation edges to content nodes
on a relevant new topic. The relation edges are
compiled based on existing knowledge bases (e.g.,
Wikipedia and IMDB) and entity co-occurrence
between content nodes.

Because Sounding Board is accessible to a wide
range of users, the system needs to provide con-

tent and topics that are appropriate for a general
audience. This requires filtering out inappropriate
and controversial material. Much of this content
is removed using regular expressions to catch pro-
fanity. However, we also filtered content contain-
ing phrases related to sensitive topics or phrases
that were not inherently inappropriate but were of-
ten found in potentially offensive statements (e.g.,
“your mother”). Content that is not well suited in
style to casual conversation (e.g., URLs and lengthy
content) is either removed or simplified.

3 Evaluation and Analysis

To analyze system performance, we study conver-
sation data collected from Sounding Board over a
one month period (Nov. 24–Dec. 24, 2017). In this
period, Sounding Board had 160,210 conversations
with users that lasted 3 or more turns. (We omit the
shorter sessions, since many involve cases where
the user did not intend to invoke the system.) At the
end of each conversation, the Alexa Prize platform
collects a rating from the user by asking “on a scale
of 1 to 5, how do you feel about speaking with this
socialbot again?” (Ram et al., 2017). In this data,
43% were rated by the user, with a mean score of
3.65 (σ = 1.40). Of the rated conversations, 23%
received a score of 1 or 2, 37% received a score of
3 or 4, and 40% received a score of 5.4 The data are
used to analyze how different personality types in-
teract with the system (§3.1) and length, depth, and

4Some users give a fractional number score. These scores
are rounded down to the next smallest integer.

98

ope con ext agr neu

% users 80.02% 51.70% 61.59% 79.50% 42.50%

turns 0.048** not sig. 0.075** 0.085** not sig.
rating 0.108** not sig. 0.199** 0.198** not sig.

Table 1: Association statistics between personal-
ity traits (openness, conscientiousness, extraversion,
agreeableness, neuroticism) and z-scored conversation
metrics. “% users” shows the proportion of users scor-
ing positively on a trait. “# turns” shows correlation
between the trait and the number of turns, and “rat-
ing” the correlation between the trait and the conver-
sation rating, controlled for number of turns. Sig-
nificance level (Holm corrected for multiple compar-
isons): ∗∗p < 0.001.

breadth characteristics of the conversations (§3.2).

3.1 Personality Analysis

The Personality miniskill in Sounding Board cal-
ibrates user personality based on the Five Factor
model (McCrae and John, 1992) through exchang-
ing answers on a set of personality probing ques-
tions adapted from the mini-IPIP questionnaire
(Donnellan et al., 2006).

We present an analysis of how different person-
ality traits interact with Sounding Board, as seen in
Table 1. We find that personality only very slightly
correlates with length of conversation (# turns).
However, when accounting for the number of turns,
personality correlates moderately with the conver-
sation rating. Specifically, we find users who are
more extraverted, agreeable, or open to experience
tend to rate our socialbot higher. This falls in line
with psychology findings (McCrae and John, 1992),
which associate extraversion with talkativeness,
agreeableness with cooperativeness, and openness
with intellectual curiosity.5

3.2 Content Analysis

Most Sounding Board conversations were short
(43% consist of fewer than 10 turns), but the length
distribution has a long tail. The longest conversa-
tion consisted of 772 turns, and the average con-
versation length was 19.4 turns. As seen in Fig. 3,
longer conversations tended to get higher ratings.

While conversation length is an important factor,
it alone is not enough to assess the conversation
quality, as evidenced by the low correlation with

5These insights should be taken with a grain of salt, both
because the mini-IPIP personality scale has imperfect relia-
bility (Donnellan et al., 2006) and user responses in such a
casual scenario can be noisy.

Figure 3: Average conversation score by conversation
length. Each bar represents conversations that contain
the number of turns in the range listed beneath them
and is marked with the standard deviation.

user ratings (r = 0.14) and because some turns
(e.g., repairs) may have a negative impact. There-
fore, we also study the breadth and depth of the
sub-dialogs within conversations of roughly equal
length (36–50) with high (5) vs. low (1–2) ratings.
We automatically segment the conversations into
sub-dialogs based on the system-identified topic,
and annotate each sub-dialog as engaged or not de-
pending on the number of turns where the system
detects that the user is engaged. The breadth of
the conversation can be roughly characterized by
the number and percentage of engaged sub-dialogs;
depth is characterized by the average number of
turns in a sub-dialog. We found that the average
topic engagement percentages differ significantly
(62.5% for high scoring vs. 28.6% for low), but the
number of engaged sub-dialogs were similar (4.2
for high vs. 4.1 for low). Consistent with this, the
average depth of the sub-dialog was higher for the
high conversations (4.0 vs. 3.8 turns).

4 Conclusion

We presented Sounding Board, a social chatbot
that has won the inaugural Alexa Prize Challenge.
As key design principles, our system focuses on
providing conversation experience that is both user-
centric and content-driven. Potential avenues for
future research include increasing the success rate
of the topic suggestion and improving the engage-
ments via better analysis of user personality and
topic-engagement patterns across users.

Acknowledgements

In addition to the Alexa Prize financial and cloud
computing support, this work was supported in part
by NSF Graduate Research Fellowship (awarded to
E. Clark), NSF (IIS-1524371), and DARPA CwC
program through ARO (W911NF-15-1-0543). The
conclusions and findings are those of the authors
and do not necessarily reflect the views of sponsors.

99

References
Kenneth Mark Colby, Sylvia Weber, and Franklin Den-

nis Hilf. 1971. Artificial paranoia. Artificial Intelli-
gence, 2(1):1–25.

M Brent Donnellan, Frederick L Oswald, Brendan M
Baird, and Richard E Lucas. 2006. The mini-IPIP
scales: tiny-yet-effective measures of the Big Five
factors of personality. Psychological assessment,
18(2):192.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and
Michel Galley. 2018. A knowledge-grounded neural
conversation model. In Proc. AAAI.

Anjishnu Kumar, Arpit Gupta, Julian Chan, Sam
Tucker, Bjorn Hoffmeister, and Markus Dreyer.
2017. Just ASK: Building an architecture for exten-
sible self-service spoken language understanding. In
Proc. NIPS Workshop Conversational AI.

Robert R McCrae and Oliver P John. 1992. An intro-
duction to the five-factor model and its applications.
Journal of personality, 60(2):175–215.

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu
Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn,
Behnam Hedayatnia, Ming Cheng, Ashish Nagar,
Eric King, Kate Bland, Amanda Wartick, Yi Pan,
Han Song, Sk Jayadevan, Gene Hwang, and Art Pet-
tigrue. 2017. Conversational AI: The science behind
the Alexa Prize. In Proc. Alexa Prize 2017.

Shoetsu Sato, Naoki Yoshinaga, Masashi Toyoda, and
Masaru Kitsuregawa. 2017. Modeling situations in
neural chat bots. In Proc. ACL Student Research
Workshop, pages 120–127.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron C Courville,
and Yoshua Bengio. 2017. A hierarchical latent
variable encoder-decoder model for generating dia-
logues. In AAAI, pages 3295–3301.

Yuanlong Shao, Stephan Gouws, Denny Britz, Anna
Goldie, Brian Strope, and Ray Kurzweil. 2017. Gen-
erating high-quality and informative conversation re-
sponses with sequence-to-sequence models. In Proc.
EMNLP, pages 2210–2219.

Zhiliang Tian, Rui Yan, Lili Mou, Yiping Song, Yan-
song Feng, and Dongyan Zhao. 2017. How to make
context more useful? An empirical study on context-
aware neural conversational models. In Proc. ACL,
pages 231–236.

Richard S. Wallace. 2009. The Anatomy of A.L.I.C.E.,
chapter Parsing the Turing Test. Springer, Dor-
drecht.

Joseph Weizenbaum. 1966. ELIZA – a computer pro-
gram for the study of natural language communica-
tion between man and machine. Commun. ACM,
9(1):36–45.

100

Index

Amer, Mohamed R., 86
Axtmann, Nico, 11

Barnwal, Dhiraj, 16
Barrón-Cedeño, Alberto, 26
Bhogadhi, Saroja, 36
Bonin, Francesca, 76, 91
Brenndoerfer, Michael, 11

Cheng, Hao, 96
Choi, Yejin, 96
Clark, Elizabeth, 96

Daly, Elizabeth, 76
Daxenberger, Johannes, 21
Deleris, Lea, 76, 91
DeLuccia, Luke, 86
Deparis, Stephane, 76
Dogga, Pradeep, 16
Dragut, Eduard, 36
Dras, Mark, 56
Dutt, Ritam, 16

Edwards, Erik, 11
Eger, Steffen, 21

Fang, Hao, 96
Finley, Gregory, 11
Fone, James, 11

Ganguly, Debasis, 91
Gencheva, Pepa, 26
Ghaffari, Parsa, 31
Glover, John, 31
Gokcen, Ajda, 51
Goyal, Pawan, 16
Gurevych, Iryna, 21

Haldar, Rajarshi, 16
Hill, Ethan, 51
Holtzman, Ari, 96
Hou, Yufang, 76
Huang, Laetitia, 61

Jaradat, Israa, 26
Ji, Heng, 41

Jochim, Charles, 76
Johnson, Mark, 56

Kim, Sujeong, 86
Knight, Kevin, 41
Kraft, Bodo, 1
kumar, vishwajeet, 46

Lassoued, Yassine, 76
Levacher, Killian, 76
Levacher, killian, 91
Li, Mengping, 6
Liang, Yiyun, 61
Lin, Jimmy, 6, 61
Lin, Ying, 41
Liu, Liang-Chih, 81
Liu, Yu-Wen, 81
Lu, Di, 41

Màrquez, Lluís, 26
Maheshwari, Ayush, 46
Male, John, 36
May, Jonathan, 41
Mehrabani, Afshin, 31
Miller, Mark, 11
Miller, Tristan, 21
Moens, Marie-Francine, 66
Mukherjee, Animesh, 16

Nakov, Preslav, 26
Nath, J. Saketha, 46
Nguyen, Dai Quoc, 56
Nguyen, Dat Quoc, 56

Ostendorf, Mari, 96

Pan, Xiaoman, 41
Patro, Sohan, 16

Ramakrishnan, Ganesh, 46
Robinson, Amanda, 11
Ruder, Sebastian, 31

Sadoughi, Najmeh, 11
Salter, David, 86
Sap, Maarten, 96

101

Schiller, Benjamin, 21
Schneider, Andrew, 36
Schreiber, Marc, 1
Singh, Mayank, 16
Smith, Noah A., 96
Son, Kilho, 86
Specia, Lucia, 71
spinks, graham, 66
Stab, Christian, 21
Stahlhut, Chris, 21
Steele, David, 71
Stephenson, Martin, 91
Suendermann-Oeft, David, 11

Tamrakar, Amir, 86
Tauchmann, Christopher, 21
Tsai, Ming-Feng, 81
Tu, Zhucheng, 6, 61

Vu, Thanh, 56

Wang, Chuan-Ju, 81
White, Michael, 51

Zündorf, Albert, 1
Zhang, Boliang, 41

	Program
	NLP Lean Programming Framework: Developing NLP Applications More Effectively
	Pay-Per-Request Deployment of Neural Network Models Using Serverless Architectures
	An automated medical scribe for documenting clinical encounters
	CL Scholar: The ACL Anthology Knowledge Graph Miner
	ArgumenText: Searching for Arguments in Heterogeneous Sources
	ClaimRank: Detecting Check-Worthy Claims in Arabic and English
	360° Stance Detection
	DebugSL: An Interactive Tool for Debugging Sentiment Lexicons
	ELISA-EDL: A Cross-lingual Entity Extraction, Linking and Localization System
	Entity Resolution and Location Disambiguation in the Ancient Hindu Temples Domain using Web Data
	Madly Ambiguous: A Game for Learning about Structural Ambiguity and Why It's Hard for Computers
	VnCoreNLP: A Vietnamese Natural Language Processing Toolkit
	CNNs for NLP in the Browser: Client-Side Deployment and Visualization Opportunities
	Generating Continuous Representations of Medical Texts
	Vis-Eval Metric Viewer: A Visualisation Tool for Inspecting and Evaluating Metric Scores of Machine Translation Output
	Know Who Your Friends Are: Understanding Social Connections from Unstructured Text
	RiskFinder: A Sentence-level Risk Detector for Financial Reports
	SMILEE: Symmetric Multi-modal Interactions with Language-gesture Enabled (AI) Embodiment
	Decision Conversations Decoded
	Sounding Board: A User-Centric and Content-Driven Social Chatbot

