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Abstract

In this paper we introduce the notion of
Demand-Weighted Completeness, allowing
estimation of the completeness of a knowledge
base with respect to how it is used. Defin-
ing an entity by its classes, we employ usage
data to predict the distribution over relations
for that entity. For example, instances of per-
son in a knowledge base may require a birth
date, name and nationality to be considered
complete. These predicted relation distribu-
tions enable detection of important gaps in the
knowledge base, and define the required facts
for unseen entities. Such characterisation of
the knowledge base can also quantify how us-
age and completeness change over time. We
demonstrate a method to measure Demand-
Weighted Completeness, and show that a sim-
ple neural network model performs well at this
prediction task.

1 Introduction

Knowledge Bases (KBs) are widely used for
representing information in a structured format.
Such KBs, including Wikidata (Vrandečić and
Krötzsch, 2014), Google Knowledge Vault (Dong
et al., 2014), and YAGO (Suchanek et al., 2007),
often store information as facts in the form of
triples, consisting of two entities and a relation be-
tween them. KBs have many applications in fields
such as machine translation, information retrieval
and question answering (Ferrucci, 2012).

When considering a KB’s suitability for a task,
primary considerations are the number of facts it
contains (Färber et al., 2015), and the precision of
those facts. One metric which is often overlooked
is completeness. This can be defined as the propor-
tion of facts about an entity that are present in the
KB as compared to an ideal KB which has every

fact that can be known about that entity. For ex-
ample, previous research (Suchanek et al., 2011;
Min et al., 2013) has shown that between 69% and
99% of entities in popular KBs lack at least one
relation that other entities in the same class have.
As of 2016, Wikidata knows the father of only 2%
of all people in the KB (Galárraga et al., 2017).
Google found that 71% of people in Freebase have
no known place of birth, and 75% have no known
nationality (Dong et al., 2014).

Previous work has focused on a general con-
cept of completeness, where all KB entities are ex-
pected to be fully complete, independent of how
the KB is used (Motro, 1989; Razniewski et al.,
2016; Zaveri et al., 2013). This is a problem be-
cause different use cases of a KB may have dif-
ferent completeness requirements. For this work,
we were interested in determining a KB’s com-
pleteness with respect to its query usage, which
we term Demand-Weighted Completeness. For ex-
ample, a relation used 100 times per day is more
important than one only used twice per day.

1.1 Problem specification

We define our task as follows:
‘Given an entity E in a KB, and query usage

data of the KB, predict the distribution of relations
that E must have in order for 95% of queries about
E to be answered successfully.’

1.2 Motivation

Demand-Weighted Completeness allows us to pre-
dict both important missing relations for existing
entities, and relations required for unseen entities.
As a result we can target acquisition of sources to
fill important KB gaps.

It is possible to be entirely reactive when ad-
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dressing gaps in KB data. Failing queries can be
examined and missing fields marked for investiga-
tion. However, this approach assumes that:

1. the same KB entity will be accessed again
in future, making the data acquisition useful.
This is far from guaranteed.

2. the KB already contains all entities needed.
While this may hold for some use cases, the
most useful KB’s today grow and change to
reflect a changing world.

Both assumptions become unnecessary with an
abstract representation of entities, allowing gen-
eralization to predict usage. The appropriateness
of the abstract representation can be measured by
how well the model distinguishes different entity
types, and how well the model predicts actual us-
age for a set of entities, either known or unknown.

Further, the Demand-Weighted Completeness
of a KB with respect to a specific task can be used
as a metric for system performance at that task.
By identifying gaps in the KB, it allows targeting
of specific improvements to achieve the greatest
increase in completeness.

Our work is the first to consider KB complete-
ness using the distribution of observed KB queries
as a signal. This paper details a learning-based
approach that predicts the required relation dis-
tributions for both seen and unseen class signa-
tures (Section 3), and shows that a neural net-
work model can generalize relation distributions
efficiently and accurately compared to a baseline
frequency-based approach (Section 6).

2 Related work

Previous work has studied the completeness of the
individual properties or database tables over which
queries are executed (Razniewski and Nutt, 2011;
Razniewski et al., 2015). This approach is suit-
able for KBs or use cases where individual tables,
and individual rows in those tables, are all of equal
importance to the KB, or are queried separately.

Completeness of KBs has also been measured
based on the cardinality of properties. Galárraga
et al. (2017) and Mirza et al. (2016) estimated car-
dinality for several relations with respect to indi-
vidual entities, yielding targeted completeness in-
formation for specific entities. This approach de-
pends on the availability of relevant free text, and
uses handcrafted regular expressions to extract the

barackObama:
person: 1
politician: 1
democrat: 1
republican: 0
writer: 1

Figure 1: Class signature for barackObama. Other en-
tities with the same class membership will have the
same signature.

information, which can be noisy and doesn’t scale
to large numbers of relations.

The potential for metrics around completeness
and dynamicity of a KB are explored in Zaveri
et al. (2013), focusing on the task-independent
idea of completeness, and the temporal currency,
volatility and timeliness of the KB contents. While
their concept of timeliness has some similari-
ties to demand-weighted completeness in its task-
specific ’data currency’, we focus more on how the
demand varies over time, and how the complete-
ness of the KB varies with respect to that change
in demand.

3 Representing Entities

3.1 Class Distributions

The data for a single entity does not generalize
on its own. In order to generalize from observed
usage information to unseen entities and unseen
usage, and smooth out outliers, we need to com-
bine data from similar entities. Such combination
requires a shared entity representation, allowing
combination of similar entities while preventing
their confusion with dissimilar entities.

For this work, an entity may be a member of
multiple classes (or types). We aggregate us-
age across multiple entities by abstracting to their
classes. Membership of a class can be considered
as a binary attribute for an entity, with the entity’s
membership of all the classes considered in the
analysis forming a class signature.

For example, the entity barackObama is a per-
son, politician, democrat, and writer, among other
classes. He is not a republican. Considering these
five classes as our class space, the class signature
for barackObama would look like Figure 1.

Defining an entity by its classes has precedent in
previous work (Galárraga et al., 2017; Razniewski
et al., 2016). It allows consideration of entities and
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Figure 2: Graph representation of the facts needed to
solve the query in Equation 1. The path walked by the
query can branch arbitrarily, but maintains a direction-
ality from initial entities to result entities.

USA:
hasPresident: 13
hasCapital: 8
hasPopulation: 6
...

Figure 3: Absolute usage data for the entity USA.

class combinations not yet seen in the KB (though
not entirely new classes).

3.2 Relation Distributions

KB queries can be considered as graph traversals,
stepping through multiple edges of the knowl-
edge graph to determine the result of multi-clause
query. For example, the query:

y : hasPresident(USA, x) ∧ hasSpouse(y, x) (1)

determines the spouse of the president of the
United States by composing two clauses, as shown
in Figure 2.

The demand-weighted importance of a relation
R for an entity E is defined as the number of query
clauses about E which contain R, as a fraction
of the total number of clauses about E. For ex-
ample, Equation 1 contains two clauses. As the
first clause queries for the hasPresident relation
of the USA entity, we attribute this occurrence of
hasPresident to the USA entity. Aggregating the
clauses for an entity gives a total entity usage of
the form seen in Figure 3.

Since the distribution of relation usage is domi-
nated by a few high-value relations (see Figure 6),
we only consider relations required to satisfy 95%
of queries.

3.3 Predicting Relations from Classes

Combining the two representation methods above,
we aim to predict the relation distribution for a

barackObama:
hasHeight: 0.16
hasBirthdate: 0.12
hasBirthplace: 0.08
hasSpouse: 0.07
hasChild: 0.05

Figure 4: An example of a predicted relation distribu-
tion for an individual entity. The values represent the
proportion of usage of the entity that requires the given
relation.

given entity (as in Figure 4) using the class mem-
bership for the entity (as in Figure 1). This pro-
vides the expected usage profile of an entity, po-
tentially before it has seen any usage.

4 Data and Models

4.1 Our knowledge base
We make use of a proprietary KB (Tunstall-Pedoe,
2010) constructed over several years, combining
a hand-curated ontology with publicly available
data from Wikipedia, Freebase, DBPedia, and
other sources. However, the task can be applied
to any KB with usage data, relations and classes.
We use a subset of our KB for this analysis due
to the limitation of model size as a function of the
number of classes (input features) and the number
of relations (output features).

Our usage data is generated by our Natural Lan-
guage Understanding system, which produces KB
queries from text utterances. Though it is difficult
to remove all biases and errors from the system
when operated at industrial scale, we use a hybrid
system of curated rules and statistical methods to
reduce such problems to a minimum. Such errors
should not impact the way we evaluate different
models for their ability to model the data itself.

4.2 Datasets
To create a class signature, we first determine the
binary class membership vector for every entity in
the usage dataset. We then group entities by class
signature, so entities with identical class member-
ship are grouped together.

For each class signature, we generate the rela-
tion distribution from the usage data of the entities
with that signature. In our case, this usage data
is a random subset of query traffic against the KB
taken from a specific period of time. The more us-
age a class signature has, the more fine-grained the
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Dataset Classes Relations Signatures

D1small 4400 1300 12000
D2medium 8000 2000 25000
D3large 9400 2100 37000

Table 1: Dataset statistics.

person:
hasName: 31
hasAge: 18
hasHeight: 11
...

Figure 5: Aggregated usage data for the class person.

distribution of relations becomes. The data is di-
vided into 10 cross-validation folds to ensure that
no class signature appears in both the validation
and training sets.

We generate 3 different sizes of dataset for ex-
perimentation (see Table 1), to see how dataset
size influences the models.

4.3 Relation prediction models
4.3.1 Baseline - Frequency-Based
In this approach, we compute the relation distri-
bution for each individual class by summing the
usage data for all entities of that class (see Section
3). This gives a combined raw relation usage as
seen in Figure 5.

For every class in the training set we store this
raw relation distribution. At test time, we compute
the predicted relation distribution for a class sig-
nature as the normalized sum of the raw distribu-
tions of all its classes. However, these single-class
distributions do not capture the influence of class
co-occurrence, where the presence of two classes
together may have a stronger influence on the im-
portance of a relation than each class on their own.
Additionally, storing distributions for each class
signature does not scale, and does not generalize
to unseen class combinations.

4.3.2 Learning-Based Approaches
To investigate the impact of class co-occurrence,
we use two different learning models to predict the
relation distribution for a given set of input classes.
The vector of classes comprising the class signa-
ture is used as input to the learned models.

Linear regression. Using the normalized re-
lation distribution for each class signature, we

Figure 6: Example histogram of the predicted (using a
neural model) and observed relation distributions for a
single class signature, showing the region of intersec-
tion in green and the weighted Jaccard index in black.

trained a least-squares linear regression model to
predict the relation distribution from a binary vec-
tor of classes. This model has (n×m) parameters,
where n is the number of input classes and m is the
number of relations. We implemented our linear
regression model using Scikit-learn toolkit (Pe-
dregosa et al., 2011).

Neural network. We trained a feed-forward
neural network using the binary class vector as
the input layer, with a low-dimensional (h) hidden
layer (with rectified linear unit as activation) fol-
lowed by a softmax output layer of the size of the
relation set. This model has h(n+m) parameters,
which depending on the value of h is significantly
smaller than the linear regression model. The ob-
jective function used for training was Kullback-
Liebler Divergence. We chose Keras (Chollet,
2015) to implement the neural network model.
The model had a single 10-node Rectified Linear
Unit hidden layer, with a softmax over the output.

5 Evaluation

We compare the predicted relation distributions to
those observed for the test examples in two ways:

Weighted Jaccard Index. We modified the
Jaccard index (Jaccard, 1912) to include a weight-
ing term, which weights every relation with the
mean weight in the predicted and observed dis-
tribution (see Figure 6). This rewards a correctly
predicted relation without focusing on the propor-
tion predicted for that relation, and is sufficient to
define a set of important relations for a class sig-
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nature. This is given by:

J =

∑
i
W (Ri)×Ri ∈ (P ∩O)

∑
i
W (Ri)×Ri ∈ (P ∪O)

(2)

where P is the predicted distribution, O is the ob-
served distribution, W (Ri) is the mean weight of
relation Ri in P and O. We also calculate false
negatives (observed but not predicted) and false
positives (predicted but not observed), by modify-
ing the second term in the numerator of Equation
2 to give P\O and O\P , rather than P ∩O.

Intersection. We compute the intersection of
the two distributions (see Figure 6). This is a more
strict comparison between the distributions which
penalizes differences in weight for individual rela-
tions. This is given by:

I =
∑

i

min(P (Ri), O(Ri)) (3)

5.1 Usage Weighted Evaluation
We also evaluated the models using the Weighted
Jaccard index and Intersection methods, but
weighting by usage counts for each signature.
This metric rewards the models more for correctly
predicting relation distributions for common class
signatures in the usage data. While unweighted
analysis is useful to examine how the model covers
the breadth of the problem space, weighted evalu-
ation more closely reflects the model’s utility for
real usage data.

5.2 Temporal Prediction
Additionally, we evaluated the models on their
ability to predict future usage. With an unchang-
ing usage pattern, evaluation against future usage
would be equivalent to cross-validation (assum-
ing the same signature distribution in the folds).
However, in many real world cases, usage of a KB
varies over time, seasonally or as a result of chang-
ing user requirements.

Therefore we also evaluated a neural model
against future usage data to measure how elapsed
time affected model performance. The datasets
T1, T2, and T3 each contain 3 datasets (of simi-
lar size to D1small, D2medium, and D1large), and
were created using usage data from time periods
with a fixed offset, t. The base set was created at
time t0, T1 at time t0 + t, T2 at time t0 + 2t, and
T3 at time t0+3t. A time interval was chosen that
reflected the known variability of the usage data,

Model Jaccard False Neg. False Pos.

D1small

Freq. 0.604 0.084 0.311
Regr. 0.522 0.102 0.376
NN 0.661 0.036 0.303

D2medium

Freq. 0.611 0.101 0.287
Regr. 0.557 0.084 0.358
NN 0.687 0.035 0.278

D3large

Freq. 0.616 0.105 0.278
Regr. 0.573 0.080 0.347
NN 0.700 0.034 0.266

Table 2: Unweighted results for the three models on the
three datasets.

such that we would expect the usage to not be the
same.

6 Results

6.1 Cross-Validation

10-fold cross-validation results are shown in Ta-
ble 2. The neural network model performs best,
outperforming the baseline model by 6-8 per-
centage points. The regression model performs
worst, trailing the baseline model by 4-8 percent-
age points.

6.1.1 Baseline
The baseline model shows little improvement with
increasing amounts of data - the results from
D1small to D3large (3x more data points) only im-
prove by just over 1 percentage point. This sug-
gests that this model is unable to generalise from
the data, which is expected from the lack of class
co-occurrence information in the model. Inter-
estingly, the baseline model shows an increase in
false negatives on the larger datasets, implying
the lack of generalisation is more problematic for
more fine-grained relation distributions.

6.1.2 Linear Regression
The linear regression model gives a much lower
Jaccard measure than the baseline model. This
is likely due to the number of parameters in the
model relative to the number of examples. For
D1small, the model has approximately 6m param-
eters, with 12k training examples, making this an
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under-determined system. For D3large the number
of parameters rises to 20m, with 37k training ex-
amples, maintaining the poor example:parameter
ratio. From this we might expect the performance
of the model to be invariant with the amount of
data.

However, the larger datasets also have higher
resolution relation distributions, as they are aggre-
gated from more individual examples. This has the
effect of reducing the impact of outliers in the data,
giving improved predictions when the model gen-
eralises. We do indeed see that the linear regres-
sion model improves notably with larger datasets,
closing the gap to the baseline model from 8 per-
centage points to 4.

6.1.3 Neural Network

The neural network model shows much better per-
formance than either of the other two methods.
The Jaccard score is consistently 6-8% above the
regression model, with far fewer false negatives
and smaller numbers of false positives. This is
likely to be due to the smaller number of param-
eters of the neural model versus the linear regres-
sion model. For D3large, the 10-node hidden layer
model amounts to 115k parameters with 37k train-
ing examples, a far better ratio (though still not
ideal) than for the linear regression model.

6.1.4 Weighted Evaluation

We include in Table 3 the results using the
weighted evaluation scheme described in Sec-
tion 5.1. This gives more usage-focused evalua-
tion, emphasizing the non-uniform usage of dif-
ferent class signatures. The D3large neural model
achieves 85% precision with a weighted evalua-
tion. With the low rate of false negatives, this indi-
cates that a similar model could be used to predict
the necessary relations for KB usage.

6.2 Intersection

Table 4 gives measurements of the intersection
metric. These show a similar trend to the Jac-
card scores, with lower absolute values from the
stricter evaluation metric. Although the Jaccard
measure shows correct relation set prediction with
a precision of 0.700, predicting the proportions for
those relations accurately remains a difficult prob-
lem. The best value we achieved was 0.398.

Model Jaccard False Neg. False Pos.

D1small

Freq. 0.779 0.066 0.123
Regr. 0.667 0.090 0.242
NN 0.808 0.032 0.159

D2medium

Freq. 0.816 0.059 0.094
Regr. 0.703 0.077 0.220
NN 0.840 0.037 0.123

D3large

Freq. 0.819 0.062 0.088
Regr. 0.720 0.069 0.210
NN 0.850 0.038 0.113

Table 3: Usage-weighted results for the three models
on the three datasets.

Model Freq. Regr. NN

Inter. 0.319 0.278 0.398

Table 4: Results for the three methods for the D3large

dataset using the intersection metric. The difference
between the methods is similar to the Jaccard measure
above.

Interval T1 T2 T3

D1small 0.661 0.659 0.657
D2medium 0.705 0.699 0.696
D3large 0.712 0.708 0.704

Table 5: Results of training a neural model on all avail-
able data for D1small - D3large, then evaluating on T1-
T3. The values for D2medium and D3large are higher
than cross-validation, as cross-validation never tests a
model on examples used to train it. However, the T
datasets contain all data from the specified period. The
downward trend with increasing T is clear, but slight.
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6.3 Unweighted Temporal Prediction

In addition to evaluating models on their ability to
predict the behaviour of unseen class signatures,
we also evaluated the neural model on its ability
to predict future usage behaviour. The results of
this experiment are given in Table 5.

We observe a very slight downward trend in
the precision of the model using all three base
datasets (D1small - D3large), with a steeper (but
still slight) downward trend for the larger datasets.
This suggests that a model trained on usage data
from one period of time will have significant pre-
dictive power on future datasets.

7 Measuring Completeness of a KB

Once we have a suitable model of the expected re-
lation distributions for class combinations, we use
the model to predict the expected relation distribu-
tion for specific entities in our KB. We then com-
pare the predicted relation distribution to the ob-
served relations for each specific entity. The com-
pleteness of an entity is given by the sum of the
relation proportions for the predicted relations the
entity has in the KB.

Any gaps for an entity represent relations that,
if added to the KB, would have a quantifiable pos-
itive impact on the performance of the KB. By fo-
cussing on the most important entities according
to our usage, we can target fact addition to have
the greatest impact to the usage the KB receives.

By aggregating the completeness values for a
set of entities, we may estimate the completeness
of subsets of the KB. This aggregation is weighted
by the frequency with which the entity appears in
the usage data, giving a usage-weighted measure
of the subset’s completeness. These subsets can
represent individual topics, individual classes of
entity, or overall information about the KB as a
whole.

For example, using the best neural model above
on an unrepresentative subset of our KB, we evalu-
ate the completeness of that subset at 58.3%. This
not only implies that we are missing a substantial
amount of necessary information for these entities
with respect to the usage data chosen, but permits
targeting of source acquisition to improve the en-
tity completness in aggregate. For example, if we
are missing a large number of hasBirthdate facts
for people, we might locate a source that has that
information. We can quantify the benefit of that
effort in terms of improved usage performance.

8 Conclusions and Future Work

We have introduced the notion of Demand-
Weighted Completeness as a way of determining
a KB’s suitability by employing usage data. We
have demonstrated a method to predict the distri-
bution of relations needed in a KB for entities of
a given class signature, and have compared three
different models for predicting these distributions.
Further, we have described a method to measure
the completeness of a KB using these distribu-
tions.

For future work we would like to try com-
plex neural network architectures, regularisation,
and semantic embeddings or other abstracted re-
lations to enhance the signatures. We would also
like to investigate Good-Turing frequency estima-
tion (Good, 1953).
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