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Abstract
Intelligent personal digital assistants (IPDAs),
a popular real-life application with spoken lan-
guage understanding capabilities, can cover
potentially thousands of overlapping domains
for natural language understanding, and the
task of finding the best domain to handle an
utterance becomes a challenging problem on
a large scale. In this paper, we propose a
set of efficient and scalable neural shortlisting-
reranking models for large-scale domain clas-
sification in IPDAs. The shortlisting stage
focuses on efficiently trimming all domains
down to a list of k-best candidate domains,
and the reranking stage performs a list-wise
reranking of the initial k-best domains with ad-
ditional contextual information. We show the
effectiveness of our approach with extensive
experiments on 1,500 IPDA domains.

1 Introduction
Natural language understanding (NLU) is a core

component of intelligent personal digital assistants
(IPDAs) such as Amazon Alexa, Google Assis-
tant, Apple Siri, and Microsoft Cortana (Sarikaya,
2017). A well-established approach in current
real-time systems is to classify an utterance into a
domain, followed by domain-specific intent clas-
sification and slot sequence tagging (Tur and
de Mori, 2011). A domain is typically defined in
terms of a specific application or a functionality
such as weather, calendar and music, which nar-
rows down the scope of NLU for a given utterance.
A domain can also be defined as a collection of rel-
evant intents; assuming an utterance belongs to the
calendar domain, possible intents could be to cre-
ate a meeting or cancel one, and possible extracted
slots could be people names, meeting title and date
from the utterance. Traditional IPDAs cover only
tens of domains that share a common schema. The
schema is designed to separate out the domains
in an effort to minimize language ambiguity. A

shared schema, while addressing domain ambigu-
ity, becomes a bottleneck as new domains and in-
tents are added to cover new scenarios. Redefin-
ing the domain, intent and slot boundaries requires
relabeling of the underlying data, which is very
costly and time-consuming. On the other hand,
when thousands of domains evolve independently
without a shared schema, finding the most relevant
domain to handle an utterance among thousands of
overlapping domains emerges as a key challenge.

The difficulty of solving this problem at scale
has led to stopgap solutions, such as requiring an
utterance to explicitly mention a domain name and
restricting the expression to be in a predefined
form as in “Ask ALLRECIPES, how can I bake
an apple pie?” However, such solutions lead to an
unintuitive and unnatural way of conversing and
create interaction friction for the end users. For
the example utterance, a more natural way of say-
ing it is simply, “How can I bake an apple pie?”
but the most relevant domain to handle it now be-
comes ambiguous. There could be a number of
candidate domains and even multiple overlapping
recipe-related domains that could handle it.

In this paper, we propose efficient and scalable
shortlisting-reranking neural models in two steps
for effective large-scale domain classification in
IPDAs. The first step uses light-weight BiLSTM
models that leverage only the character and word-
level information to efficiently find the k-best list
of most likely domains. The second step uses rich
contextual information later in the pipeline and ap-
plies another BiLSTM model to a list-wise ranking
task to further rerank the k-best domains to find
the most relevant one. We show the effectiveness
of our approach for large-scale domain classifica-
tion with an extensive set of experiments on 1,500
IPDA domains.
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2 Related Work
Reranking approaches attempt to improve upon

an initial ranking by considering additional con-
textual information. Initial model outputs are
trimmed down to a subset of most likely can-
didates, and each candidate is combined with
additional features to form a hypothesis to be
re-scored. Reranking has been applied to var-
ious natural language processing tasks, includ-
ing machine translation (Shen et al., 2004), pars-
ing (Collins and Koo, 2005), sentence bound-
ary detection (Roark et al., 2006), named entity
recognition (Nguyen et al., 2010), and supertag-
ging (Chen et al., 2002).

In the context of NLU or SLU systems, Morbini
et al. (2012) showed a reranking approach us-
ing k-best lists from multiple automatic speech
recognition (ASR) engines to improve response
category classification for virtual museum guides.
Basili et al. (2013) showed that reranking multiple
ASR candidates by analyzing their syntactic prop-
erties can improve spoken command understand-
ing in human-robot interaction, but with more
focus on ASR improvement. Xu and Sarikaya
(2014) showed that multi-turn contextual informa-
tion and recurrent neural networks can improve
domain classification in a multi-domain and multi-
turn NLU system. There have been many other
pieces of prior work on improving NLU systems
with pre-training (Kim et al., 2015b; Celikyilmaz
et al., 2016; Kim et al., 2017e), multi-task learn-
ing (Zhang and Wang, 2016; Liu and Lane, 2016;
Kim et al., 2017b), transfer learning (El-Kahky
et al., 2014; Kim et al., 2015a,c; Chen et al.,
2016a; Yang et al., 2017), domain adaptation (Kim
et al., 2016; Jaech et al., 2016; Liu and Lane, 2017;
Kim et al., 2017d,c) and contextual signals (Bhar-
gava et al., 2013; Chen et al., 2016b; Hori et al.,
2016; Kim et al., 2017a).

To our knowledge, the work by Robichaud et al.
(2014); Crook et al. (2015); Khan et al. (2015) is
most closely related to this paper. Their approach
is to first run a complete pass of all 3 NLU mod-
els of binary domain classification, multi-class in-
tent classification, and sequence tagging of slots
across all domains. Then, a hypothesis is formed
per domain using the semantic information pro-
vided by the domain-intent-slot outputs as well as
many other contextual and cross-hypothesis fea-
tures such as the presence of a slot tagging type
in any other hypotheses. Reranking the hypothe-

ses with Gradient Boosted Decision Trees (Fried-
man, 2001; Burges et al., 2011) has been shown to
improve domain classification performance com-
pared to using only domain classifiers without
reranking.

Their approach however suffers from the fol-
lowing two limitations. First, it requires running
all domain-intent-slot models in parallel across all
domains. Their work considers only 8 or 9 distinct
domains, and the approach has serious practical
scaling issues when the number of domains scales
to thousands. Second, contextual information, es-
pecially cross-hypothesis features, that is crucial
for reranking is manually designed at the feature
level with a sparse representation.

Our work in this paper addresses both of these
limitations with a scalable and efficient two-step
shortlisting-reranking approach, which has a neu-
ral ranking model capturing cross-hypothesis fea-
tures automatically. To our knowledge, this work
is the first in the literature on large-scale domain
classification for a real IPDA production system
with a scale of thousands of domains. Our LSTM-
based list-wise ranking approach also makes a
novel contribution to the existing literature in the
context of IPDA and NLU systems. In this work,
we limit our scope to first-turn utterances and
leave multi-turn conversations for future work.

3 Shortlisting-Reranking Architecture
Our shortlisting-reranking models process an

incoming utterance as follows. (1) Shortlister per-
forms a naive, fast ranking of all domains to find
the k-best list using only the character and word-
level information. The goal here is to achieve high
domain recall with maximal efficiency and mini-
mal information and latency. (2) For each domain
in the k-best list, we prepare a hypothesis per do-
main with additional contextual information, in-
cluding domain-intent-slot semantic analysis, user
preferences, and domain index of popularity and
quality. (3) A second ranker called Hypotheses
Reranker (HypRank) performs a list-wise ranking
of the k hypotheses to improve on the initial naive
ranking and find the best hypothesis, thus domain,
to handle the utterance.

Figure 1 illustrates the steps with an example
utterance, “play michael jackson.” Based on char-
acter and word features, shortlister returns the k-
best list in the order of CLASSIC MUSIC, POP
MUSIC, and VIDEO domains. CLASSIC
MUSIC outputs PlayTune intent, but without
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any slots, low domain popularity, and no usage
history for the user, its ranking is adjusted to be
last. POP MUSIC outputs PlayMusic intent
and Singer slot for “michael jackson”, and with
frequent user usage history, it is determined to be
the best domain to handle the utterance.

In our architecture, key focus is on efficiency
and scalability. Running full domain-intent-slot
semantic analysis for thousands of domains im-
poses a significant computational burden in terms
of memory footprint, latency and number of ma-
chines, and it is impractical in real-time systems.
For the same reason, this work only uses contex-
tual information in the reranking stage, and the
utility of including it in the shortlisting stage is left
for future work.
4 Shortlister

Shortlister consists of three layers: an
orthography-sensitive character and word embed-
ding layer, a BiLSTM layer that makes a vector
representation for the words in a given utterance,
and an output layer for domain classification.
Figure 2 shows the overall shortlister architecture.

Embedding layer In order to capture character-
level patterns, we construct an orthography-
sensitive word embedding layer (Ling et al., 2015;
Ballesteros et al., 2015). Let C,W , and ⊕ denote
the set of characters, the set of words, and the vec-
tor concatenation operator, respectively. We repre-
sent an LSTM as a mapping φ : Rd × Rd′ → Rd′

that takes an input vector x and a state vector h
to output a new state vector h′ = φ(x, h)1. The
model parameters associated with this layer are:

Char embedding: ec ∈ R25 for each c ∈ C
Char LSTMs: φCf , φ

C
b : R25 × R25 → R25

Word embedding: ew ∈ R100 for each w ∈ W

Let (w1, . . . , wm) denote a word sequence
where word wi ∈ W has character wi(j) ∈ C at
position j. This layer computes an orthography-
sensitive word representation vi ∈ R150 as:2

fCj = φCf
(
ewi(j), f

C
j−1
)

∀j = 1 . . . |wi|
bCj = φCb

(
ewi(j), b

C
j+1

)
∀j = |wi| . . . 1

vi = fC|wi| ⊕ b
C
1 ⊕ ewi

1We omit cell variable notations for simple LSTM formu-
lations.

2We randomly initialize state vectors such as fC
0 and

bC|wi|+1.

BiLSTM layer We utilize a BiLSTM to encode
the word vector sequence (v1, . . . , vm). The BiL-
STM outputs are generated as:

fWi = φWf
(
vi, f

W
i−1
)

∀i = 1 . . .m

bWi = φWb
(
vi, b

W
i+1

)
∀i = m. . . 1

where φWf , φ
W
f : R150 × R100 → R100 are the

forward LSTM and the backward LSTM, respec-
tively. An utterance representation h ∈ R200 is
induced by concatenating the outputs of the both
LSTMs as:

h = fWm ⊕ bW1
Output layer We map the word LSTM output h to
a n-dimensional output vector with a linear trans-
formation. Then, we take a softmax function ei-
ther over the entire domains (softmaxa) or over
two classes (in-domain or out-of-domain) for each
domain (softmaxb).
softmaxa is used to set the sum of the confi-

dence scores over the entire domains to be 1. We
can obtain the outputs as:

o = softmax (W · h+ b)

where W and b are parameters for a linear trans-
formation.

For training, we use cross-entropy loss, which
is formulated as follows:

La = −
n∑

i=1

li log oi (1)

where l is a n-dimensional one-hot vector whose
element corresponding to the position of the
ground-truth hypothesis is set to 1.
softmaxb is used to set the confidence score

for each domain to be between 0 and 1. While
softmaxa tends to highlight only the ground-
truth domain while suppressing all the rest,
softmaxb is designed to produce a more balanced
confidence score per domain independent of other
domains. When using softmaxb, we obtain a 2-
dimensional output vector for each domain as fol-
lows:

oi = softmax
(
W i · h+ bi

)

where W i is a 2 by 200 matrix and bi is a
2-dimensional vector; oi1 and oi2 denote the in-
domain probability and the out-of-domain prob-
ability, respectively. The loss function is formu-
lated as follows:

Lb = −
n∑

i=1

{
li log o

i
1 +

1− li
n− 1

log oi2

}
(2)
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Figure 1: A high-level flow of our two-step shortlisting-reranking approach given an utterance to an IPDA.
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Figure 2: The architecture of our neural shortlisting model
that uses character and word-level information of a given ut-
terance.

where we divide the second term by n− 1 so that
oi1 and oi2 are balanced in terms of the ratio of the
training examples for a domain to those for other
domains.
5 Hypotheses Reranker (HypRank)

Hypotheses Reranker (HypRank) comprises of
two components: hypothesis representation and a
BiLSTM model for reranking a list of hypotheses.
We use the term reranking since we improve upon
the initial ranking from Shortlister’s k-best list. In
our problem context, a hypothesis is formed per
domain with additional semantic and contextual
information, and selecting the highest-scored hy-
pothesis means selecting the domain represented
in that hypothesis for final domain classification.

HypRank, illustrated in Figure 3, is a list-wise
ranking approach in that it considers the entire list
of hypotheses before giving a reranking score for
each hypothesis. While previous work manually

…

Hypothesis1 Hypothesis2 Hypothesisk

…

LSTM%
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LSTM'&

FF

LSTM%
&

LSTM'&

FF

LSTM%
&

LSTM'&
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Figure 3: The architecture of our neural Hypotheses
Reranker model that takes in k hypotheses with rich contex-
tual information for more refined ranking.

encoded cross-hypothesis information at the fea-
ture level (Robichaud et al., 2014; Crook et al.,
2015; Khan et al., 2015), our approach is to let
a BiLSTM layer automatically capture that infor-
mation and learn appropriate representations at the
model level. In addition to giving detail of useful
contextual signals for IPDAs, we also introduce
the use of pre-trained domain, intent and slot em-
beddings in this section.

5.1 Hypothesis Representation
A hypothesis is formed for each domain with

the following three categories of contextual infor-
mation: NLU interpretation, user preferences, and
domain index.

NLU interpretation Each domain has three cor-
responding NLU models for binary domain clas-
sification, multi-class intent classification, and se-
quence tagging for slots. From the domain-intent-
slot semantic analysis, we use the confidence score
from the shortlister, the intent classification confi-
dence, Viterbi path score of the slot sequence from
a slot tagger, and the average confidence score of
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the tagged slots3.
To pre-train domain embeddings, we use a

word-level BiLSTM with each utterance as a se-
quence of word embedding vector ∈ R100 in the
input layer. The BiLSTM outputs, each a vec-
tor ∈ R25, are concatenated and projected to an
output vector for all domains in the output layer.
The learned projection weight matrix is extracted
as domain embeddings. The output vector dimen-
sion used was ∈ R1500 for the large-scale setting
and ∈ R20 for the traditional small-scale setting
in our experiments (Section 6.1). For intent and
slot embeddings, we take the same process with
the only difference in the output vector with the
dimension ∈ R6991 for all unique intents across
all domains and with the dimension ∈ R2845 for
all unique slots.

Once pre-trained, the domain or intent embed-
dings are used simply as a lookup table per do-
main or per intent. For slot embeddings, there can
be more than one slot per utterance, and in case of
multiple tagged slots, we sum up each slot embed-
ding vector to combine the information. In sum-
mary, these are the three domain-intent-slots em-
beddings we used: ed ∈ R50 for a domain vector,
ei ∈ R50 for an intent vector, and es ∈ R50 for a
vector of slots.
User Preferences User-specific signals are de-
signed to capture each user’s behavioral history or
preferences. In particular, we encode whether a
user has specific domains enabled in his/her IPDA
setting and whether he/she triggered certain do-
mains within 7, 14 or 30 days in the past.
Domain Index From this category, we encode do-
main popularity and quality as rated by the user
population. For example, if the utterance “I need
a ride to work” can be equally handled by TAXI A
domain or TAXI B domain but the user has never
used any, the signals in this category could give a
boost to TAXI A domain due to its higher popu-
larity.
5.2 HypRank Model

The proposed model is trained to rerank the do-
main hypotheses formed from Shortlister results.
Let (p1, . . . , pk) be the sequence of k input hy-
pothesis vectors that are sorted in decreasing order
of Shortlister scores.

We utilize a BiLSTM layer for transforming the
input sequence to the BiLSTM output sequence

3We use off-the-shelf intent classifiers and slot taggers
achieving 98% and 96% accuracies on average, respectively.

Category |D| Example
Device 177 smart home, smart car

Food 99 recipe, nutrition
Ent. 465 movie, music, game

Info. 399 travel, lifestyle
News 159 local, sports, finance

Shopping 39 retail, food, media
Util. 162 productivity, weather

Total 1,500

Table 1: The categories of the 1,500 domains for our large-
scale IPDA. |D| denotes the number of domains.

(h1, . . . , hk) as follows:

f ri = φrf
(
pi, f

r
i−1
)

bri = φrb
(
pi, b

r
i+1

)

hi = f ri ⊕ bri ∀i ∈ {1, . . . , k} ,

where φrf and φrb are the forward LSTM and the
backward LSTM, respectively.

Since the BiLSTM utilizes both the previous
and the next sub-sequences as the context, each
of the BiLSTM outputs is computed considering
cross-hypothesis information.

For the i-th hypothesis, we either sum or con-
catenate the input vector and the BiLSTM output
to utilize both of them as an intermediate represen-
tation as gi = di⊕hi. Then, we use a feed-forward
neural network with a single hidden layer to trans-
form g to a k-dimensional vector p as follows:

pi =W2 ·σ (W1 · gi + b1)+b2 ∀i ∈ {1, . . . , k} ,

where σ indicates scaled exponential linear unit
(SeLU) for normalized activation outputs (Klam-
bauer et al., 2017); the outputs of all the hypothe-
ses are generated by using the same parameter set
{W1, b1,W2, b2} for consistency regardless of the
hypothesis order.

Finally, we obtain a k-dimensional output vec-
tor o by taking a softmax function:

o = softmax (p) .

argmaxi{o1, .., ok} is the index of the pre-
dicted hypothesis after the reranking. Cross en-
tropy is used for training as follows:

Lr = −
k∑

i=1

li log oi, (3)

where l is a k-dimensional ground-truth one-hot
vector.
6 Experiments

This section gives detail of our experimental
setup, followed by results and discussion.
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SL
train

SL
dev

HR
train

HR
dev test

Traditional 3M 415K 715K 20K 420K
Large-Scale 5M 530K 830K 20K 530K

Table 2: The number of train, development and test utter-
ances. SL denotes Shortlister and HR denotes HypRank.

6.1 Experimental Setup
We evaluated our shortlisting-reranking ap-

proach in two different settings of traditional
small-scale IPDA and large-scale IPDA for com-
parison:
Traditional IPDA For this setting, we simulated
the traditional small-scale IPDA with only 20 do-
mains that are commonly present in any IPDAs.
Since these domains are built-in, which are care-
fully designed to be non-overlapping and of high
quality, the signals from user preferences and do-
main index become irrelevant compared to the
large-scale setting. The dataset comprises of more
than 4M labeled utterances in text evenly dis-
tributed across 20+ domains.
Large-Scale IPDA This setting is a large-scale
IPDA with 1,500 domains as shown in Table 1 that
could be overlapping with a varying level of qual-
ity. For instance, there could be multiple domains
to get a recipe, and a high quality domain could
have more recipes with more capabilities such as
making recommendations compared to a low qual-
ity one. The dataset comprises of more than 6M
utterances having strict invocation patterns. For
instance, we extract “get me a ride” as a prepro-
cessed sample belonging to TAXI skill for the orig-
inal utterance, “Ask {TAXI} to {get me a ride}.”
Shortlister For Shortlister, we show the results of
using 2 different softmax functions of softmaxa
(smxa) and softmaxb (smxb) as described in
Section 4. The results are shown in k-best clas-
sification accuracies, where the 5-best accuracy
means the percentage of test samples that have the
ground-truth domain included in the top 5 domains
returned by Shortlister.
Hypotheses Reranker We also evaluate different
variations of the reranking model for comparison.

• SL: Shortlister 1-best result, which is our
baseline without using a reranking model.

• LR: LR point-wise: A binary logistic regres-
sion model with the hypothesis vector as fea-
tures (see Section 5.1). We run it for each
hypothesis made from Shortlister’s k-best list
and select the highest-scoring one, hence the

Traditional IPDA Large-Scale IPDA
smxa smxb smxa smxb

1-best 95.58 95.56 81.38 81.49
3-best 98.45 98.43 92.53 92.81
5-best 98.81 98.77 95.77 95.93

Table 3: The k-best classification accuracies (%) of Short-
lister using different softmax functions in the traditional and
large-scale IPDA settings.

domain in that hypothesis.

• NPO: Neural point-wise: A feed-forward
(FF) layer between the hypothesis vector and
the nonlinear output layer. We run it for each
hypothesis made from Shortlister’s k-best list
and select the highest-scoring hypothesis.

• NPA: Neural pair-wise: A FF layer between
the concatenation of two hypothesis vectors
and the nonlinear output layer. We run it k
- 1 times for a pair of hypotheses in a series
of tournament-like competitions in the order
of the k-best list. For instance, the 1st and
2nd hypothesis compete first and the winner
of the two competes with the 3rd hypothesis
next and so on until the kth hypothesis.

• NCH : Neural quasi list-wise with manual
cross-hypothesis features added to NPO, fol-
lowing past approaches (Robichaud et al.,
2014; Crook et al., 2015; Khan et al., 2015)
such as the ratio of Shortlister scores to the
maximum score, relative number of slots
across all hypotheses, etc.

• LSTMO: Using only the BiLSTM output
vectors as the input to the FF-layer.

• LSTMS : Summing up the hypothesis vector
and the BiLSTM output vectors as the input
to the FF-layer, similar to residual networks
(He et al., 2016).

• LSTMC : Concatenating the hypothesis vec-
tor and the BiLSTM output vectors as the in-
put to the FF-layer.

• LSTMCH : Same as LSTMC except that
manual cross-hypothesis features used for
NCH were also added to see if combining
manual and automatic cross-hypothesis fea-
tures help.

• UPPER: Upper bound of HypRank accu-
racy set by the performance of Shortlister.

6.2 Methodology
Table 2 shows the distribution of the training,

development and test sets for each setting of tradi-
tional and large-scale IPDAs. Note that we ensure
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Traditional IPDA Large-Scale IPDA
Model smxa smxb smxa smxb

SL 95.58 95.56 81.38 81.49
LR 95.50 95.59 86.74 87.50
NPO 95.26 95.46 88.65 90.38
NPA 96.08 96.37 88.29 90.82
NCH 96.20 96.65 88.43 91.13
LSTMO 94.36 94.45 81.37 82.98
LSTMS 97.44 97.54 92.43 93.79
LSTMC 97.47 97.55 92.49 93.83
LSTMCH 97.22 97.34 92.18 93.46
UPPER 98.81 98.77 95.77 95.93

Table 4: The final classification accuracies (%) for different
Shortlisting-HypRank models under the traditional and large-
scale IPDA settings. The input hypothesis size is 5.

no overlap between the Shortlister and HypRank
training sets so that HypRank is not overly tuned
on Shortlister results. For the NLU models, the in-
tent and slot models are trained on roughly 70% of
the available training data.

In our experiments, all the models were im-
plemented using Dynet (Neubig et al., 2017) and
were trained with Adam (Kingma and Ba, 2015).
We used the initial learning rate of 4 ×10−4 and
left all the other hyper-parameters as suggested in
Kingma and Ba (2015). We also used variational
dropout (Gal and Ghahramani, 2016) for regular-
ization.

6.3 Results and Discussion
Table 3 summarizes the k-best classification ac-

curacy results for our Shortlister. With only 20
domains in the traditional IPDA setting, the accu-
racy is over 95% even when we take 1-best or top
domain returned from Shortlister. The accuracy
approaches 99% when we consider Shortlister cor-
rect if the ground-truth domain is present in the top
5 domains. The results suggest that the character
and word-level information by itself, coupled with
BiLSTMs, can already show significant discrimi-
native power for our task.

With a scale of 1,500 domains, the results indi-
cate that just using the top domain returned from
Shortlister is not enough to have comparable per-
formance shown in the traditional IPDA setting.
However, the performance catches up to close to
96% as we include more domains in the k-best
list, and although not shown here, it starts to level
off at 5-best list. The k-best results from Short-
lister set an upper bound for HypRank perfor-
mance. We note that it could be possible to in-
clude more contextual information at the short-
listing stage to bring Shortlister’s performance up
with some trade-offs in terms of real-time systems,

which we leave for future work. In addition, us-
ing smxb shows a tendency of slightly better per-
formance compared to using smxa, which takes a
softmax over all domains and tends to emphasize
only the top domain while suppressing all others
even when there are many overlapping and very
similar domains.

The classification performance after the rerank-
ing stage with HypRank using Shortlister’s 5-best
results is summarized in Table 4. SL shows the
results of taking the top domain from Shortlister
without any reranking step, and UPPER shows the
performance upper bound of HypRank set by the
shortlisting stage. In general, the pair-wise ap-
proach is shown to be better than the point-wise
approaches, with the best performance coming
from the list-wise ones. Looking at the lowest ac-
curacy from LSTMO, it suggests that the raw hy-
pothesis vectors themselves are important features
that should be combined with the cross-hypothesis
contextual features from the LSTM outputs for
best results. Adding manual cross-hypothesis fea-
tures to the automatic ones from the LSTM out-
puts do not improve the performance.

The performance trend is very similar for smxa
and smxb, but there is a gap between them in
the large-scale setting. An explanation for this
is similar to that for Shortlister results that smxa
emphasizes only the top domain while suppress-
ing all the rest, which might not be suitable in
a large-scale setting with many overlapping do-
mains. For both traditional and large-scale set-
tings, the best accuracy is shown with the list-wise
model of LSTMC .
7 Conclusion

We have described an efficient and scalable
shortlisting-reranking neural models for large-
scale domain classification. The models first ef-
ficiently prune all domains to only a small num-
ber of k candidates using minimal information and
subsequently rerank them using additional contex-
tual information that could be more expensive in
terms of computing resources. We have shown
the effectiveness of our approach with 1,500 do-
mains in a real IPDA system and evaluated us-
ing different variations of the shortlisting model
and our novel reranking models, in terms of point-
wise, pair-wise, and list-wise ranking approaches.

22



Acknowledgments
We thank Sunghyun Park and Sungjin Lee for

helpful discussion and feedback.

References
Miguel Ballesteros, Chris Dyer, and Noah A. Smith.

2015. Improved transition-based parsing by mod-
eling characters instead of words with LSTMs.
In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP). pages 349–359.

Roberto Basili, Emanuele Bastianelli, Giuseppe
Castellucci, Daniele Nardi, and Vittorio Perera.
2013. Kernel-based discriminative re-ranking for
spoken command understanding in HRI, Springer
International Publishing, Cham, pages 169–180.

A. Bhargava, Asli elikyilmaz, Dilek Z. Hakkani-Tur,
and Ruhi Sarikaya. 2013. Easy contextual intent
prediction and slot detection. IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing pages 8337–8341.

Christopher J C Burges, Krysta M Svore, Paul N.
Bennett, Andrzej Pastusiak, and Qiang Wu. 2011.
Learning to Rank Using an Ensemble of Lambda-
Gradient Models. Journal of Machine Learning Re-
search (JMLR) 14:25–35.

Asli Celikyilmaz, Ruhi Sarikaya, Dilek Hakkani-Tür,
Xiaohu Liu, Nikhil Ramesh, and Gökhan Tür. 2016.
A new pre-training method for training deep learn-
ing models with application to spoken language un-
derstanding. In Interspeech. pages 3255–3259.

John Chen, Srinivas Bangalore, Michael Collins, and
Owen Rambow. 2002. Reranking an n-gram su-
pertagger. In Proceedings of the Sixth International
Workshop on Tree Adjoining Grammar and Related
Frameworks (TAG+ 6). pages 259–268.

Yun-Nung Chen, Dilek Hakkani-Tür, and Xiaodong
He. 2016a. Zero-shot learning of intent embed-
dings for expansion by convolutional deep struc-
tured semantic models. In Acoustics, Speech and
Signal Processing (ICASSP), 2016 IEEE Interna-
tional Conference on. pages 6045–6049.

Yun-Nung Chen, Dilek Hakkani-Tür, Gokhan Tur,
Jianfeng Gao, and Li Deng. 2016b. End-to-end
memory networks with knowledge carryover for
multi-turn spoken language understanding. In Inter-
speech.

Michael Collins and Terry Koo. 2005. Discriminative
reranking for natural language parsing. Computa-
tional Linguistics 31(1):25–70.

Paul A Crook, Jean-Philippe Martin, and Ruhi
Sarikaya. 2015. Multi-language hypotheses rank-
ing and domain tracking for open domain. In In-
terspeech.

Ali El-Kahky, Xiaohu Liu, Ruhi Sarikaya, Gokhan Tur,
Dilek Hakkani-Tur, and Larry Heck. 2014. Ex-
tending domain coverage of language understand-
ing systems via intent transfer between domains
using knowledge graphs and search query click
logs. In IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE,
pages 4067–4071.

Jerome H. Friedman. 2001. Greedy function approx-
imation: A gradient boosting machine 29(5):1189–
1232.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems 29 (NIPS). pages 1019–1027.

Kaiming He, Xiang Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pages 770–778.

Chiori Hori, Takaaki Hori, Shinji Watanabe, and
John R Hershey. 2016. Context-sensitive and role-
dependent spoken language understanding using
bidirectional and attention lstms. Interspeech pages
3236–3240.

Aaron Jaech, Larry Heck, and Mari Ostendorf. 2016.
Domain adaptation of recurrent neural networks for
natural language understanding. In Interspeech.

Omar Zia Khan, Jean-Philippe Robichaud, Paul A.
Crook, and Ruhi Sarikaya. 2015. Hypotheses rank-
ing and state tracking for a multi-domain dialog sys-
tem using multiple ASR alternates. In Interspeech.

Young-Bum Kim, Minwoo Jeong, Karl Stratos, and
Ruhi Sarikaya. 2015a. Weakly supervised slot tag-
ging with partially labeled sequences from web
search click logs. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. pages 84–92.

Young-Bum Kim, Sungjin Lee, and Ruhi Sarikaya.
2017a. Speaker-sensitive dual memory networks for
multi-turn slot tagging. In Automatic Speech Recog-
nition and Understanding Workshop (ASRU), 2017
IEEE. IEEE, pages 547–553.

Young-Bum Kim, Sungjin Lee, and Karl Stratos.
2017b. Onenet: Joint domain, intent, slot predic-
tion for spoken language understanding. In Auto-
matic Speech Recognition and Understanding Work-
shop (ASRU), 2017 IEEE. IEEE, pages 547–553.

Young-Bum Kim, Karl Stratos, and Dongchan Kim.
2017c. Adversarial adaptation of synthetic or stale
data. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics.
Association for Computational Linguistics, pages
1297–1307.

23



Young-Bum Kim, Karl Stratos, and Dongchan Kim.
2017d. Domain attention with an ensemble of ex-
perts. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics. vol-
ume 1, pages 643–653.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2015b. Pre-training of hidden-unit crfs. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing. volume 2, pages 192–198.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2016. Frustratingly easy neural domain adaptation.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers. pages 387–396.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2017e. A framework for pre-training hidden-unit
conditional random fields and its extension to long
short term memory networks. Computer Speech &
Language 46:311–326.

Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and
Minwoo Jeong. 2015c. New transfer learning tech-
niques for disparate label sets. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing. vol-
ume 1, pages 473–482.

Diederik Kingma and Jimmy Ba. 2015. ADAM: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Günter Klambauer, Thomas Unterthiner, Andreas
Mayr, and Sepp Hochreiter. 2017. Self-normalizing
neural networks. In Advances in Neural Information
Processing Systems 30 (NIPS). pages 972–981.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). pages 1520–1530.

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. In Interspeech. pages 685–689.

Bing Liu and Ian Lane. 2017. Multi-domain adversar-
ial learning for slot filling in spoken language un-
derstanding. In NIPS Workshop on Conversational
AI.

F. Morbini, K. Audhkhasi, R. Artstein, M. Van Seg-
broeck, K. Sagae, P. Georgiou, D. R. Traum, and
S. Narayanan. 2012. A reranking approach for
recognition and classification of speech input in con-
versational dialogue systems. In IEEE Spoken Lan-
guage Technology Workshop (SLT). pages 49–54.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, et al. 2017. Dynet: The
dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

Truc-Vien T Nguyen, Alessandro Moschitti, and
Giuseppe Riccardi. 2010. Kernel-based reranking
for named-entity extraction. In Proceedings of the
23rd International Conference on Computational
Linguistics: Posters. Association for Computational
Linguistics, pages 901–909.

Brian Roark, Yang Liu, Mary Harper, Robin Stew-
art, Matthew Lease, Matthew Snover, Izhak Shafran,
Bonnie Dorr, John Hale, Anna Krasnyanskaya, et al.
2006. Reranking for sentence boundary detection in
conversational speech. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP).

Jean-Philippe Robichaud, Paul A. Crook, Puyang Xu,
Omar Zia Khan, and Ruhi Sarikaya. 2014. Hy-
potheses ranking for robust domain classification
and tracking in dialogue systems. In Interspeech.
pages 145–149.

Ruhi Sarikaya. 2017. The technology behind personal
digital assistants: An overview of the system archi-
tecture and key components. IEEE Signal Process-
ing Magazine 34(1):67–81.

Libin Shen, Anoop Sarkar, and Franz Josef Och. 2004.
Discriminative reranking for machine translation. In
Proceedings of the Human Language Technology
Conference of the North American Chapter of the
Association for Computational Linguistics: HLT-
NAACL 2004.

Gokhan Tur and Renato de Mori. 2011. Spoken Lan-
guage Understanding: Systems for Extracting Se-
mantic Information from Speech. New York, NY:
John Wiley and Sons.

Puyang Xu and Ruhi Sarikaya. 2014. Contextual do-
main classification in spoken language understand-
ing systems using recurrent neural network. In IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP). pages 136–140.

Zhilin Yang, Ruslan Salakhutdinov, and William W
Cohen. 2017. Transfer learning for sequence tag-
ging with hierarchical recurrent networks. Inter-
national Conference on Learning Representation
(ICLR) .

Xiaodong Zhang and Houfeng Wang. 2016. A joint
model of intent determination and slot filling for
spoken language understanding. In International
Joint Conference on Artificial Intelligence (IJCAI).
pages 2993–2999.

24


