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Abstract

To provide better access of the inventory to
buyers and better search engine optimization,
e-Commerce websites are automatically gen-
erating millions of easily searchable browse
pages. A browse page groups multiple items
with shared characteristics together. It con-
sists of a set of slot name/value pairs within
a given category that are linked among each
other and can be organized in a hierarchy. This
structure allows users to navigate laterally be-
tween different browse pages (i.e. browse be-
tween related items) or to dive deeper and
refine their search. These browse pages re-
quire a title describing the content of the
page. Since the number of browse pages is
huge, manual creation of these titles is infea-
sible. Previous statistical and neural genera-
tion approaches depend heavily on the avail-
ability of large amounts of data in a lan-
guage. In this research, we apply sequence-to-
sequence models to generate titles for high- &
low-resourced languages by leveraging trans-
fer learning. We train these models on multi-
lingual data, thereby creating one joint model
which can generate titles in various different
languages. Performance of the title genera-
tion system is evaluated on three different lan-
guages; English, German, and French, with a
particular focus on low-resourced French lan-
guage.

1 Introduction

Natural language generation (NLG) has a broad
range of applications, from question answering
systems to story generation, summarization etc.
In this paper, we target a particular use case
that is important for e-Commerce websites, which
group multiple items on common pages called
browse pages (BP). Each browse page contains an
overview of various items which share some char-
acteristics expressed as slot/value pairs.

For example, we can have a browse page for
Halloween decoration, which will display differ-
ent types like lights, figurines, and candy bowls.
These different items of decoration have their own
browse pages, which are linked from the BP for
Halloween decoration. A ceramic candy bowl for
Halloween can appear on various browse pages,
e.g. on the BP for Halloween decoration, BP
for Halloween candy bowls, as well as the (non
Halloween-specific) BP for ceramic candy bowls.

To show customers which items are grouped on
a browse page, we need a human-readable title of
the content of that particular page. Different com-
binations of characteristics bijectively correspond
to different browse pages, and consequently to dif-
ferent browse page titles.

Note that here, different from other natural lan-
guage generation tasks described in the literature,
slot names are already given; the task is to gen-
erate a title for a set of slots. Moreover, we do
not perform any selection of the slots that the ti-
tle should realize; but all slots need to be realized
in order to have a unique title. E-Commerce sites
may have tens of millions of such browse pages in
many different languages. The number of unique
slot-value pairs are in the order of hundreds of
thousands. All these factors render the task of hu-
man creation of BP titles infeasible.

Mathur, Ueffing, and Leusch (2017) developed
several different systems which generated titles
for these pages automatically. These systems in-
clude rule-based approaches, statistical models,
and combinations of the two. In this work, we in-
vestigate the use of neural sequence-to-sequence
models for browse page title generation. These
models have recently received much attention in
the research community, and are becoming the
new state of the art in machine translation (refer
Section 4).

We will compare our neural generation models
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against two state-of-the-art systems.

1. The baseline system for English and French
implements a hybrid generation approach,
which combines a rule-based approach (with
a manually created grammar) and statistical
machine translation (SMT) techniques. For
French, we have monolingual data for train-
ing language model, which can be used in
the SMT system. For English, we also have
human-curated titles and can use those for
training additional “translation” components
for this hybrid system.

2. The system for German is an Automatic
Post-Editing (APE) system – first introduced
by Simard et al. (2007) – which gener-
ates titles with the rule-based approach, and
then uses statistical machine translation tech-
niques for automatically correcting the errors
made by the rule-based approach.

In the following section, we describe a few of
the previous works in the field of language gener-
ation from a knowledge base or linked data. Sec-
tion 3 addresses the idea of lexicalization of a
browse node in linear form along with the normal-
ization step to replace the slot values with place-
holders. Sequence-to-sequence models for gener-
ation of titles are described in Section 4, followed
by a description of joint learning over multiple lan-
guages in Section 5. Experiments and results are
described in Sections 6 and 7.

2 Related work

The first works on NLG were mostly focused on
rule-based language generation (Dale et al., 1998;
Reiter et al., 2005; Green, 2006). NLG systems
typically perform three different steps: content
selection, where a subset of relevant slot/value
pairs are selected, followed by sentence planning,
where these selected pairs are realized into their
respective linguistic variations, and finally surface
realization, where these linguistic structures are
combined to generate text. Our use case differs
from the above in that there is no selection done
on the slot/value pairs, but all of them undergo the
sentence planning step. In rule-based systems, all
of the above steps rely on hand-crafted rules.

Data driven approaches, on the other hand, ei-
ther try to learn each of the steps automatically
from the data Barzilay and Lapata (2005)

Dale et al. (1998) described the problem of
generating natural language titles and short de-
scriptions of structured nodes which consist of
slot/value pairs. There are many research which
deal with learning a generation model from paral-
lel data. These parallel data consist of the struc-
tured data and natural-language text, so that the
model can learn to transform the structured data
into text. Duma and Klein (2013) generate short
natural-language descriptions, taking structured
DBPedia data as input. Their approach learns text
templates which are filled with the information
from the structured data.

Mei et al. (September, 2015) use recurrent neu-
ral network (LSTM) models to generate text from
facts given in a knowledge base. Chisholm et al.
(2017) solve the same problem by applying a ma-
chine translation system to a linearized version of
the pairs. Several recent papers tackle the problem
of generating a one-sentence introduction for a bi-
ography given structured biographical slot/value
pairs. One difference between our work and the
papers above, (Mei et al., September, 2015), and
(Chisholm et al., 2017), is that they perform selec-
tive generation, i.e. they run a selection step that
determines the slot/value pairs which will be in-
cluded in the realization. In our use case however,
all slot/value pairs are relevant and need to be re-
alized.

Serban et al. (2016) generate questions from
facts (structured input) by leveraging fact embed-
dings and then employing placeholders for han-
dling rare words. In their work, the placeholders
are heuristically mapped to the facts, however, we
map our placeholders depending on the neural at-
tention (for details, see Section 4).

3 Lexicalization

Our first step towards title generation is verbaliza-
tion of all slot/value pairs. This can be achieved
by a rule-based approach as described in (Mathur
et al., 2017). However, in the work presented
here, we do not directly lexicalize the slot/value
pairs, but realize them in a pseudo language first.
For example, the pseudo-language sequence for
the slot/value pairs in Table 1 is “ brand ACME
cat Cell Phones & Smart Phones color white
capacity 32GB”.1

1 cat refers to an e-Commerce category in the browse
page.
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Slot Name Value
Category Cell Phones & Smart Phones
Brand ACME
Color white
Storage Capacity 32GB

Table 1: Example of browse page slot/value pairs.

3.1 Normalization
Pseudo-language browse pages can still contain a
large number of unique slot values. For exam-
ple, there exist many different brands for smart
phones (Samsung, Apple, Huawei, etc.). Large
vocabulary is a known problem for neural sys-
tems, because rare or less frequent words tend to
translate incorrectly due to data sparseness (Lu-
ong et al., 2015). At the same time, the soft-
max computation over the large vocabulary be-
comes intractable in current hardware. To avoid
this issue, we normalize the pseudo-language se-
quences and thereby reduce the vocabulary size.
For each language, we computed the 30 most fre-
quent slot names and normalized their values via
placeholders (Luong et al., August, 2015). For
example, the lexicalization of “Brand: ACME”
is “ brand ACME”, but after normalization, this
becomes brand $brand|ACME. This representa-
tion means that the slot name brand has the value
of a placeholder brand which contains the en-
tity called “ACME”. During training, we remove
the entity from the normalized sequence, while
keeping them during translation of development
or evaluation set. The mapping of placeholders in
the target text back to entity names is described in
Section 4.

The largest reduction in vocabulary size would
be achieved by normalizing all slots. However,
this would create several issues in generation.
Consider the pseudo-language sequence “ bike
Road bike type Racing”. If we replace all slot
values with placeholders, i.e. “ bike $bike type
$type”, then the system will not have enough
information for generating the title “Road rac-
ing bike”. Moreover, the boolean slots, such as
“ comic Marvel comics signed No” would be
normalized to placeholders as “ comic $comic
signed $signed”, and we would loose the in-

formation (“No”) necessary to realize this title as
“Unsigned Marvel comics”.

3.2 Sub-word units
We applied another way of reducing the vocab-
ulary, called byte pair encoding (BPE) (Sennrich

et al., 2016), a technique often used in NMT sys-
tems (Bojar et al., 2017). BPE is essentially a data
compression technique which splits each word
into sub-word units and allows the NMT system
to train on a smaller vocabulary. One of the ad-
vantages of BPE is that it propagates generation
of unseen words (even with different morphologi-
cal variations). However, in our use case, this can
create issues, because if BPE splits a brand and
generates an incorrect brand name in the target,
an e-Commerce company could be legally liable
for the mistake. In such case, one can first run
the normalization with placeholders followed by
BPE, but due to time constraints, we do not report
experiments on the same.

4 Sequence-to-Sequence Models

Sequence-to-sequence models in this work are
based on an encoder-decoder model and an atten-
tion mechanism as described by Bahdanau et al.
(May, 2016). In this network, the encoder is a bi-
directional RNN which encodes the information of
a sentence X = (x1, x2, . . . xm) of length m into
a fixed length vector of size |hi|, where hi is the
hidden state produced by the encoder for token
xi. Since our encoder is a bi-directional model,
the encoded hidden state is hi = hi,fwd + hi,bwd,
where hfwd and hbwd are unidirectional encoders,
running from left to right and right to left, respec-
tively. That is, they are encoding the context to the
left and to the right of the current token.

Our decoder is a simple recurrent neural net-
work (RNN) consisting of gated recurrent units
(GRU) (Cho et al., 2014) because of their com-
putationally efficiency. The RNN predicts the tar-
get sequence Y = (y1, y2, . . . , yj , . . . , yl) based
on the final encoded state h. Basically, the RNN
predicts the target token yj ∈ V (with target vo-
cabulary V) and emits a hidden state sj based on
the previous recurrent state sj−1, the previous se-
quence of words Yj−1 = (y1, y2, . . . , yj−1) and
Cj , a weighted attention vector. The attention vec-
tor is a weighted average of all the hidden source
states hi, where i = 1, . . . ,m. Attention weight
(aij) is computed between the hidden states hi and
sj and is leveraged as a weight of that source state
hi. In generation, we make use of these align-
ment scores to align our placeholders.2 The tar-
get placeholders are bijectively mapped to those

2These placeholders are not to be confused with the place-
holder for a tensor.
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source placeholders whose alignment score (aij)
is the highest at the time of generation.

The decoder predicts a score for all the tokens in
the target vocabulary, which is then normalized by
a softmax function, and the token with the highest
probability is predicted.

5 Multilingual Generation

In this section, we present the extension of our
work from a single-language setting to multi-
language settings. There have been various studies
in the past that target neural machine translation
from multiple source languages into a single tar-
get language (Zoph and Knight, Jan, 2016), from
single source to multiple target languages (Dong
et al., 2015) and multiple source to multiple tar-
get languages (Johnson et al., June, 2016). One
of the main motivation of joint learning in above
works is to improve the translation quality on a
low-resource language pair via transfer learning
between related languages. For example, John-
son et al. (June, 2016) had no parallel data avail-
able to train a Japanese-to-Korean MT system,
but training Japanese-English and English-Korean
language pairs allowed their model to learn trans-
lations from Japanese to Korean without seeing
any parallel data. In our case, the amount of train-
ing data for French is small compared to English
and German (cf. Section 6.1). We propose joint
learning of English, French and German, because
we expect that transfer learning will improve gen-
eration for French. We investigate the joint train-
ing of pairs of these languages as well the combi-
nation of all three.

On top of the multi-lingual approach, we fol-
low the work of Currey et al. (2017) who proposed
copying monolingual data on both sides (source
and target) as a way to improve the performance
of NMT systems on low-resource languages. In
machine translation, there are often named enti-
ties and nouns which need to be translated verba-
tim, and this copying mechanism helps in iden-
tifying them. Since our use case is monolingual
generation, we expect a large gain from this copy-
ing approach because we have many brands and
other slot values which need to occur verbatim in
the generated titles.

6 Experiments

6.1 Data
We have access to a large number of human-
created titles (curated titles) for English and Ger-
man, and a small number of curated titles for
French. When generating these titles, human an-
notators were specifically asked to realize all slots
in the title.

We make use of a large monolingual out-of-
domain corpus for French, as it is a low-resource
language. We collect item description data from
an e-Commerce website and clean the data in the
following way: 1) we train a language model (LM)
on the small amount of French curated titles, 2) we
tokenize the out-of-domain data, 3) we remove all
sentences with length less than 5, 4) we compute
the LM perplexity for each sentence in the out-of-
domain data, 5) we sort the sentences in increas-
ing order of their perplexities and 6) select the top
500K sentences. Statistics of the data sets are re-
ported in Table 2.

Languages Set #Titles #trg Tokens

English
Train 222k 1.5M
Dev 1000 6682
Test 1000 6633

German
Train 226k 1.9M
Dev 1000 8876
Test 500 4414

French
Train 10k 95k

Monolingual 500k 5.54M
Dev 486 6403
Test 478 3886

Table 2: Training and test data statistics per language. ‘k’
and ‘M’ stands for thousand and million, respectively.

6.2 Systems
We compared the NLG systems in the single-,
dual-, and multi-lingual settings.

Single-language setting: This is the baseline
NLG system, a straightforward sequence-to-
sequence model with attention as described in Lu-
ong et al. (August, 2015), trained separately for
each language. The vocabulary is computed on
the concatenation of both source and target data,
and the same vocabulary is used for both source
and target languages in the experiments.

We use Adam (Kingma and Ba, December,
2014) as a gradient descent approach for faster
convergence. Initial learning rate is set to 0.0002
with a decay rate of 0.9. The dimension of word
embeddings is set to 620 and hidden layer size to
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1000. Dropout is set to 0.2 and is activated for
all layers except the initial word embedding layer,
because we want to realize all aspects, we cannot
afford to zero out any token in the source. We con-
tinue training of the model and evaluate on the de-
velopment set after each epoch, stopping the train-
ing if the BLEU score on the development set does
not increase for 10 iterations.

Baselines: We compare our neural system with a
fair baseline system (Baseline 1), which is a statis-
tical MT system trained on the same parallel data
as the neural system: the source side is the lin-
earized pseudo-language sequence, and the target
side is the curated title in natural language. Base-
line 2 is the either the hybrid system (for French
and English) or the APE system (for German),
both described in Section 1. These are unfair
baselines, because (1) the hybrid system employs
a large number of hand-made rules in combina-
tion with statistical models (Mathur, Ueffing, and
Leusch, 2017), while the neural systems are un-
aware of the knowledge encoded in those rules,
(2) the APE system and neural systems learn from
same amount of parallel data, but the APE sys-
tem aims at correcting rule-based generated titles,
whereas the neural system aims at generating titles
directly from a linearized form, which is a harder
task. We compare our systems with the best per-
forming systems of (Mathur et al., 2017), i.e. hy-
brid system for English and French, and APE sys-
tem for German.

Multi-lingual setting: We train the neural
model jointly on multiple languages to leverage
transfer learning from a high-resource language
to a low-resource one. In our multi-lingual set-
ting, we experiment with three different combi-
nations to improve models for French: 1) En-
glish+French (en-fr) 2) German+French (de-fr) 3)
English+French+German (en-fr-de). English and
French being close languages, we expect the en-
fr system to benefit more from transfer learning
across languages than any other combination. Al-
though, as evident in Zoph and Knight (Jan, 2016),
joint learning between the distant languages works
better as they tend to disambiguate each other bet-
ter than two languages which are close. For com-
parison, we also run a combination of two high-
resource languages, i.e. English and German (en-
de), to see if transfer learning works for them. It
is important to note that in all multi-lingual sys-

tems the low-resourced language is over-sampled
to balance the data.

We used the same design parameters on the neu-
ral network in both the single-language and the
multi-lingual setting.

Normalized setting: On top of the systems
above, we also experimented with the normaliza-
tion scheme presented in Section 3.1. Normaliza-
tion is useful in two ways: 1) It reduces the vocab-
ulary size and 2) it avoids spurious generation of
important aspect values (slot values). The second
point is especially important in our case because
this avoids highly sensitive issues such as brand vi-
olations. MT researches have observed that NMT
systems often generate very fluent output, but have
a tendency to generate inadequate output, i.e. sen-
tences or words which are not related to the given
input (Koehn and Knowles, June, 2017). We alle-
viate this problem through the normalization de-
scribed above. After normalization, we see vo-
cabulary reductions of 15% for French, 20% for
German and as high as 35% for English.

As described in Section 5, we also use byte pair
encoding, with a BPE code size of 30,000 for all
systems (with BPE). We train the codes on the
concatenation of source and target since (in this
monolingual generation task) the vocabularies are
very similar; the vocabulary size is around 30k for
systems using BPE for both source and target.

7 Results

We evaluate our systems with three different au-
tomatic metrics: BLEU (Papineni et al., 2002),
TER (Snover et al., 2006) and character F-
Score (Popović, 2016). Note that BLEU and char-
acter F-score are quality metrics, i.e. higher scores
mean higher quality, while TER is an error met-
ric, where lower scores indicate higher quality. All
metrics compare the automatically generated title
against a human-curated title and determine se-
quence matches on the word or character level.

Table 3 summarizes results from all systems on
the English test set. All neural systems are better
than the fair Baseline 1 system.

Normalization with tags (i.e. using placehold-
ers) has a negative effect on English title qual-
ity both in the single-language setting en (67.1
vs. 68.4 BLEU) and in the dual-language set-
ting en-fr (67.1 vs. 70.7 BLEU). However, title
quality increases when using BPE instead (71.9
vs. 70.7 BLEU). On en-de, we observe gains
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System Norm. BLEU↑ chrF1↑ TER↓
Baseline 1 n/a 64.2 82.9 26.5
Baseline 2 n/a 74.3 86.1 19.8
en No 68.4 82.8 21.2
en Yes(Tags) 67.1 82.5 21.7
en-fr No 70.7 83.9 20.1
en-fr Yes(Tags) 67.1 82.1 22.8
en-fr Yes(BPE) 71.9 85.2 18.5
en-frbig Yes(BPE) 74.1 86.2 17.3
en-de No 65.8 80.7 23.6
en-de Yes(Tags) 67.1 82.8 22.3
en-de Yes(BPE) 72.7 85.4 18.8
en-fr-de Yes(BPE) 74.5 86.3 17.0

Table 3: Results on EN test, cased and detokenized.

both from normalization with tags and from BPE.
Again, BPE normalization works best. Both dual-
language systems with BPE achieve better perfor-
mance that the best monolingual English system
(71.9 and 72.7 vs. 68.4 BLEU).

The system en-frbig contains monolingual
French data added via the copying mechanism,
which improves title quality. It outperforms any
other neural system and is on par with Baseline 2
(unfair baseline), even outperforming it in terms
of TER. The multi-lingual system en-fr-de is very
close to en-frbig according to all three metrics.

System Norm. BLEU↑ chrF1↑ TER↓
Baseline 1 n/a 58.5 88.3 31.4
Baseline 2 n/a 79.4 90.7 17.1
de No 78.2 87.0 20.7
de Yes(Tags) 71.1 85.0 27.2
en-de No 74.0 87.3 22.6
en-de Yes(Tags) 65.6 84.0 30.2
en-de Yes(BPE) 79.6 91.1 16.6
de-fr No 77.2 88.9 18.9
de-fr Yes(Tags) 63.3 83.0 30.7
de-fr Yes(BPE) 77.6 89.0 19.2
de-frbig Yes(BPE) 80.0 91.6 16.2
en-fr-de Yes(BPE) 80.6 92.0 15.3

Table 4: Results on DE test, cased and detokenized.

Table 4 collects the results for all systems on the
German test set. For the single-language setting,
we see a loss of 7 BLEU points when normalizing
the input sequence, which is caused by incorrect
morphology in the titles. When using placehold-
ers, the system generates entities in the title in the
exact form in which they occur in the input. In
German, however, the words often need to be in-
flected. For example, the slot “ brand Markenlos”
should be realized as “Markenlose” (Unbranded)
in the title, but the placeholder generates the in-
put form “Markenlos” (without suffix ‘e’). This
causes a huge deterioration in the word-level met-

rics BLEU and TER, but not as drastic in chrF1,
which evaluates on the character level.

For German, there is a positive effect of trans-
fer learning for both dual-language systems en-
de and de-frbig with BPE (79.6 and 80.0 vs. 78.2
BLEU). However, the combination of languages
hurts when we combine languages at token level,
i.e. without normalization or with tags. The per-
formance of systems with BPE is even on par with
or better than the strong baseline of 79.4 BLEU,
both for combinations of two and of three lan-
guages.

System Norm. BLEU↑ chrF1↑ TER↓
Baseline 1 n/a 44.6 77.7 44.3
Baseline 2 n/a 76.8 89.0 18.4
fr small No 23.0 52.0 71.1
fr small Yes(Tags) 27.4 56.2 60.1
frbig Yes(BPE) 29.5 57.3 58.5
frbig Yes(Both) 31.4 61.3 60.9
en-fr No 22.5 51.3 69.6
en-fr Yes(Tags) 20.1 47.1 70.3
en-fr Yes(BPE) 21.6 50.7 73.9
en-frbig Yes(BPE) 32.6 61.8 51.2
de-fr No 21.7 50.2 71.4
de-fr Yes(Tags) 23.2 49.9 67.3
de-fr Yes(BPE) 30.9 63.0 61.8
de-frbig Yes(BPE) 38.8 67.8 50.5
en-fr-de Yes(BPE) 45.3 73.2 42.0

Table 5: Results on FR test, cased and detokenized.

System Title
src cat Équipements de garage brand Outifrance
ref Équipements de garage Outifrance
fr small Équipements de suspension et de travail
fr small,tags Équipements de garage Outifrance
src cat Cylindres émetteurs d’embrayage pour au-

tomobiles brand Vauxhall
ref Cylindres émetteurs d’embrayage pour auto-

mobiles Vauxhall
fr small Perles d’embrayage pour automobile Vauxhall
frbig Cylindres émetteurs d’embrayage pour auto-

mobile Vauxhall
src cat Dessous de verre de table brand Amadeus
ref Dessous de verre de table Amadeus
frbig Guirlandes de verre Dunlop de table
en-fr-de Dessous de verre de table Amadeus

Table 6: Examples from the french test set.

Table 5 summarizes the results from all sys-
tems on the French test set. The single-language
fr NMT system achieves a low BLEU score
compared to the SMT system Baseline 1 (23.0
vs. 44.6). This is due to the very small amount
of parallel data, which is a setting where SMT
typically outperforms NMT as evidenced in Zoph
et al. (April, 2016). Normalization has a big
positive impact on all French systems (e.g. 27.4
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vs. 23.0 BLEU for fr).
The de-fr systems show a much larger gain from

transfer learning than the en-fr systems, which val-
idates Zoph and Knight (Jan, 2016)’s results, who
show that transfer learning is better for distant lan-
guages than for similar languages.

For all three languages, copying monolingual
data improves the NMT system by a large margin.

The multi-lingual en-fr-de (BPE) system (with
copied monolingual data) is the best system for all
three languages. It has the additional advantage of
being one single model that can cater to all three
languages at once.

Table 6 presents the example titles comparing
different phenomena. The first block shows the
usefulness of placeholders in system fr small ,tags

(i.e. fr small , normalized with tags) where in com-
parison to fr small the brand is generated verbatim.
The second block shows the effectiveness of copy-
ing the data where “Cylindres” is generated cor-
rectly in the frbig (with BPE) system in compari-
son to fr small . The last block shows that reorder-
ing and adequacy in generation can be improved
with the helpful signals from high-resourced En-
glish and German languages.

8 Conclusion

We developed neural language generation systems
for an e-Commerce use case for three languages
with very different amounts of training data and
came to the following conclusions:

(1) The lack of resources in French leads to gen-
eration of low quality titles, but this can be dras-
tically improved upon with transfer learning be-
tween French and English and/or German.

(2) In case of low-resource languages, copy-
ing monolingual data (even if out-of-domain) im-
proves the performance of the system.

(3) Normalization with placeholders usually
helps for languages with relatively easy morphol-
ogy.

(4) It is important to over-sample the low-
resourced languages in order to balance the high-
& low-resourced data, thereby, creating a stable
NLG system.

(5) For French, a low-resource language in our
use case, the hybrid system which combines man-
ual rules and SMT technology is still far better
than the best neural system.

(6) The multi-lingual model has the best trade-
off, as it achieves the best results among the neural

systems in all three languages and it is one single
model which can be deployed easily on a single
GPU machine.
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