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Abstract 

As a specialized example of information 

extraction, part name extraction is an area 

that presents unique challenges. Part names 

are typically multiword terms longer than 

two words.  There is little consistency in 

how terms are described in noisy free text, 

with variations spawned by typos, ad hoc 

abbreviations, acronyms, and incomplete 

names.  This makes search and analyses of 

parts in these data extremely challenging. 

In this paper, we present our algorithm, 

PANDA (Part Name Discovery Analytics), 

based on a unique method that exploits sta-

tistical, linguistic and machine learning 

techniques to discover part names in noisy 

text such as that in manufacturing quality 

documentation, supply chain management 

records, service communication logs, and 

maintenance reports. Experiments show 

that PANDA is scalable and outperforms 

existing techniques significantly.  

1 Introduction 

Part information plays a key role in manufacturing, 

maintenance, supplier management and customer 

support of any large complex system, such as an 

airplane, which may easily involve over 30,000 

types of parts.  Parts can be described by part num-

bers or nomenclature.  Furthermore, a given part 

serving the same function can often be supplied by 

multiple suppliers, who may use different part 

numbers and do not always use the same nomen-

clature to describe functionally equivalent parts.  In 

addition, part names are very frequent in the ser-

vice descriptions and notes written by mechanics 

and engineers around the world. Due to time con-

straints, working conditions (maintenance mechan-

ics do not work in an office environment), time 

crunch, and job focus (primarily getting the aircraft 

ready for on-time takeoff, not writing perfect Eng-

lish), compounded by the fact that many of those 

involved are not native speakers of English, the 

data often contains a high percentage of non-stand-

ard spellings and ad hoc shorthand notations and 

typos. Table 1 exemplifies these issues with real 

sample maintenance records. 

 
In order to pinpoint types of issues involved in 

manufacturing, maintenance support, or supply 

chain management, it is crucial to identify the spe-

cific part involved.  Importantly, a robust and scal-

able approach for extracting parts from text of the 

nature described above should never rely on simple 

matching from a list of predefined part names. It 

should also have a way of exploiting abundant free 

text data amassed over years. 

 While information extraction is a well-studied 

field, typically information extraction focuses on 

people, organization, time, location, event and their 

relationship.  Part name extraction is much less 

studied.  Part name extraction has the following 

unique properties.  First, the language of part 

names as well as their context in these data sources 

is very domain-specific. This means that, not only 

is there nothing analogous to special word lists like 

people’s first and last names or city, state and coun-

try names, but general language resources like 

WorldNet (Miller, 1995) and Freebase (Freebase, 

2018) are also virtually useless. In addition, part 

names are often longer than the names of people, 

organizations, or locations and can be as long as 5-

lh side sidewall panel between sta 1600 and 1700 

(pos 41l and 42l) worn 

new electrical panel fitted iaw amm task xx-xx- 

lwr ctr display selected lt inop on display selec-

tor pnl. 

Table 1:  Sample maintenance records containing 

parts (highlighted), typos, and ad hoc abbrevia-

tions (lh for left, pnl for panel, lwr for lower, etc.) 
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7 words (e.g. variable speed constant frequency 

cool fan).  Furthermore, it is often the case that a 

substring Y (e.g. landing gear) of a part name X 

(e.g. main landing gear) is also a valid part name.  

This creates a challenge for a system to identify X 

instead of Y as the part being mentioned.  In addi-

tion, as noted above, the free text data containing 

the part names are often non-professionally au-

thored and contain a high percentage of spelling 

variants (both ad hoc abbreviations and typos) and 

domain-specific acronyms. The spelling chal-

lenges do not just occur in part names, but occur 

throughout the free text, posing challenges for ei-

ther traditional grammar-based parsing or n-gram 

approaches. 

In this paper we present PANDA (Part Name 

Discovery Analytics), a fast and scalable method 

that exploits statistical, linguistic and supervised 

machine learning techniques in a unique way such 

that minimal human supervision is sufficient to dis-

cover thousands of part names from noisy text.  

2 Related Work  

Basic information extraction methods typically 

rely on language models and hand-crafted rules. 

The n-gram approach derives common strings from 

a large corpus and, together with hand-crafted 

rules, makes for an easy-to-implement way of in-

ferring entities (Chandramouli, Subramanian, & 

Bal, 2013). A more sophisticated approach would 

define rules based on regular expressions over text 

content or their parts-of-speech tags to extract in-

formation. Noun-phrase identification is a typical 

approach under this category (Vilain and Day, 

2000). Rule-based and language model-based sys-

tems are very effective in cases when the entities of 

interest follow specific patterns. However, when 

the text is very noisy, generating hand-crafted rules 

and patterns is cost-prohibitive and not feasible. 

To our knowledge, there is only one previously 

published work specifically focusing on part name 

extraction (Chandramouli, Subramanian, & Bal, 

2013).  The authors propose an n-gram based ap-

proach which extracts part names from service 

logs. Given a list of basic part types (e.g. valve), 

they generate bigrams and trigrams ending with 

those part types and consider them as part candi-

dates. The candidates are ranked using a mutual in-

formation metric. Furthermore, the authors found 

that Part-of-Speech (POS) based filtering improved 

the quality of prediction. While this work is unsu-

pervised and easy to implement, it has important 

limitations. First, it cannot predict any new part 

types, because it relies on predefined part types. 

Therefore, any part types which are not already 

known will be missed. Secondly, their system can-

not extract part names which have more than three 

tokens. In our data, part names consisting of more 

than three tokens occur frequently (i.e. left main 

landing gear, horizontal stabilizer trim actuator). 

Importantly, all n-gram based approaches suffer 

from the pervasive misspellings and abbreviations 

in noisy data.  They may not be able to extract out-

flow vlv, trim act or door switche, as the respective 

part types valve, actuator and switch are misspelled 

or written in a non-standard way.  

To enable more flexibility and more power in ex-

tracting entities, machine learning methods, espe-

cially supervised learning methods, have become a 

natural choice in modern day information extrac-

tion.  Typical machine learning methods consid-

ered include Hidden Markov Models (HMM) 

(Skounakis, Craven and Ray, 2003;   Freitag and 

McCallum, 1999), and Conditional Random Fields 

(CRFs) (McCallum, 2002). The supervised sys-

tems learn a set of rules or models from the sup-

plied hand-tagged samples for the training phase of 

machine learning.  Once a new model is built based 

on training data, the model can be applied to new 

documents to extract entities. Rules and models 

learned by supervised techniques are effective for 

extracting information from the same genre of doc-

uments they are trained on, but they may perform 

poorly when applied to a different genre. In addi-

tion, acquiring the right training examples can be 

very expensive.  Part information extraction is one 

such area which requires SME (Subject Matter Ex-

pert) knowledge and is thus not suited to crowd 

sourcing. 

Recent approaches that address the scalability 

problem in training data associated with supervised 

machine learning include weakly-supervised meth-

ods (Pasca, 2007), bootstrapping techniques (Vi-

lain and Day, 2000; Maedche, 2003), and active 

learning (Thompson, Callif and Mooney, 1999;  

Williams et al., 2015). Active learning starts with 

bootstrap samples creating an initial model and 

uses that model to select the most informative ex-

amples in order to minimize the annotation cost re-

quired to generate training examples. A new model 

is created with the new examples and the process 

continues until a stopping criteria is met.  However, 

such iteration still requires SME involvement.  

When the free text data contain a high degree of 
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noise, and the number of parts involved is in the 

tens of thousands, it is not clear how fast an active 

learning approach will converge. Besides, SMEs 

are very expensive and reducing their efforts in part 

name extraction process, as do ne by our method 

PANDA, offers a huge cost saving for a company. 

Studies show that open-ended and domain inde-

pendent information extraction systems do not 

work well for domain-specific information extrac-

tion (Etzioni et al., 2004). As such, existing ap-

proaches can be expected to perform poorly for part 

extraction, a domain specific information extrac-

tion problem.   To this end, we propose a system 

that is tuned to extract parts from the target natural 

language text (e.g. maintenance logs). The pro-

posed system is robust so that it can operate on 

noisy text and yet scalable as it demands very min-

imal supervision.  

3 Part Name Discovery Analytics  

The intent of Part Name Discovery Analytics 

(PANDA) is primarily to extract part information 

in the domain of aircraft to support vehicle health 

management by exploiting hundreds of thousands 

of free text records. However, its use can extend to 

any large data sets containing part name mentions.  

The primary design philosophy is to utilize ma-

chine learning capabilities and at the same time ex-

ploit linguistic knowledge of how part names are 

constructed in English. This allows discovery of 

new parts and at the same time minimizes the ex-

pensive training process required for supervised 

machine learning.  Dealing with highly noisy data 

is a key requirement of this domain. Therefore, a 

non-learning based method would not meet our re-

quirements.  As we show later, PANDA learns to 

infer new part names from the noisy text.  

We leverage the linguistic fact that the most im-

portant term in a multiword part name is the head 

noun (the “Head”), and in English, the Head is the 

last term in a multiword term.  These Heads are 

terms such as panel, valve, switch etc.  Although 

most people who are somewhat familiar with this 

domain can easily come up with 10-20 examples of 

these Heads, it is important to note that there is no 

knowledge base anywhere that contains all of 

them.  By utilizing linguistic knowledge, we can 

automatically provide the most effective training 

examples to the machine learning algorithm, as 

well as greatly minimize SME review in providing 

crucial feedback for the machine learning process.   

 

At a high level, PANDA cleverly shuttles be-

tween Heads and Heads plus modifiers, which are 

the full part names of interest.  The requirement for 

SME’s attention are focused on Heads. Since 

SME’s need only review Heads, and not the full 

parts associated with each Head, the training is 

highly efficient. 

Fig. 1 shows the architecture of PANDA. It con-

sists of a loop which starts with seed Heads, a small 

set of basic part names such as gear, panel, switch, 

etc. The collected Heads are used to predict the part 

names in the Extract Part Names step (Section 3.1). 

The extracted part names are “purified” using sev-

eral filtering mechanisms (Section 3.2). The puri-

fied parts are used to generate training examples 

(Section 3.3) for a CRF model (Section 3.4) which, 

in turn, is used to predict new part names in the data 

set (Section 3.5). The predicted part names are 

again purified (Section 3.2) and new Heads are ex-

tracted (Section 3.6). The extracted Heads them-

selves are also purified (Section 3.7). Finally, the 

purified Heads are added back to the earlier list 

forming a larger initial set of Heads. The loop is 

repeated until a stopping criteria is met (Section 

3.8). Parts predicted by CRF and trie in the last run 

are collected as the final output.  

3.1 Trie-based Part Name Prediction 

The purpose of this step is to use part Heads and 

automatically generate complete part names that 

we need later to generate training examples for a 

machine learning model. To do this, we construct a 

data structure called a trie (Trie, 2018) from a large 

corpus such that the first level nodes are the given 

part Heads (e.g. gear) and their descendant nodes 

are the tokens appearing before them in the data set 

(see Fig. 2 below). This type of trie is computed by 

 

Figure 1: PANDA Processing Loop. 
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scanning the tokens in reverse order, and is highly 

efficient. We then traverse the trie in depth-first 

fashion as long as it satisfies the minimum fre-

quency criteria. We collect the potential part name 

sequence as we traverse.  To further ensure better 

examples are used in the training example genera-

tion process, we could have a constraint to only use 

the Heads having certain minimum frequency.  

3.2 Purify Part Names 

As is the case of all machine learning methods, a 

significant amount of bad training samples may 

negatively impact the resulting model. Thus, to fur-

ther improve the quality of part names predicted in 

the previous step, this step applies a number of heu-

ristics based on POS features. For instance, a part 

name must not start with a verb or an article. If it 

does, we remove them and considered the remain-

ing chunk as part name (e.g. replaced main landing 

gear becomes main landing gear). Similarly, 

PANDA requires that all part name tokens must ei-

ther be nouns or adjectives. 

3.3 Generate Training Examples 

The goal of this phase is to generate training data 

for a machine learning model by annotating the 

data in the corpus with the part names resulting 

from the previous steps. Since the goal is to lever-

age patterns in the part names and their context to 

discover new part names, additional features need 

to be provided. PANDA currently employs k-pre-

vious and k-next word tokens and their POS tags as 

well as the POS tags of part names themselves as 

these features.  The POS features can be generated 

using a POS Tagger such as Brill Tagger (Brill, 

1992). Fig. 3 shows a sample annotated record with 

the part name left main landing gear and corre-

sponding POS-tags. 

 
Figure 3: A sentence annotated with a part name. 

3.4 Train a Sequence Model 

The goal of this phase is to use the annotated corpus 

as training data to generate a model that identifies 

part names in the data. Any sequence model that 

extracts sequences of tokens, such as a CRF (Laf-

ferty, McCallum and Pereira, 2001) or Long Short 

Term Memory network (Gers, Schmidhuber and 

Cummins, 1999), can be used at this phase.  We use 

CRF in our experiments. 

3.5 Predict Part Names 

The goal of this phase is to use the sequence model 

trained in Section 3.4 on the corpus to extract new 

potential part names. The newly predicted parts are 

collected and purified using the approach presented 

in Section 3.2. 

3.6 Extract Head Nouns 

This step is to extract Heads from the newly iden-

tified potential part names in the machine learning 

output.  It extracts the last token of the supplied part 

and returns that as the Head. For instance, it returns 

cap for oil filter cap.    

3.7 Purify Head Nouns 

The goal of this step is for PANDA to validate 

Heads generated in the previous phase. The feed-

back can be done with a human-in-the-loop (a 

SME). The SME will review all generated Heads 

and classify them into different categories, typi-

cally Good (e.g. antenna) or Bad (e.g. inoperable). 

Optionally, an additional category Borderline (e.g. 

unit) can be used.  However, only Good Heads are 

used in the next iteration of the loop to generate ad-

ditional new part names.  Borderline heads will not 

be used to generate new part names for the training 

purpose, but will be accepted as potentially valid 

heads at the last run. 

3.8 Stopping Criteria for the Loop 

PANDA supports various types of stopping criteria. 

It can be stopped after a certain number of itera-

tions or after a certain number of parts are gener-

ated, or after it reaches a certain ratio of bad vs. 

good new parts generated. 

 

Figure 2: Sample trie generating parts main land-

ing gear and left main landing gear. 
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3.9 Part Prediction using PANDA 

The parts collected after the final run can be used 

to extract the part names in new incoming records. 

Alternatively, the final CRF model can also be used 

to predict the parts. Or a combination of both of 

these can be used. 

4 Experiments and Results 

We conducted experiments using three major key 

data sources in the aerospace domain: (a) Mainte-

nance Logbook (MLB) includes key maintenance 

condition, maintenance action and parts involved 

for issues identified on an aircraft. (b) Schedule In-

terruption (SI) includes records generated by doz-

ens of major airlines at airports all over the world. 

It contains reasons for significant delays in depar-

ture or landing, often due to the condition of one or 

more parts/systems. (c) Communication Systems 

(CS) includes professional help desk type corre-

spondence between an aircraft manufacturing com-

pany and airline operators. MLB and SI are very 

noisy (as shown in Table 1) compared to CS. All 

data sets contained multiple records, had compara-

ble sizes of 1 million tokens each, and were subject 

to the same preprocessing steps and POS-tagging. 

We ran PANDA on SI data set using 36 seed 

head nouns. We set PANDA to identify full part 

names of length up to 5 tokens with minimum fre-

quency threshold of 1, to capture maximum recall, 

and allowed it to run till no new good Head was 

generated. The results are presented in Table 2. 

PANDA stopped after iteration 7 generating 9374 

parts. SME’s feedback to predicted Heads in each 

iteration as Good, Bad and Borderline heads, de-

fined in Section 3.7, are also presented in the table. 

Starting from 36 initial Heads, PANDA was able to 

extract 382 (= 317 Good + 65 Borderline) new part 

Heads.  This demonstrates PANDA’s ability to infer 

new part Heads which are not known initially. This 

is crucial because all Heads are not known in ad-

vance and hundreds of new full parts may be asso-

ciated with a single new Head.  

Table 2 also shows the total number of parts col-

lected up to a given iteration. It extracted 9374 full 

parts at the end of the final iteration but only re-

quired annotations of 780 part Heads. Since the an-

notation task only involves annotating the Heads 

and not the full parts, the annotation is very fast. As 

a reference, this whole experiment took less than 2 

hours to complete. This demonstrates the scalabil-

ity of PANDA in that it requires minimal human 

input in the training phase of machine learning. 

Since previously annotated Heads can be reused in 

subsequent experiments, PANDA will run even 

faster in the later experiments.  

 

 
Next we sought to evaluate the quality of full 

parts generated by PANDA. However, no gold data 

set is currently available for that purpose. Also, 

evaluation in terms of recall by annotating all parts 

is not feasible, as annotating all 9374 full parts 

would be very costly. Therefore, we randomly se-

lected 1000 parts for evaluation. PANDA scored 

80.9% accuracy on this evaluation. This clearly 

shows that, though a SME only provides feedback 

on Heads during the training process, PANDA is 

still able to extract full part names from noisy data 

with a high degree of accuracy. 

4.1 PANDA VS Baseline 

As noted in Section 2, the only known algorithm in 

the literature to extract part names from free text is 

by Chandramouli, Subramanian, and Bal (2013). It 

considers parts as n-grams ending at provided 

heads and ranks them by a collocation measure. We 

implemented their best performing algorithm that 

purifies parts with POS tags as baseline. We ran 

both the baseline and PANDA to extract full part 

names of length up to 5 words from the SI data, 

with a minimum acceptable collocation value of 25 

for the baseline. The results are shown in Table 3. 

Since the baseline relies on provided Heads - 36 

in this case - and has no way of inferring new part 

Heads and their corresponding parts, it suffers from 

  

Good 

 

Bad 

 

Borderline 

Total 

Parts 

Seed 36 - - - 

Iter 1 98 97 19 3370 

Iter 2 127 146 30 7853 

Iter 3 48 95 9 8794 

Iter 4 27 27 3 9020 

Iter 5 12 18 2 9249 

Iter 6 3 11 2 9283 

Iter 7 2 4 0 9374 

Total 

(1-7) 

317 398 65 9374 

Table 2: PANDA results showing annotation 

counts for Good, Bad and Borderline heads 

and total full parts on SI data set 

 Heads Parts 

Baseline 36 979 

PANDA 382 9374 

Table 3: Baseline and PANDA extracted parts 

using same 36 seed heads 
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low recall. PANDA, on the other hand can easily 

infer new Heads and associated parts. For instance, 

although annunciator was not in the initial Head 

list, PANDA was able to infer it and its variants 

such as annunc, annuc, and ann. In addition, 

PANDA extracted 32 types of annunciators such as 

antiskid annunciator, door warn annunciator, and 

cabin zone temp annunc.  

In addition, PANDA captured the longest part 

name possible (a very specific part ) while the base-

line broke it down to its constituent chunks, creat-

ing parts that did not exist in the data set or were 

incorrect. Baseline results contained 186 such 

over-generated parts.  In one example, when access 

always preceded door panel, PANDA only gener-

ated access door panel. In contrast, the baseline 

generated door panel (a non-existence part) as well 

as access door panel. Since door panel can easily 

be derived from access door panel (a specific part), 

PANDA still is able to identify generic parts, if they 

exist, in new incoming records without generating 

the parts that do not exist in the current data set, 

which may lead to error. For instance, the constitu-

ent part one valve that the baseline generates from 

generator one valve is not by itself a valid part.  

Lastly, the baseline generated incorrect parts 

when there were more than one head in a part 

name. It extracted temperature control valve, tem-

perature control, and control valve from the record 

containing “temperature control valve” as they 

were n-grams ending at known heads control and 

valve. In fact, out of 979 baseline parts, 466 were 

common with PANDA and the rest were either 

over-generated or invalid parts. These facts clearly 

demonstrate PANDA’s superiority over the base-

line model in terms of recall, learning ability for 

heads and parts, and accuracy of extracted parts.   

4.2 PANDA on Diverse Data Sets  

To test the generality of PANDA across different 

genres of part records, we ran PANDA on MLB, SI 

and BCS data sets for 5 iterations each. As noted 

above, MLB and SI are very noisy compared to 

BCS. Each of these experiments needed less than 2 

hours. We report head annotation counts and total 

extracted parts in each of these data sets in Table 4. 

The results show that PANDA can process data sets 

of different genres with minimal annotations and 

can extract thousands of complex part names from 

them. As expected, fewer parts were discovered in 

BCS than in SI and MLB since it consisted of email 

conversations with boilerplate texts.  

 

4.3 Error Analysis 

We identified some error types that affected 

PANDA results. First, there are certain parts that 

PANDA could not correctly extract due to its as-

sumption that the last word of a part is the head of 

the part. From the text “Replaced handle of door”, 

it could capture handle and door separately but not 

as door handle or handle of door. Such cases, how-

ever, were very rare.  Second, POS-tagging errors 

affected some of PANDA’s predictions.  It captured 

report generator drive instead of generator drive 

due to report being incorrectly tagged as a noun. 

Third, a few parts were only partially captured due 

to the maximum part length setting. For instance 

variable was missed in the 6-word part variable 

speed constant frequency cool fan.  

5 Conclusion and Future Work 

We presented PANDA, a novel approach that dis-

covers part names in noisy text. PANDA cleverly 

exploits the linguistic characteristics of part names 

in English to automatically generate full part names 

using basic part names. This automates the training 

example generation process, the most expensive 

step for building a supervised machine learning 

model. Experiments demonstrated that: 

• PANDA required minimal human input for 

training the machine learning model 

• PANDA was superior to the existing sys-

tem in that it was able to infer new heads 

and parts and dramatically improved recall 

as compared to the existing system 

• PANDA extracted high quality full parts 

• PANDA can scale across diverse data sets  

With these promising results, PANDA is cur-

rently being deployed to extract part names from 

several data sets for different aircraft models and 

subsystems. In the future, we plan to focus on the 

normalization of heads (e.g. pnl and panal to panel) 

and parts (e.g. lft valve and left vlv to left valve) 

from PANDA extracted results. 

  

Data 

Set 

 

Good 

 

Bad 

 

Borderline 

Total 

Ann. 

Total 

Parts 

MLB 463 604 92 1159 8721 

SI 312 379 63 754 9249 

BCS 293 390 64 747 6554 

Table 4: Head annotation counts and total 

parts across data sets of different part genre 
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