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Introduction

It is our pleasure to welcome you to the inaugural Industry Track in the *ACL family of conferences at
NAACL 2018.

The idea of organizing an industry track stemmed from the challenging issues encountered while
attempting to apply state-of-the-art techniques to real-world language problems. As those who have
attempted these problems know, practical applications are rarely as well defined as in laboratory settings
and the data never as clean. In addition, there may be practical constraints such as computational
requirements, processing speed, memory footprint, latency requirements, ease of updating a deployed
solution that need to be balanced judiciously, and capability to be embedded as part of a larger system.
The NAACL 2018 Industry Track was born out of the desire to provide a forum for researchers, engineers
and application developers who are experienced in these issues to exchange ideas, share results and
discuss use-cases of successful development and deployments of language technologies in real-world
settings.

Although we thought that the time is ripe in the NLP field for such a forum, and hoped that the community
will embrace the opportunity to share their experience with others, it was nonetheless a guessing game
as to the amount of interest the track would actually generate. As submissions drew to a close in late
February, we were happy to report that we received 91 submissions, far exceeding our expectations
(which led to last-minute scrambling to recruit more reviewers, but we’re not complaining!). Six of the
papers were desk rejects due to non-conformance with submission requirements, and the remaining 85
papers were reviewed by 65 reviewers. We accepted 28 papers – an acceptance rate of 32.9% (one paper
was subsequently withdrawn after acceptance) of which 19 papers will be presented in oral sessions that
run as a parallel track during the main conference, and 8 papers will be presented during poster sessions.
Of course, none of this would have been possible without the participation of authors and reviewers,
and we would like to convey our heartfelt "thank you" to all the authors for submitting papers and the
reviewers for their efforts in the paper selection process.

We analyzed our submissions along a couple of dimensions and would like to share some interesting
statistics. First we looked at the submissions with respect to the distribution of author affiliations. As one
would expect, the industry track focuses on problems that manifest themselves more readily in industry
than in academia. Indeed, of the 85 papers reviewed, 55 papers are authored by researchers/engineers in
industry laboratories. The particularly encouraging statistic, however, is that 25 papers are the results of
collaboration between those in industry and academia. it would be interesting to track these statistics in
future years to see if the collaboration increases as the field continues to mature. The second dimension
we analyzed is the geographic distribution of authors by contact author. This being a NAACL conference,
it is no surprise that 62% of the papers came from North America. We are pleased with the participation
of authors from other regions, including 22% from Europe, 14% from Asia, and 1% from Africa.

In addition to paper presentations, we will have two plenary keynote speeches. For the keynote speeches,
we aimed to feature researchers who also have first hand experience applying research results to practical
applications. To that end, we are honored to have two illustrious members of NLP community – Daniel
Marcu, who co-founded Language Weaver more than 15 years ago and is now the director of MT/NLP
at Amazon, and Mari Ostendorf, professor at the University of Washington, who led a team of students
to build a social bot that won the 2017 Alexa Prize competition. We are confident that their experiences
would be of immense interest to the larger NLP community.

Another highlight of the industry track includes two panel discussions on topics of increasing importance
in the community. The first panel, "Careers in Industry", moderated by Philip Resnik, professor at
University of Maryland, is primarily geared toward students and recent graduates who are exploring
careers in industry versus academia. The panel will feature experienced professionals who have worked
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in both environments to share their experience and offer advice, based on questions gathered from the
*ACL community earlier this year . The second panel, "Ethics in NLP", will be moderated by Dirk Hovy,
professor at Università Bocconi, and will focus on raising awareness of the emerging issues of biases
present in NLP/AI solutions, the social implications of such biases, and what we, as NLP practitioners,
can do to reduce them.

With the overwhelming response to the call for papers, the language community has unambiguously
endorsed the relevance of the Industry track in the milieu of annual conferences. As organizers, we
have attempted to amplify this endorsement by bringing to the participants a invigorating technical
program. We hope through your engaging discussions and active participation during the sessions, you
will unanimously support and nurture the concept of an Industry track in NLP conferences over the years
to come.

Srinivas Bangalore (Interactions Labs)
Jennifer Chu-Carroll (Elemental Cognition)
Yunyao Li (IBM Research - Almaden)

NAACL 2018 Industry Track Co-Chairs
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Abstract 

In recent years the use of electronic medical 

records has accelerated resulting in large 

volumes of medical data when a patient vis-

its a healthcare facility.  As a first step to-

wards reimbursement healthcare institu-

tions need to associate ICD-10 billing 

codes to these documents. This is done by 

trained clinical coders who may use a com-

puter assisted solution for shortlisting of 

codes.  In this work, we present our work to 

build a machine learning based scalable 

system for predicting ICD-10 codes from 

electronic medical records. We address data 

imbalance issues by implementing two sys-

tem architectures using convolutional neu-

ral networks and logistic regression mod-

els.  We illustrate the pros and cons of those 

system designs and show that the best per-

formance can be achieved by leveraging the 

advantages of both using a system combi-

nation approach. 

1 Introduction 

Medical classification, also called medical coding, 

plays a vital role for healthcare providers. Medical 

coding is the process of assigning ICD-10 codes 

(2018) to a patient’s visit in a healthcare facility. In 

the inpatient case these ICD-10 codes are further 

combined into Diagnosis-Related Groups (DRG) 

which classify inpatient stays into billing groups 

for the purposes of reimbursement. 

Traditionally, medical coding is a manual pro-

cess which involves a medical coder. The medical 

coder examines the complete encounter of a patient 

– the set of all associated Electronic Medical Rec-

ords (EMRs) – and assigns the relevant ICD-10 

                                                      
1 Authors are listed in alphabetic order with respect to  

their family names. 

codes. Medical classification is a complex task in 

many dimensions though. In the inpatient case the 

ICD-10 codes split into the Clinical Modification 

Coding System ICD-10-CM for diagnosis coding 

and the Procedure Coding System ICD-10-PCS for 

procedure coding. As of January 2018, there are 

71704 ICD-10-CM codes and 78705 ICD-10-PCS 

codes (ICD-10, 2018).  

Besides the sheer amount of possible codes, the 

coding process is further hampered by the unstruc-

tured nature of EMRs. Dependent on the individual 

encounter the set of associated EMRs can be very 

diverse (Scheurwegs et al., 2015). The EMRs may 

be composed out of discharge summaries, emer-

gency room notes, imaging diagnoses, anesthesia 

process notes, laboratory reports, etcetera. In addi-

tion, EMRs typically stem from different physi-

cians and laboratories. This results in large 

amounts of redundant information yet presented in 

different writing styles but without guarantee to be 

complete (Weiskopf et al., 2013; Cohen et al., 

2013). Some of the EMRs may be composed out of 

free form written text whereas others contain dic-

tated text, tables or a mixture of tables and text. 

Overall, when working with EMRs one is faced 

with severe data quality issues (Miotto et al., 2016).  

To reduce the complexity of the medical coding 

task Computer Assisted Coding (CAC) was intro-

duced. CAC is meant to automatically predict the 

relevant ICD-10 codes from the EMRs (Perotte et 

al., 2014; Scheurwegs et al., 2017; Shi et al., 2018; 

Pakhomov et al., 2006). Ideally CAC comes up 

with the exact set of codes which describe an en-

counter. However, due to the complexity of the task 

this is hardly possible. Instead CAC is typically de-

signed to assist the medical coder by providing a 

list of most probable codes. 

1



 
 
 

   

 In the paper on hand we present our work to de-

sign such a CAC system. The emphasis lies on in-

dustrial aspects as the scale and the scaling of the 

system. We describe the design of a system which 

models 3000 ICD-10-CM codes and applies up to 

234k encounters to build the model. To address 

data imbalance issues a system combination ap-

proach was followed combining a wide and a deep 

modeling strategy (Heng et al., 2016). Finally, scal-

ing aspects were examined by increasing the num-

ber of encounters used for training and develop-

ment from 81k to 234k.  

This paper is organized as follows. In Section 2 

we state the problem under investigation. Section 3 

gives a detailed description of the data, and Section 

4 describes the methods we apply to approach the 

problem. Section 5 provides experiments and re-

sults, and Section 6 closes with the conclusions. 

 

2 Problem description 

The presented work studies the case of diagnosis 

code prediction for the inpatient case which corre-

sponds to the prediction of ICD-10-CM codes. 

Typically, there are several ICD-10-CM codes 

which apply to an encounter making ICD-10-CM 

code prediction a multi-label classification task 

(Zhang and Zhou, 2014). Ultimately, the task con-

sists in mapping a patient’s encounter to all or a 

subset of the 71704 possible ICD-10-CM codes. 

Traditionally, rule-based approaches which lev-

erage linguistic expertise were used to address this 

problem (Farkas and Szarvas, 2008; Goldstein et 

al., 2007). Rule based methods don’t rely on train-

ing data. Yet, this advantage is dearly bought by a 

lack of scalability and the need for linguistic expert 

knowledge which results in an expensive develop-

ment phase and high maintenance costs. 

The work on hand investigates the use of statis-

tical methods for the CAC task. Statistical ap-

proaches have the advantage that they offer ways 

of continued learning. This can be leveraged to 

scale and improve the system over time which are 

important features in the dynamic environment 

healthcare providers are faced with. 

  

3 Data and data preparation 

The data used for this work stems from ten 

healthcare providers and covers 17 months of data. 

For the analysis of scalability aspects, the data was 

split into two partitions. Partition A covers 6 

months of data and partition B covers additional 10 

months of data. The remaining one month of data 

served as test set. For both partitions, 5% of the 

data was segregated and used as development (dev) 

set. The dev set is meant for threshold tuning, the 

generation of early stopping metrics and the esti-

mation of interpolation weights. Table 1 provides 

some key statistics of the data. 

One peculiarity of the data are encounters which 

are quite long, see Figure 1. The average and the 

median encounter length was found to be 11676 

and 7238 tokens, respectively. In addition, the en-

counter length distribution exhibits a long tail. At 

the upper end there are 1422 encounters (0.63%) 

with more than 100k tokens and the maximum en-

counter length reaches 857k tokens. 

Figure 2 shows the ranked frequency distribu-

tion over the target codes. From Figure 2 it is ap-

parent that out of the 18846 codes seen in the data 

about two-thirds appear less than ten times. This 

code sparsity issue had a direct impact on the sys-

tem design as many of the codes can hardly be 

modeled. 

Data preprocessing was kept at a minimum. Af-

ter concatenating all EHRs of one encounter into 

one document lowercasing was applied. Date and 

time expressions as well as URLs, phone numbers 

and other numerical expressions were 

 Partition-A 

Train/Dev 

Partition-B 

Train/Dev 

Test 

#months of data 6 16 1 

#encounters 81k 234k 14.1k 

#tokens 0.9G 2.6G 160M 

#running codes 870k 2.5M 143k 

#codes types 13094 18846 6863 

Table 1:  Data statistics. 

 

 

 

Figure 1:  Encounter length distribution. 
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canonicalized. Finally, after applying some shallow 

normalization (hyphens, underscores) tokenization 

was done using whitespace as token separators. 

 

4 Models and methods 

As mentioned in Section 3 we had to operate over 

a set of codes with a wide range of occurrence 

probabilities. For some of the target codes training 

material was abundant whereas for others we were 

faced by severe data sparsity. To address this issue, 

we followed a system combination strategy com-

bining a set of Logistic Regression (LR) classifiers, 

with a Convolutional Neural Network (CNN). 

To cope with the multi-label nature of the classi-

fication problem we applied a first-order modeling 

strategy tackling the task in a code-by-code manner 

thus ignoring the coexistence of other codes 

(Zhang and Zhou, 2014). In case of LR this model-

ing strategy was strict, meaning that one LR model 

was built per target code. In the CNN case a relaxed 

version of this strategy was applied. One common 

CNN was built, with the target codes modeled con-

ditionally independent by the loss function.  

Regularized binary cross-entropy was applied 

for both the LR and the CNN objective function. In 

all cases model training was followed by a thresh-

old tuning step to determine optimal decision 

thresholds. Finally, all test results are presented in 

terms of micro-F1 (Wu and Zhou, 2017). 

 

4.1 Logistic regression  

LR is a well understood and robust classification 

method. It is expected to perform well even for low 

frequency classes. The problem is convex and typ-

ically applied in conjunction with a L1 or a L2 

regularization, the ‖𝑤‖ term in the LR objective 

function (1).  

 min 
𝑤

𝐶‖𝑤‖ + ∑ log(1 + 𝑒−𝑦𝑖𝑤𝑇𝑥𝑖)𝑙
𝑖=1   (1) 

For solving the LR problem we used LibLinear 

(Fan et al., 2008) which is a large-scale linear clas-

sification library. The LibLinear solver exhibits the 

advantage that there is only one free hyperparame-

ter to tune, namely the regularization weight 𝐶. 

 

4.2 Convolutional neural networks 

Compared to LR a CNN features an increased com-

plexity. This higher modeling capability comes 

though with the need for more training data which 

makes it more suited for high frequency classes. 

The CNN design we applied for this work fol-

lows the work described in Kalchbrenner et al.  

(2014) and Conneau et al. (2016). The basic archi-

tecture consists of one convolutional layer which is 

followed by max-pooling resulting in one feature 

per convolutional filter and document. As input to 

the convolutional layer word embeddings apply 

which were pre-trained using word2vec (Mikolov 

et al., 2013). The feature extraction layer is suc-

ceeded by the classification part of the network 

consisting of a feed-forward network of one fully-

connected hidden layer and the final output layer. 

The output layer is formed by one node with sig-

moid activation for each ICD-10 code, effectively 

modeling the code’s probability. 

Additional convolutional layers are added in 

conjunction with highway layers connecting each 

convolutional layer directly with the classification 

part of the network. The highway connections and 

the output of the last convolutional layer are fol-

lowed by the same max-pooling operation de-

scribed above. The convolutional layers are con-

nected by a sliding-window max-pooling opera-

tion. For each filter of the lower convolutional layer 

a max-pooling operator of kernel-width 3 is applied 

to the stream of filter output values. With a stride 

of one the layer’s output consists of a vector-fea-

ture stream which is of the same length as the input 

token sequence and a vector-dimension equal to the 

number of filters of the lower convolutional layer.  

For our CNN implementation Theano (2017) 

was used. All CNNs were built using a NVIDIA 

P6000 GPU with 22GByte GPU-memory. 

 

 

Figure 2:  Code frequency over code-IDs. 
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4.3 System combination 

System combination was implemented by linearly 

interpolating the hypothesized predictions from the 

LR system and the CNN system. The interpolation 

weights were optimized maximizing dev set micro-

F1. In case of codes which were not modeled by the 

CNN the LR predictions were directly used.  

5 Experiments and results 

For practical reasons it was not possible to model 

all ICD-10-CM codes. Most of the 71704 ICD-10-

CM codes are never seen in the available data and 

even many of the seen codes are too rare to be mod-

eled, see Figure 2. We therefore restricted our mod-

els to the most frequent codes seen within the first 

seven month of data. For the LR systems we used 

the most frequent 3000 codes. The CNN was re-

stricted to model only the most frequent 1000 codes 

which reflects the data sparsity issues discussed in 

Section 3. With these settings a code coverage of 

>95% for the LR systems and >87 % for the CNN 

systems was obtained. Table 2 gives detailed code 

coverage statistics of the training data. 

Model testing was directly affected by the target 

code restrictions. Out of the 143k running codes of 

the test set 6189 instances are not covered by the 

3000 modeled codes and 71 of the 3000 modeled 

codes do even not appear in the test set. 

The following experiments give results for the 

most frequent (top) 200, 1000, and 3000 codes and 

all codes seen in the test set. Note that for the case 

of 1000 codes and the case of 3000 codes there are 

17653 and 6189 code instances, respectively, 

which are not modeled. These instances always en-

tered the F1 calculation as false negatives when 

scored on all seen codes.  

5.1 Basic system development 

This phase of the project focused on basic system 

design question. All experiments were carried out 

using data-partition A. 

In case of the LR system we model a document 

as a ‘bag-of-ngrams’ up to an ngram-length of 

three. With a frequency cutoff of 20 this gave 4.1M 

features. Using higher order ngram-features or a 

smaller cutoff value didn’t provide any improve-

ments. For all LR experiments described in this 

work indicator features apply.  

Table 3 lists the results of two LR systems. Both 

systems apply the same feature file which is used 

for all 3000 code specific classifiers. The basic LRa 

system applies a common regularization weight 𝐶 

for all codes. In case of system LRa2 the regulari-

zation weight 𝐶 was tuned individually for each 

code using 4-fold cross-validation over the training 

set. Tuning the regularization weights resulted in 

micro-F1 gains of ~0.8% absolute. Using an in-

creased fold number didn’t provide any improve-

ments. 

For the CNN experiments we first used the CNN 

design with one convolutional layer described in 

Section 4. After some initial experiments the con-

volutional layer of the network was fixed to 900 fil-

ters with a filter width of five tokens. The hidden 

layer was fixed to 1024 nodes and the output layer 

models the most frequent 1000 ICD-10-CM codes. 

Max-pooling was followed by Relu-activations. 

All models were trained with RMSPROB. The 

convolutional layer used L2-regularization and L1-

regularization was used for the hidden layer and the 

output layer. Dropout was applied to the output of 

the max-pool operation. Best results were achieved 

with a batch size (encounter level) of 32. 

The result named CNa1 in Table 3 follows the 

  Top 200/1k/3k and All seen codes 

Parti-

tion 

Data statistics 200 1000 3000 All 

A #running codes  560k 768k 836k 870k 

A #code coverage 64.4% 88.3% 96.2% 100% 

B #running codes 1.6M 2.1M 2.3M 2.5M 

B #code coverage 63.3% 87.3% 95.2% 100% 

Table 2: Code coverage statistics. 

 

 

 Micro-F1 for the top 200/1k/3k 

codes and All seen codes 

System 200 1000 3000 All 

LRa1 70.37 64.03 61.59 60.19 

LRa2 71.48 64.81 62.38 60.96 

CNa1 73.96 66.31 63.31 61.79 

CNa2 74.82 67.25 64.24 62.71 

LRa2 & CNa2 75.38 68.61 65.65 64.14 

Table 3:  Partition-A test results. LRa1: LR no 

c-tuning; LRa2: LR with c-tuning, CNa1: 

CNN 1 convolutional layer; CNa2: CNN 2 

convolutional layers; LRa2 & CNa2: interpo-

lated system. 
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design with one convolutional layer. The CNa1 

system was initialized with 50-dimensional word 

embeddings which were pre-trained on the training 

data with word2vec (Mikolov et al., 2013). These 

embeddings were further refined during network 

training. This gave a final micro-F1 of 66.31% ab-

solute when scored over the 1000 modeled codes. 

Best results were obtained with 50-dimensional 

embeddings and without batch normalization 

within the convolutional layer.  

In a second step some initial experiments with 

the two convolutional layers CNN design were car-

ried out. This network featured 300 filters and 900 

filters in the first and second convolutional layer, 

respectively. The filter width was set to five and 

Relu-activations were used for the first layer.  

Table 3 shows that the two convolutional layers 

system CNa2 achieves the best performance of a 

single system with an absolute increase in micro-

F1 of ~0.9% over the CNa1 system with its one 

convolutional layer. In contrast to the setup with 

one convolutional layer the use of batch normaliza-

tion turned out to be essential in the two-convolu-

tional layer setup. Dropping it gave worse results 

compared to the one-convolutional layer design. 

 Finally, we explored the combination of the LR 

approach with the CNN approach. Linearly inter-

polating the LRa2 system with the CNa2 system 

gave the best results with 64.44% micro-F1 

(65.37% precision, 63.53% recall) clearly outper-

forming the underlying individual systems. We 

also examined other system combination strategies 

following the work from Heng et al. (2016). How-

ever, the linear interpolation approach described in 

this work turned out to work best.  

Investigating the performance of the LRa2 sys-

tem and the CNa2 system on code level, we found 

our assumption confirmed that the CNN is more 

suited to model high frequency codes whereas the 

LR system does better for low frequency codes. 

Figure 3 shows that the CNN does better for the 

most frequent 200 codes. However, after a transi-

tion region covering roughly the next 300 codes, 

the LR system starts to outperform the CNN sys-

tem consistently, starting approximately from code 

position 500 on, see Figure 4. 

These finding were reconfirmed when checking 

for the relative improvements of the combined 

LRa2 & CNa2 system over the CNa2 system. 

Comparing the scores for the most frequent 200 

codes and the most frequent 1000 codes one finds 

0.75% and 2.02% relative improvements, respec-

tively. The LR system also fills up the 2000 codes 

not modeled by the CNN giving in a relative micro-

F1 win of 2.19% when scoring over 3000 codes.   

An integral part of the model building process 

was the tuning of the decision thresholds. Though 

individual thresholds per code are possible best mi-

cro-F1 results were always achieved with a com-

mon decision threshold over all codes. This behav-

ior reflects again the data sparsity issues as not all 

modeled codes appear in the dev set and many 

other codes are so sparse that no robust threshold 

estimation was possible. 

5.2 System refinements 

In this phase of the project we focused on improved 

training recipes and the use of more training data 

given by data-partition B. We kept on modeling the 

same set of codes as used in Section 5.2. This lead 

 

Figure 3:  F1-scores, top 200 codes, CNN 

(dashed line) versus LR (dotted line).  
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Figure 4:  F1-scores, top 201-1000 codes, CNN 

(dashed line) versus LR (dotted line) 
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to a slight reduction in code coverage, see Table 2, 

but guaranteed the comparability of the results. 

For LR a bootstrapping approach was followed 

aiming to refine the system step-by-step from one 

model to the next model. We built up on the train-

ing recipe used to build system LRa2, see Section 

5.1, i.e. L1 regularized LR with per-code tuned reg-

ularization constants 𝐶. First, we switched to the 

larger data-partition B which added additional 10 

months of data to the original 6 months of data. 

Comparing the resulting LRb1 system with the 

LRa2 system, see Table 4, we found that the addi-

tional data improved micro-F1 by ~1.2% absolute. 

The use of more data increased the features 

space from 4.1M features to 9.2M features. To ease 

subsequent development work, we applied a fea-

ture reduction approach taking advantage of the 

feature selection property of the L1 regularization 

(Andrew Ng, 2004). Reducing the feature space of 

the LRb1 system to all features with none-zero 

model weights reduced the features space by a fac-

tor of 62 giving 149k features. This feature selec-

tion step also improved system performance by 

~0.2% absolute micro-F1, see LRb2 in Table 4. 

LR is a linear classification method fitting a hy-

perplane as decision boundary into feature space. 

To leverage the increased modeling capabilities of 

a none-linear modeling regime, we applied a quad-

ratic kernel to the feature space. With a features di-

mension of 149k this is yet a prohibitive endeavor. 

Instead we used code specific reduced features 

spaces. Based on the most prominent 400 features 

per code the quadratic kernel was applied which 

gave up to 80.2k squared features per code. After 

model building these features spaces were reduced 

again to all features with none-zero model weights. 

                                                      
2 At the time of writing this paper the results for the 2-con-

volutional layer CNN which was built on the partition B 

data was still not available. 

Table 4 lists the corresponding results as LRb3. For 

the most frequent 200 codes absolute micro-F1 im-

provements of ~0.7% are observed with respect to 

the LRb2 system. For the less frequent codes this 

effect is nearly washed out though. 

The partition B data was also applied to the 

CNN. Table 5 compares the corresponding 1-con-

volutional layer system built on the partition B data 

with the CNNs built on the partition A data2. We 

found that the additional 10 month of training data 

provide a ~0.2% - ~1% improvement in absolute 

micro-F1. Note that system CNb1 outperforms sys-

tem CNa2 when soring over all 1000 modeled 

codes but that system CNa2 is better when scoring 

only over the top 200 codes, see Table 5. We attrib-

ute this behavior to the change in the code distribu-

tion when switching from partition A to partition B. 

Finally, the best LR system, LRb3, was com-

bined with the CNa2 system giving the best overall 

results with a micro-F1 of 64.60% (68.10% preci-

sion, 61.60% recall). Compared to the best single 

systems, CNa2 and CNb1, absolute micro-F1 im-

provements of ~1.8% - ~1.9% are observed.  

6 Conclusions 

In this work we have presented our work on build-

ing a machine learnable CAC system. The focus 

lies on aspects developers are faced with in prac-

tice. Data peculiarities like data amount, imbal-

ances in code frequencies or sample length were 

discussed. We provide evidence that the imbal-

ance issues are best addressed by a dedicated 

modeling approach for each datatype. Finally, 

with our combined LR-CNN system which mod-

els 3000 ICD-10-CM codes we achieved a micro-

  Micro-F1 for the top 200/1k/3k 

codes and All seen codes 

System #features 200 1000 3000 All 

LRa2 4.1M 71.48 64.81 62.38 60.96 

LRb1 9.2M 72.62 66.18 63.83 62.39 

LRb2 149k 72.78 66.41 64.05 62.59 

LRb3 7 - 5113 73.45 66.70 64.18 62.72 

Table 4:  Partition-B LR test results. LRa2: 

Partition-A reference system; LRb1: Same as 

LRa2 but with Phase-B data; LRb2: Same as 

LRb1 but with feature reduction; LRb3: sys-

tem with per-code quadratic-kernel features. 

 Micro-F1 for the top 200/1k/3k 

codes and All seen codes 

System 200 1000 3000 All 

CNa1 73.96 66.31 63.31 61.79 

CNb1 74.19 67.34 64.36 62.85 

CNa2 74.82 67.25 64.24 62.71 

LRb3 & CNa2 75.71 69.07 66.11 64.60 

Table 5:  Partition-B CNN and combined test 

results. CNa1: Partition-A 1-convolutional 

layer reference system; CNb1: Same as CNa1 

but with Partition-B data; CNa2: Partition-A 2-

convolutional layer reference system; LRb3 & 

CNa2: interpolated system.  
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F1 score of 64.60% when scored over all codes 

seen in the test set. 
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Abstract

Matching a seller listed item to an appropriate
product has become a fundamental and one of
the most significant step for e-commerce plat-
forms for product based experience. It has a
huge impact on making the search effective,
search engine optimization, providing prod-
uct reviews and product price estimation etc.
along with many other advantages for a bet-
ter user experience. As significant and vital it
has become, the challenge to tackle the com-
plexity has become huge with the exponen-
tial growth of individual and business sellers
trading millions of products everyday. We ex-
plored two approaches; classification based on
shallow neural network and similarity based
on deep siamese network. These models out-
perform the baseline by more than 5% in term
of accuracy and are capable of extremely effi-
cient training and inference.

1 Introduction

E-commerce marketplaces such as Amazon and
eBay provide platforms where millions of peo-
ple trade online every day. The growth of such
marketplaces has been exponential in recent years
with millions of active sellers and billions of live
items listed at any point in time, bringing new in-
teresting challenges.

On the buying side, while it provides buy-
ers with more options and flexibility, it renders
searching for a specific item and comparing items
difficult. On the selling side, it dilutes the visi-
bility of the sellers’ items both on the marketplace
and on external search engines such as Google and
Bing. Also, it requires the sellers to provide a lot
of details about the goods they are listing.

The product based experience is an enticing
search experience that helps fulfill both buyers and
sellers needs. The buyers can easily search, com-
pare and make a decision on the product they wish

to purchase while the sellers can speed up their
listing process by using product details and stock
photos from existing product catalog resulting in
a professional-looking listing, more appealing in
search results.

The process of automatically mapping items1 to
products become critical. Different sellers may
describe the same item in very different ways,
using very different terminologies. While some
business sellers provide rich, structured descrip-
tion of their listings, the vast majority only pro-
vide short and sometimes insufficient information.
The problem become even harder when informa-
tion provided is not specific enough to identify
the corresponding products. Lots of studies have
been focused on structuring the products inventory
by extracting and enriching attribute-value pairs
(Mauge et al., 2012; Ghani et al., 2006) from var-
ious sources, and feed them into a matching func-
tion. The direction towards learning automatic se-
mantic relationships on unstructured sequence of
e-commerce text has been of less focus.

Neural based methods have recently shown to
work well to capture the meanings and seman-
tic relationships among words in textual data. In
this paper, we aim at studying such approaches
for e-commerce domain. We explored two neu-
ral network architectures for our product match-
ing task; a simple shallow neural network model
based on the fastText (Joulin et al., 2016b; Bo-
janowski et al., 2016; Joulin et al., 2016a) library
and a deep siamese network model based on bidi-
rectional long short term memory (Neculoiu et al.,
2016; Mueller and Thyagarajan, 2016). We ap-
proach the problem in two ways, as a classifica-
tion task where we have access to item listings and

1An item is an offer from a seller for a specific good con-
taining seller specific information (description, condition, re-
turn, etc.). A product is the catalog (manufacturer) descrip-
tion of a good.
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corresponding product ids, and as a similarity task
where we also have access to product informa-
tion. These approaches constitute different objec-
tive functions; classification aims at classifying an
input instance into the identity classes, while sim-
ilarity objective is to minimize the intra-class dis-
tance while maximizing the inter-class distance.

In the next section, we will discuss the chal-
lenges, section 3 contains the approaches and
models we explored, and section 4 discusses the
experiments and results. We will conclude after
briefly reviewing the related work in section 5.

2 Challenges

Product matching is a difficult task due to the
wider spectrum of products, many alike but differ-
ent products, often missing or wrong values, and
frequent variation in textual nature of products. In
the following sections, we will briefly cover the
challenges that make the task of product matching
hard.

2.1 Data Sparsity

While some business and professional sellers pro-
vide rich information of their item listings, a vast
majority of medium and small sellers provide
short, unstructured and sometimes incomplete de-
scriptions. This results in a lot of data sparsity due
to missing values that are important to identify the
products.

2.2 Product Duplicates

Data sparsity and erroneous information auto-
matically extracted from unstructured or semi-
structured sources may result into creation of the
same product twice or multiple times called du-
plicates. The product duplicates are not only one
of the biggest source of bad product experience,
but also makes the product matching harder as
multiple entities of the same product exists with
overlapping information. The duplicates can have
many fatal effects, including preventing machine
learning algorithms from discovering important
consistencies in product representations.

2.3 Single Source Products

There are many rare products such as antiques,
collectibles, books, sculptures, etc. that are of-
fered by only a particular single or business seller.
Such products are often referred as single source
products. In such cases, the description of the

product can not be cross-validated in the absence
of alternative sources. This causes a one-shot
learning problem, which consists of learning a
class from a single labeled example.

2.4 Product Bundles and Lots

Bundles are defined as multiple different products
being grouped together and sold as a single offer.
If the offer contains multiples of the same product
these offers are referred as a lot. They make data
ambiguous such as a number in product descrip-
tion could be a lot quantity or variation of product
edition. Such product offers exhibit another level
of complexity requiring special treatment or a sep-
arate model to identify lots and bundles.

2.5 Extreme Classification

Traditionally, multi-class classification solutions
have been scalable up-to few hundred classes. As
the number of classes grow, the time and space
complexity increase exponentially to the extent
that standard models do not scale up. For the task
of product matching, the number of products are
in millions and hence the methods that can scale
up to million classes are required.

2.6 Open Set Classification

The number of classes are usually pre-defined for
classification tasks and models are designed to
predict one of those pre-defined classes for a given
instance. For the task for product matching, new
products are created everyday and they become
part of inventory incrementing the amount of prod-
ucts daily. It either requires to re-train the models
frequently with newly created products with addi-
tional classes or to employ models capable of han-
dling unseen products.

3 Text Classification vs Similarity

The aim of text classification is to assign some
piece of text (source) to one or more predefined
classes or labels (targets). The piece of text could
be a document, news article, listing offers, email,
product review etc. Depending upon the task,
the target labels are usually topic, category, prod-
uct, sentiment id or name. Traditional classifi-
cation approaches are employed to learn feature
representation on the source and attempt to pre-
dict the target label. There are cases where in-
puts are text pairs along with their relevance score
such as question-answer, query-document, source-
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translation pairs etc. Both input texts can be en-
coded with rich representations. For such cases
similarity based methods are natural architecture
to learn differentiation among them.

We research both classification and similar-
ity algorithms for product matching. Classifica-
tion based approach using shallow neural network
based on fastText library turns out to be very ef-
ficient with good performance but it requires to
re-train the models for newly created products
as mentioned in previous section. The similarity
based method does not have this bottle neck as it
is tailored towards open class set problem given a
sufficient amount of paired dataset. The similar-
ity based method also allows to use product side
data in more natural way to model our paired item-
product data.

3.1 Shallow Neural Network - fastText

Learning word representations has a long history
in natural language processing. These representa-
tions are typically learned from large corpora ei-
ther using count statistics or distributed semantic
representations. Recently, (Mikolov et al., 2013)
proposed simple log-bilinear models to learn con-
tinuous representations of words on very large cor-
pora efficiently using Continuous Bag Of Words
(CBOW) and Skip-gram models. Both of these
are shallow neural networks which map word(s)
to the target variable which is also a word(s). Both
of these methods learn weights which act as word
vector representations. The assumption of these
models is that semantically or grammatically re-
lated words are mapped to similar geometric lo-
cations in a high-dimensional continuous space.
The probability distribution is thus much smoother
and therefore the model has a better generalization
power on unseen events.

Recently proposed fastText (Joulin et al.,
2016b)2 library extended these models for super-
vised classification tasks. This architecture is sim-
ilar to the CBOW model of (Mikolov et al., 2013),
where the center word is replaced by a label. They
also incorporated bag-of-ngram as additional fea-
tures to capture some partial information about the
local word order. The n-grams features are ef-
ficiently implemented by using the hashing trick
(Goodman, 2001).

The output layer consists of a softmax function
that assigns a probability distribution to each of the

2https://github.com/facebookresearch/fastText

target label. The loss function aims at minimizing
the negative log-likelihood over the classes. Be-
cause full-softmax is not scalable for large number
of classes, fastText offers hierarchical-softmax as
an alternate approach. This implementation uses
huffman tree to reduce the complexity to logarith-
mic while incurring minor performance degrada-
tion. The hierarchical softmax function is the key
factor that makes the task scalable to our million
class dataset. For full details, we refer the reader
to the original paper (Joulin et al., 2016b).

For our product matching task, these models not
only offer the benefit of the rich distributed rep-
resentation of item listings but also allow to deal
with millions of classes while reducing the train-
ing time from days to minutes, and keeping good
performance in terms of accuracy.

3.2 Siamese Networks

Siamese networks are a special type of neural net-
work architecture having two identical structure
trained simultaneously with shared weights. In-
stead of a model learning to classify its inputs,
the neural network learns to differentiate between
two inputs. In our case, we are interested in find-
ing similarity between the item listings and cor-
responding products given pairs whose semantic
similarity has been labeled. Our siamese network
consists of two parallel neural networks, each tak-
ing one of the two inputs, listings or products in
our case, along with a binary score (1 for match
and 0 for mismatch).

Different kind of parallel structures has been
explored for various tasks including Convolu-
tional Neural Networks (CNN), Skip-thought vec-
tors, Tree-LSTM etc. Recurrent Neural Networks
(RNN) have shown promising performance on
textual sequence of data for various NLP tasks.
The Long Short Term Memory (LSTM) networks
proved to be superior to basic RNNs for learn-
ing long range dependencies through its use of
memory cell units that can store/access informa-
tion across lengthy input sequences. The Bidi-
rectional LSTM networks can leverage the knowl-
edge present on both sides of the current word to
encode the text and have shown good performance
on various NLP tasks like named entity recogni-
tion (Huang et al., 2015; Wang et al., 2015) and
text similarity (Neculoiu et al., 2016).

In this work, we studied BiLSTMs for our
siamese network architecture that is very similar
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to (Mueller and Thyagarajan, 2016) in architec-
ture but we employed BiLSTM along with the
contrastive loss function (instead of Manhattan
LSTM) 3. The network consists of three hidden
layers and each layer consists of 50 hidden units.
The LSTM units of our bidirectional network con-
tain a memory state having an input, forget and
output gate with the logistic function on the gates
and the hyperbolic tangent (tanh) on the activa-
tions:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

jt = tanh(Wxjxt +Whjht−1 + bj)

ct = ft ⊗ ct−1 + it ⊗ jt
ht = tanh(ct)⊗ ot

where σ is the logistic sigmoid function,
Whi,Whf ,Who,Whj are recurrent weight ma-
trices and Wxi,Wxf ,Wxo,Wxj are projection
matrices. b are the bias terms in equations.

The inputs are represented as a sequence of
words with a maximum length of 100 and (shorter
sequences are padded). The output of the com-
bined model at each time step is simply the con-
catenation of the outputs from the forward and
backward networks. The outputs of the last layer
are averaged over time and the output vectors are
fed to the contrastive loss function:

E =
1

2N

N∑

n=1

(y)D + (1− y)max (m− d, 0)

where D = ||an − bn||22 is euclidean distance
between the outputs an and bn of the two parallel
networks. In our case, y is either 1 or 0. If the
inputs are from the same class, then the value of
y is 1, otherwise y is 0. m > 0 denotes a margin
which acts as a boundary (with the radius m). The
motivation behind this loss function is that simi-
lar pairs tend to be as close as possible and dis-
similar pairs must be separated by a distance de-
fined by the margin. The network is optimized us-
ing Adam optimizer along with dropout to prevent
over-fitting.

4 Experiments and Results

We performed a set of experiments on an eBay
dataset. The data has been collected over the years

3we adapted an open source implementation for our task:
https://github.com/dhwajraj/deep-siamese-text-similarity

and contain millions of products and billions of
listings. We divided the data into meta-categories
and models are trained on these categories sepa-
rately. This partition into categories not only keep
the data size to a affordable level given the re-
sources but also allow us to train the models in
parallel for each category being independent.

In this paper, we only report the experiments
for three categories namely Electronics, Clothes,
Shoes and Accessories (CSA), and Collectibles as
the proof-of-concept. In the next sections, we will
briefly explain how this historical data has been
created.

4.1 Dataset

Many branded items have unique identifiers that
help buyers recognize and find them, including the
items brand, Manufacturer Part Number (mpn),
and Global Trade Item Number (gtin). The gtin
can include an items Universal Product Code
(upc), European Article Number (ean), or Inter-
national Standard Book Number (isbn). Around
80% of our training data is created with these
identifiers. The remaining 20% data is either
adopted4 by sellers or made available from third
party sources. The statistics about the data used
for experiments reported in the paper are given in
table 1.

Our dataset consists of four fields, the title that
are available for all instances, gtin, brand and mpn
that are partially available as shown in Table 1.
The classification experiments are based on com-
bination of these inputs for item listings along with
product-id as label. The inputs are just concate-
nated to make a single sequence of text. For simi-
larity experiments, we made use of corresponding
product title, gtin, brand and mpn. For the test set,
we sampled the data randomly from our training
set and performed manual validation. The valida-
tion is done against multiple sources available on-
line such as other marketplaces etc. The validation
score is simply a 1/0 label, 1 if the product against
the item listing is correct, otherwise 0.

Basic data normalization is performed such as
tokenization, lower casing, removing noise words
(e.g. doesn’t apply, not applicable etc). We re-
moved the instances that contain a single word as
they do not convey any meaningful information.
Exact same listings are merged into a single in-

4The sellers chose among the existing products in the cat-
alog for their item listings.
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Category #listings gtin brand mpn #products test
Electronics 9.38 5.60 7.19 6.45 3.17 6468
CSA 21.09 6.73 11.96 3.75 9.78 3549
Collectibles 0.80 0.28 0.58 0.38 0.58 1999

Table 1: Data Statistics (all numbers are in millions except the test set). gtin, brand and mpn column show the total
number of these fields available for item listings.

fastText Siamese
Category baseline title title+gtin title+brand+mpn title+gtin+brand+mpn all
Electronics 84.4 81.1 86.2 85.9 87.9 89.9
CSA 75.7 73.9 76.7 76.2 78.8 82.4
Collectibles 92.8 89.3 94.5 93.7 96.4 97.1

Table 2: Accuracy for 3 Meta-Categories: Electronics, CSA, and Collectibles

Category pre-emb product-data accuracy
yes - 88.4

Electronics - yes 88.2
yes yes 88.8

Table 3: Accuracy with fastText models for Electronics
using pre-embeddings and additional product data.

stance.

4.2 Results
Our baseline models are based on a waterfall ap-
proach. The first two modules are based on lookup
tables for unique identifiers. In a first module, if
the item listing has a gtin and it matches with the
product in the inventory, then the item is adopted
to matching product. The second module is based
on brand-mpn lookup tables. Finally, if none of
the unique identifiers are available, then the item
listing is adopted to a product with highest string
match5.

We trained many fastText models with various
combination of inputs. For all of our models, the
embedding dimension is set 300, learning rate to
0.5, and number of epochs to 10. The n-gram pa-
rameter is set to 3 and it brings nice improvements
than the models without these additional features.
The hierarchical-softmax has been used as a loss
function.

The results are shown in table 2. The com-
bination of features produce better results than
the models trained with title only even though
gtin, brand and mpn are partially available. The
combination of all features give the best perfor-

5any unigram overlap.

mance followed by models with combination of
title+gtin. This is because of the fact that the
brand or mpn are sometimes already available in
title while gtin rarely appear in listing title. There-
fore, inclusion of additional brand and mpn do not
bring as much additional information as gtin.

We also trained the fastText models using pre-
trained embedding and product data as additional
resource for Electronics. The pre-embeddings are
learned with fastText using unsupervised CBOW
model on all of the listings available for the re-
spective category. In a second setting, we simply
merge the product data in our training set. The
results are shown in table 3. Even though our ini-
tial dataset is quite large but it is evident from the
results that these additional resources bring fur-
ther improvements as they offer more coverage
and completeness.

For Siamese Network, the models are trained
using the item-product pairs as described in sec-
tion 3.2. We set the embedding dimensions to
300, number of epochs to 100 and mini-batch size
to 128. During inference for a given item listing,
we first need to generate the item-product pairs to
measure the similarity. It is prohibitively imprac-
tical to compare each item with all the products in
the given category particularly for inference dur-
ing production. Therefore, we first reduced the
target space by generating top 500-best products
with fastText models. Then, these pairs are fed
to the Siamese network to calculate the similar-
ity. The pair having highest similarity score is
picked as matching. We also explored the n-gram
matching approach to reduce the target space but
n-best with fastText method turns out to be bet-
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fastText Siamese
Category train infer train infer
Electronics 56s 5ms 20mins 15ms
CSA 90s 8ms 30mins 21ms
Collectibles 20s 3ms 10mins 11ms

Table 4: fastText versus Siamese training (per epoch)
and inference time (per instance), mins=minutes,
s=seconds, ms=milliseconds

ter. Siamese models show the same trend as with
fastText models on different combination of inputs
showing best performance when using all of them
(the last column in table 2).

In table 4, we present the training (per epoch)
and inference time (per instance) for both kind of
models6. The fastText models are extremely ef-
ficient to train as compared to the Siamese net-
work. These classification models can be trained
everyday to cope with open class set problem as
mentioned in section 2.6. Siamese network though
take longer training time, but they do not need ev-
eryday re-training and shown to be better in term
of performance.

4.3 Product Deduplication

Our product matching method resulted into an an-
other interesting findings for product deduplica-
tion. The fastText models produce the probability
score along with predicted product for a given item
listing. The probability score encodes the confi-
dence score for the predicted label. We have col-
lected the instances in our test set where the con-
fidence score is very high (i.e closer to 1) and pre-
dictions do not agree with the labels in our sam-
pled test set. Manual inspection of this data re-
vealed that many predictions are actually correctly
adopted to another duplicate product in the cata-
log.

For these experiments, we manually evaluated
the test set for the Electronics category and sam-
pled the data based on disagreement where the
confidence score is equal or higher than 0.99. This
yields 2% of the instances of our test set. The re-
sult showed 89% accuracy demonstrating the po-
tential of using confidence score for product dedu-
plication. As we drop the threshold, the cover-
age increases but accuracy starts to degrade as ex-

6All fastText models are trained on Intel(R) Core(TM) i7-
5930K CPU @ 3.50GHz and all Siamese models are trained
on 4 Nvidia GPUs GM200 [GeForce GTX TITAN X] with
64GB total memory.

pected. We plan to further investigate this in our
future work along with Siamese Network based
product deduplication on inter-product similarity
score.

5 Related Work

The problem of product matching has been largely
focused on attribute-value pair extraction to re-
trieve a unique set of attributes or in other words
structuring the e-commerce inventory (Mauge
et al., 2012; Ghani et al., 2006). The attribute and
feature extraction studies go from regular expres-
sion (Köpcke et al., 2012) to named entity recogni-
tion methods based on CRF models (Melli, 2014;
Ristoski and Mika, 2016). There are wide range
of matching algorithms studied from various string
matching (Vandic et al., 2012; Thor, 2010) to more
advance methods. We refer the reader to Ristoskia
et al. (2017) and Kannan et al. (2011) for a good
brief overview of these studies.

Many of these methods aim to convert the
free text into a structured representation and em-
ploy matching models by weighting the attributes
based on their significance. In this paper, we
do not model explicitly to first structure the of-
fers and products. In our case, both offers and
products are sequence of free text, and we let
the models learn representations based on large
historical data. Vector based models such as
word2vec (Mikolov et al., 2013), glove (Penning-
ton et al., 2014) and skip-thought (Kiros et al.,
2015) have shown promising results on textual
data to learn semantic representations. Sequence
models based on neural networks is a hot topic in
the NLP community and variety of models have
been researched for different kind of tasks in-
cluding more recently convolutional and recurrent
networks (RNN). Convolutional networks based
siamese network have been successful to find im-
age similarity (Chopra et al., 2005; Koch, 2015).
Many variants of siamese recurrent neural net-
works have been studies on textual sequences
including manhattan-LSTM (Mueller and Thya-
garajan, 2016) and bidirectional LSTM (Neculoiu
et al., 2016). Our work takes the motivation from
these siamese LSTM models and studied them
on e-commerce domain for product matching task
along with fastText models for extreme classifica-
tion using hierarchical softmax.
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6 Conclusion

We have proposed classification and similarity
based approaches for product matching task. The
inputs to our models are sequence of texts unlike
many of the previous studies where more focus has
been on structured text for such tasks. The clas-
sification approach based on the fastText models
can scale up to millions of classes, outperforms
the baseline and is extremely efficient to train.
The similarity approach based on siamese network
makes use of both item listings and product text.
They not only improves the accuracy further but
also have the advantage of avoiding frequent re-
training. As a by-product, we also have shown the
potential to use our models for product deduplica-
tion, which we plan to explore further in our future
work. Finally, our models can accommodate any
information (beyond title, gtin, brand and mpn)
easily amenable into a textual form. We are now
planning to extend them with image data.
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Abstract
Intelligent personal digital assistants (IPDAs),
a popular real-life application with spoken lan-
guage understanding capabilities, can cover
potentially thousands of overlapping domains
for natural language understanding, and the
task of finding the best domain to handle an
utterance becomes a challenging problem on
a large scale. In this paper, we propose a
set of efficient and scalable neural shortlisting-
reranking models for large-scale domain clas-
sification in IPDAs. The shortlisting stage
focuses on efficiently trimming all domains
down to a list of k-best candidate domains,
and the reranking stage performs a list-wise
reranking of the initial k-best domains with ad-
ditional contextual information. We show the
effectiveness of our approach with extensive
experiments on 1,500 IPDA domains.

1 Introduction
Natural language understanding (NLU) is a core

component of intelligent personal digital assistants
(IPDAs) such as Amazon Alexa, Google Assis-
tant, Apple Siri, and Microsoft Cortana (Sarikaya,
2017). A well-established approach in current
real-time systems is to classify an utterance into a
domain, followed by domain-specific intent clas-
sification and slot sequence tagging (Tur and
de Mori, 2011). A domain is typically defined in
terms of a specific application or a functionality
such as weather, calendar and music, which nar-
rows down the scope of NLU for a given utterance.
A domain can also be defined as a collection of rel-
evant intents; assuming an utterance belongs to the
calendar domain, possible intents could be to cre-
ate a meeting or cancel one, and possible extracted
slots could be people names, meeting title and date
from the utterance. Traditional IPDAs cover only
tens of domains that share a common schema. The
schema is designed to separate out the domains
in an effort to minimize language ambiguity. A

shared schema, while addressing domain ambigu-
ity, becomes a bottleneck as new domains and in-
tents are added to cover new scenarios. Redefin-
ing the domain, intent and slot boundaries requires
relabeling of the underlying data, which is very
costly and time-consuming. On the other hand,
when thousands of domains evolve independently
without a shared schema, finding the most relevant
domain to handle an utterance among thousands of
overlapping domains emerges as a key challenge.

The difficulty of solving this problem at scale
has led to stopgap solutions, such as requiring an
utterance to explicitly mention a domain name and
restricting the expression to be in a predefined
form as in “Ask ALLRECIPES, how can I bake
an apple pie?” However, such solutions lead to an
unintuitive and unnatural way of conversing and
create interaction friction for the end users. For
the example utterance, a more natural way of say-
ing it is simply, “How can I bake an apple pie?”
but the most relevant domain to handle it now be-
comes ambiguous. There could be a number of
candidate domains and even multiple overlapping
recipe-related domains that could handle it.

In this paper, we propose efficient and scalable
shortlisting-reranking neural models in two steps
for effective large-scale domain classification in
IPDAs. The first step uses light-weight BiLSTM
models that leverage only the character and word-
level information to efficiently find the k-best list
of most likely domains. The second step uses rich
contextual information later in the pipeline and ap-
plies another BiLSTM model to a list-wise ranking
task to further rerank the k-best domains to find
the most relevant one. We show the effectiveness
of our approach for large-scale domain classifica-
tion with an extensive set of experiments on 1,500
IPDA domains.
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2 Related Work
Reranking approaches attempt to improve upon

an initial ranking by considering additional con-
textual information. Initial model outputs are
trimmed down to a subset of most likely can-
didates, and each candidate is combined with
additional features to form a hypothesis to be
re-scored. Reranking has been applied to var-
ious natural language processing tasks, includ-
ing machine translation (Shen et al., 2004), pars-
ing (Collins and Koo, 2005), sentence bound-
ary detection (Roark et al., 2006), named entity
recognition (Nguyen et al., 2010), and supertag-
ging (Chen et al., 2002).

In the context of NLU or SLU systems, Morbini
et al. (2012) showed a reranking approach us-
ing k-best lists from multiple automatic speech
recognition (ASR) engines to improve response
category classification for virtual museum guides.
Basili et al. (2013) showed that reranking multiple
ASR candidates by analyzing their syntactic prop-
erties can improve spoken command understand-
ing in human-robot interaction, but with more
focus on ASR improvement. Xu and Sarikaya
(2014) showed that multi-turn contextual informa-
tion and recurrent neural networks can improve
domain classification in a multi-domain and multi-
turn NLU system. There have been many other
pieces of prior work on improving NLU systems
with pre-training (Kim et al., 2015b; Celikyilmaz
et al., 2016; Kim et al., 2017e), multi-task learn-
ing (Zhang and Wang, 2016; Liu and Lane, 2016;
Kim et al., 2017b), transfer learning (El-Kahky
et al., 2014; Kim et al., 2015a,c; Chen et al.,
2016a; Yang et al., 2017), domain adaptation (Kim
et al., 2016; Jaech et al., 2016; Liu and Lane, 2017;
Kim et al., 2017d,c) and contextual signals (Bhar-
gava et al., 2013; Chen et al., 2016b; Hori et al.,
2016; Kim et al., 2017a).

To our knowledge, the work by Robichaud et al.
(2014); Crook et al. (2015); Khan et al. (2015) is
most closely related to this paper. Their approach
is to first run a complete pass of all 3 NLU mod-
els of binary domain classification, multi-class in-
tent classification, and sequence tagging of slots
across all domains. Then, a hypothesis is formed
per domain using the semantic information pro-
vided by the domain-intent-slot outputs as well as
many other contextual and cross-hypothesis fea-
tures such as the presence of a slot tagging type
in any other hypotheses. Reranking the hypothe-

ses with Gradient Boosted Decision Trees (Fried-
man, 2001; Burges et al., 2011) has been shown to
improve domain classification performance com-
pared to using only domain classifiers without
reranking.

Their approach however suffers from the fol-
lowing two limitations. First, it requires running
all domain-intent-slot models in parallel across all
domains. Their work considers only 8 or 9 distinct
domains, and the approach has serious practical
scaling issues when the number of domains scales
to thousands. Second, contextual information, es-
pecially cross-hypothesis features, that is crucial
for reranking is manually designed at the feature
level with a sparse representation.

Our work in this paper addresses both of these
limitations with a scalable and efficient two-step
shortlisting-reranking approach, which has a neu-
ral ranking model capturing cross-hypothesis fea-
tures automatically. To our knowledge, this work
is the first in the literature on large-scale domain
classification for a real IPDA production system
with a scale of thousands of domains. Our LSTM-
based list-wise ranking approach also makes a
novel contribution to the existing literature in the
context of IPDA and NLU systems. In this work,
we limit our scope to first-turn utterances and
leave multi-turn conversations for future work.

3 Shortlisting-Reranking Architecture
Our shortlisting-reranking models process an

incoming utterance as follows. (1) Shortlister per-
forms a naive, fast ranking of all domains to find
the k-best list using only the character and word-
level information. The goal here is to achieve high
domain recall with maximal efficiency and mini-
mal information and latency. (2) For each domain
in the k-best list, we prepare a hypothesis per do-
main with additional contextual information, in-
cluding domain-intent-slot semantic analysis, user
preferences, and domain index of popularity and
quality. (3) A second ranker called Hypotheses
Reranker (HypRank) performs a list-wise ranking
of the k hypotheses to improve on the initial naive
ranking and find the best hypothesis, thus domain,
to handle the utterance.

Figure 1 illustrates the steps with an example
utterance, “play michael jackson.” Based on char-
acter and word features, shortlister returns the k-
best list in the order of CLASSIC MUSIC, POP
MUSIC, and VIDEO domains. CLASSIC
MUSIC outputs PlayTune intent, but without
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any slots, low domain popularity, and no usage
history for the user, its ranking is adjusted to be
last. POP MUSIC outputs PlayMusic intent
and Singer slot for “michael jackson”, and with
frequent user usage history, it is determined to be
the best domain to handle the utterance.

In our architecture, key focus is on efficiency
and scalability. Running full domain-intent-slot
semantic analysis for thousands of domains im-
poses a significant computational burden in terms
of memory footprint, latency and number of ma-
chines, and it is impractical in real-time systems.
For the same reason, this work only uses contex-
tual information in the reranking stage, and the
utility of including it in the shortlisting stage is left
for future work.
4 Shortlister

Shortlister consists of three layers: an
orthography-sensitive character and word embed-
ding layer, a BiLSTM layer that makes a vector
representation for the words in a given utterance,
and an output layer for domain classification.
Figure 2 shows the overall shortlister architecture.

Embedding layer In order to capture character-
level patterns, we construct an orthography-
sensitive word embedding layer (Ling et al., 2015;
Ballesteros et al., 2015). Let C,W , and ⊕ denote
the set of characters, the set of words, and the vec-
tor concatenation operator, respectively. We repre-
sent an LSTM as a mapping φ : Rd × Rd′ → Rd′

that takes an input vector x and a state vector h
to output a new state vector h′ = φ(x, h)1. The
model parameters associated with this layer are:

Char embedding: ec ∈ R25 for each c ∈ C
Char LSTMs: φCf , φ

C
b : R25 × R25 → R25

Word embedding: ew ∈ R100 for each w ∈ W

Let (w1, . . . , wm) denote a word sequence
where word wi ∈ W has character wi(j) ∈ C at
position j. This layer computes an orthography-
sensitive word representation vi ∈ R150 as:2

fCj = φCf
(
ewi(j), f

C
j−1
)

∀j = 1 . . . |wi|
bCj = φCb

(
ewi(j), b

C
j+1

)
∀j = |wi| . . . 1

vi = fC|wi| ⊕ b
C
1 ⊕ ewi

1We omit cell variable notations for simple LSTM formu-
lations.

2We randomly initialize state vectors such as fC
0 and

bC|wi|+1.

BiLSTM layer We utilize a BiLSTM to encode
the word vector sequence (v1, . . . , vm). The BiL-
STM outputs are generated as:

fWi = φWf
(
vi, f

W
i−1
)

∀i = 1 . . .m

bWi = φWb
(
vi, b

W
i+1

)
∀i = m. . . 1

where φWf , φ
W
f : R150 × R100 → R100 are the

forward LSTM and the backward LSTM, respec-
tively. An utterance representation h ∈ R200 is
induced by concatenating the outputs of the both
LSTMs as:

h = fWm ⊕ bW1
Output layer We map the word LSTM output h to
a n-dimensional output vector with a linear trans-
formation. Then, we take a softmax function ei-
ther over the entire domains (softmaxa) or over
two classes (in-domain or out-of-domain) for each
domain (softmaxb).
softmaxa is used to set the sum of the confi-

dence scores over the entire domains to be 1. We
can obtain the outputs as:

o = softmax (W · h+ b)

where W and b are parameters for a linear trans-
formation.

For training, we use cross-entropy loss, which
is formulated as follows:

La = −
n∑

i=1

li log oi (1)

where l is a n-dimensional one-hot vector whose
element corresponding to the position of the
ground-truth hypothesis is set to 1.
softmaxb is used to set the confidence score

for each domain to be between 0 and 1. While
softmaxa tends to highlight only the ground-
truth domain while suppressing all the rest,
softmaxb is designed to produce a more balanced
confidence score per domain independent of other
domains. When using softmaxb, we obtain a 2-
dimensional output vector for each domain as fol-
lows:

oi = softmax
(
W i · h+ bi

)

where W i is a 2 by 200 matrix and bi is a
2-dimensional vector; oi1 and oi2 denote the in-
domain probability and the out-of-domain prob-
ability, respectively. The loss function is formu-
lated as follows:

Lb = −
n∑

i=1

{
li log o

i
1 +

1− li
n− 1

log oi2

}
(2)

18
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Figure 1: A high-level flow of our two-step shortlisting-reranking approach given an utterance to an IPDA.
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Figure 2: The architecture of our neural shortlisting model
that uses character and word-level information of a given ut-
terance.

where we divide the second term by n− 1 so that
oi1 and oi2 are balanced in terms of the ratio of the
training examples for a domain to those for other
domains.
5 Hypotheses Reranker (HypRank)

Hypotheses Reranker (HypRank) comprises of
two components: hypothesis representation and a
BiLSTM model for reranking a list of hypotheses.
We use the term reranking since we improve upon
the initial ranking from Shortlister’s k-best list. In
our problem context, a hypothesis is formed per
domain with additional semantic and contextual
information, and selecting the highest-scored hy-
pothesis means selecting the domain represented
in that hypothesis for final domain classification.

HypRank, illustrated in Figure 3, is a list-wise
ranking approach in that it considers the entire list
of hypotheses before giving a reranking score for
each hypothesis. While previous work manually

…

Hypothesis1 Hypothesis2 Hypothesisk

…

LSTM%
&

LSTM'&

FF

LSTM%
&

LSTM'&

FF

LSTM%
&

LSTM'&

FF

Figure 3: The architecture of our neural Hypotheses
Reranker model that takes in k hypotheses with rich contex-
tual information for more refined ranking.

encoded cross-hypothesis information at the fea-
ture level (Robichaud et al., 2014; Crook et al.,
2015; Khan et al., 2015), our approach is to let
a BiLSTM layer automatically capture that infor-
mation and learn appropriate representations at the
model level. In addition to giving detail of useful
contextual signals for IPDAs, we also introduce
the use of pre-trained domain, intent and slot em-
beddings in this section.

5.1 Hypothesis Representation
A hypothesis is formed for each domain with

the following three categories of contextual infor-
mation: NLU interpretation, user preferences, and
domain index.

NLU interpretation Each domain has three cor-
responding NLU models for binary domain clas-
sification, multi-class intent classification, and se-
quence tagging for slots. From the domain-intent-
slot semantic analysis, we use the confidence score
from the shortlister, the intent classification confi-
dence, Viterbi path score of the slot sequence from
a slot tagger, and the average confidence score of
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the tagged slots3.
To pre-train domain embeddings, we use a

word-level BiLSTM with each utterance as a se-
quence of word embedding vector ∈ R100 in the
input layer. The BiLSTM outputs, each a vec-
tor ∈ R25, are concatenated and projected to an
output vector for all domains in the output layer.
The learned projection weight matrix is extracted
as domain embeddings. The output vector dimen-
sion used was ∈ R1500 for the large-scale setting
and ∈ R20 for the traditional small-scale setting
in our experiments (Section 6.1). For intent and
slot embeddings, we take the same process with
the only difference in the output vector with the
dimension ∈ R6991 for all unique intents across
all domains and with the dimension ∈ R2845 for
all unique slots.

Once pre-trained, the domain or intent embed-
dings are used simply as a lookup table per do-
main or per intent. For slot embeddings, there can
be more than one slot per utterance, and in case of
multiple tagged slots, we sum up each slot embed-
ding vector to combine the information. In sum-
mary, these are the three domain-intent-slots em-
beddings we used: ed ∈ R50 for a domain vector,
ei ∈ R50 for an intent vector, and es ∈ R50 for a
vector of slots.
User Preferences User-specific signals are de-
signed to capture each user’s behavioral history or
preferences. In particular, we encode whether a
user has specific domains enabled in his/her IPDA
setting and whether he/she triggered certain do-
mains within 7, 14 or 30 days in the past.
Domain Index From this category, we encode do-
main popularity and quality as rated by the user
population. For example, if the utterance “I need
a ride to work” can be equally handled by TAXI A
domain or TAXI B domain but the user has never
used any, the signals in this category could give a
boost to TAXI A domain due to its higher popu-
larity.
5.2 HypRank Model

The proposed model is trained to rerank the do-
main hypotheses formed from Shortlister results.
Let (p1, . . . , pk) be the sequence of k input hy-
pothesis vectors that are sorted in decreasing order
of Shortlister scores.

We utilize a BiLSTM layer for transforming the
input sequence to the BiLSTM output sequence

3We use off-the-shelf intent classifiers and slot taggers
achieving 98% and 96% accuracies on average, respectively.

Category |D| Example
Device 177 smart home, smart car

Food 99 recipe, nutrition
Ent. 465 movie, music, game

Info. 399 travel, lifestyle
News 159 local, sports, finance

Shopping 39 retail, food, media
Util. 162 productivity, weather

Total 1,500

Table 1: The categories of the 1,500 domains for our large-
scale IPDA. |D| denotes the number of domains.

(h1, . . . , hk) as follows:

f ri = φrf
(
pi, f

r
i−1
)

bri = φrb
(
pi, b

r
i+1

)

hi = f ri ⊕ bri ∀i ∈ {1, . . . , k} ,

where φrf and φrb are the forward LSTM and the
backward LSTM, respectively.

Since the BiLSTM utilizes both the previous
and the next sub-sequences as the context, each
of the BiLSTM outputs is computed considering
cross-hypothesis information.

For the i-th hypothesis, we either sum or con-
catenate the input vector and the BiLSTM output
to utilize both of them as an intermediate represen-
tation as gi = di⊕hi. Then, we use a feed-forward
neural network with a single hidden layer to trans-
form g to a k-dimensional vector p as follows:

pi =W2 ·σ (W1 · gi + b1)+b2 ∀i ∈ {1, . . . , k} ,

where σ indicates scaled exponential linear unit
(SeLU) for normalized activation outputs (Klam-
bauer et al., 2017); the outputs of all the hypothe-
ses are generated by using the same parameter set
{W1, b1,W2, b2} for consistency regardless of the
hypothesis order.

Finally, we obtain a k-dimensional output vec-
tor o by taking a softmax function:

o = softmax (p) .

argmaxi{o1, .., ok} is the index of the pre-
dicted hypothesis after the reranking. Cross en-
tropy is used for training as follows:

Lr = −
k∑

i=1

li log oi, (3)

where l is a k-dimensional ground-truth one-hot
vector.
6 Experiments

This section gives detail of our experimental
setup, followed by results and discussion.

20



SL
train

SL
dev

HR
train

HR
dev test

Traditional 3M 415K 715K 20K 420K
Large-Scale 5M 530K 830K 20K 530K

Table 2: The number of train, development and test utter-
ances. SL denotes Shortlister and HR denotes HypRank.

6.1 Experimental Setup
We evaluated our shortlisting-reranking ap-

proach in two different settings of traditional
small-scale IPDA and large-scale IPDA for com-
parison:
Traditional IPDA For this setting, we simulated
the traditional small-scale IPDA with only 20 do-
mains that are commonly present in any IPDAs.
Since these domains are built-in, which are care-
fully designed to be non-overlapping and of high
quality, the signals from user preferences and do-
main index become irrelevant compared to the
large-scale setting. The dataset comprises of more
than 4M labeled utterances in text evenly dis-
tributed across 20+ domains.
Large-Scale IPDA This setting is a large-scale
IPDA with 1,500 domains as shown in Table 1 that
could be overlapping with a varying level of qual-
ity. For instance, there could be multiple domains
to get a recipe, and a high quality domain could
have more recipes with more capabilities such as
making recommendations compared to a low qual-
ity one. The dataset comprises of more than 6M
utterances having strict invocation patterns. For
instance, we extract “get me a ride” as a prepro-
cessed sample belonging to TAXI skill for the orig-
inal utterance, “Ask {TAXI} to {get me a ride}.”
Shortlister For Shortlister, we show the results of
using 2 different softmax functions of softmaxa
(smxa) and softmaxb (smxb) as described in
Section 4. The results are shown in k-best clas-
sification accuracies, where the 5-best accuracy
means the percentage of test samples that have the
ground-truth domain included in the top 5 domains
returned by Shortlister.
Hypotheses Reranker We also evaluate different
variations of the reranking model for comparison.

• SL: Shortlister 1-best result, which is our
baseline without using a reranking model.

• LR: LR point-wise: A binary logistic regres-
sion model with the hypothesis vector as fea-
tures (see Section 5.1). We run it for each
hypothesis made from Shortlister’s k-best list
and select the highest-scoring one, hence the

Traditional IPDA Large-Scale IPDA
smxa smxb smxa smxb

1-best 95.58 95.56 81.38 81.49
3-best 98.45 98.43 92.53 92.81
5-best 98.81 98.77 95.77 95.93

Table 3: The k-best classification accuracies (%) of Short-
lister using different softmax functions in the traditional and
large-scale IPDA settings.

domain in that hypothesis.

• NPO: Neural point-wise: A feed-forward
(FF) layer between the hypothesis vector and
the nonlinear output layer. We run it for each
hypothesis made from Shortlister’s k-best list
and select the highest-scoring hypothesis.

• NPA: Neural pair-wise: A FF layer between
the concatenation of two hypothesis vectors
and the nonlinear output layer. We run it k
- 1 times for a pair of hypotheses in a series
of tournament-like competitions in the order
of the k-best list. For instance, the 1st and
2nd hypothesis compete first and the winner
of the two competes with the 3rd hypothesis
next and so on until the kth hypothesis.

• NCH : Neural quasi list-wise with manual
cross-hypothesis features added to NPO, fol-
lowing past approaches (Robichaud et al.,
2014; Crook et al., 2015; Khan et al., 2015)
such as the ratio of Shortlister scores to the
maximum score, relative number of slots
across all hypotheses, etc.

• LSTMO: Using only the BiLSTM output
vectors as the input to the FF-layer.

• LSTMS : Summing up the hypothesis vector
and the BiLSTM output vectors as the input
to the FF-layer, similar to residual networks
(He et al., 2016).

• LSTMC : Concatenating the hypothesis vec-
tor and the BiLSTM output vectors as the in-
put to the FF-layer.

• LSTMCH : Same as LSTMC except that
manual cross-hypothesis features used for
NCH were also added to see if combining
manual and automatic cross-hypothesis fea-
tures help.

• UPPER: Upper bound of HypRank accu-
racy set by the performance of Shortlister.

6.2 Methodology
Table 2 shows the distribution of the training,

development and test sets for each setting of tradi-
tional and large-scale IPDAs. Note that we ensure
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Traditional IPDA Large-Scale IPDA
Model smxa smxb smxa smxb

SL 95.58 95.56 81.38 81.49
LR 95.50 95.59 86.74 87.50
NPO 95.26 95.46 88.65 90.38
NPA 96.08 96.37 88.29 90.82
NCH 96.20 96.65 88.43 91.13
LSTMO 94.36 94.45 81.37 82.98
LSTMS 97.44 97.54 92.43 93.79
LSTMC 97.47 97.55 92.49 93.83
LSTMCH 97.22 97.34 92.18 93.46
UPPER 98.81 98.77 95.77 95.93

Table 4: The final classification accuracies (%) for different
Shortlisting-HypRank models under the traditional and large-
scale IPDA settings. The input hypothesis size is 5.

no overlap between the Shortlister and HypRank
training sets so that HypRank is not overly tuned
on Shortlister results. For the NLU models, the in-
tent and slot models are trained on roughly 70% of
the available training data.

In our experiments, all the models were im-
plemented using Dynet (Neubig et al., 2017) and
were trained with Adam (Kingma and Ba, 2015).
We used the initial learning rate of 4 ×10−4 and
left all the other hyper-parameters as suggested in
Kingma and Ba (2015). We also used variational
dropout (Gal and Ghahramani, 2016) for regular-
ization.

6.3 Results and Discussion
Table 3 summarizes the k-best classification ac-

curacy results for our Shortlister. With only 20
domains in the traditional IPDA setting, the accu-
racy is over 95% even when we take 1-best or top
domain returned from Shortlister. The accuracy
approaches 99% when we consider Shortlister cor-
rect if the ground-truth domain is present in the top
5 domains. The results suggest that the character
and word-level information by itself, coupled with
BiLSTMs, can already show significant discrimi-
native power for our task.

With a scale of 1,500 domains, the results indi-
cate that just using the top domain returned from
Shortlister is not enough to have comparable per-
formance shown in the traditional IPDA setting.
However, the performance catches up to close to
96% as we include more domains in the k-best
list, and although not shown here, it starts to level
off at 5-best list. The k-best results from Short-
lister set an upper bound for HypRank perfor-
mance. We note that it could be possible to in-
clude more contextual information at the short-
listing stage to bring Shortlister’s performance up
with some trade-offs in terms of real-time systems,

which we leave for future work. In addition, us-
ing smxb shows a tendency of slightly better per-
formance compared to using smxa, which takes a
softmax over all domains and tends to emphasize
only the top domain while suppressing all others
even when there are many overlapping and very
similar domains.

The classification performance after the rerank-
ing stage with HypRank using Shortlister’s 5-best
results is summarized in Table 4. SL shows the
results of taking the top domain from Shortlister
without any reranking step, and UPPER shows the
performance upper bound of HypRank set by the
shortlisting stage. In general, the pair-wise ap-
proach is shown to be better than the point-wise
approaches, with the best performance coming
from the list-wise ones. Looking at the lowest ac-
curacy from LSTMO, it suggests that the raw hy-
pothesis vectors themselves are important features
that should be combined with the cross-hypothesis
contextual features from the LSTM outputs for
best results. Adding manual cross-hypothesis fea-
tures to the automatic ones from the LSTM out-
puts do not improve the performance.

The performance trend is very similar for smxa
and smxb, but there is a gap between them in
the large-scale setting. An explanation for this
is similar to that for Shortlister results that smxa
emphasizes only the top domain while suppress-
ing all the rest, which might not be suitable in
a large-scale setting with many overlapping do-
mains. For both traditional and large-scale set-
tings, the best accuracy is shown with the list-wise
model of LSTMC .
7 Conclusion

We have described an efficient and scalable
shortlisting-reranking neural models for large-
scale domain classification. The models first ef-
ficiently prune all domains to only a small num-
ber of k candidates using minimal information and
subsequently rerank them using additional contex-
tual information that could be more expensive in
terms of computing resources. We have shown
the effectiveness of our approach with 1,500 do-
mains in a real IPDA system and evaluated us-
ing different variations of the shortlisting model
and our novel reranking models, in terms of point-
wise, pair-wise, and list-wise ranking approaches.
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Abstract

In task-oriented dialog, agents need to gener-
ate both fluent natural language responses and
correct external actions like database queries
and updates. We show that methods that
achieve state of the art performance on syn-
thetic datasets, perform poorly in real world di-
alog tasks. We propose a hybrid model, where
nearest neighbor is used to generate fluent re-
sponses and Sequence-to-Sequence (Seq2Seq)
type models ensure dialogue coherency and
generate accurate external actions. The hybrid
model on an internal customer support dataset
achieves a 78% relative improvement in flu-
ency, and a 200% improvement in external call
accuracy.

1 Introduction

Many commercial applications of artificial agents
require task-oriented conversational agents that
help customers achieve a specific goal, such as
making or cancelling a payment or reservation (Zue
et al., 2000; Bennacef et al., 1996). These chatbots
must extract relevant information from the user,
provide relevant knowledge to her, and issue appro-
priate system calls to achieve the goal.

Supervised approaches such as seq2seq models
(Vinyals and Le, 2015; Shang et al., 2015; Serban
et al., 2015; Sordoni et al., 2015b), have recently
gained attention in non-task oriented dialog, due to
their ability to perform end-to-end learning from
expert dialogues1, removing the need for many
of the independent modules in traditional systems
such as, natural language understanding, dialog
state tracker and natural language generator.

Seq2Seq models have also shown promising re-
sults on small domain or synthetic task-oriented
dialog datasets. However, performance was much
worse when we applied these models to real world

1We refer to an entire session of text exchanges between
an agent and a customer as a dialogue.

datasets. This is in part because end-to-end meth-
ods, in general, require large amounts of data be-
fore they are able to generate fluent textual re-
sponses. In real world settings, words chosen by
human users and agents are not constrained to a
fixed vocabulary, and hence we see many lexical
variations even among semantically similar dialogs.

To ensure that information is both conveyed and
understood, we want responses to be fluent as well
as coherent. We say a response is coherent if it
is a sensible response in the dialogue context. Ta-
ble 1 shows responses generated by a variant of
the seq2seq model, when trained on real customer-
agent chat transcripts. The response of the chatbot
during the fourth turn2 in Table 1, accepting the
customer’s expression of gratitude, is coherent and
fluent. Coherence of a response does not neces-
sarily guarantee fluency. The generated response
during the second turn is coherent but not fluent.

On our customer support dataset, seq2seq mod-
els performed well with salutations, but performed
poorly both in terms of fluency and coherency on
intermediate responses. The reason being, saluta-
tions contain minimal lexical variations across di-
alogs and occur more frequently when compared to
other utterances. (Koehn and Knowles, 2017) use
beam search decoding in Neural Machine Trans-
lation to mitigate fluency issues on larger transla-
tion datasets. Typically increasing the beam size
improves translation quality, however, increasing
beam sizes in Neural MT has shown to produce
poor translations (Koehn and Knowles, 2017).

We propose nearest neighbor based approaches
that can directly use and replay available expert
utterances. This removes the need for the models
to learn the grammar of the language, and allows
the models to focus on learning what to say, rather
than how to say it. The nearest neighbor-based

2We define a turn as a pair of text exchanges between the
customer and the agent.
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Table 1: Generated dialogue on customer support data. masked used for anonymization.
Turn User’s Utterance Agent’s Response Generated Chatbot Response

1 got charged for <masked> hello , my name is <PERSON> . hello <PERSON> , my name is
membership after trial i did i ’m here to help you today . <PERSON> . i ’m here to help
not want to continue. you .

2 <SILENCE> thank you for being a <masked> thank , for you <masked>
member . member

3 <SILENCE> i ’m sorry to hear that you were <SILENCE>
charged with our membership . no
worries . i ’ll do my best

4 thank you , i did not know you ’re welcome you ’re most welcome
that it would auto renew
after the trial

5 <SILENCE> api call cancel refund api call cancel refund
6 <SILENCE> i hope my actions helped you out you ’re most welcome

today
7 very appreciated thank you for contacting <masked> thank you for contacting <masked>

methods we propose naturally generate more fluent
responses, since they use actual agent responses.
However, our results in Table 3 show that they
perform poorly in predicting external actions and
at ensuring dialogue level coherency. In contrast,
the skip-connection seq2seq models we propose
here, learn when to produce external actions and
produce more coherent dialogues. We propose a
hybrid model that brings together the strengths of
both the approaches.

The contributions of this paper are as follows:

• We propose skip-connections to handle multi-
turn dialogue that outperforms previous models.

• We propose a hybrid model where nearest
neighbor-based models generate fluent responses
and skip-connection models generate accurate
responses and external actions. We show the ef-
fectiveness of the belief state representations ob-
tained from the skip-connection model by com-
paring against previous approaches.

• To the best of our knowledge, our paper makes
the first attempt at evaluating state of the art mod-
els on a large real world task with human users.
We show that methods that achieve state of the
art performance on synthetic datasets, perform
poorly in real world dialog tasks. Comparing Ta-
bles 2 and 3, we see the impact of moving from
synthetic to real world datasets, and as a result,
find issues with previously proposed models that
may have been obscured by the simplicity and
regularity of synthetic datasets.

2 Related Work

Although seq2seq models have been applied in task-
oriented settings (Wen et al., 2017; Williams and

Zweig, 2016; Bordes and Weston, 2016; Zhao and
Eskénazi, 2016), they have only been evaluated on
small domain or synthetic datasets.

More recent work has focused on representa-
tion learning for multi-turn dialogue. Sordoni et al.
(2015b) use a single bag-of-words representation
of the entire dialog history. Such a representation
ignores the order of responses, which is crucial
to ensure that utterances are coherent across turns.
An alternative approach is to use a hierarchical
encoder-decoder network (HRED) (Sordoni et al.,
2015a) which uses a complex three layered RNN
network, a query level encoder, a session level en-
coder and a decoder. Attentional networks (Bor-
des and Weston, 2016; Dodge et al., 2015) use a
weighted combination of all the context vectors
upto the current turn. Attentional networks proved
to be a stronger baseline over HRED during our
evaluation. We propose models that learn fixed
size representations of the history using simpler
skip-connection models showing comparable per-
formance with attentional networks (Bordes and
Weston, 2016; Dodge et al., 2015).

Our work is closely related to retrieval-based
chatbots. Williams and Zweig (2016), select a
response from a small set of templates. Zhou
et al. (2016); Yan et al. (2016) perform multi-turn
dialogue by treating the dialogue history as the
query, and perform classification with the num-
ber of classes equal to the number of possible re-
sponses. They evaluate precision@K, from a re-
stricted list, but do not indicate how this list is
obtained in practice. In our real world dataset, the
number of possible responses grows with the data-
set size. In addition, responses are unevenly dis-
tributed with salutations occurring frequently. As a
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Agent’s screen

N suggestions

User’s response
Agent’s response
Chatbot’s suggestions

USER AGENT
BOT

USER: i want to cancel my <mask> subscription .
AGENT: hello , my name is <name> . i 'm here to help you today .
USER: hi
AGENT: thank you for trying our <mask> membership .
USER: <SILENCE>
AGENT:…

BOT’s Suggestions
• no worries , i 'll help you with this .
• just a minute while i take a look at your account
• thank you for being on hold
• thank you for waiting .
• i 've cancelled and refunded the subscription .

Figure 1: System Description. A human agent plays an intermediary role between the chatbot and the user.

result, the classification based approach performed
poorly, with most of the outputs being salutations.

3 Proposed Approach

Complete automation of customer service is still
not possible as chatbots are not perfect yet. How-
ever, automation where possible in the workflow
could still result in considerable savings. In order
to ensure that the end user experience is not sub-
standard, in live user testing, we ask a human agent
to play intermediary role between the chatbot and
the user. A user initiates a chat by entering an initial
query or an issue that requires resolution (Figure 1).
The chatbot responds with 5 diverse responses. The
agent selects the most relevant response, and may
choose to modify it. If the response is not relevant,
she may type a different response. During offline
testing, the chatbot returns only one response and
no human agent is used. The following section
describes our skip connection seq2seq model for
representation learning and our nearest neighbor
approach for response selection. First we describe
the datasets and metrics we use.

3.1 Dataset and Metrics

We use data from bAbI (Task1 and Task2) (Bordes
and Weston, 2016) to evaluate our models. Other
dialog tasks in bAbI require the model to mimic a
knowledge base i.e., memorize it. This is not a suit-
able strategy for our application, since in practice
knowledge bases undergo frequent changes, mak-
ing this infeasible. In the bAbI task, the user inter-
acts with an agent in a simulated restaurant reserva-
tion application, by providing her constraints, such
as place, cuisine, number of people or price range.
The agent or chatbot performs external actions or
SQL-like queries (api call) to retrieve information

from the knowledge base of restaurants. We used
80% of the data for training (of which 10% was
used for validation) and the remaining 20% for
testing.

We also evaluate our models on an internal cus-
tomer support dataset of 160k chat transcripts con-
taining 3 million interactions. We limit the num-
ber of turns to 20. We will refer to this dataset
as CS large. We perform spell correction, de-
identification to remove customer sensitive infor-
mation, lexical normalization particularly of lingo
words such as, lol and ty. Generalizing such entities
reduces the amount of training data required. The
values must be reinserted, currently by a human
in the loop. We have also masked product and the
organization name in the examples.

The use of MT evaluation metrics to evaluate
dialogue fluency with just one reference has been
debated (Liu et al., 2016). There is still no good
alternative to evaluate dialog systems, and so we
continue to report fluency using BLEU (BiLingual
Evaluation Understudy (Papineni et al., 2002)), in
addition to other metrics and human evaluations.
Coherency also requires measuring correctness of
the external actions which we measure using a met-
ric we call, Exact Query Match (EQM), which rep-
resents the fraction of times the api call matched
the ground truth query issued by the human agent.
We do not assign any credit to partial matches. In
addition, we report the precision (P), recall (R) and
accuracy (Acc) achieved by the models in predict-
ing whether to make an api call (positive) or not
(negative). Obtaining and aligning api calls with
the chat transcripts is often complex as such infor-
mation is typically stored in multiple confidential
logs. In order to measure coherency with respect
to api calls, we randomly sampled 1000 chat tran-
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Figure 2: Proposed embeddings for finding the nearest neighbor.

scripts and asked human agents to hand annotate
the api calls wherever appropriate. We will refer
to this labeled dataset as CS small.

3.1.1 Skip Connection Seq2Seq Model
Seq2seq models are an application of Long Short-
Term Memory (Hochreiter and Schmidhuber, 1997)
architecture where inputs and outputs are variable
length sequences. We unroll the basic seq2seq
model and make one copy for each turn. This is
illustrated in Figure 2. Input words are one hot
encoded, and projected using a linear layer to ob-
tain xtk for the input word at position k in turn t,
resulting in a sequence Xt = {xt1, xt2, ...xtL}. The
output sequence to be generated is represented by
Yt = {yt1, yt2, ...ytL′}. The encoder at turn t re-
ceives the user’s projected input, as well as the
context vectors from the final hidden units of the
encoder and the decoder at turn t − 1, forming
a skip connection. This ensures that a fixed size
vector is used to represent the dialogue history at
every turn. Orange-solid-square boxes in Figure 2
represent LSTM cells of the encoder. htL,enc is the
context vector which is sent to every LSTM cell in
the decoder (dec) at any turn t (Cho et al., 2014).

Green-dashed-square cells in the decoder rep-
resent the LSTM and dense layers with a soft-
max non-linearity. These are trained to predict
each word in the agent’s utterance. Each of the
seq2seq copies share the same parameters. Once
the training is complete, we use only one copy of
the seq2seq model to make predictions.

3.1.2 Results with Skip-Connections

The results obtained with the vanilla seq2seq model
on the bAbI dataset is shown in the first row
(Model 1) of Table 2. The EQM is 0%, even though
the BLEU scores look reasonable. Model 2 is the
skip-connection seq2seq model, where only the
output of the hidden states from the decoder at turn
t− 1 is appended to the input at time t, i.e., ht−1L,enc

from the encoder history is not explicitly presented
to turn t.

Model 3 extends Model 1 by adding an atten-
tional layer. Model 3 is a variant of Bordes and
Weston (2016); Dodge et al. (2015) where the out-
put of the attentional layer is sent to the decoder
for generating the responses rather than classify-
ing as one of the known responses. This variant
performed better on the customer support data com-
pared to a direct implementation of Bordes and We-
ston (2016). The reason being, salutations occurred
more frequently in the customer support data and
hence, the classification based approach originally
proposed by Bordes and Weston (2016) classified
most of the outputs as salutations. Finally, Model
4 extends Model 2 by providing ht−1L,enc to turn t.

We see that explicitly adding skip-connections
substantially improves performance in EQM, from
0 or 6% to 55%, and has a positive effect on BLEU.
The models show similar behavior on CS small.
In this case, when an api call is executed, the re-
sult is treated as a response and sent as input to the
next turn. Although Model 4 performed the best
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Table 2: Results with variants of the seq2seq model on the bAbI dataset.

Model Type Description BLEU P Acc EQM

Model 1 Basic Seq2Seq dependencies between turns absent 88.3 0.60 0.87 0.00
Model 2 Skip connection append ht−1L′,dec 90.2 1.00 1.00 0.06
Model 3 Seq2Seq Model 1 with an attention layer 93.4 1.00 1.00 0.26
Model 4 Skip connection Model 2 + ht−1L,enc 95.8 1.00 1.00 0.55

Table 3: Results with the Nearest Neighbor approach on customer support data (CS small).

Model Description BLEU P R Acc EQM

Model 4 Skip connection 9.91 0.34 0.79 0.81 0.30
Model 6 Nearest Neighbor using Word2Vec 11.06 0.31 0.24 0.86 0.10
Model 7 Nearest Neighbor using Sent2Vec 14.39 0.29 0.26 0.85 0.09
Model 8 Nearest Neighbor using discounted Sent2Vec 16.43 0.56 0.60 0.91 0.21
Model 9 Nearest neighbor using output of encoder 15.14 0.38 0.35 0.86 0.13
Model 10 Nearest neighbor using output of decoder 16.34 0.36 0.31 0.86 0.16
Model 11 Best Of both (Models 4+10) 17.67 0.33 0.73 0.80 0.30

on CS small and CS large, our analysis showed
that the generated responses were most often inco-
herent and not fluent, a phenomenon that did not
arise in the synthetic dataset. We now proceed to
explain the nearest neighbor based approach, which
we show is able to produce reasonable responses
that are more fluent.

3.2 Nearest Neighbor-based approach

In our nearest neighbor approach, an agent’s re-
sponse is chosen from human generated transcripts
or the training data - ensuring fluency. However,
this does not necessarily ensure that the responses
are coherent in the context of the dialogue. The
nearest neighbor approach starts with a represen-
tation of the entire dialogue history bst,i for turn
t and dialogue i. Together with at,i, the action
the agent took while in this state i.e., the natural
language response or api call query issued by the
agent, this results in a tuple < bst,i, at,i >. The en-
tire training data is converted into a set of tuples S,
that contains pairwise relationships between dialog
state representations and agent actions.

In the online or test phase, given an embedding
of the dialogue so far, testV ec, we find the near-
est neighbor bstestV ec in S. We return the nearest
neighbor’s corresponding response, atestV ec, as the
predicted agent’s response. We use ball trees (Kib-
riya and Frank, 2007) to perform efficient nearest
neighbor search. Since we want to provide more
flexibility to the human agent in choosing the most

appropriate response, we extended this approach to
find k = 100 responses and then used a diversity-
based ranking approach (Zhu et al., 2007) to return
5 diverse responses. To construct the adjacency
matrix for diversity ranking, we use word overlap
between responses after stop word removal.

Numerous techniques have been proposed
for representating text including word2vec and
sent2vec (Mikolov et al., 2013b,a; Pagliardini et al.,
2017; Pennington et al., 2014). In the following
sections, we compare these approaches against our
proposed representations using skip connections.

3.2.1 Dialogue Embeddings from
Word/Sentence Embeddings

In our first baseline, Model 6, for a dialogue,
i, the user’s response at turn t, usert, is con-
catenated with his/her responses in previous
turns (useri,1:t−1) and the agent’s responses upto
turn t − 1 (agenti,1:t−1), to obtain, pi,t =
(useri,1:t, agenti,1:t−1). We obtain a belief
state vector representation as the average of the
word2vec (Mikolov et al., 2013b) representations
of words in pi,t. We then apply the nearest neigh-
bor approach described in Section 3.2. Results
obtained with this approach on CS small are in
Table 3.

We emphasize a subtle but important oracle ad-
vantage that we give this baseline algorithm. When
we obtain the embeddings of a test dialogue, we
use the true utterances of the expert agent so far,
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Table 4: Results with the Nearest Neighbor approach on customer support data (CS large).

Model Description BLEU Online-BLEU

Model 4 Skip connection 8.9 46.2
Model 5 Lucene 8.4 39.2
Model 10 Nearest neighbor using output of decoder 13.5 90.8

which would not be available in practice. How-
ever, we will show that our proposed representa-
tion, described in Section 3.3, performs better, even
without access to this information.

Pagliardini et al. (2017) recently described a
method that leads to better sentence-level represen-
tations. We use their approach as another baseline.
bst is represented by the average of the sentence
embeddings of all agent’s responses upto turn t− 1
and user’s responses upto turn t. We also explore
geometric discounting to give higher importance
to recent responses. We use a similar process to
obtain representations for the user’s responses dur-
ing the test phase. As done with word-embeddings,
we provide true agent responses upto turn t− 1 for
predicting the agent’s response at turn t. Results ob-
tained on CS small by averaging (Model 7) and
discounted averaging (Model 8) are given in Table
3. Model 8 performs better than Model 7 across
all measures. A comparison between Model 6, 7
and 8 with Model 4 in Table 3, would not be a fair
one as Model 4 does not use previous true agent
responses to predict the agent’s next response.

3.3 Hybrid model: Nearest Neighbor with
Seq2Seq Embeddings

We suggest using the outputs of the hidden units in
the decoder of our skip connection seq2seq model,
as suitable representations for the belief states. The
seq2seq model for handling multi-turn dialogue is
trained as before (Section 3.1.1). Once the param-
eters have been learned, we proceed to generate
representations for all turns in the training data.
The output of the last hidden unit of the encoder or
the decoder before turn t is used to represent the
belief state vector at turn t. As before, we obtain a
set S consisting of pairs of belief state vectors and
next actions taken by the agent.

We test the models as done in Section 3.1.1, ex-
cept now we select responses using the nearest
neighbor approach (Figure 2). Results obtained are
in Table 3 (Models 9 and 10). Model 9 uses the
output of the last hidden unit of the encoder. Model
10 uses previous turn’s decoder’s last hidden unit.

Both the models show a significant improvement
in BLEU when compared to generating the agent’s
response (Model 4). Although Model 10 was not
exposed to the past true agent responses, it still
achieved comparable performance to that of Model
8. Appending both the encoder and the decoder
outputs did not have significant impact.

The results also show that the seq2seq model
achieved a better EQM when compared to the near-
est neighbor approach. The final hybrid model, we
propose (Model 11) combines both strategies. We
run both the Models 4 and 10 in parallel. When
Model 4 predicts an API response, we use the out-
put generated by Model 4 as the agent’s response,
otherwise we use the output of Model 10 as the
predicted agent’s response. This model achieved
the best results among all models we study, both in
terms of fluency (BLEU) as well as correctness of
external actions (EQM). The hybrid model achieves
a 78% relative improvement (from 9.91 to 17.67)
in fluency scores, and 200% improvement in EQM
over previous approaches (from 0.10 to 0.30).

Table 4 shows results obtained on CS large
(column 3) using models that performed the best
on the other datasets. Another obvious baseline
is to use traditional retrieval approaches. (query,
agent response) pairs are created for each agent re-
sponse, with a query constructed by concatenating
all the agent’s responses upto turn t− 1 and user’s
responses upto turn t, for an agent response at time
t. For a given dialogue history query, the corre-
sponding agent response is retrieved using Lucene3.
Since CS large did not contain labeled api calls,
we report results using Model 10. As seen, Model
10 provides a substantial boost in performance.

3.4 Manual Online Evaluation

One caveat to the above evaluations is that they are
based on customer responses to the actual human
agent interactions, and are not fully indicative of
how customers would react to the real automated
system in practice. Another disadvantage of using

3https://lucene.apache.org/
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Table 5: Sample responses show interesting human behaviors learned by the approach.
Example User’s Utterance Agent’s Response

1 YES YES YES , get it done . done :)
perfect sir , thanks for waiting

2 it was clearly your fault i understand sir
when should i return it and how you can keep it or you can donate or else you can dispose it off .

automated evaluation with just one reference, is
that the score (BLEU) penalizes valid responses
that may be lexically different from the available
agent response. To overcome this issue, we con-
ducted online experiments with human agents.

We used 5 human users and 2 agents. On average
each user interacted with an agent on 10 different
issues that needed resolution. To compare against
our baseline, each user interacted with the Model
4, 5 and 10 using the same issues. This resulted
in ≈ 50 dialogues from each of the models. Af-
ter every response from the user, the human agent
was allowed to select one of the top five responses
the system selected. We refer to the selected re-
sponse as A. The human agent was asked to make
minimal modifications to the selected response, re-
sulting in a response A′. If the responses suggested
were completely irrelevant, the human agent was
allowed to type in the most suitable response.

We then computed the BLEU between the sys-
tem generated responses (As) and human gener-
ated responses (A′s), referred to as Online-BLEU
in Table 4. Since the human agent only made
minimal changes where appropriate, we believe
the BLEU score would now be more correlated to
human judgments. Since CS large did not con-
tain any api calls, we only report BLEU scores.
The results obtained with models 4, 5 and 10 on
CS large are shown in Table 4 (column 4). Model
10 performs better than Models 4 and 5. We do not
measure inter-annotator agreement as each human
user can take a different dialog trajectory.

We noticed that the approach mimics certain
interesting human behavior. For example, in Table
5, the chatbot detects that the user is frustrated and
responds with smileys and even makes exceptions
on the return policy.

4 Conclusion and Future Work

We demonstrated limitations of previous end-end
dialog approaches and proposed variants to make
them suitable for real world settings. In ongo-
ing work, we explore reinforcement learning tech-

niques to reach the goal state quicker thereby re-
ducing the number of interactions.
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Abstract

Industrial dialogue systems such as Apple Siri
and Google Assistant require large scale di-
verse training data to enable their sophisti-
cated conversation capabilities. Crowdsourc-
ing is a scalable and inexpensive data collec-
tion method, but collecting high quality data
efficiently requires thoughtful orchestration of
crowdsourcing jobs. Prior study of data col-
lection process has focused on tasks with lim-
ited scope and performed intrinsic data analy-
sis, which may not be indicative of impact on
trained model performance. In this paper, we
present a study of crowdsourcing methods for
a user intent classification task in one of our
deployed dialogue systems. Our task requires
classification over 47 possible user intents and
contains many intent pairs with subtle differ-
ences. We consider different crowdsourcing
job types and job prompts, quantitatively ana-
lyzing the quality of collected data and down-
stream model performance on a test set of real
user queries from production logs. Our obser-
vations provide insight into how design deci-
sions impact crowdsourced data quality, with
clear recommendations for future data collec-
tion for dialogue systems.

1 Introduction

Large, high quality corpora are crucial in the de-
velopment of effective machine learning models
in many areas, including Natural Language Pro-
cessing (NLP). The performance of the machine
learning models, especially deep learning mod-
els, depend heavily on the quantity and quality
of the training data. Developing dialogue systems
such as Apple Siri, Google Assistant and Amazon
Alexa poses a significant challenge for data collec-
tion as we need to do rapid prototyping and boot-
strapping to train new virtual assistant capabilities.
The use of crowdsourcing has enabled the creation
of large corpora at relatively low cost (Snow et al.,
2008) and is critical in collecting the quantities of

data required to train models with high accuracy.
However, designing effective methodologies for
data collection with the crowd is largely an open
research question (Sabou et al., 2014).

From the perspective of Clinc, a young AI com-
pany creating innovative conversational AI ex-
periences, there exists a major challenge when
collecting data to build a dialogue system. We
have observed that the complexity of building
production-grade dialogue system is often sub-
stantially greater than those studied in the research
community. For example, one of our production
deployed dialogue systems requires intent classifi-
cation among 47 different intents to meet product
specifications, whereas most academic datasets for
text classification only have a small number (i.e.,
2–14) of classes (Zhang et al., 2015). The few
datasets that have a large number of classes, such
as RCV-1 (Lewis et al., 2004), distribute intents
across many distinct topics. We address the sig-
nificantly more challenging problem of handling
many intents within a single domain, specifically
personal finance and wealth management, requir-
ing the classifier to carefully distinguish between
nuanced intent topics. Therefore, a large amount
of high-quality training data tailored to our tar-
geted problem is critical for creating the best user
experience in our production dialogue system.

Crowdsourcing offers a promising solution
by massively parallelizing data collection efforts
across a large pool of workers at relatively low
cost. Because of the involvement of crowd
workers, collecting high-quality data efficiently
requires careful orchestration of crowdsourcing
jobs, including their instructions and prompts. In
order to collect the large-scale tailored dataset we
need via crowdsourcing, there are several research
questions we need to answer:

• How can we evaluate the effectiveness of
crowdsourcing methods and the quality of the
datasets collected via these methods?

33



• During the data collection process, how can
we identify the point when additional data
would have diminishing returns on the per-
formance of the downstream trained models?

• Which crowdsourcing method yields the
highest-quality training data for intent clas-
sification in a production dialogue system?

There is limited work on effective techniques
to evaluate a crowdsourcing method and the data
collected using that method. Prior work has
focused on intrinsic analysis of the data, lack-
ing quantitative investigation of the data’s impact
on downstream model performance (Jiang et al.,
2017). In this paper, we propose two novel model-
indepedent metrics to evaluate dataset quality.
Specifically, we introduce (1) coverage, quan-
tifying how well a training set covers the expres-
sion space of a certain task, and (2) diversity,
quantifying the heterogeneity of sentences in the
training set. We verify the effectiveness of both
metrics by correlating them with the model accu-
racy of two well-known algorithms, SVM (Cortes
and Vapnik, 1995) and FastText (Joulin et al.,
2017; Bojanowski et al., 2017). We show that
while diversity gives a sense of the variation
in the data, coverage closely correlates with the
model accuracy and serves as an effective metric
for evaluating training data quality.

We then describe in detail two crowdsourc-
ing methods we use to collect intent classifica-
tion data for our deployed dialogue system. The
key ideas of these two methods are (1) describ-
ing the intent as a scenario or (2) providing an
example sentence to be paraphrased. We experi-
ment multiple variants of these methods by vary-
ing the number and type of prompts and collect
training data using each variant. We perform met-
ric and accuracy evaluation of these datasets and
show that using a mixture of different prompts
and sampling paraphrasing exmples from real user
queries yield training data with higher coverage
and diversity and lead to better performing
models. These observations have impacted the
way that we collect data and are improving the
quality of our production system.

2 Many-intent Classification

We focus on a specific aspect of dialogue sys-
tems: intent classification. This task takes a user
utterance as input and classifies it into one of

the predefined categories. Unlike general dia-
logue annotation schemes such as DAMSL (Core
and Allen, 1997), intent classification is generally
domain-specific. Our system requires classifica-
tion over 47 customer service related intents in
the domain of personal finance and wealth man-
agement. These intents cover a large set of top-
ics while some of the intents are very closely re-
lated and it requires the classifier to identify the
nuanced differences between utterances. For ex-
ample, user’s queries to see a list of their bank-
ing transactions can often be very similar to their
queries to see a summary of historical spending,
e.g., “When did I spend money at Starbucks re-
cently?” vs. “How much money did I spend at
Starbucks recently?”.

Test Methodology Our test data contains a com-
bination of real user queries from a deployed sys-
tem and additional cases manually constructed by
developers. This combination allows us to ef-
fectively measure performance for current users,
while also testing a broad range of ways to phrase
queries. Our test set contains 3,988 sentences la-
belled with intents.

3 Training Data Quality Metrics

When we look to improve a model’s performance,
there are generally two approaches that we can
take: improve the model and inference algorithm
and/or improve the training data. There is cur-
rently no reliable way to help us identify whether
the training data or the model structure is the cur-
rent bottleneck. One solution is to train actual
models using the training set and measure their
accuracy with a pre-defined test set. However, if
only a single algorithm is used, over time this eval-
uation may lead to a bias, as the training data is
tuned to suit that specific algorithm. Using a suite
of different algorithms avoids this issue, but can
be very time consuming. We need an algorithm-
independent way to evaluate the quality of train-
ing data and its effectiveness at solving the target
task. In this section, we introduce two metrics to
achieve this, diversity and coverage.

Diversity We use diversity to evaluate the
heterogeneity of the training data. The idea be-
hind diversity is that the more diverse the
training data is, the less likely a downstream
model will overfit to certain words or phrases and
the better it will generalize to the testing set.
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We first define a pairwise sentence distance
measure. For a given pair of sentences, a and b, we
calculate the reverse of the mean Jaccard Index be-
tween the sentences’ n-grams sets to represent the
semantic distances between the two sentences:

D(a, b) = 1−
N∑

n=1

|n-gramsa ∩ n-gramsb|
|n-gramsa ∪ n-gramsb|

(1)

where N is the maximum n-gram length. We use
N = 3 in our experiments.

Our pairwise score is similar to the PINC
score (Chen and Dolan, 2011), except that we use
the n-grams from the union of both sentences in-
stead of just one sentence in the denominator of
Equation 1. This is because the PINC score is
used in paraphrasing tasks to measures how much
a paraphrased sentence differ from the original
sentence and specifically rewards n-grams that are
unique to the paraphrsed sentence. Our metric
measures the semantic distance between two sen-
tences and treat the unique n-grams in both sen-
tences as equal contribution to the distance.

We define the diversity of a training set as
the average distance between all sentence pairs
that share the same intent. For a training set X ,
its diversity (DIV (X)) is:

DIV (X) =
1

|I|
I∑

i=1

1

|Xi|2




Xi∑

a

Xi∑

b

D(a, b)




(2)
where I is the set of intents and Xi is the set of
sentences with intent i in the training set X .

Coverage We now introduce coverage, a new
metric designed to model how well a training
dataset covers the complete space of ways an in-
tent can be expressed. We use our test set as an ap-
proximate representation of the expression space
for our classification task. As described in § 2,
our test set is constructed primarily with real user
queries collected from the log of a deployed sys-
tem and annotated by engineers.

To measure coverage of a training set given
a test set, we first identify, for each test sentence,
the most similar training sentence with the same
intent, according to the pairwise sentence distance
measure D(a, b) defined in Equation 1. We then
derive coverage by averaging the shortest dis-
tances for all sentences in the test set. For a given
test set, we would want the training set to have as
high coverage as possible. Specifically, for a

training set X and a test set Y :

CV G(X,Y ) =
1

|I|
I∑

i=1

1

|Yi|
Yi∑

b

Xi
max
a

(1−D(a, b))

(3)
where I is the set of intents and Xi and Yi are the
sets of utterances labeled with intent i in the train-
ing (X) and test (Y ) sets, respectively.

Correlating Metrics with Model Accuracy In
order to evaluate the effectiveness of diversity
and coverage at representing the training data
quality, we collect training data via different meth-
ods and of varying sizes, train actual models, mea-
sure their accuracy and investigate the correlation
between the metrics and the accuracy. We con-
sider two well-known algorithms that have pub-
licly available implementations: a linear SVM and
FastText, a neural network-based algorithm.

SVM Support Vector Machines (Cortes and
Vapnik, 1995) are a widely used and effective ap-
proach for classification tasks. We use a linear
model trained with the SVM objective as a sim-
ple baseline approach.

FastText We also consider a recently developed
neural network approach (Joulin et al., 2017; Bo-
janowski et al., 2017). This model has three steps:
(1) look up vectors for each n-gram in the sen-
tence, (2) average the vectors, and (3) apply a lin-
ear classifier. The core advantage of this approach
is parameter sharing, as the vector look-up step
places the tokens in a dense vector space. This
model consistently outperforms linear models on
a range of tasks.

For all experiments we apply a consistent set
of pre-processing steps designed to reduce sparse-
ness in the data: we lowercase the text, remove
punctuation, replace each digit with a common
symbol, expand contractions, and lemmatize (us-
ing NLTK for the last two).

4 Crowdsourcing Data Collection
Methods

We consider two aspects of a crowdsourcing setup:
the template style, and the prompt. The tem-
plate defines the structure of the task, including
its instructions and interface. Prompts are intent-
specific descriptions or examples that define the
scope of each task and guide workers to supply
answers related to the target intent. We define
a set of prompts for each intent and populate a
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React to a Scenario
Suppose you have a device that has a Siri-like app for your
bank account that acts as a customer service agent and
can handle questions about your bank account’s balance.

Given the original scenario described below that is
related to your bank account, supply 5 creative ways of
asking the intelligent device to assist your situation.

“You want to ask about the balance of your
bank account.”

Figure 1: An example of scenario-driven task instruc-
tions. The template sets up a real-world situation and
asks workers to provide a response as if they are in that
situation. The prompt shown here is for collecting data
for the intent ‘balance’.

template with each prompt to create a complete
crowdsourcing job. We study two types of tem-
plates: scenario-driven (§ 4.1) and paraphrasing
(§ 4.2), and two methods of generating prompts:
manual generation (§ 4.1 and 4.2) and test set sam-
pling (§ 5.3). A data collection method is the com-
bination of a template and a prompt generation
method. In this section, we describe each method
and its variants.

4.1 Scenario-driven

The instructions for a scenario-driven job de-
scribe a real-world situation and ask the worker
to provide a response as if they are in the sit-
uation. Figure 1 shows an example job for the
intent of “asking about your bank account bal-
ance”. Table 1 shows additional example prompts
for generic and specific scenarios. Scenario-driven
jobs simulate real world situations and encourage
workers to create natural questions and requests
resembling real user queries.

We consider two variations on the scenario-
driven setup. Generic scenarios describe the sit-
uation in which the target intent applies, without
specific constraints. For example, a generic sce-
nario for the intent ‘balance’ is “You want to know
about your account balance”. Specific scenarios
refine the description by adding details. These are
intended to encourage workers to write responses
with more entities and constraints. These jobs also
add specific information that the worker needs to
include in their response. For example, a specific
scenario for the intent ‘balance’ is “You’d like to
know the balance of one of your accounts. (Please
specify the account you want to inquire about in
your responses)”.

For each intent, we use one generic scenario and
three specific scenarios. To evaluate the differ-

Paraphrase Sentence
Given the following sentence, supply 5 creative ways of
rephrasing the same sentence.

Assume the original question is in regards to your
bank account’s balance.

“What is the balance of my bank account?”

Figure 2: An example of a paraphrasing task instruc-
tions.

ent scenario types, we collected data with either
generic scenarios only, specific scenarios only, or
a combination of both. The mixed setting contains
equal contributions from all four scenarios (one
generic and three specific). In our experiments,
we keep the number of training samples per intent
balanced across intents regardless of the number
of total training examples.

4.2 Paraphrasing

Paraphrasing jobs provide an example sentence
and ask workers to write several creative para-
phrases of it. Figure 2 shows an example of job
instructions for paraphrasing the sentence “What
is the balance of my bank account?” To make sure
we can directly compare the results of paraphras-
ing and scenario-driven jobs, we convert each sce-
nario used in § 4.1 into a user question or com-
mand, which is provided as the sentence to para-
phrase. As a result, there are two types of para-
phrasing prompts: generic prompts and specific
prompts. Table 1 shows example pairs of scenarios
and paraphrasing prompts. Like in the scenario-
driven case, we construct training sets with three
different mixes of prompts, generic only, specific
only and a combination of both.

5 Evaluation

In this section, we first verify that diversity
and coverage provide insight regarding train-
ing data quality. We compare trends in these met-
rics with trends in model accuracy as the amount
of training data is increased. We then evaluate
the performance of the scenario-driven and para-
phrase methods and their variants by comparing
the quality of training data collected via these
methods. Finally, we explore sampling paraphras-
ing examples from the test set and compare against
manually generation by engineers.
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Type Scenario Paraphrasing
Generic You want to learn about your spending history. “Show me my spending history.”

Specific You want to learn about your spending history during a
specific period of time.

“Show me my spending history in the last month. (Use
different time periods in your answers).”

Generic You want to ask about your income. “What’s my income?”

Specific You want to ask about your income from a specific em-
ployer.

“How much money did I make from Company A? (Use
different employers in your answers.)”

Table 1: Examples of generic and specific scenario description and paraphrasing prompts.
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Figure 3: Accuracy, coverage and diversity for
scenario-driven jobs as the training data size increases.
This data is collected using a mixture of generic and
specific scenarios.
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Figure 4: Accuracy, coverage and diversity for
paraphrasing jobs as the training data size increases.
This data is collected using a combination of generic
and specific paraphrase examples.

5.1 Correlating Diversity and Coverage with
Model Accuracy

Figure 3 and 4 show diversity, coverage,
and accuracy of the SVM and FastText mod-
els as we vary the number of training examples
for scenario-driven and paraphrase-based jobs, re-
spectively. In this experiment, we use a combi-
nation of both generic and specific scenarios and
paraphrasing examples.

We observe that for both scenario and para-
phrase jobs, the diversity starts high (> 0.90)
with a few hundred training samples and stay sta-

ble as training data size increases. This means
that the new training examples generally have a
low percentage of n-grams overlap and a long dis-
tance (D(a, b)) with the existing examples, there-
fore maintaining the overall high diversity.
This indicates that the newly introduced exam-
ples are generally creative contributions from the
crowd and not repeats or straightforward rephrase
of the existing samples with the same words.
coverage starts low with a few hundred train-

ing examples and steadily increases as the train-
ing set grows. This indicates that the new train-
ing examples contain sentences that are semanti-
cally closer to the test set sentences than exisit-
ing training examples, increasing the training set’s
scope to better cover the expression space repre-
sented by the test set. The accuracy of both SVM
and FastText models follow a very similar trend to
that of coverage, gradually increasing as more
training samples are collected. The correlation
between model accuracy and coverage shows
that coverage is a more effective metric than
diversity in evaluating the quality of a train-
ing set without training models.

We also observe diminishing returns
in coverage as more data is collected. This
trend roughly correlates with the diminishing re-
turn in accuracy of the SVM and FastText models.
The trend in coverage provides insight into
improvements in training data quality, which can
inform the choice of when to stop collecting more
data and start focusing on improving algorithms.
This is further demonstrated by the way FastText
consistently outperforms the SVM model when
their accuracies and coverage of the training
data saturate, indicating that the algorithm is the
bottleneck for improving accuracy instead of the
amount of training data.

Key Insights (1) diversity stays relatively
constant with a high value as more training sam-
ples are collected, indicating that new distinct
training examples are being introduced. (2)
coverage continuously improves as data scales,
showing that the training data is becoming more
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Accuracy
Template Type SVM FastText CVG DIV

Generic 68.49 69.70 0.30 0.90
Scenario Specific 65.86 68.10 0.29 0.89

Both 74.77 75.48 0.32 0.91
Generic 68.60 70.50 0.30 0.88

Paraphrase Specific 67.80 67.77 0.29 0.87
Both 75.46 76.44 0.32 0.90

Table 2: Accuracy, coverage and diversity for
the six template + prompt conditions considered, all
with ~4.7K training samples.

effective at covering the expression space defined
by the test set. The trend of coverage closely
correlates with the trend in model accuracy, in-
dicating that coverage is an effective metric at
evaluating training data quality without requiring
model training.

5.2 Comparing Scenario and Paraphrase
Based Collection and Their Variants

Table 2 summarizes the model accu-
racy, coverage and diversity of both
scenario-driven and paraphrase-based jobs. We
studied three variants for each job type, where
we use different mixtures of prompt type (generic
prompts only, specific prompts only and combined
prompts). All configurations are evaluated using
training data of the same size (~4.7K) and on the
same test set.

For both scenario and paraphrase jobs, using
a mixture of both generic and specific prompts
yields training data with higher coverage and
models with higher accuracy than using only
generic or specific prompts.

Table 2 compares scenario and paraphrasing
jobs. As described in § 4.2, the paraphrasing ex-
amples were based on the scenario descriptions
so we are only measuring the impact of differ-
ent job types. The two approaches lead to sim-
ilar results across all metrics. This shows that
despite the instructions being distinctly different,
scenario-driven and paraphrasing jobs generally
yield training data of similar quality.

Key Insights (1) A mixture of generic and spe-
cific scenarios and paraphrasing examples yields
the best training data given a fixed number of
training examples, in terms of both coverage
of the training set and the accuracy of the down-
stream models. (2) Scenario-driven and para-
phrasing based crowdsourcing jobs yield similar
quality training data despite having different job
instructions and templates.

Accuracy
SVM FastText CVG DIV

Manual generation 75.46 76.44 0.32 0.90
Test set sampling 83.05 84.69 0.40 0.92

Table 3: Comparison of manually generating prompts
and sampling from test set, evaluated on half of the test
data (kept blind in sampling).

# of paraphrasing Accuracy
prompts SVM FastText CVG DIV

1 71.46 71.69 0.31 0.88
2 78.34 79.33 0.36 0.91
3 81.47 82.67 0.39 0.91
4 83.05 84.69 0.40 0.92
5 84.61 85.96 0.41 0.92

Table 4: Accuracy, coverage and diversity of
paraphrasing jobs using 1-5 prompts sampled from the
test set, with constant training set size (~4.7K).

5.3 Sampling Prompts from the Test Set

We now investigate a different way to generate the
prompts used for the crowdsourcing jobs. In the
context of scenario-driven and paraphrasing jobs,
prompts are the scenario descriptions and the ex-
ample sentences provided to workers to rephrase,
respectively. In § 4.1 and 4.2, engineers manually
generated the prompts based on the definition of
each intent. While manual generation guarantees
high quality prompts, it requires engineering effort
and could potentially be biased by the engineer’s
perspective. One way to reduce such effort and
bias is to automatically source prompts based on
real user queries.

We divide the test set into two equal halves.
For each intent, we randomly sample 5 utterances
from the first half of the test set and use them as
prompts to construct paraphrasing jobs. The sec-
ond half of the test set is kept entirely blind and
used for evaluation.

Manual Generation vs. Test Set Sampling
Table 3 shows the accuracy, coverage
and diversity of a training set collected
with 4 manually generated paraphrasing examples
vs. with 4 paraphrasing examples sampled from
the first half of the test set. The accuracy for both
methods is evaluated on the second half of the test
set (kept blind from prompt sampling). The results
show that sampling from the test set leads to a
training set that has 8% higher coverage, 2%
higher diversity and yields models with 8%
higher accuracy, compared to manual generation.

Varying the Number of Prompts Ta-
ble 4 shows the accuracy, coverage
and diversity of training data collected
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using a varying number (1-5) of unique para-
phrasing examples sampled from the test set. We
observe that test set accuracy improves as we use
more unique prompts but eventually there are
diminishing returns. Increasing the number of
prompts from 1 to 2 increases the accuracy by
6.9% and 7.6% for SVM and FastText, respec-
tively, while increasing the number of prompts
from 4 to 5 improves their accuracy by only 1.6%
and 1.3%.

6 Related work

This study complements a line of work on un-
derstanding how to effectively collect data with
non-expert workers. The closest work is Jiang
et al. (2017)’s study of a range of interface design
choices that impact the quality and diversity of
crowdsourced paraphrases. However, their work
focused on intrinsic evaluation of the paraphrases
only, whereas we explore the impact on perfor-
mance in a downstream task. The variations we
consider are also complementary to the aspects
covered by their study, providing additional guid-
ance for future data collection efforts.

In terms of the variations we consider, the clos-
est work is Rogstadius et al. (2011), who also
considered how task framing can impact behav-
ior. Their study made a more drastic change than
ours though, attempting to shift workers’ intrin-
sic motivation by changing the perspective to be
about assisting a non-profit organization. While
this shift did have a significant impact on worker
behavior, it is often not applicable.

More generally, starting with the work of Snow
et al. (2008) there have been several investigations
of crowdsourcing design for natural language pro-
cessing tasks. Factors that have been considered
include quality control mechanisms (Rashtchian
et al., 2010), payment rates and task descriptions
(Grady and Lease, 2010), task naming (Vliegend-
hart et al., 2011), and worker qualification require-
ments (Kazai et al., 2013). Other studies have fo-
cused on exploring variations for specific tasks,
such as named entity recognition (Feyisetan et al.,
2017). Recent work has started to combine and
summarize these observations together into con-
sistent guidelines (Sabou et al., 2014), though the
range of tasks and design factors makes the scope
of such guidelines large. Our work adds to this
literature, introducing new metrics and evaluation
methods to guide crowdsourcing practice.

7 Conclusion

Training data is the key to building a success-
ful production dialogue system, and efficiently
collecting large scale robust training data via
crowdsourcing is particularly challenging. In this
work, we introduce and characterize two train-
ing data quality evaluation metrics. We verify
their effectiveness by training models of well-
known algorithms and correlating the metrics with
model accuracy. We show that an algorithm-
independent coverage metric is effective at pro-
viding insights into the training data and can guide
the data collection process. We also studied and
compared a range of crowdsourcing approaches
for collecting training data for a many-intent clas-
sification task in one of our deployed dialogue sys-
tems. Our observations provide several key in-
sights that serve as recommendations for future
dialogue system data collection efforts, specifi-
cally that using a mixture of generic and specific
prompts and sampling prompts from the real user
queries yields better quality training data.
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Abstract

End-to-end neural models show great promise
towards building conversational agents that are
trained from data and on-line experience using
supervised and reinforcement learning. How-
ever, these models require a large corpus of di-
alogues to learn effectively. For goal-oriented
dialogues, such datasets are expensive to col-
lect and annotate, since each task involves a
separate schema and database of entities. Fur-
ther, the Wizard-of-Oz approach commonly
used for dialogue collection does not provide
sufficient coverage of salient dialogue flows,
which is critical for guaranteeing an accept-
able task completion rate in consumer-facing
conversational agents. In this paper, we study
a recently proposed approach for building an
agent for arbitrary tasks by combining dia-
logue self-play and crowd-sourcing to gener-
ate fully-annotated dialogues with diverse and
natural utterances. We discuss the advantages
of this approach for industry applications of
conversational agents, wherein an agent can be
rapidly bootstrapped to deploy in front of users
and further optimized via interactive learning
from actual users of the system.

1 Introduction

Goal-oriented conversational agents enable users
to complete specific tasks like restaurant reserva-
tions, buying movie tickets or booking a doctor’s
appointment, through natural language dialogue
via a spoken or a text-based chat interface, instead
of operating a graphical user interface on a device.
Each task is based on a database schema which de-
fines the domain of interest. Developing an agent
to effectively handle all user interactions in a given
domain requires properly dealing with variations
in the dialogue flows (what information the users
choose to convey in each utterance), surface forms
(choice of words to convey the same information),

∗* Work done while the author was an intern at Google.

database states (what entities are available for sat-
isfying the user’s request), and noise conditions
(whether the user’s utterances are correctly recog-
nized by the agent). Moreover, the number of po-
tential tasks is proportional to the number of trans-
actional websites on the Web, which is in the order
of millions.

Popular consumer-facing conversational assis-
tants approach this by enabling third-party devel-
opers to build dialogue “experiences” or “skills”
focusing on individual tasks (e.g. DialogFlow1,
Alexa Skills (Kumar et al. (2017)), wit.ai2). The
platform provides a parse of the user utterance into
a developer defined intent, and the developer pro-
vides a policy which maps user intents to system
actions, usually modeled as flow charts3. This
gives the developer full control over how a par-
ticular task is handled, allowing her to incremen-
tally add new features to that task. However, some
limitations are that (i) the developer must antici-
pate all ways in which users might interact with
the agent, and (ii) since the programmed dialogue
flows are not “differentiable”, the agent’s dialogue
policy cannot be improved automatically with ex-
perience and each improvement requires human
intervention to add logic to support a new dialogue
flow or revise an existing flow.

Recently proposed neural conversational mod-
els (Vinyals and Le (2015)) are trained with su-
pervision over a large corpus of dialogues (Ser-
ban et al. (2016, 2017); Lowe et al. (2017)) or
with reinforcement to optimize a long term reward
(Li et al. (2016a,b)). End-to-end neural conver-
sational models for task-oriented dialogues (Wen
et al. (2016); Liu and Lane (2017a)) leverage an-
notated dialogues collected with an expert to em-
bed the expert’s dialogue policy for a given task in

1https://dialogflow.com
2https://wit.ai
3https://dialogflow.com/docs/dialogs
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Figure 1: Bootstrapping a neural conversational agent.

the weights of a neural network. However, train-
ing such models requires a large corpus of anno-
tated dialogues in a specific domain, which is ex-
pensive to collect. Approaches that use reinforce-
ment learning to find the optimal policy also rely
on a pre-training step of supervised learning over
expert dialogues in order to reduce the exploration
space to make the policy learning tractable (Fatemi
et al. (2016); Su et al. (2016b, 2017); Liu and Lane
(2017b)). A further issue with application of rein-
forcement learning techniques is that the user sim-
ulator used for the policy training step may not en-
tirely mimic the behavior of actual users of the
system. This can be mitigated by continuously
improving the deployed agent from interactions
with actual users via on-line learning (Gašić et al.
(2011); Su et al. (2015, 2016a)).

The Wizard-of-Oz setup (Kelley (1984);
Dahlbäck et al. (1993)) is a popular approach
to collect and annotate task-oriented dialogues
via crowd-sourcing for training neural conver-
sational models (Wen et al. (2016); Asri et al.
(2017)). However, this is an expensive and lossy
process as the free-form dialogues collected
from crowd-workers might contain dialogues
unfit for use as training data, for instance if the
crowd workers use language that is either too
simplistic or too convoluted, or may have errors
in dialogue act annotations requiring an expensive
manual filtering and cleaning step. Further, the
corpus might not cover all the interactions that the
dialogue developer expects the agent to handle.
In contrast, the recently proposed Machines
Talking To Machines (M2M) approach (Shah
et al. (2018)) is a functionality-driven process
for training dialogue agents, which combines a
dialogue self-play step and a crowd-sourcing step
to obtain a higher quality of dialogues in terms of
(i) diversity of surface forms as well as dialogue
flows, (ii) coverage of all expected user behaviors,

and (iii) correctness of annotations.
To apply these recent neural approaches to

consumer-facing agents that must rapidly scale
to new tasks, we propose the following recipe
(Fig. 1): (1) exhaustively generate dialogue tem-
plates for a given task using dialogue self-play
between a simulated user and a task-independent
programmed system agent, (2) obtain natural lan-
guage rewrites of these templates using crowd
sourcing, (3) train an end-to-end conversational
agent on this fully annotated dataset, achieving a
reasonable task completion rate, and (4) deploy
this agent to interact with users and collect user
feedback, which serves as a reward value to con-
tinuously improve the agent’s policy with on-line
reinforcement learning updates. Consequently, a
programmed dialogue agent’s policy is distilled
into a differentiable neural model which sustains
a minimum task completion rate through guaran-
teed coverage of the interactions anticipated by the
developer. Such an agent is safely deployable in
front of actual users while also continuously im-
proving from user feedback via lifelong learning.

The main contribution of this paper is two-fold:

1. an approach combining dialogue self-play,
crowd-sourcing, and on-line reinforcement
learning to rapidly scale consumer-facing
conversational agents to new tasks.

2. discussion of practical solutions for improv-
ing user simulation and crowd-sourcing se-
tups to guarantee coverage of salient dialogue
flows and diversity of surface forms.

2 Approach

We present a brief overview of the Machines Talk-
ing To Machines (M2M) approach for bootstrap-
ping a conversational agent. We direct the reader
to the technical report Shah et al. (2018) for a de-
tailed description of this approach.
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Table 1: Sample dialogue outline and rewrite for movie ticket booking.
Outline Rewrite

Annotations Template utterances NL utterances
S: greeting() Greeting. Hi, how can I help you?
U: inform(intent=book movie,
name=Inside Out, date=tomorrow,
num tickets=2)

Book movie with name is
Inside Out and date is tomorrow
and num tickets is 2.

I want to buy 2 tickets for Inside
Out for tomorrow.

S: ack() request(time) OK. Provide time.
Alright. What time would you like
to see the movie?

U: inform(time=evening) Time is evening.
Anytime during the evening works
for me.

S: offer(theatre=Cinemark 16,
time=6pm)

Offer theatre is Cinemark 16 and
time is 6pm.

How about the 6pm show at
Cinemark 16?

U: affirm() Agree. That sounds good.
S: notify success() Reservation confirmed. Your tickets have been booked!

2.1 M2M

At a high level, M2M connects a developer,
who provides the task-specific information, and a
framework, which provides the task-independent
information, for generating dialogues centered
around completing the task. In this work we focus
on database querying applications, which involve
a relational database which contains entities that
the user would like to browse and select through a
natural language dialogue. The input to the frame-
work is a task specification obtained from the de-
veloper, consisting of a schema of “slots” induced
by the columns of the database and an API client
which can be queried with a SQL-like syntax to
return a list of matching candidate entities for any
valid combination of slot values. For example,
the schema for a movie ticket booking domain
would include slots such as “movie name”, “num-
ber of tickets”, “date” and “time” of the show, etc.
The API client would provide access to a database
(hosted locally or remotely via the Web) of movie
showtimes.

Outlines. With the task specification, the
framework must generate a set of dialogues cen-
tered around that task. Each dialogue is a se-
quence of natural language utterances, i.e. dia-
logue turns, and their corresponding annotations,
which include the semantic parse of that turn as
well as additional information tied to that turn.
For example, for the user turn “Anytime during
the evening works for me”, the annotation would
be “User: inform(time=evening)”. The key idea
in M2M is to separate the linguistic variations in
the surface forms of the utterances from the se-
mantic variations in the dialogue flows. This is

achieved by defining the notion of a dialogue out-
line as a sequence of template utterances and their
corresponding annotations. Template utterances
are simplistic statements with language that is easy
to generate procedurally. An outline encapsulates
the semantic flow of the dialogue while abstract-
ing out the linguistic variation in the utterances.
The first two columns of Table 1 provide a sample
dialogue outline for a movie ticket booking inter-
action, consisting of the annotations and template
utterances, respectively.

Dialogue self-play. M2M proceeds by first gen-
erating a set of dialogue outlines for the specified
task. A task-oriented dialogue involves the back
and forth flow of information between a user and
a system agent aimed towards satisfying a user
need. Dialogue self-play simulates this process by
employing a task-independent user simulator and
system agent seeded with a task schema and API
client. The user simulator maps a (possibly empty)
dialogue history, a user profile and a task schema
to a distribution over turn annotations for the next
user turn. Similarly, the system agent maps a di-
alogue history, task schema and API client to a
distribution over system turn annotations. Anno-
tations are sampled from user and system itera-
tively to take the dialogue forward. The gener-
ated annotations consist of dialogue frames that
encode the semantics of the turn through a dia-
logue act and a slot-value map (Table 1). For ex-
ample “inform(date=tomorrow, time=evening)” is
a dialogue frame that informs the system of the
user’s constraints for the date and time slots. We
use the Cambridge dialogue act schema (Hender-
son et al. (2013)) as the list of possible dialogue
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acts. The process continues until either the user’s
goals are achieved and the user exits the dialogue
with a “bye()” act, or a maximum number of turns
are reached.

In our experiments we use an agenda-based
user simulator (Schatzmann et al. (2007)) pa-
rameterized by a user goal and a user pro-
file. The programmed system agent is modeled
as a handcrafted finite state machine (Hopcroft
et al. (2006)) which encodes a set of task-
independent rules for constructing system turns,
with each turn consisting of a response frame
which responds to the user’s previous turn, and
an initiate frame which drives the dialogue for-
ward through a predetermined sequence of sub-
dialogues. For database querying applications,
these sub-dialogues are: gather user preferences,
query a database via an API, offer matching enti-
ties to the user, allow user to modify preferences
or request more information about an entity, and
finally complete the transaction (buying or reserv-
ing the entity) (Fig. 2). By exploring a range of
parameter values and sampling a large number of
outlines, dialogue self-play can generate a diverse
set of dialogue outlines for the task.

Template utterances. Once a full dialogue
has been sampled, a template utterance generator
maps each annotation to a template utterance using
a domain-general grammar (Wang et al. (2015))
parameterized with the task schema. For ex-
ample, “inform(date=tomorrow, time=evening)”
would map to a template “($slot is $value) (and
($slot is $value))*”, which is grounded as “Date is
tomorrow and time is evening.” The developer can
also provide a list of templates to use for some or
all of the dialogue frames if they want more con-
trol over the language used in the utterances. Tem-
plate utterances are an important bridge between
the annotation and the corresponding natural lan-
guage utterance, as they present the semantic in-
formation of a turn annotation in a format under-
standable by crowd workers.

Crowd-sourced rewrites. To obtain a natu-
ral language dialogue from its outline, the frame-
work employs crowd sourcing to paraphrase tem-
plate utterances into more natural sounding utter-
ances. The paraphrase task is designed as a “con-
textual rewrite” task where a crowd worker sees
the full dialogue template, and provides the nat-
ural language utterances for each template utter-
ances of the dialogue. This encourages the crowd

Figure 2: Finite state machine for a task-independent
system agent for database querying applications.

worker to inject linguistic phenomena like coref-
erence (“Reserve that restaurant”) and lexical en-
trainment (“Yes, the 6pm show”) into the utter-
ances. Fig. 5 in the Appendix provides the UI
shown to crowd workers for this task. The same
outline is shown to K > 1 crowd-workers to get
diverse natural language utterances for the same
dialogue. The third column of Table 1 presents
contextual rewrites for each turn of an outline for
a movie ticket booking task.

Model training. The crowd sourced dataset
has natural language utterances along with full an-
notations of dialogue acts, slot spans, dialogue
state and API state for each turn. These anno-
tated dialogues are sufficient for training end-to-
end models using supervision (Wen et al. (2016)).
Dialogue self-play ensures sufficient coverage of
flows encoded in the programmed system agent
in the crowd sourced dataset. Consequently, the
trained agent reads natural language user utter-
ances and emits system turns by encoding the
FSM policy of system agent in a differentiable
neural model.

2.2 On-line reinforcement learning

A limitation of training a neural agent on the
dataset collected with M2M is that it is restricted
to the flows encoded in the user simulator or the
programmed system agent, and utterances col-
lected from crowd-workers. When deployed to in-
teract with actual users, the agent may find itself in
new dialogue states that weren’t seen during train-
ing. This can be mitigated by continually improv-
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ing the agent’s language understanding as well as
dialogue policy by using a feedback score on each
dialogue interaction of the neural agent as a reward
value to optimize the end-to-end model using pol-
icy gradient reinforcement learning (RL). The RL
updates can be done in two phases (which could
be interleaved):

RL with user simulator. Since RL requires
training for thousands of episodes, we construct
a simulated environment in which the user sim-
ulator emits a user turn annotation, and a natu-
ral language utterance is sampled from the set of
utterances collected for that dialogue frame from
crowd sourcing. This enables the neural agent
to discover dialogue flows not present in the pro-
grammed agent. The reward is computed based on
successful task completion minus a turn penalty
(El Asri et al. (2014)), and the model is updated
with the on-policy REINFORCE update after each
episode (Liu et al. (2017)).

RL with human feedback. For the agent to
handle user interactions that are not generated by
the user simulator, the agent must learn from its in-
teractions with actual users. This is accomplished
by applying updates to the model based on feed-
back scores collected from users after each dia-
logue interaction (Shah et al. (2016)).

3 User simulation and dialogue self-play

M2M hinges on having a generative model of a
user that is reasonably close to actual users of
the system. While it is difficult to develop pre-
cise models of user behavior customized for every
type of dialogue interaction, it is easier to create a
task-independent user simulator that operates at a
higher level of abstraction (dialogue acts) and en-
capsulates common patterns of user behavior for
a broad class of dialogue tasks. Seeding the user
simulator with a task-specific schema of intents,
slot names and slot values allows the framework
to generate a variety of dialogue flows tailored to
that specific task. Developing a general user sim-
ulator targeting a broad class of tasks, for exam-
ple database querying applications, has significant
leverage as adding a new conversational pattern to
the simulator benefits the outlines generated for
dialogue interfaces to any database or third-party
API.

Another concern with the use of a user sim-
ulator is that it restricts the generated dialogue
flows to only those that are engineered into the

user model. In comparison, asking crowd work-
ers to converse without any restrictions could gen-
erate interesting dialogues that are not anticipated
by the dialogue developer. Covering complex in-
teractions is important when developing datasets
to benchmark research aimed towards building
human-level dialogue systems. However, we ar-
gue that for consumer-facing chatbots, the primary
aim is reliable coverage of critical user interac-
tions. Existing methods for developing chatbots
with engineered finite state machines implicitly
define a model of expected user behavior in the
states and transitions of the system agent. A user
simulator makes this user model explicit and is a
more systematic approach for a dialogue devel-
oper to reason about the user behaviors handled
by the agent. Similarly, having more control over
the dialogue flows present in the dataset ensures
that all and only expected user and system agent
behaviors are present in the dataset. A dialogue
agent bootstrapped with such a dataset can be de-
ployed in front of users with a guaranteed mini-
mum task completion rate.

The self-play step also uses a programmed sys-
tem agent that generates valid system turns for a
given task. Since M2M takes a rule-based agent
which works with user dialogue acts and emits a
neural conversational agent that works with nat-
ural language user utterances, the framework ef-
fectively distills an expert dialogue policy com-
bined with a language understanding module into
a single learned neural network. The developer
can customize the behavior of the neural agent
by modifying the component rules of the pro-
grammed agent. Further, by developing a task-
independent set of rules for handling a broad task
like database querying applications (Fig. 2), the
cost of building the programmed agent can be
amortized over a large number of dialogue tasks.

4 Crowdsourcing

In the Wizard-of-Oz setting, a task is shown to
a pair of crowd workers who are asked to con-
verse in natural language to complete the task. The
collected dialogues are manually annotated with
dialogue act and slot span labels. This process
is expensive as the two annotation tasks are dif-
ficult and therefore time consuming: identifying
the dialogue acts of an utterance requires under-
standing the precise meaning of each dialogue act,
and identifying all slot spans in an utterance re-
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quires checking the utterance against all slots in
the schema. As a result, the crowd-sourced an-
notations may need to be cleaned by an expert.
In contrast, M2M significantly reduces the crowd-
sourcing expense by automatically annotating a
majority of the dialogue turns and annotating the
remaining turns with two simpler crowd-sourcing
tasks: “Does this utterance contain this particular
slot value?” and “Do these two utterances have the
same meaning?”, which are easier for the average
crowd worker.

Further, the lack of control over crowd workers’
behavior in the Wizard-of-Oz setting can lead to
dialogues that may not reflect the behavior of real
users, for example if the crowd worker provides
all constraints in a single turn or always mentions a
single constraint in each turn. Such low-quality di-
alogues either need to be manually removed from
the dataset, or the crowd participants need to be
given additional instructions or training to encour-
age better interactions (Asri et al. (2017)). M2M
avoids this issue by using dialogue self-play to
systematically generate all usable dialogue out-
lines, and simplifying the crowd-sourcing step to
a dialogue paraphrase task.

5 Evaluations

We have released4 two datasets totaling 3000 dia-
logues collected using M2M for the tasks of buy-
ing a movie ticket (Sim-M) and reserving a restau-
rant table (Sim-R). We present some experiments
with these datasets.

5.1 Dialogue diversity

First we investigate the claim that M2M leads
to higher coverage of dialogue features in the
dataset. We compare the Sim-R training dialogues
with the DSTC2 (Henderson et al. (2013)) train-
ing set which also deals with restaurants and is
similarly sized (1611 vs. 1116 dialogues) (Ta-
ble 2). M2M compares favorably to DSTC2 on
the ratio of unique unigrams and bigrams to total
number of tokens in the dataset, which signifies
a greater variety of surface forms as opposed to
repeating the same words and phrases. We also
measure the outline diversity, defined as the ra-
tio of unique outlines divided by total dialogues in
the dataset. We calculate this for sub-dialogues of
length k = {1, 3, 5} as well as full dialogues. This

4https://github.com/google-research-datasets/simulated-
dialogue

Table 2: Comparing DSTC2 and M2M Restaurants
datasets on diversity of language and dialogue flows.

Metric DSTC2
(Train)

Sim-R
(Train)

Dialogues 1611 1116
Total turns 11670 6188
Total tokens 199295 99932
Avg. turns per dialogue 14.49 11.09
Avg. tokens per turn 8.54 8.07
Unique tokens ratio 0.0049 0.0092
Unique bigrams ratio 0.0177 0.0670
Outline diversity (k=1) 0.0982 0.2646
Outline diversity (k=3) 0.1831 0.3145
Outline diversity (k=5) 0.5621 0.7061
Outline diversity (full) 0.9243 0.9292

Figure 3: Crowd worker ratings for the quality of the
user and system utterances of dialogues collected with
M2M.

gives a sense of the diversity of dialogue flows in
the dataset. M2M has fewer repetitions of sub-
dialogues compared to DSTC2.

5.2 Human evaluation of dataset quality

To evaluate the subjective quality of the M2M
datasets, we showed the final dialogues to human
judges recruited via a crowd-sourcing service, and
asked them to rate each user and system turn be-
tween 1 to 5 on multiple dimensions. Fig. 6 in the
Appendix provides the UI shown to crowd work-
ers for this task. Each dialogue was shown to 3
judges. Fig. 3 shows the average ratings aggre-
gated over all turns for the two datasets.

5.3 Human evaluation of model quality

To evaluate the proposed method of bootstrapping
neural conversational agents from a programmed
system agent, we trained an end-to-end conversa-
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Figure 4: Average crowd worker ratings for the quality
of the system utterances of neural conversational agents
trained on Sim-M.

tional model (Liu et al. (2017)) using supervised
learning (SL) on the Sim-M training set. This
model is further trained with RL for 10K episodes
with the user simulator as described in Section 2.2
(SL+RL). We performed two separate evaluations
of these models:

Simulated user. We evaluate the neural
agents in the user simulation environment for 100
episodes. We asked crowd-sourced judges to read
dialogues between the agent and the user simu-
lator and rate each system turn on a scale of 1
(frustrating) to 5 (optimal way to help the user).
Each turn was rated by 3 different judges. Fig. 4
shows the average scores for both agents. End-to-
end optimization with RL improves the quality of
the agent according to human judges, compared to
an agent trained with only supervised learning on
the dataset.

Human user. We evaluate the neural agents
in live interactions with human judges for 100
episodes each. The human judges are given sce-
narios for a movie booking task and asked to talk
with the agent to complete the booking accord-
ing to the constraints. After the dialogue finishes,
the judge is asked to rate each system turn on the
same scale of 1 to 5. Fig. 4 shows the average
scores for both agents. End-to-end optimization
with RL improves the agent’s interactions with hu-
man users. The interactions with human users are
of lower quality than those with the user simula-
tor as human users may use utterances or dialogue
flows unseen by the agent. Continual training of
the agent with on-line reinforcement learning can
close this gap with more experience.

6 Related work and discussion

We presented an approach for rapidly bootstrap-
ping goal-oriented conversational agents for arbi-
trary database querying tasks, by combining dia-
logue self-play, crowd-sourcing and on-line rein-
forcement learning.

The dialogue self-play step uses a task-
independent user simulator and programmed sys-
tem agent seeded with a task-specific schema,
which provides the developer with full control
over the generated dialogue outlines. PyDial
(Ultes et al. (2017)) is an extensible open-source
toolkit which provides domain-independent im-
plementations of dialogue system modules, which
could be extended by adding dialogue self-play
functionality. We described an FSM system agent
for handling any transactional or form-filling task.
For more complex tasks, the developer can extend
the user simulator and system agents by adding
their own rules. These components could also
be replaced by machine learned generative mod-
els if available. Task Completion Platform (TCP)
(Crook et al. (2016)) introduced a task configura-
tion language for building goal-oriented dialogue
interactions. The state update and policy modules
of TCP could be used to implement agents that
generate outlines for more complex tasks.

The crowd-sourcing step uses human intelli-
gence to gather diverse natural language utter-
ances. Comparisons with the DSTC2 dataset show
that this approach can create high-quality fully an-
notated datasets for training conversational agents
in arbitrary domains. ParlAI (Miller et al. (2017)),
a dialogue research software platform, provides
easy integration with crowd sourcing for data
collection and evaluation. However, the crowd
sourcing tasks are open-ended and may result in
lower quality dialogues as described in Section
4. In M2M, crowd workers are asked to para-
phrase given utterances instead of writing new
ones, which is at a suitable difficulty level for
crowd workers.

Finally, training a neural conversational model
over the M2M generated dataset encodes the pro-
grammed policy in a differentiable neural model
which can be deployed to interact with users. This
model is amenable to on-line reinforcement learn-
ing updates with feedback from actual users of the
system (Su et al. (2016a); Liu et al. (2017)), ensur-
ing that the agent improves its performance in real
situations with more experience.
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Figure 5: Contextual rewrite task interface for paraphrasing a dialogue outline with natural language.
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Figure 6: Dialogue quality evaluation task interface for rating the user and system turns of completed dialogues.
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Abstract

At eBay, we are automatically generating
a large amount of natural language titles
for eCommerce browse pages using machine
translation (MT) technology. While automatic
approaches can generate millions of titles very
fast, they are prone to errors. We therefore de-
velop quality estimation (QE) methods which
can automatically detect titles with low quality
in order to prevent them from going live. In
this paper, we present different approaches:
The first one is a Random Forest (RF) model
that explores hand-crafted, robust features,
which are a mix of established features com-
monly used in Machine Translation Quality
Estimation (MTQE) and new features devel-
oped specifically for our task. The second
model is based on Siamese Networks (SNs)
which embed the metadata input sequence and
the generated title in the same space and do
not require hand-crafted features at all. We
thoroughly evaluate and compare those ap-
proaches on in-house data. While the RF mod-
els are competitive for scenarios with smaller
amounts of training data and somewhat more
robust, they are clearly outperformed by the
SN models when the amount of training data
is larger.

1 Introduction

On eCommerce sites, multiple items can be
grouped on a common page called browse page
(BP). Each browse page contains an overview of
various items which share some, but not nec-
essarily all characteristics. The characteristics
can be expressed as slot/value pairs. Figure 1
shows an example of a browse page with a title,
with navigation elements leading to related browse
pages as well as the individual items listed on this
page.

The browse pages are linked among each other
and can be organized in a hierarchy. This structure

Logo Search ... Find

Electronics
✓Cellphones
   Smartwatches
   Acessories

Brand
✓ACME
   Zorg

Color
   black
✓white
   red

ACME white 32GB Smart Phones
Shop by Network 

Network A Network B Network C◀ ▶

Shop by Model 
Model A Model B Model C C◀ ▶

Results
NEW ACME Model UNLOCKED
32GB Smartphone WHITE $123.99

ACME 4G Smartphone 5.1"
Model New In Box $111.11

Figure 1: Example of a browse page.

allows users to navigate laterally between different
browse pages, or to dive deeper and refine their
search. The example browse page in Figure 1
shows different white ACME smartphones with
capacity 32GB. This page is linked from various
browse pages, e.g. those for white ACME Smart-
phones, for ACME smartphones with 32GB, or
for white smartphones with 32GB. It also links
to browse pages with a higher number of slots,
i.e. refining the set of listed items by additional
features like network provider.

Different combinations of characteristics bijec-
tively correspond to different browse pages, and
consequently to different browse page titles. To
show customers which items are grouped on a
browse page, we need a human-readable descrip-
tion of the content of that particular page.

Large eCommerce sites can easily have tens of
millions of such browse pages in many different
languages. Each browse page has one to six slots
to be realized. The number of unique slot-value
pairs are in the order of hundreds of thousands.
All these factors render the task of human cre-
ation of browse page titles infeasible. We have
therefore developed several strategies to gener-
ate these human-readable titles automatically for
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any possible browse page (Mathur, Ueffing, and
Leusch, 2017). These strategies are based on MT
technology and take the slot/value pairs mentioned
in Section 1 as input. Examples of such slot/value
pairs are the category to which the products be-
long, and characteristics like brand, color, size,
storage capacity, which are dependant on the cat-
egory. The slot/value pairs for the browse page
from Figure 1 are shown in Table 1.

Slot Name Value
Category Cell Phones & Smart Phones
Brand ACME
Color white
Storage Capacity 32GB

Table 1: The underlying metadata for Figure 1.

These metadata are fed into an MT system and
translated into natural language. We have devel-
oped three different MT-based systems, which are
tailored towards different amounts of training data
available across languages. These systems are
shortly described in Section 4. In this paper, we
compare our QE methods on output from different
MT systems on English titles.

2 Approach

The automatically generated BP titles are regu-
larly monitored, and quality is assessed by human
experts, who label each title with one out of four
error severity classes:

• Good: good quality, no issues,

• P3: minor issues, acceptable quality,

• P2: issues which impact the understandabil-
ity of the title,

• P1: severe issues, like incorrect brand names.

We map these error classes to the two quality
classes ‘OK’ and ‘Bad’: ‘Good’ and ‘P3’ repre-
sent acceptable title quality (‘OK’), while ‘P2’ and
‘P1’ constitute ‘Bad’ titles. For English browse
page titles, we have a large amount of these
manually assigned labels available (see Section 3).
For automatically predicting the quality of a BP
title, we train different machine learning models
on these annotated data. In MT(QE) terms, the
metadata for a browse page is considered the
source language, and the target language is the
natural language, English, in our experiments.

2.1 Random Forests

Random Forests are ensemble classifiers that in-
duce several decision trees using some source
of randomness to form a diverse set of estima-
tors (Breiman, 2001). There are two sources of
randomness: (i) each individual decision tree is
trained over a sub-sample of the training data and
(ii) when building the tree, the node splitting step
is modified to use the best split among splits using
random subsets of features. In our experiments,
we used the Random Forest (RF) implementation
from the Scikit-learn toolkit (Pedregosa et al.,
2011).

2.1.1 Features
We trained various RF classifiers, using several
different feature types. Some of those features
are commonly used in MTQE (Blatz et al., 2004;
Specia et al., 2015). Additionally, we developed
specific features which are well-suited for browse
page title generation. Our features can be grouped
into several different classes:

• MTQE: These are common features from
quality estimation for MT, such as title
length, language model score, or number of
unique words in the title;

• Browse-page-specific: These are new fea-
tures we developed specifically for BP titles,
based on the browse page’s metadata, such
as the number of slots in the BP, binary
indicators for the most frequent slot names,
and indicators of incorrect brand names;

• Redundancy: These are features capturing re-
dundancy, e.g. word repetitions, and within-
title cosine distance based on word embed-
dings (Mikolov et al., 2013). We developed
those because redundancy emerged as error
pattern in the regular monitoring of the titles.

These features explore different sources of infor-
mation. Some of them are based only on the title
itself (e.g. title length and cosine distance between
words) and capture the fluency of the title. Other
features are based only on the browse page’s
metadata (e.g. number of slots in the browse page)
and capture the complexity of the input for title
generation. Some features explore both metadata
and generated title (e.g. checking for brand names
that are not reproduced exactly in the title) and
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capture the adequacy of the generated title given
the input data.

Note that all features are black-box features
independent of the underlying system which gen-
erated the BP titles. This is important for our
application because we have different algorithms
in production which generate the BP titles. All
of them are described in (Mathur, Ueffing, and
Leusch, 2017). As we will see in Section 4, the
QE model works well for all of them. Another
important aspect is that the features can be easily
applied to different languages without requiring
complex resources.

Hyper-parameter optimization We performed
hyper-parameter search of the RF models with
random search for 100 iterations and 5-fold cross-
validation in each iteration.

2.2 Siamese Networks

As in other areas in machine learning, neural
networks have recently gained much attention in
MTQE and have contributed to pushing the state
of the art of the task (Kim et al., 2017; Martins
et al., 2017). One type of neural network that can
be used to predict similarity between paired inputs
is called Siamese networks. These networks were
originally defined by Bromley et al. (1994) as
a neural network composed by two symmetric
sub-networks that compare two input patterns and
outputs a similarity between these inputs. The
authors proposed this architecture in the context of
signature verification, i.e., estimating how similar
two signatures are to each other. SN models
have also been applied to face verification (Chopra
et al., 2005), metric learning in speech recognition,
to extract speaker-specific information (Chen and
Salman, 2011) and text similarity (Yih et al.,
2011). Grégoire and Langlais (2017) proposes
a siamese network architecture to extract parallel
sentences out of parallel corpora. This is a pre-
print publication found upon completion of the
work described here and we plan to have a detailed
comparison in future work.

In this work, we build a QE model inspired by
work on sentence similarity (Mueller and Thya-
garajan, 2016), which uses SN models to learn
a similarity metric between paired inputs. The
motivation to apply such architecture to QE is that
the problem can be seen as a sentence similarity
problem but across two “languages”: given a sen-
tence in English and its corresponding translation

in French, we want to know if the translation is
adequate and fluent with respect to the original
sentence. In the problem described in this paper,
we can reformulate the scenario as follows: given
a segment of slot/value pairs representing the
metadata and its corresponding title in English, we
want to know if the title is adequate and fluent with
respect to the metadata input.

2.2.1 Architecture
The SN architecture we are evaluating was built
using a specific type of recurrent neural networks
(RNNs) to model each segment input. RNNs are
models well-suited to deal with variable-length
input like natural language sentences. In RNNs,
the standard feed-forward neural networks are
adapted for sequence data (x1, . . . , xT ), where at
each time step t ∈ 1, ..., T , a hidden-state vector
ht is updated as ht = σ(Wxt + Uht−1), where
xt is the input at time t, W is the weight matrix
from inputs to the hidden-state vector and U is
the weight matrix on the hidden-state vector from
the previous time step ht−1 and σ is the logistic
function defined as σ = (1 + e−x)−1.

Though RNNs can cope with variable-length
sequences, the optimization of the weight matrices
in RNNs is hard: when the gradients are back-
propagated, they decrease to the point of becom-
ing so small that the weights cannot be updated,
specially over long input sequences. In order to
alleviate this problem, Hochreiter and Schmidhu-
ber (1997) proposed Long Short-Term Memory
models (LSTMs), which are able to overcome the
vanishing gradients problem by capturing long-
range dependencies through its use of memory cell
units that can store/access information across long
input sequences. For more details on LSTMs we
refer the interested reader to Greff et al. (2015).

Figure 2: Example of an SN for title quality estimation.
The left sequence represents the BP’s metadata, the
right sequence is the BP title.

The SN architecture we employ in this work is
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depicted in Figure 21. The architecture consists
of two networks, LSTMa and LSTMb, one for
each input sentence (the browse page’s metadata
on the left and the title on the right). Both LSTMs
have tied weights, meaning that both networks
have identical transformations in their paths in the
experiments presented in this paper.

The architecture is defined in a supervised
learning setting, in which each instance is a pair
of sentences represented as a sequence of word
vectors, xa1, . . . , x

a
Ta

and xb1, . . . , x
b
Tb

, where Ta 6=
Tb, and a binary label y that indicates whether the
pair is similar or not. The two sequences of word
embeddings are the input to their corresponding
LSTM, which updates its hidden state at each
sequence-index. The sentence is represented by
the last hidden state hT of the LSTM (ha7 and hb4
in Figure 2).

The similarity function is pre-defined and is
used to compare the LSTM representations and
infer their semantic similarity. In this paper, we
use the cosine similarity between the final repre-
sentations of each LSTM, haTa

and hbTb
:

s(haT , h
b
T ) =

haT · hbT
||haT || · ||hbT ||

(1)

The cumulative loss function for a training set
X = {(xai , xbi , yi)}Ni=1 is defined following (Necu-
loiu et al., 2016):

L(X) =
N∑

i=1

L(xai , x
b
i , yi) (2)

In Equation 2, N is the number of instances
in the training set X and L is the instance loss
composed of two terms: one for similar pairs
(L+), and one for dissimilar pairs (L−):

L(xai , x
b
i , yi) = yi · L+(x

a
i , x

b
i)

+ (1− yi) · L−(xai , x
b
i),

(3)

where the loss functions for the similar and dis-
similar cases are given by:

L+(x
a
i , x

b
i) = (1− s)2

L−(xai , x
b
i) =

{
s2 if s < 0

0 otherwise

(4)

where s stands for the cosine similarity, as defined
in Equation 1.

1Inspired by the figure in (Mueller and Thyagarajan,
2016), and adapted to our use case.

3 Data

3.1 Training Data

For English, we have a large amount of training
data, consisting of the browse page’s metadata
(slot/value pairs and category name), a title gen-
erated by the rule-based system (see section 3.2),
and manually assigned error severity (see sec-
tion 2) for this title. Table 2 shows some examples
of training data instances.

Category MP3 Player Headphones & Earbuds
Brand Sony
Connector 3.5mm (1/8in.)
Features Volume Control
Title Sony 3.5mm (1/8in.) MP3 Player Headphones &

Earbuds with Volume Control
Quality OK
Category Nursery Bedding Sets
To Fit Crib
Brand My Baby Sam
Title My Nursery Bedding Sets Sam Baby Crib Shoes
Quality Bad

Table 2: Examples of metadata, automatically gener-
ated title, manually assigned quality class.

Table 3 shows statistics on the training data.
When we started working on quality estimation
for these titles, we only had the first set of data,
labeled train1. The other set, train2, is much
larger and became available later on. We use
these two training sets for evaluating the impact
of adding more data to model training.

Data set # Browse Pages Quality (%)
OK Bad

train1 81,251 65 35
train2 269,409 66 34
artificial P1 29,150 0 100

Table 3: Training data statistics.

The distribution of quality classes is similar
across both training sets. The majority of titles
is labeled as ‘OK’, and about one third are labeled
as ‘Bad’. Since the number of P1 samples in the
training data is very low (approx. 1%), we gener-
ated 29k additional training samples with P1 is-
sues semi-automatically, in order to increase their
representation in the training data, and improve
the models’ prediction capabilities on this type of
errors: We extracted BPs from the training data
which contain “brand” slots, modified the curated
reference title by misspelling the brand name, and
added these modified titles to the training data
with label ‘Bad’.
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Test Set # BPs Rule-based Hybrid APE
1 508 60 / 40 – 54 / 46
2 509 62 / 38 63 / 36 71 / 29

1+2 2,543 all combined : 63% OK 37% Bad

Table 4: Evaluation data statistics. Numbers are %
Good / % Bad in the three rightmost columns.

3.2 Evaluation Data
We constantly carry out human evaluation of title
quality. From these evaluations, we have two test
sets with approximately 500 browse pages each,
called test1 and test2. For those browse pages,
we have automatically generated titles from three
different systems along with manual assessment of
title quality. The three different title generation
systems are described in detail in (Mathur, Ueff-
ing, and Leusch, 2017). In short, they are:

• a strictly rule-based approach with a man-
ually created grammar. This is especially
useful when the amount of human-curated
training data is limited.

• a hybrid generation approach which com-
bines rule-based language generation and sta-
tistical MT techniques for situations in which
monolingual data for the language is avail-
able, but human-curated titles are not.

• an Automatic Post-Editing (APE) system
which first generates titles with the rule-
based approach, and then uses statistical MT
techniques for automatically correcting the
errors made by the rule-based approach.

See Table 4 for the amount of data and title
quality across these different test sets and system
outputs. Apart from the APE system, the class
distribution is similar for all sets, and also similar
to the distribution on the training data. The APE
system was significantly improved between these
two evaluation rounds, leading to a much higher
percentage of ‘OK’ labels on test2. The hybrid
system was manually evaluated only on test2.

4 Results

We evaluated our QE models in the following
scenario: given a browse page’s metadata and an
automatically generated title, we want to decide
whether the title meets the quality standards and
should be presented on our website. Evaluation
metrics are F1-score per class and total (weighted)
F1-score, and Matthew’s correlation.

4.1 Model comparison
We first compared QE models obtained using
different learning algorithms and trained only on
train1 because model training is faster and we
expect the observed trends to be independent of
the amount of training data. Table 5 shows the
results. The majority baseline (accepting all titles
as ‘OK’) yields fairly low F1-score, because all
bad titles are labeled incorrectly. For the RF

Model F1(OK) F1(Bad) F1 MC
Majority (‘OK’) 0.77 0.00 0.48 0.00
Random Forest
MTQE features 0.61 0.58 0.60 0.24
BP features 0.68 0.59 0.65 0.29
MTQE + BP 0.66 0.64 0.65 0.36
MTQE + BP + redun. 0.66 0.64 0.65 0.37
Siamese Network
fastText, dim50 0.80 0.54 0.70 0.37
word2vec, dim50 0.79 0.55 0.70 0.37

Table 5: F1-scores and Matthew’s correlation (MC)
for different QE models. Training on train1, evaluation
on test1+2. Best results in bold.

classifiers, we can see how adding information
improves the model. The model based only on
MTQE features achieves the worst performance
(60 points F1 and correlation 0.24). Our newly
developed browse-page-specific features in isola-
tion perform 5 points better both in F1 and in
correlation. Combining those two feature groups
yields a significant improvement in correlation,
though not in total F1. It significantly increases
the F1-score for ‘Bad’ titles, but hurts a bit on
the ‘OK’ titles, which are more frequent in the
test data. The redundancy features additionally
increase correlation by 1 point absolute.

Training data F1(OK) F1(Bad) F1 MC
Random Forest
train1 0.66 0.64 0.65 0.37
train1+2 0.76 0.64 0.72 0.41
train1+2 + artif. 0.78 0.64 0.73 0.43
Siamese Network
train1 0.79 0.55 0.70 0.37
train1+2 + artif. 0.82 0.64 0.75 0.48

Table 6: QE performance for different amounts of
training data. Evaluation on test1+2. RF with all
features. SN with word2vec embeddings. Best results
in bold.

We compared SN models with two differ-
ent pre-trained word embeddings, using either
word2vec (Mikolov et al., 2013) or fastText (Bo-
janowski et al., 2016). As we see in Table 5,
their QE performance is almost identical, and we
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Model F1-score / Matthew’s correlation
test1 RB test2 RB test1 APE test2 APE test2 hybrid

RF trained on train1 0.68 / 0.44 0.64 / 0.35 0.62 / 0.29 0.65 / 0.30 0.68 / 0.40
RF trained on all data 0.75 / 0.47 0.74 / 0.46 0.70 / 0.39 0.71 / 0.31 0.75 / 0.46
SN trained on train1 0.74 / 0.46 0.74 / 0.47 0.60 / 0.24 0.71 / 0.28 0.73 / 0.41
SN trained on all data 0.79 / 0.57 0.81 / 0.59 0.66 / 0.36 0.72 / 0.32 0.79 / 0.54

Table 7: QE performance per title generation system. RF with all features. SN with word2vec embeddings. Best
results marked in bold. RB is rule-based.

will use the word2vec embeddings going forward.
Both SN models significantly outperform the RF
models in total F1-score, which increases by 5
points. This stems from much better classification
of ‘OK’ titles, while ‘Bad’ titles are better recog-
nized by the RF models. Matthew’s correlation is
at 0.37 both for the best RF and the SN models.

4.2 Impact of training data

After the original experiments described in sec-
tion 4.1, we obtained a much larger amount of
training data. We then trained RF models on
the combined sets train1 and train2, with 349k
titles. As Table 6 shows, this yields a gain of
7 points in F1-score and 4 points in correlation,
caused by improved classification on ‘OK’ titles.
Manual analysis of QE performance showed that
it was particularly low on titles with P1 issues. As
described in section 3.1, we therefore generated
artificial training data for better representing P1
errors in training. Adding these in training further
improves the RF model, yielding total F1 of 73
points and correlation of 0.43. The effect of an
increased amount of training data is even stronger
for the SN models. QE performance increases by
5 points in F1 and 11 points in correlation. This
SN trained on all 376k titles is the best QE model
according to all metrics.

4.3 System-specific evaluation

We are constantly improving the system for BP
title generation and have implemented different
approaches. It is therefore important that the
QE models work equally well for output from
different title generation systems, i.e. they should
not be heavily tailored to one specific system.

We evaluated the QE models per evaluation set
(test1 and test2) and per title generation system.
The QE performance per system output is shown
in Table 7, with notable difference in F1-score
and Matthew’s correlation across the five different
sets. The SN models perform best on the titles
from the rule-based generation system, i.e. when

training and test titles are similar – with F1-
scores around 0.8 and Matthew’s correlation in the
high 50s. The worst classification performance
is achieved for the APE titles on test1, which is
the set with the lowest title quality (see Table 4).
This is also the only set on which the RF models
outperform the SN models. The RF models were
trained with class weights adjusted inversely pro-
portional to class frequencies in the training data,
making them more robust w.r.t. the differences
between training and test data. The neural network
model does not have the same class imbalance
treatment, which makes the model biased towards
most frequent classes in training data sets in which
the imbalance is high (e.g. the rule-based system).
In future work, we plan to apply the same balanc-
ing to SN training. This setting could potentially
improve the SN performance.

5 Conclusion

We developed different methods for automatically
assessing the quality of browse page titles. One is
a Random Forest classifier which combines well-
studied QE features with new features which are
specific to the task and explore information from
the browse page’s metadata. The second approach
is a neural network model using a Siamese ar-
chitecture. The classification performance of the
methods was evaluated on in-house data, showing
that: (i) Random Forest models are significantly
improved by using new task-specific features; (ii)
Siamese networks significantly outperform Ran-
dom Forest models in most settings; (iii) Random
Forest models show more robust quality estima-
tion performance on titles where error distribution
diverges from what was observed in training; (iv)
unsurprisingly, a drastic increase in the amount
of training data significantly improves QE perfor-
mance for both model types; (v) adding artificial
training data, which alleviates the imbalanced
distribution of error types, improves both types
of models. The Siamese architecture presented in
this paper could also be employed in the context of
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machine translation or other language generation
tasks in which one needs to estimate the output
quality.

As future work, we plan to bring those research
and pilot systems into production and gather ex-
perience on their use; as well as extending them
to multi-class prediction for finer-grained QE, di-
rectly predicting the error severity classes (Good,
P3, P2, P1). Furthermore, we plan to develop QE
methods for languages other than English, where
the amount of training data is much smaller.
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Appendix: Examples

Table 8 shows examples of quality predictions
from different QE models. The first block contains
titles where both model types correctly predict
quality, such as bad titles which have issues with
fluency or repetition, or well-formed titles which
contain all relevant aspects.

The second block shows examples where none
of the models correctly predicts title quality. In
the first two examples, the bad quality is caused
by omissions of words (“Water” and “Row”),
and none of the QE models detects this. This
is probably due to the structure of the metadata
input, with aspect slot/value pairs like {“Water
Type”: “Pond”}, which needs to be realized as
“Pond Water” and not just “Pond” in the title –
this type of omission is hard to capture for the
QE models. Similar observations hold for the
slot/value pair {“Row”: “5”} in the next example.
In the third and fourth example in the second
block, there is a mismatch between the category
name in the metadata input and the realization in
the title, which might be the cause for the “Bad”
QE predictions. Category names are “Sculptures
& Carvings Direct from the Artist” and “Barware
Glasses & Cups”, respectively, and significant
portions of the category names are dropped in both
cases.

The third block of the table shows examples
where the RF models perform better. The first ex-
ample is an incorrect brand name (“aden anais”),
for which we explicitly designed features in the
RF models.

The last block of Table 8 contains titles which
the SN models classified correctly, but the RF

model did not. The first one is again a case of
missing information and resulting disfluency in
the title, which seems to be harder to capture for
the RF models.
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Abstract

In large-scale educational assessments, the use
of automated scoring has recently become
quite common. While the majority of student
responses can be processed and scored with-
out difficulty, there are a small number of re-
sponses that have atypical characteristics that
make it difficult for an automated scoring sys-
tem to assign a correct score. We describe a
pipeline that detects and processes these kinds
of responses at run-time. We present the most
frequent kinds of what are called non-scorable
responses along with effective filtering mod-
els based on various NLP and speech process-
ing technologies. We give an overview of two
operational automated scoring systems —one
for essay scoring and one for speech scoring—
and describe the filtering models they use. Fi-
nally, we present an evaluation and analysis of
filtering models used for spoken responses in
an assessment of language proficiency.

1 Introduction

An automated scoring system can assess con-
structed responses such as essays to open-ended
questions faster than human raters, often at lower
cost, with the resulting scores being consistent
over time. These advantages have prompted
strong demand for high-performing automated
scoring systems for various educational applica-
tions. However, even state-of-the-art automated
scoring systems face numerous challenges when
used in a large-scale operational setting. For in-
stance, some responses have atypical characteris-
tics that make it difficult for an automated scor-
ing system to provide a valid score. A spoken
response, for example, with a lot of background
noise may suffer from frequent errors in auto-
mated speech recognition (ASR), and the linguis-
tic features generated from the erroneous ASR
word hypotheses may be inaccurate. As a result,

the automated score based on the inaccurate fea-
tures may differ greatly from the score a human
expert would assign. Furthermore, it may substan-
tially weaken the validity of the automated scor-
ing system.1 More recently, some studies have
systematically evaluated the impact of atypical in-
puts, particularly gaming responses, on the va-
lidity of automated scoring of essays (Lochbaum
et al., 2013) and short-answers (Higgins and Heil-
man, 2014). They showed that automated scor-
ing systems tend to be more vulnerable than hu-
man raters to students trying to game the system.
Consistent with these findings, Zhang (2013) ar-
gued that the ability to detect abnormal perfor-
mance is one of the most important requirements
of a high-stakes automated scoring system. How-
ever, despite its importance, and compared to the
large body of work describing the empirical per-
formance of automated scoring systems, there has
been little discussion of how NLP tools and tech-
niques can contribute to improving the detection
of atypical inputs.

In this paper we present a typical processing
pipeline for automated scoring of essay and spo-
ken responses and describe the points in the pro-
cess where handling of atypical inputs and system
failures can occur. In particular, we describe some
of the NLP technologies used at each of these
points and the role of NLP components as filters
in an automated scoring pipeline. We present a
case study on building automated filters to detect
problematic responses in an assessment of spoken
English.

2 Detecting Atypical Inputs

In this section, we give an overview of an auto-
mated scoring pipeline and describe how atypical

1Test validity is the extent to which a test accurately mea-
sures what it is supposed to measure.
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inputs can be detected and processed in applica-
tions that automatically score the language quality
of spoken responses and essays.

A typical automated scoring pipeline has three
major components: (1) the student response is
captured by the input capture module; (2) the sys-
tem computes a wide range of linguistic features
that measure various aspects of language profi-
ciency using NLP and/or speech processing tech-
nologies; and (3) a pre-trained automated scoring
model predicts a proficiency score using the lin-
guistic features. The components above the dotted
line in Figure 1 illustrate the typical processing se-
quence.

However, this scoring pipeline is a simplified
version of what happens in a real-life operational
system. In a large-scale assessment, there are usu-
ally a small number of atypical responses, where
the automated scoring system would have diffi-
culty in predicting valid scores.2 We call these
problematic responses non-scorable. In order to
handle these problematic inputs in real-time, we
can add filtering models (FMs) as sub-modules
of the automated scoring systems. The filter-
ing models detect and process different kinds of
problematic inputs at different points in the typ-
ical pipeline. Figure 1 indicates three points at
which filtering models could be employed in an
operationally-deployed automated scoring system
(below the dotted line). The points at which FMs
could be introduced are after (1) input capture,
(2) feature generation and (3) score generation.
Responses that are flagged by the FMs are han-
dled in different ways depending on the applica-
tion context. The responses can receive an auto-
mated score (with a warning that it is unreliable),
they can be rejected and receive no score, or they
can be sent to a human rater for manual scoring.

Analogous to the FMs, non-scorable responses
can also be classified into three main groups.
Non-scorable responses in the feature generation
and score generation groups are mostly system-
initiated non-scorable responses, where system
components had critical errors at the feature gen-
eration or score generation stages. Non-scoreable
responses in the input capture group can be further
classified into (a) system-initiated and (b) user-

2Many scoring systems could produce some score for
these problematic responses, however it is unlikely to be cor-
rect. It is therefore important for the overall validity of the
test and automated scoring system, to be able to identify such
responses and treat them correctly.

initiated non-scorable responses. User-initiated
non-scorable responses can occur for a number of
reasons, both for good faith (where the students
try their best to answer the question appropriately)
and bad faith (where the students do not make
a reasonable attempt to answer the question) at-
tempts. Students making good-faith attempts to
answer questions may still present an automated
scoring system with atypical input. For example,
in a speaking assessment, inappropriate distance
to the microphone may result in a distorted record-
ing; or in a written assessment a student may mis-
read the question, and unintentionally write an
off-topic response. Bad faith responses can come
from unmotivated students, or students trying to
game the system. These responses represent a
wide range of (often very creative) inputs that can
be troublesome for an automated scoring system
that is ill-prepared to handle them. If system com-
ponents fail or the system is not confident in its
prediction, the automated processing pipeline also
needs to be able to handle this correctly and fairly.

Next we describe some of the techniques that
have been proposed for detecting non-scorable re-
sponses at each of the stages.

2.1 Input Capture Filtering Models

Some system-initiated errors that should be
flagged at the input capture stage are: severe audio
problems typically caused by equipment malfunc-
tion, background noise, or problems with test tak-
ers’ recording level (speaking proficiency assess-
ment) or text capture failures (writing proficiency
assessment).

There is also a wide range of potential user-
initiated non-scorable responses. Some of the
most frequent categories include (a) response in
non-target language; (b) off-topic; (c) generic re-
sponses;3 (d) repetition of the question; (e) canned
responses;4 (f) banging on the keyboard; and (g)
no-response.

Five of the categories mentioned relate to topi-
cality. Off-topic responses and generic responses
are unrelated to the prompt, while the prompt-
repetition responses and canned responses can be
considered repetition or plagiarism. For auto-
mated essay scoring, off-topic detection systems

3Responses that only include simple unrelated sen-
tences such as “I don’t know,” “this is too difficult”
“why do I have to answer,” etc.

4Responses that only include memorized segments from
external sources (often websites)
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Figure 1: A diagram of the overall architecture of a generic automated scoring pipeline. Above the dotted line
are the key stages in automated scoring. Below the dotted line are the possible additions to the pipeline to handle
atypical inputs using filtering models (FMs).

have been developed based on question-specific
content models, such as a standard vector space
model (VSM) built for each question (Bernstein
et al., 2000; Higgins et al., 2006; Louis and Hig-
gins, 2010).

For speaking tests eliciting highly or moder-
ately restricted speech, filtering models based on
features derived from ASR systems such as nor-
malized confidence scores and language model
(LM) scores can achieve good performance in
identifying topic-related non-scorable responses
(van Doremalen et al., 2009; Lo et al., 2010;
Cheng and Shen, 2011). However, this approach
is not appropriate for a speaking test that elic-
its unconstrained spontaneous speech. More re-
cently, similar to techniques that have been ap-
plied in essay scoring, systems based on document
similarity measures and topic detection were de-
veloped to detect spoken non-scorable responses.
In addition, neural networks and word embed-
dings, which have the advantage of capturing top-
ically relevant words that are not identical, have
been used in Malinin et al. (2017) and Yoon et al.
(2017), and this has resulted in further improve-
ments over systems using only traditional lexical
similarity features.

Unlike off-topic responses, canned responses
include pre-existing material. These can often be
identified by matching responses to test prepara-
tion websites or other student responses. Potthast
et al. (2014) give an overview of approaches to
detecting plagiarism in written texts based on the
systems that competed in the PAN-2014 shared

task on plagiarism detection. Wang et al. (2016)
developed a spoken canned response detection
system using similar techniques applied in essay
plagiarism detection.

In addition, various speech processing and NLP
techniques have also been used to detect other
types of non-scorable responses: language iden-
tification technology for non-English detection
(Yoon and Higgins, 2011) and speaker recogni-
tion technology for automated impostor detec-
tion (Qian et al., 2016). “Banging on the key-
board” can be identified by analyzing part-of-
speech sequences and looking for ill-formed se-
quences (Higgins et al., 2006).

2.2 Feature Generation Filtering Models

The most typical way for a response to be flagged
at the Feature Generation stage is for an inter-
nal component to fail. For example, in an au-
tomated speech scoring system the ASR system,
or the speech-signal processing component may
fail. In addition, parsers and taggers also some-
times fail to produce analyses, particularly on ill-
formed language-learner responses. In order to de-
tect sub-optimal ASR performance, filtering mod-
els have been developed using signal processing
technology and features derived from ASR sys-
tems, e.g., confidence scores and normalized LM
scores (Jeon and Yoon, 2012; Cheng and Shen,
2011).

It should be noted that while some of the user-
initiated non-scorable responses undetected at the
input capture stage would likely also cause fea-
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ture generation failures (e.g., no-speech may cause
empty ASR hypothesis which result in feature
generation failure), other types (e.g., gaming re-
sponses) would simply cause subtle differences
in feature values leading to potential inflation of
the automated scores without causing clear sub-
process failures.

2.3 Score Generation Filtering Models
It is also possible to identify responses that may
not have received a correct score from the auto-
mated scoring system by looking at the output of
the scoring model directly. van Dalen et al. (2015)
developed an automated essay scoring system that
uses a Gaussian process to not only generate pro-
ficiency scores, but also give a measure of the un-
certainty of the generated score. They proposed a
process that uses the uncertainty measure to filter
responses with high uncertainty and send them to
human raters for scoring.

2.4 Adjusting Scoring for
non-scorable responses

We consider two main scoring scenarios:

• Human raters in the loop: there are sev-
eral ways that human scoring can be com-
bined with automated scoring. The two most
common situations are co-grading (a major-
ity of responses are scored by both human
raters and the automated scoring system) and
hybrid scoring (a majority of the responses
are scored by the automated scoring system,
while only subset of responses are scored by
human raters for quality control purposes).

• Sole automated scoring: all responses are
scored by only the automated scoring sys-
tem; there are no humans involved in scoring.
Such situations could include practice tests or
classroom tools.

If a response is flagged as non-scorable in a
scoring situation that has a human in the loop, the
most typical behavior is for the response to be sent
to a human rater for additional scoring. The score
from the automated system may or may not be
combined with human scores, depending on the
use case and the kind of flag.

If a response is flagged as non-scorable in a sole
scoring situation, there are two main ways to pro-
cess the response. Either no score is given and a
message is returned to the user that their response

could not be successfully processed. Or alterna-
tively, a score is given with a warning that it is
unreliable.

3 Practical Implementation of Filtering
Models

In this section we describe two systems for
automated scoring of CRs: (1) e-rater – an
automated scoring system for essays and (2)
SpeechRaterSM – an automated scoring system
for spoken responses. We describe the kinds of
filters used by both systems.

3.1 Automated Essay Scoring

The e-rater system (Attali and Burstein, 2006) au-
tomatically evaluates the writing quality of es-
says by taking key aspects of writing into ac-
count. It aligns the writing construct, via scor-
ing rubrics, to NLP methods that identify vari-
ous linguistic features of writing. The feature
classes include the following: (a) grammatical er-
rors (e.g., subject-verb agreement errors), (b) word
usage errors (e.g., their versus there), (c) errors in
writing mechanics (e.g., spelling), (d) presence of
essay-based discourse elements (e.g., thesis state-
ment, main points, supporting details, and conclu-
sions), (e) development of essay-based discourse
elements, (f) a feature that considers correct us-
age of prepositions and collocations (e.g., power-
ful computer vs. strong computer), and (g) sen-
tence variety. The features are combined in a sim-
ple linear model learned from an appropriate data
sample for the target populations.

In a high-stakes testing scenario with e-rater,
there is a human in the loop. The first step in the
pipeline is that a human rater reviews the essay
(FM1). If they deem the essay to be non-scorable
(e.g., because it is off-topic, or gibberish), the es-
say is immediately sent to another human for adju-
dication and there is no automated score produced.

If the first human rater assigns a valid score to
the essay, it is then passed to the e-rater engine.
The e-rater engine applies a filter that does auto-
mated garbage detection as its first step and filters
out responses that it detects as being non-English
(FM1). This filter uses unusual POS tag sequences
to identify non-English responses. The number
of such responses should be very low with a hu-
man as the first filter. Non-garbage responses are
then passed to the next stage of processing – fea-
ture extraction. At this point there are two differ-
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ent kinds of filters. The first kind of filter com-
pares the response to other responses seen dur-
ing the training of the model. If the current re-
sponse is too dissimilar (in terms of length, vocab-
ulary, etc.), it is flagged (FM2). These filters rely
on typical textual-similarity techniques including
content-vector analysis (Salton et al., 1975) and
distributional similarity. The second kind of filter
flags responses for which the engine cannot reli-
ably determine a score because an internal com-
ponent (e.g., a parser) has indicated that its output
may be unreliable (FM2). In both cases flagged
responses are sent to a human for adjudication.

Table 1 gives a summary of the frequency of
each of the types of filters applied in a high-stakes
standardized test of English proficiency. The val-
ues were computed using a large sample of over 2
million candidate essays. The final score for the
responses can range from 0–5. It can be seen that
the average final score assigned to most of the es-
says flagged is very low. The average final score
assigned to essays automatically flagged as being
too dissimilar to the training data is higher. Typi-
cally this category of flags are designed to be con-
servative and sometimes flag perfectly reasonable
essays, simply to err on the side of caution.

Freq.
(%)

Avg.
Score

FM1 (human) 0.47 0.04
FM1 (automated) 0.02 0.96
FM2 (dissimilar) 0.95 2.65
FM2 (engine uncertainty) 0.06 1.09

Table 1: Frequency of different kinds of filters in high-
stakes e-rater deployment with the average final score
assigned to the responses flagged by each filter.

3.2 Automated Speech Scoring

The SpeechRaterSM system is an automated
oral proficiency scoring system for non-native
speakers’ of English (Zechner et al., 2009). It
has been operationally deployed to score low-
stakes speaking practice tests. In order to score
a spoken response, the input capture module in
SpeechRaterSM records the audio. Next, the
ASR system generates word hypotheses and time
stamps. The feature generation modules create a
wide range of linguistic features measuring flu-
ency, pronunciation and prosody, vocabulary and
grammar usage based on the ASR outputs and

NLP and speech processing technologies (e.g., a
POS tagger, a dependency parser, pitch and en-
ergy analysis software). In addition, it generates
a set of features to monitor the quality of ASR and
the audio quality of input responses.

Because of the low-stakes nature of the tests,
only limited types of non-scorable responses have
so far been observed in the data. There were some
system-initiated non-scorable responses. Of the
user-initiated non-scorable responses, the major-
ity are no-response and the proportion of gaming
responses is close to none. As a result, the filter-
ing models in SpeechRaterSM system are much
simpler than the e-rater system; it consists of just
one FM at the location of FM2, comprised of a set
of rules along with a statistical model based on a
subset of SpeechRaterSM features. A detailed
description and evaluation of its performance is
summarized in Section 4. Finally, non-flagged re-
sponses are scored by the automated scoring mod-
uleand flagged responses are not scored.

4 Case Study: Developing filtering
models for an Automated Speech
Scoring System

In this section, we will introduce a filtering model
for SpeechRaterSM developed for a low-stakes
English proficiency practice test comprised of
multiple questions which elicit unconstrained and
spontaneous speech with duration of 45 to 60 sec-
onds. All responses were scored by the automated
scoring system (sole automated scoring scenario).

We collected 6, 000 responses from 1, 000 test
takers, and expert human raters assigned a score
on a scale of 1 to 4, where 1 indicates a low
speaking proficiency and 4 indicates a high speak-
ing proficiency. In addition, the raters also an-
notated whether each response fell into the in-
put capture non-scorable group.5 A total of
605 responses (10.1%) were annotated as being
non-scorable responses. The majority of them
were due to recording failures (7.0%), followed
by no-response (3.0%) and non-English (0.1%).
The data was randomly partitioned into Model
Training (4, 002 responses) and Model Evaluation
(1, 998 responses).

The ASR system was based on a gender-
independent acoustic model and a trigram lan-

5The human raters did not annotate any errors caused by
system component failures (system errors at the feature gen-
eration and scoring model stage).
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guage model trained on 800 hours of spoken re-
sponses extracted from the same English profi-
ciency test (but not overlapping with the Model
Building set) using the Kaldi toolkit (Povey et al.,
2011). In a separate study, the ASR system
achieved a Word Error Rate (WER) of 37% on
the held-out dataset (Tao et al., 2016). Although
the performance of our ASR on non-native speak-
ers’ spontaneous speech was a state-of-the art, it
showed substantially high WER for a small num-
ber of responses. Our analysis showed that the fea-
ture values and the scores for such responses were
unreliable.

Initially, we developed two FMs. The Baseline
FM was comprised of a statistical model trained on
the Model Training partition and a set of rules to
detect no-responses and responses with poor audio
quality (recording errors). The extended FM was
comprised of the baseline FM and an additional
rule, ASRErrorFilter to detect responses for which
the ASR result is likely to be highly erroneous.

The performance of two FMs on the evaluation
dataset is given in Table 2.

%
flagged

acc. pre. recall fscore

Baseline 9% 0.96 0.83 0.80 0.81
Extended 13% 0.95 0.66 0.90 0.76

Table 2: Performance of FMs in detecting non-
scorable.

The accuracy and fscore of the baseline FM was
0.96 and 0.81, respectively. The extended model
achieved a higher recall with slightly lower accu-
racy and fscore than the baseline. This was an ex-
pected result, since the extended model was de-
signed to detect responses with high ASR errors
that are likely to cause high human-machine score
difference (HMSD) and we choose to err on the
side of caution and flag more responses at the risk
of flagging some good ones.

In order to investigate to what extent the ex-
tended FM can identify responses with a large
HMSD, we also calculated an absolute HMSD for
each response. After excluding responses anno-
tated as non-scorable by human raters, the remain-
ing 1, 775 responses in the evaluation set were
used in this analysis. Table 4 shows the distribu-
tion of absolute system-human score differences
for flagged and unflagged responses by the ex-
tended FM.

# response
HMSD

mean SD max
Flagged 77 0.83 0.58 2.38
Unflagged 1698 0.48 0.34 1.96

Table 3: Average human-machine score differences.

The average HMSD for the flagged responses
was quite large (0.83), given that the proficiency
score scale was 1 to 4. Furthermore, it was
1.73 times higher than that of unflagged re-
sponses (0.48). The extended FM indeed cor-
rectly identified responses for which the auto-
mated scores were substantially different from the
human scores. In contrast, the number of re-
sponses flagged by the extended FM was sub-
stantially higher than the baseline FM. 4% of re-
sponses scorable by human raters were flagged
and they could not receive scores.

5 Discussion and Conclusions

We discussed the issue of atypical inputs in the
context of automated scoring. Non-scorable re-
sponses can cause critical issues in various sub-
processes of automated scoring systems and the
automated scores for these responses may differ
greatly from the correct scores. In order to address
this issue, we augmented a typical automated scor-
ing pipeline and included a set of filtering models
to detect non-scorable responses based on various
NLP and speech processing technologies. Finally,
we described two automated scoring systems de-
ployed to score essay and spoken responses from
large scale standardized assessments.

An alternative to the approach presented here
(individual filtering models for different kinds of
inputs), is to simply train one single classifier to
detect non-scorable responses (perhaps as an ad-
ditional score point). Depending on the context of
the automated scoring system, this may be suffi-
cient, however for our purposes, it was important
to have more fine grained control over the different
kinds of filters (setting thresholds, etc.). This gives
us the freedom to treat and route each of the types
of flags differently. This is particularly important
if a system is being used in both high-stakes and
low-stakes testing scenarios since the number and
type of non-scorable responses varies by scenario.

Section 4, in its comparison between two FMs,
highlights an important trade-off between the ac-
curacy of automated scores and the percentage of
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filtered responses by the filtering model. By pro-
actively filtering out non-scorable responses, the
automated scoring system (the extended FM, in
this study) can prevent the generation of erroneous
scores and improve the quality and validity of the
automated scores. However, this may result in a
higher percentage of scoring failures which could
cause higher costs (e.g., additional human scoring,
or providing free retest or refund to the test takers).
These two important factors should be carefully
considered during system development.
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Abstract

Reviews of products or services on Internet
marketplace websites contain a rich amount
of information. Users often wish to survey
reviews or review snippets from the perspec-
tive of a certain aspect, which has resulted in a
large body of work on aspect identification and
extraction from such corpora. In this work, we
evaluate a newly-proposed neural model for
aspect extraction on two practical tasks. The
first is to extract canonical sentences of var-
ious aspects from reviews, and is judged by
human evaluators against alternatives. A k-
means baseline does remarkably well in this
setting. The second experiment focuses on the
suitability of the recovered aspect distributions
to represent users by the reviews they have
written. Through a set of review reranking
experiments, we find that aspect-based pro-
files can largely capture notions of user pref-
erences, by showing that divergent users gen-
erate markedly different review rankings.

1 Introduction

Aspect extraction has traditionally been associ-
ated with the sentiment analysis community (Liu,
2012; Pontiki et al., 2016), with the goal being
to decompose a small document of text (e.g., a
review) into multiple facets, each of which may
possess their own sentiment marker. For exam-
ple, a restaurant review may comment on the am-
biance, service, and food, preventing the assign-
ment of a uniform sentiment over the entire re-
view. A common approach to aspect extraction
is to treat the aspects as latent variables and uti-
lize latent Dirichlet allocation (LDA; Blei et al.
(2003)) to extract relevant aspects from a collec-
tion of documents in an unsupervised (Titov and
McDonald, 2008; Brody and Elhadad, 2010) or
semi-supervised (Mukherjee and Liu, 2012) fash-

∗Equal contribution.

ion. Subsequent research has taken the latent vari-
able approach further by encoding more compli-
cated dependencies between aspects and sentiment
(Zhao et al., 2010), or between aspects, ratings,
and sentiment (Diao et al., 2014), using probabilis-
tic graphical models (Koller and Friedman, 2009)
to jointly learn the parameters.

However, it has been argued that the coherence
of aspects extracted from the family of LDA-based
approaches is low; words clustered together within
a specific aspect are often unrelated, which can be
attributed to the lack of word co-occurrence in-
formation in these models (Mimno et al., 2011),
since conventional LDA assumes each word in a
document is generated independently. Recently,
He et al. (2017) proposed a neural attention-based
aspect extraction (ABAE) approach, which like
LDA, is an unsupervised model. The starting
point is a set of word embeddings, where the vec-
tor representation of the word encapsulates co-
occurrence1. The embeddings are used to rep-
resent a sentence as a bag-of-words, weighted
with a self-attention mechanism (Lin et al., 2017),
and learning amounts to encoding the resulting
attention-based sentence embedding as a linear
combination of aspect embeddings, optimized us-
ing an autoencoder formulation (§2). The attention
mechanism thus learns to highlight words that will
be pertinent for aspect identification.

In this work, we apply the ABAE model to a
large corpus of reviews on Airbnb2, an online mar-
ketplace for travel; users (guests) utilize the site
to find accommodation (listings) all around the
world, and a large number of these guests write
reviews of the listing post-stay. We first provide
additional details on the workings of the ABAE

1words that co-occur with each other get mapped to points
close to each other in the embedding space (Harris, 1968;
Schütze, 1998).

2www.airbnb.com
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model (§2). ABAE is then applied to two tasks:
the first (§3.1) is to extract a representative sen-
tence from a set of listing-specific reviews for a
number of pre-defined aspects e.g., cleanliness and
location, with the efficacy of extractive summa-
rization evaluated by humans (§4.3). Surprisingly,
we find that the k-means baseline performs very
well on aspects that occur more frequently, but
ABAE may be better for infrequent aspects.

In the second task (§3.2), we analyze the suit-
ability of aspect embeddings to represent guest
profiles. The hypothesis is that the content of guest
reviews reveals the guest’s preferences and pri-
orities (Chen et al., 2015), and that these prefer-
ences correspond to extracted aspects. We inves-
tigate several ways to aggregate sentence-level as-
pect embeddings at the review and user levels and
compute distances between user aspect and listing
review embeddings, in order to personalize list-
ing reviews by reranking them for each user. The
correlation between guest profile distances (com-
puted on pairs of guests) and review rank distances
(computed on pairs of ordinal rankings over re-
views) is then measured to evaluate our hypothesis
(§4.4). We find a robust relationship between dis-
tances in the two spaces, with the correlation in-
creasing at finer granularities like sentences com-
pared to reviews or listings.

2 Background

To start, we provide a brief background of the
ABAE model. For additional details, please re-
fer to the original paper (He et al., 2017). At
a high level, the ABAE model is an autoencoder
that minimizes the reconstruction error between a
weighted bag-of-words (BoW) representation of a
sentence (where the weights are determined by a
self-attention mechanism) and a linear combina-
tion of aspect embeddings. The linear combina-
tion represents the probabilities of the sentence be-
longing to each of the aspects.

The first step in ABAE is to compute the em-
bedding zs ∈ Rd for a sentence s:

zs =
n∑

i=1

aiewi

where ewi is the word embedding e ∈ Rd for word
wi. As in the original paper, we use word vectors
trained using the skip-gram model with negative
sampling (Mikolov et al., 2013). The attention
weights ai are computed as a multiplicative self-

attention model:

ai = softmax(eT
wi
·M · ys)

ys =
n∑

i=1

ewi

where ys is simply the uniformly-weighted BoW
embedding of the sentence, and M ∈ Rd×d is a
learned attention model.

The next step is to compute the aspect-based
sentence representation rs ∈ Rd in terms of an
aspect embeddings matrix T ∈ RK×d, where K
is the number of aspects:

ps = softmax(W · zs + b)

rs = TT · ps

where ps ∈ RK is the weight (probability) vector
over K aspect embeddings, and W ∈ RK×d,b ∈
RK are parameters of a multiclass logistic regres-
sion model.

The model is trained to minimize reconstruction
error (using the cosine distance between rs and zs)
with a contrastive max-margin objective function
(Weston et al., 2011). In addition, an orthogonal-
ity penalty term is added to the objective, which
encourages the aspect embedding matrix T to pro-
duce diverse (orthogonal) aspect embeddings.

3 Tasks

To evaluate the utility of ABAE, we craft two
methods of evaluation that mimic the practical
ways in which aspect extraction can be used on
a marketplace website with reviews.

3.1 Extractive Summarization
The first task is a direct evaluation of the quality
of the recovered aspects: we use ABAE to select
review sentences of a listing that are representa-
tive of a set of preselected aspects, namely cleanli-
ness, communication, and location. “Cleanliness”
refers to how clean the listing is, “communica-
tion” refers to communication between the listing
host and the guest, and “location” refers to the
qualities of or amenities in the listing’s neighbor-
hood. Refer to Table 3 for representative words
for each aspect. Thus, aspect extraction is used to
summarize listing reviews along several manually-
defined topics.

We benchmark the ABAE model’s extracted as-
pects against those from two baselines: LDA and
k-means. For each experimental setup, the authors
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assigned one of four interpretable labels (corre-
sponding to the identified aspects and the “other”
category) to each unlabeled aspect by evaluating
the 50 words most associated with that aspect3.
LDA’s topics are represented as distributions over
words, so the most associated words correspond
to those that occur with highest probability. For
k-means and ABAE, each aspect is represented as
a point in word embedding space4, so we retrieve
the 50 closest words to each point using cosine dis-
tance as a measure.

After aspect identification, we infer aspect dis-
tributions for the review sentences of an unseen
test set of listings. For LDA, identification simply
amounts to computing the (approximate) posterior
over topic mixtures for a set of review sentences,
and selecting the sentences with the highest prob-
ability in the specified aspect. For k-means, each
sentence is represented as a uniformly-weighted
BoW embedding, and we retrieve the sentences
that are closest to the centroids that correspond to
our preselected aspects. ABAE is similar, except
the self-attention mechanism is applied to com-
pute an attention-based BoW embedding, and we
retrieve the sentences closest to the aspect embed-
dings corresponding to our aspects of interest. For
some aspects (e.g., location and communication),
there is a many-to-one mapping between the re-
covered word clusters and the aspect label. In
these cases, we compute the average of the aspect
embeddings, and the closest sentences to the re-
sulting points are retrieved.

In our selection process, we retrieve the three
most representative sentences (across all reviews
of that listing) for each aspect. Three human an-
notators then evaluated the appropriateness of the
selected aspect for each sentence via binary judg-
ments. For example, an evaluator was presented
with the sentence “Easy to get there from center of
city by subway and bus.”, along with the inferred
aspect (location), for which a binary “yes/no” re-
sponse suffices. Results aggregated by experimen-
tal setup and aspect are presented in §4.3.

3.2 Aspects as Profiles

An aspect extraction model provides a distribu-
tion over aspects for each sentence, and we can
consider these distributions as interpretable sen-
tence embeddings (since we can assign a mean-

3Inter-annotator agreements for each setup are provided
in Table 3.

4The aspect embeddings in ABAE are initialized using the
k-means centroids.

ing corresponding to an aspect for each of the ex-
tracted word clusters). These embeddings can be
used to provide guest profiles by aggregating as-
pect distributions over review sentences that a user
has written across different listings on the website.
Such profiles arguably capture finer-grained infor-
mation about guest preferences than an aggregate
star rating across all aspects. Star ratings are also
heavily positively-biased: more than 80% of re-
views on Airbnb rate the maximum of 5 stars.

There are many conceivable ways to aggregate
the sentence distributions, with some of the factors
of variation being:

1. level of hierarchy: is the guest considered to
be a bag-of-reviews (BoR), sentences (BoS),
or words i.e., do we weight longer sentences
or reviews with more sentences higher when
computing the aggregated representation?

2. time decay: how do we treat more recently
written reviews compared to earlier ones?

3. average or maximum: is the aggregate repre-
sentation a (weighted) average, or should we
consider the maximum value across each as-
pect and renormalize?

The same considerations also arise when comput-
ing the representations of the objects to be ranked
e.g., a listing embedding as the aggregation of its
component sentence embeddings.

For our evaluation (§4.4), guest profiles are
computed by averaging distributions across a
guest’s review sentences uniformly (BoS), equiv-
alent to a BoR representation weighted by the
review length (number of sentences). We also
experimented with a BoR representation using
uniformly-weighted reviews, and the results are
very similar to the BoS representation. We con-
sidered computing the guest profile by utilizing
the maximum value (probability) of each aspect
dimension across all review sentences written by
the user and renormalizing the resulting embed-
ding using the softmax function, but this approach
resulted in high-entropic guest profiles with lim-
ited use downstream. More complex aggregation
functions, like using an exponential moving aver-
age to upweight recent reviews, is an interesting
future direction to explore.

4 Evaluation

We now look at the qualitative and quantitative
performance of ABAE across the two tasks. Af-
ter providing statistics on the review corpus that
forms the basis of our evaluation, we qualita-
tively analyze the recovered aspects of the model,

70



compared to k-means and LDA baselines. On a
heldout evaluation set, human evaluators assessed
whether the model-extracted aspects correspond to
their understanding of the predefined ones by in-
specting the top-ranked sentences for each aspect.
Furthermore, the quality of the guest profile em-
beddings was evaluated by looking at the correla-
tion between distances in the aspect space and the
ordinal position of reviews on a given listing page,
with the hypothesis that guests who write reviews
with divergent content or aspects should receive
rankings that are very different.

Our experiments were implemented using the
pyTorch package5. Word vectors were trained us-
ing Gensim (Řehůřek and Sojka, 2010) with 5 neg-
ative samples, window size 5, and dimension 200,
and Scikit-learn (Pedregosa et al., 2011) was used
to run the k-means algorithm and LDA with the
default settings. For ABAE, we used Adam with
a learning rate of 0.001 (and the default β param-
eters) with a batch size of 50, 20 negative sam-
ples, and an orthogonality penalty weight of 0.1.
All experiments were run on an Amazon AWS
p2.8xlarge instance.

4.1 Datasets

The corpus was extracted from all reviews across
all listings on Airbnb written between January 1,
2010 and January 1, 2017. We used spaCy6 to
segment reviews into sentences and remove non-
English sentences. All sentences were subse-
quently preprocessed in the same manner as He
et al. (2017), which entailed restricting the vocab-
ulary to the 9,000 most frequent words in the cor-
pus after stopword and punctuation removal. From
the resulting set, we randomly sampled 10 million
sentences across 5.8 million guests and 1.8 mil-
lion listings to form a training set, and used the re-
maining unsampled sentences to select validation
and test sets for the human evaluation (§4.3) and
ranking (§4.4) experiments.

To select datasets for human evaluation, we
identified all listings with at least 50 and at most
100 reviews in all languages and filtered out any
listing in the training set, resulting in 900 list-
ings which were split into validation and test sets.
The validation set is used to select an appropri-
ate number of aspects, by computing coherence
scores (Mimno et al., 2011) as the number of as-
pects is varied in the ABAE model (§4.2). The
test set was used to extract review sentences that

5http://pytorch.org/
6http://spacy.io/

were presented to our human evaluators; we en-
sured that every listing in the test set has at least 3
non-empty English review sentences.

For the ranking correlation experiments, we first
identified users who had written at least 10 re-
view sentences in our corpus and removed those
users that featured in the training set from this list.
We then selected 20 users uniformly at random to
form our validation set i.e., to compute guest pro-
files for7. A subset of the human evaluation test
set was used to compute the correlation between
aspect space and ranking order distances; we se-
lected all listings that had at least 20 review sen-
tences, resulting in 69 listings for evaluation. Ta-
ble 1 presents a summary of corpus statistics for
all of the datasets used in this work.

Set Task Tokens Sentences Guests Listings
Train - 68.0mil 10.0mil 5.8mil 1.8mil
Val §3.1 91,124 14,173 3719 721
Test §3.1 21,069 3389 920 168
Val §3.2 3189 543 20 202
Test §3.2 13,925 2269 587 69

Table 1: Corpus statistics for the datasets that we use. All
numbers are computed after preprocessing.

4.2 Recovered Aspects
Table 2 presents coherence scores for the ABAE
model as we varied the number of aspects. Sim-
ilar to He et al. (2017), we considered a “docu-
ment” to be a sentence, but treating reviews as
documents or all reviews of a listing as a docu-
ment revealed similar trends. The table shows that
coherence score improvements taper off after 30
aspects, so we chose this aspect value for further
experiments.

Num. Num. Representative Words Sum
Aspects 10 30 50
5 -125 -1106 -2829 -4060
10 -148 -1244 -3017 -4409
15 -126 -1069 -2656 -3851
30 -101 -760 -1917 -2778
40 -84 -701 -1765 -2550

Table 2: Coherence scores as a function of the number of
aspects and the number of representative words used to com-
pute the scores (higher is better). The summed values indicate
significant improvement from 15 to 30 aspects. For details on
computing coherence score, see Mimno et al. (2011).

Next, for each 30-aspect experimental setup,
we identified the word clusters corresponding
to the set of preselected aspects by labeling

7The most prolific guest in this set had written 66 review
sentences.
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Aspects
Setup Location Cleanliness Communication Fleiss’ κ
k-means union, music, minute, dozen,

quarter, chain, zoo, buffet, nord,
theater (3 clusters, 10.2%)

master, conditioners, boiler,
fabric, roll, smelling, dusty,
shutter, dirty, installed (1 clus-
ter, 3.6%)

welcomed, sorted, proactive,
fix, checkin, prior, replied, pro-
cess, communicator, ahead (3
clusters, 9.9%)

0.58

LDA restaurant, location, flat, walk,
away, back, short, minute, bus,
come (4 clusters, 16.2%)

house, comfortable, clean, bed,
beach, street, part, modern, ap-
partment, cool (1 cluster, 3.5%)

helpful, arrival, wonderful, cof-
fee, loved, use, warm, commu-
nication, friendly, got (4 clus-
ters, 14.5%)

0.46

ABAE statue, tavern, woodsy, street,
takeaway, woodland, cathedral,
specialty, idyllic, attraction (6
clusters, 18.4%)

clean, neat, pictured, im-
maculate, spotless, stylish,
described, uncluttered, tidy,
classy (1 cluster, 3.5%)

dear, u, responsive, greeted, in-
struction, communicative, sent,
contract, attentive, key (3 clus-
ters, 10.1%)

0.46

Table 3: Representative words for each aspect of interest across experimental setups, along with the number of clusters
mapped to that aspect in parentheses as well as the percentage of validation set sentences assigned to that cluster (the remaining
sentences were assigned to “Other”). For the aspects with multiple clusters, we select a roughly equal number of words from
each cluster. Misspellings are deliberate.

each revealed cluster with a value from the set
{cleanliness, communication, location, other}.
Note that the mapping from clusters to identified
aspects is many-to-one (i.e., multiple clusters for
the same aspect were identified for two of the three
aspects, namely location and communication.) In
fact, the number of clusters associated with each
aspect is a proxy for the frequency with which
these aspects occur in the corpus. To verify this
claim, we computed aspect-based representations
(§3.1) for each sentence in the validation set used
for comparing coherence scores, and utilized these
representations to compute sentence similarities
to each cluster, followed by a softmax in order
to assign fractional counts i.e., a soft clustering
approach. For each setup, Table 3 provides the top
10 words associated with each aspect, the number
of clusters mapped to that aspect, and the number
of validation sentences assigned to the aspect. The
location and communication aspects are 3 to 6
times more prevalent than the cleanliness aspect.

Qualitatively, the ABAE aspects are more co-
herent, especially in the cleanliness aspect, and
do not include irrelevant words (often verbs) that
are not indicative of any conceivable aspect, like
“got”, “use”, or “come”. k-means selects rele-
vant words to indicate the aspect, but the aspects
are relatively incoherent compared to ABAE. LDA
has a difficult time identifying relevant words, in-
dicating the importance of the attention mecha-
nism in ABAE. Interestingly, we found that the
inter-annotator agreement (Fleiss’ κ) was slightly
higher for the k-means baseline, but all scores are
in the range of moderate agreement.

Aspects
Setup Loc Clean Comm
k-means 0.85/0.68 0.30/0.26 0.62/0.43
LDA 0.16/0.17 0.09/0.10 0.11/0.13
ABAE 0.45/0.46 0.45/0.32 0.41/0.35

Table 4: Precision@1 and precision@3 for the extractive
summarization task, as judged by our human evaluators.

4.3 Extracting Prototypical Sentences
Table 4 presents precision@1 and precision@3 re-
sults for each experimental setup-aspect pair, as
evaluated by our human annotators. There are a
total of 168 listings × 3 experimental setups × 3
aspects× 3 sentences per aspect = 4536 examples
to evaluate; we set aside 795 examples to com-
pute inter-annotator agreement, resulting in 2042
examples per annotator. Fleiss’ κ = 0.69, which
is quite high given the difficulty of the task8.

The most surprising result is that the k-means
baseline is actually the strongest performer in the
location and communication aspects. Nonethe-
less, the result is encouraging since it suggests
that, for some aspects of interest to us, a simple
k-means approach and uniformly-weighted BoW
embeddings suffices. It is interesting to note that
the strong baseline performance occurs with the
aspects that occur more frequently in the corpus,
as discussed in §4.2, suggesting that ABAE is
more useful with aspects that occur more rarely in
our corpus (e.g., cleanliness). For future work, we
propose to evaluate this hypothesis in more depth
by applying the approaches in this paper to the
long tail of rarer aspects. The disappointing per-
formance of LDA shows that its lack of aware-

8The communication aspect (referring to host responsive-
ness and timeliness) is often easily confused with the friend-
liness of the host or staff.
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Ranking BoS listings
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(a) R2 = 0.39.

Ranking BoS reviews
(averaged over listings)
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(b) R2 = 0.73.

Ranking sentences
(averaged over listings)
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(c) R2 = 0.75.
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(d) R2 = 0.46.
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(e) R2 = 0.81.
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(f) R2 = 0.84.

Figure 1: Plots showing the relationship between distance in aspect space and ranking space, for guest profiles computed as
bag-of-sentences representations. Figures 1a, 1b, and 1c are produced with the ABAE model, and figures 1d, 1e, while 1f are
produced with the k-means model.

ness for word co-occurrence is damaging for as-
pect identification.

4.4 Review Ranking

Figure 1 presents results for the ranking corre-
lation experiments with the ABAE and k-means
models. The validation set is used to compute pair-
wise distances between all

(
20
2

)
= 190 guest pairs

using the symmetric KL divergence, since guest
profiles are probability distributions over aspects.
This divergence forms the x-axis for our plots. We
then rerank several objects of interest, and com-
pute the rank correlation coefficient (Kendall’s τ )
between pairs of rankings; this coefficient forms
the y-axis for our plots. Lastly, the correlation be-
tween the distance in aspect space (between pairs
of user profiles) and the distance in ranking space
(between pairs of rankings over objects, as mea-
sured by Kendall’s τ ) with R2 values stated in the
captions.

With the guest profiles, we ranked the following
objects using the symmetric KL divergence:

1. listings, where each listing is represented as a
BoS (similar results were achieved when con-
sidering each listing as a BoR).

2. reviews within a listing: for each guest pair
and listing, we ranked the reviews using each

guest’s profile and computed Kendall’s τ be-
tween the ranked pair of reviews. That score
was then averaged over the 69 listings to yield
a single score for each guest pair.

3. sentences within a listing: similar to reviews
within a listing, except Kendall’s τ was com-
puted over ranked sentences. The averaging
step was the same as above.

Since ABAE extracts aspects at the sentence-level,
we would expect to see sentence-based represen-
tations result in higher correlations than other rep-
resentations. Indeed, if we rank smaller units (i.e.,
sentences vs. listings), the correlation with dis-
tances in aspect space is higher (0.75 vs. 0.39 in
the case of ABAE, 0.84 vs. 0.46 in the case of
k-means). Interestingly, the correlation results are
slightly better for k-means: the range of values for
the pairwise distances (x-axis) is much larger, so
it seems like the k-means guest profiles are better
at capturing extremely divergent users, and the re-
sulting ranking pairs are more divergent too. Table
5 presents an example of divergent rankings over
review sentences for a given listing from two dif-
ferent guest profiles using the ABAE model.
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Rank Guest 1 Guest 2
1 Room is cozy and clean only the washroom feel a

little bit old.
Within walking distance to Feng Chia Night Mar-
ket yet quiet enough when it comes time to rest.

2 Clean and comfortable room for the lone traveller
or couples.

Nice and clean place to stay, very near to Fengjia
night market.

3 The room is very good, as good as on the photos,
and also clean.

Overall my TaiChung trip was good and really con-
venient place to stay at Nami’s place.

4 Nice and clean place to stay, very near to Fengjia
night market.

Ia a great place to stay, clean.

5 Within walking distance to Feng Chia Night Mar-
ket yet quiet enough when it comes time to rest.

Near feng jia night market.

Table 5: From the experiment in §4.4, ranked review sentences for two different guest profiles for the same listing using the
ABAE model. The first guest’s profile focuses on the listing interior and cleanliness aspects, whereas the second guest is more
interested in location.

5 Conclusion

In this work, we evaluated a recently proposed
neural-based aspect extraction model in several
settings. First, we used the inferred sentence-level
aspects to select prototypical review sentences of
a listing for a given aspect, and evaluated this as-
pect identification/extractive summarization task
using human evaluators benchmarked against two
baselines. Interestingly, the k-means baseline does
quite well on frequently-occurring aspects. Sec-
ond, the sentence-level aspects were also used to
compute user profiles by grouping reviews that in-
dividual users have written. We showed that these
embeddings are effective in reranking sentences,
reviews, or listings in order to personalize this con-
tent to individual users.

For future work, we wish to investigate alterna-
tive ways to aggregate and compute user profiles
and compute distances between objects to rank
and user profiles. We would also like to utilize
human evaluators to judge the rankings produced
in the review reranking experiments.
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Abstract

The rise of enterprise applications over
unstructured and semi-structured documents
poses new challenges to text understanding
systems across multiple dimensions. We
present SystemT, a declarative text under-
standing system that addresses these chal-
lenges and has been deployed in a wide range
of enterprise applications. We highlight the
design considerations and decisions behind
SystemT in addressing the needs of the enter-
prise setting. We also summarize the impact of
SystemT on business and education.

1 Introduction

With the proliferation of information in unstruc-
tured and semi-structured form, text understand-
ing (TU) is becoming a fundamental building
block in enterprise applications. Numerous tools,
algorithms and APIs have been developed to ad-
dress various text understanding sub-tasks, rang-
ing from low-level text tasks (e.g., tokenization)
and core natural language processing (e.g., syntac-
tic and semantic parsing) to higher-level tasks such
as document classification, entity and relation ex-
traction, and sentiment analysis. Real world appli-
cations usually require several such components.

As an example, consider a Financial Investment
Research Analysis application, which leverages fi-
nancial market analyst reports such as the one
in Fig. 1 to inform automatic trading and finan-
cial recommendations. Information is conveyed in
both natural language (e.g., “We thus downgrade
US and global HY credits”) and tabular form, re-
quiring both natural language understanding prim-
itives (e.g., syntactic or semantic parsing) and doc-
ument structure understanding primitives (e.g., ta-
ble titles, row and column headers, and the associ-
ation of table cells and headers). Furthermore, the
business problem involves higher-level tasks such

Figure 1: Fragment of investment report.

as financial entity extraction (e.g., equities, bonds,
currencies) in natural language and tabular forms,
and sentiment analysis for such entities.

While approaches for solving individual TU
sub-tasks have proliferated, considerably less ef-
fort has been dedicated to developing systems that
enable building end-to-end TU applications in a
principled, systematic and replicable fashion. In
the absence of such systems, building a TU appli-
cation involves piecing together individual com-
ponents in an ad hoc fashion, usually requiring
custom code to address the impedance mismatch
in data models between the different components,
and to bridge gaps in functionality. Different im-
plementations of the same application may yield
vastly different runtime performance characteris-
tics as well as, even more worryingly, different
output semantics. For example, two develop-
ers may make disparate assumptions implement-
ing even such a seemingly simple text operation
as dictionary matching: Should dictionary terms
match the input text only on token boundaries,
or is matching allowed in the middle of a token?
Which tokenization approach should be used? Is
matching case sensitive or insensitive? In an enter-
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prise environment, such ad-hoc approaches pro-
duce code repositories that are difficult to under-
stand, maintain, reuse in new applications, or op-
timize for runtime performance.

This paper presents SystemT, an industrial-
strength system for developing end-to-end TU ap-
plications in a declarative fashion. SystemT was
developed at IBM Research and has been widely
adopted inside and outside IBM (Sec. 4) Borrow-
ing ideas from database systems, commonly used
text operations are abstracted away as built-in op-
erators with clean, well-specified semantics and
highly optimized internal implementations, and
exposed through a formal declarative language
called AQL (Annotation Query Language). Fig. 2
illustrates a fragment of AQL for extracting fi-
nancial entities and associated sentiment from fi-
nancial reports as in Fig. 1. The snippet illus-
trates several types of declarative TU structures
(or rules) expressible in AQL, including sequential
structures (AssetClass), semantic understanding
structures (RecommendationNU), and table under-
standing structures (RecommendationTable). The
rules leverage built-in text operators readily avail-
able in AQL, including dictionary matching (As-
setClassSuffixes), core NLP operators such as Se-
mantic Role Labeling (SRL) (Verbs, Arguments),
and document structure operators such as table
structure understanding (AllCells). Sec. 3 details
the data model and semantics of AQL.

Architecture Overview. As illustrated in (Fig. 3),
SystemT consists of two major components: the
Compiler and the Runtime.

The Compiler takes as input a TU program
specified in AQL and compiles it into an execu-
tion plan. AQL is a purely declarative language:
the developer specifies what should be extracted,
but not how to do it. The Optimizer computes the
how automatically by enumerating multiple logi-
cal equivalent plans, and choosing a plan with the
least estimated cost. Since each operator has well-
specified semantics, the Optimizer can automati-
cally determine when operators can be reordered,
merged, or even discarded without affecting the
output semantics, while significantly increasing
the runtime performance of the TU program. The
Operator Graph captures the execution plan gen-
erated by the Optimizer and is used by the Runtime
to decide the actual sequence of operations.

The Runtime is a lightweight engine that loads
the Operator Graph and then processes inputs

Figure 2: Example AQL specifications expressing a se-
quential structure (AssetClass), a semantic structure (Recom-
mendationNU) and a table structure (RecommendationTable).
(Simplified for presentation.)

Figure 3: SystemT Overall Architecture

document-at-a-time (DAAT), with the text and
metadata of each document acting like a separate
“database” from the perspective of the AQL rules.
This DAAT model speeds up join and aggregation
operations within a document, as the entire docu-
ment’s data is in memory. It also simplifies scale-
out processing and can be scaled up by utilizing
multithreading and multiple processes, as well as
various cluster and cloud environments.
Related Work. SystemT’s declarative approach
is a departure from other rule-based TU systems.
Early systems (Cunningham et al., 2000; Bogu-
raev, 2003; Drozdzynski et al., 2004) are based
on the Common Pattern Specification Language
(CPSL) (Appelt and Onyshkevych, 1998), a cas-
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cading grammar formalism where the input text is
viewed as a sequence of annotations, and extrac-
tion rules are written as pattern/action rules over
the lexical features of these annotations. Each
grammar consists of a set of rules evaluated in
a left-to-right fashion over the input annotations,
with multiple grammars cascaded together and
evaluated bottom-up.

As discussed in (Chiticariu et al., 2010),
grammar-based systems suffer from two funda-
mental limitations: expressivity and performance.
Formal studies of AQL semantics have shown
that AQL is strictly more expressive than reg-
ular expression-based languages such as CPSL
(Sec. 3.2.5). Furthermore, the rigid evaluation or-
der imposed in grammar-based systems has sig-
nificant runtime performance implications, as the
system is effectively forced into a fixed pipeline
execution strategy, leaving little opportunity for
global optimization. While the expressivity of
grammar-based systems has been extended in
different ways, such as additional built-in con-
structs (Boguraev, 2003; Drozdzynski et al., 2004;
Cunningham et al., 2000), or allowing a mix of se-
quential patterns and rules over dependency parse
trees (Valenzuela-Escárcega et al., 2016), such ex-
tensions do not fundamentally address the inher-
ent expressivity and performance limitations due
to the intertwining of rule language semantics and
execution strategy. In contrast, SystemT’s declar-
ative approach enables the optimizer to explore a
variety of execution plans, resulting in orders of
magnitude higher throughput and a lower memory
footprint (Chiticariu et al., 2010).

2 Requirements for Enterprise TU

While the traditional accuracy requirement re-
mains important, emerging enterprising appli-
cations introduce additional requirements for
enterprise-scale TU systems.
Scalability. Compared to conventional TU task
corpora, such as those available via the Linguistic
Data Consortium, enterprise TU corpora comprise
much larger volumes of data from a wider vari-
ety of sources, ranging from user-created content
and public data, to proprietary data such as call-
center logs. The TU system must scale for both
documents (e.g., a single financial report runs in
the tens of MBs) and document collections (e.g.,
500 million new tweets posted daily on Twitter;
terabytes of system logs produced hourly in a

medium-size data center).
Expressivity. Enterprise TU must handle an am-
ple variety of functionalities required by different
enterprise applications, from known natural lan-
guage processing tasks such as entity extraction
to more practical challenges such as table struc-
ture understanding. Data may come from plain
text, semi-structured text (e.g., HTML or XML),
or the conversion of a binary format (PDF, Word)
to text. Different degrees of noise may be present,
from manually introduced noise such as typos and
acronyms (e.g., in tweets) to systematic errors
such as those resulting from format conversion.
Transparency. Enterprise TU must be transparent
and enable ease of comprehension, debugging and
enhancement, to avoid TU development becoming
the bottleneck for building enterprise applications.
Furthermore, as the underlying data or application
requirements change, it must be easy to adapt ex-
isting TU programs in response.
Extensibility. Enterprise TU, no matter how well
designed, might not provide all of the capabilities
required by a real-world use case out-of-the-box.
As such, it should be extensible to gracefully han-
dle tasks that are not natively supported.

3 SystemT Highlights

We now describe the key design considerations
and decisions behind SystemT and discuss how
they help address the requirements in Sec. 2.

3.1 Preliminaries

Data model. AQL operates over a simple rela-
tional data model with three basic data structures:
field value, tuple, and view. A tuple (aka an anno-
tation) consists of a list of named and typed fields.
The field values can be of the text-specific type
span, representing a region of text within a docu-
ment identified by its “begin” and “end” positions,
or any of a collection of familiar data types such
as text, integer, scalar List, and null (with 3-value
logic, similar to SQL). A view is a set of tuples
with the same schema (field name and field type).
Statements and modules. Each AQL statement
defines a view as the result of some operations on
one or more other views, which are defined by pre-
vious statements. A special view called Document
is created automatically, which contains a single
tuple with the document text. AQL code is orga-
nized in modules which provide a namespace for
the views. The modules are compiled. At run time
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the modules are loaded on demand and executed.

3.2 Expressivity
AQL1 is similar in syntax to the database language
SQL, chosen for its expressivity and its familiar-
ity to enterprise developers. It provides a number
of TU constructs, including primitive extraction
operators for finding parts of speech, matches of
regular expressions and dictionaries, as well as set
operators such as sequence, union, filter and con-
solidate. Each operator implements a single basic
atomic operation, producing and consuming sets
of tuples. AQL developers create TU programs
by composing these operators together into sets of
rules, or statements.

3.2.1 Basic Primitives
Three of the most basic operators of AQL include:
Extract (E) performs character level operations
such as regular expression and dictionary match-
ing over text, creating a tuple for each match.
Select (τ ) applies a predicate to a set of tuples, and
outputs all those tuples that satisfy the predicate.
Join (./) applies a predicate to pairs of tuples from
two sets of input tuples, outputting all pairs that
satisfy the predicate.

AQL also provides a sequence pattern nota-
tion, similar in its grammar-like syntax to that of
CPSL (Appelt and Onyshkevych, 1998), which is
translated internally into one or more select and
extract statements. Other operators include De-
tag for removing HTML tags and retaining the
locations of important HTML metadata such as
section, lists and table markup, PartOfSpeech for
part-of-speech detection, Consolidate for remov-
ing overlapping annotations, Block and Group for
grouping together similar annotations occurring
within close proximity to each other, as well as ex-
pressing more general types of aggregation, Sort
and Limit for sorting and truncating output, and
Union and Minus for expressing set union and set
difference, respectively. Rules can also be easily
customized to particular TU domains using exter-
nal dictionary and table structures, which can be
rapidly populated with relevant terms without the
need to alter existing AQL code.

3.2.2 Advanced Primitives
SystemT has built-in multilingual support includ-
ing tokenization, part of speech and lemmatization
for over 20 languages. TU developers can utilize

1AQL manual: https://ibm.biz/BdZpjX.

the multilingual support via AQL without having
to configure or manage any additional resources.
Language expansion is enabled as described in
Sec. 3.4. SystemT also has advanced primitives
for semantic role labeling (SRL), the task of label-
ing predicate-argument structure in sentences with
shallow semantic information. Such advanced
primitives enable the creation of cross-lingual TU
programs (see, e.g., (Akbik et al., 2016).)

3.2.3 Extensions with Pre-Built Libraries
Corpora can introduce a variety of additional TU
challenges, including having a high degree of
noise (e.g., non-standard word forms or infor-
mal usage patterns), exposing data through non-
free-text structures (e.g., tables), or existing in a
difficult-to-digest format (e.g., PDF). We have ex-
tended the functionality of SystemT by creating
pre-built libraries with advanced TU capabilities
such as text normalization (Baldwin and Li, 2015),
semantic table processing (Chen et al., 2017), and
document format conversion.

3.2.4 An AQL Example
As discussed in Sec.1, Fig. 2 shows AQL snip-
pets for extracting sentiment around financial as-
sets from investment reports such as the one in
Fig. 1. View AssetClass identifies financial enti-
ties using syntactic constructs: a geographical re-
gion followed within 0 to 1 tokens by a common
suffix (e.g., ‘credits’, ‘equities’).

View RecommendationNU uses semantic parse
primitives to identify recommendations expressed
in natural language such as ‘We downgrade ...
from neutral to underweight’. In order to assign
the correct polarity to ‘underweight’ and ‘neutral’,
SRL information exposed in views Verbs, Argu-
ments and Contexts is joined with the view As-
setClass and the AQL table PolarityAdj, mapping
domain terminology (e.g., ‘UW’, ‘underweight’)
to sentiment polarities. The view uses several
AQL built-in join and selection predicates (equal-
ity, span containment, dictionary matching.)

Finally, view RecommendationTable identifies
recommendations present in tabular form. It lever-
ages table semantic understanding primitives ex-
posed through the view AllCells, which connects
the span of each table cell with additional row and
column metadata such as row and column ids and
headers. RecommendationTable identifies all cells
that appear in the same row under specific column
headers, and assigns polarity using PolarityAdj.
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3.2.5 Formal Analysis
Fagin et al (Fagin et al., 2013, 2016) formalized
the semantics of relational-based extraction lan-
guages like AQL with the theoretical framework
document spanners. The initial paper showed
that a restricted version of document spanners
are broadly equivalent in expressivity to regular-
expression-based languages such as CPSL. The
follow-on paper described how consolidation, a
facility also supported by SystemT for addressing
overlapping spans in intermediate results, extends
the expressivity of the spanners framework.

3.3 Scalability
SystemT is architected to achieve scalability along
three dimensions: (1) Cost-based Optimizer to se-
lect the most efficient execution plan for a given
declarative specification and input documents; (2)
Document-centric Runtime engine, scalable by
trivial parallelization, leveraging the advances in
parallel computing (e.g., via Hadoop/Spark); (3)
Hardware acceleration for sped up computation.

3.3.1 Optimizer
Internally, the declarative AQL specification com-
piles into an algebra consisting of individual op-
erators with well-specified semantics and proper-
ties that compose to form an execution plan. The
SystemT Optimizer chooses an efficient execution
plan among all possible equivalent execution plans
for a given AQL specification. The Optimizer
is inspired by relational query optimizers, which
have been operational in commercial database sys-
tems for over 40 years (Astrahan et al., 1979),
with one important difference: While SQL op-
timizers are designed to minimize I/O costs, the
SystemT Optimizer focuses on minimizing CPU-
intensive text operations. We briefly describe the
two classes of optimization techniques used, and
refer the reader to (Reiss et al., 2008) for a detailed
description.
Cost-based optimizations are used to select an ef-
ficient join ordering for AQL statements that join
two or more relations (as in Fig. 2). The search
algorithm uses dynamic programming to build up
larger sub-plan candidates from smaller sub-plans.
The Optimizer uses a text-centric cost model to es-
timate the execution time of each operator based
on the input size, selectivity of the join predicate,
and choice of join algorithm.
Rewrite-based optimizations include plan
rewrites known to always speed up the execution

time, including (1) text-centric optimizations such
as Shared Dictionary Matching and Shared Regex
Matching, which group multiple dictionaries or
regular expressions together to be executed in a
single pass over the document; and (2) relational-
style query rewrites, such as pushing down select
and project operators.

3.3.2 Runtime
The SystemT Runtime engine is architected as a
compact in-memory embeddable Java library (<2
MB). It is purely document-centric, leaving the
storage of document collections and extracted ar-
tifacts to the embedding application. The engine
exposes two low-level Java APIs: (1) instantiate()
creates an OperatorGraph instance, an in-memory
representation of the execution plan generated by
the Optimizer, and (2) execute() takes as input an
in-memory representation of the input document
and returns an in-memory representation of the
objects extracted from that document. The APIs
are reentrant and thread safe. The execute() API
is multithreaded (a single OperatorGraph instance
can be used simultaneously by multiple threads,
each annotating a different document.)

This document-centric in-memory design has
provided the flexibility necessary to embed the
SystemT Runtime in a variety of environments,
including: (1) Big Data platforms (e.g., Hadoop,
Spark) (2) Cloud platforms (e.g., Kubernetes),
and (3) custom applications. We enable SystemT
in Big Data and Cloud platforms by providing
platform-specific APIs that mirror the low-level
Java APIs, but are tailored to the platform’s com-
pute and data models. Custom applications not
built on Big Data or Cloud platforms (e.g., a desk-
top email client, a travel app, or a compliance pro-
gram) can embed the SystemT runtime in any way
suitable for the application.

3.3.3 Hardware Acceleration
The separation of specification from implementa-
tion has the added advantage that new hardware
can be relatively easy to take advantage of, with no
changes in the declarative specification of the pro-
gram. For example, recent work on hardware ac-
celeration for low level text operators such as reg-
ular expressions (Atasu et al., 2013) can be lever-
aged by extending the Optimizer’s search space
and cost model to incorporate alternative hardware
implementations of individual operators and asso-
ciated cost model (Polig et al., 2018).
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(a) Declaring UDF Function

(b) Using UDF Function

Figure 4: Example UDF function: document-level sentiment
classification

3.4 Extensibility

SystemT has been built with extensibility in mind.
With a grey-box design, users are able to extend
its capabilities via the following mechanisms.
User-Defined Functions (UDFs) can be defined
to extend AQL by performing operations that are
not supported natively by SystemT. Using a UDF
requires three simple steps: (1) Implementing the
function in Java or PMML; (2) Declaring it in
AQL; and (3) Using it in AQL. Fig. 4 illustrates
how to extend AQL to support a simple document-
level sentiment classifier for asset classes using
features extracted with sentiment extractors de-
fined earlier in Sec. 3.2.4. The example illustrates
several other AQL constructs, including unioning,
grouping and counting annotations.
NLP Primitive API. Low-level language-
dependent primitives such as tokenization,
part-of-speech tagging, lemmatization or se-
mantic role labeling are pluggable through an
internal API, and automatically exposed to all
AQL constructs. For example, the matching of
AssetClassSuffixes dictionary on lemma form in
Fig. 2 is enabled by the underlying tokenizer and
lemmatizer for the given language. This has two
advantages: (1) isolating language-dependent
primitives from the rest of the system, without
requiring changes to the AQL language itself; and
(2) leveraging newer primitive models as they

become available, without requiring changes to
existing AQL programs.

3.5 Transparency and Machine Learning
A common criticism of pure machine learning
(ML) systems in the enterprise world is that sta-
tistical models are opaque to the application using
them, making the results difficult to explain or be
quickly fixed (Chiticariu et al., 2013). SystemT
addresses this challenge by using a declarative
language for specifying the TU program. Since
the results are produced by constructs with well-
understood semantics, it is possible to automati-
cally generate explanations of why a certain output
was or was not produced.

At the same time, SystemT has the flexibility
to leverage ML techniques in the context of its
overall declarative framework in two dimensions.
First, primitive APIs and the user-defined interface
(Sec. 3.4) allow for plugging in low-level NLP
primitives, as well as trained models for higher-
level tasks such as entity extraction. The former
makes NLP primitives available to all AQL con-
structs. The latter allows AQL specifications to
provide features to the model, post-process the
result of the model, or use the model as build-
ing block in solving a higher-level task. Second,
ML techniques are leveraged to learn AQL pro-
grams, thereby generating a deterministic, trans-
parent model in lieu of a probabilistic one. Such
algorithms can be incorporated in the SystemT
IDEs (Sec. 3.6) to speed up AQL development.

3.6 Integrated Development Environments
SystemT provides integrated development envi-
ronments (IDEs) designed for a wide spectrum of
users. The professional IDE allows expert devel-
opers to create complex TU programs in AQL (Li
et al., 2012). The visual IDE enables novice users
and non-programmers to construct drag-and-drop
TU programs without learning AQL (Li et al.,
2015). Both IDEs leverage ML and human-
computer interaction techniques as those summa-
rized in (Chiticariu et al., 2015) to support typical
development life cycles of TU tasks (Fig. 5).

3.7 Empirical Evaluation
In addition to theoretical studies of AQL expres-
sivity and runtime performance, we have also eval-
uated SystemT empirically on multiple TU tasks.
We show that extractors built in AQL yield results
of comparable quality to the best published results
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Domain Application

Compliance

Multilingual named entity extraction for document retention
Element extraction and classification in legal documents (e.g. contract, regulations)
Named entity extraction for document retention and regulation compliance

Email/Online Chat Entity and event extraction in emails and online chat for AI assistant
Named entity extraction in emails for search

Finance
Extracting financial information from public records to estimate the true cost of water
Extracting company fundamentals (e.g. financial metrics and key personnel) from regulatory filings
to create a knowledge base

General domain
Building text understanding programs for entity extraction and sentiment analysis
Building text understanding programs

Life science Extracting features (e.g. entities and relations) from life science literature to speed up the discovery
of new drugs

Material science Extracting entities and relations from natural language and tables in material science literature to speed
up the discovery for new materials

Security and privacy Personal information extraction and redaction for security and privacy
Social media Sentiment analysis over social media for indepth understanding of social behavior
Travel Extracting information and sentiment from online reviews to build AI assist for travel

Table 1: Partial list of SystemT applications

Figure 5: Development life cycles using SystemT

on several competition datasets, while achieving
orders of magnitude speed-up in processing time,
and requiring smaller memory utilization (Krish-
namurthy et al., 2009; Chiticariu et al., 2010;
Nagesh et al., 2012; Wang et al., 2017).

4 Impact of SystemT

Business Impact. Started as a research prototype,
SystemT has been widely adopted within IBM and
its clients. It is embedded in over 10 commercial
product offerings and used in numerous internal
and external projects2 for a wide variety of enter-
prise applications, a small subset of which is high-
lighted in Table 1.
Research Impact. Various aspects of SystemT
have been published in 40+ major research con-
ferences and journals in diverse areas, including
natural language processing, database systems, ar-
tificial intelligence and human-computer interac-
tion. This is the first time that all aspects of the

2 Example products exposing or embedding SystemT in-
clude: IBM BigInsights, IBM Streams, IBM Watson for Drug
Discovery

system, including design considerations and cur-
rent functionality, are described in a single paper.
Education Impact. SystemT is available to teach-
ers and students under a free academic license.
We have developed a full graduate-level course on
text understanding using SystemT, which has been
taught in several universities. A version of this
class has been made available3 as a MOOC with
10,000+ students enrolled in less than 18 months.

5 Conclusion

In this paper, we discuss new challenges posed
by enterprise applications to text understanding
(TU) systems. We present SystemT, an industrial-
strength system for developing end-to-end TU ap-
plications in a declarative fashion. We highlight
the key design decisions and discuss how they help
meet the needs of the enterprise setting. SystemT
has been used to build enterprise applications in a
wide range of domains, and is publicly available
for commercial and academic usage.
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Abstract

We describe a deployed scalable system
for organizing published scientific litera-
ture into a heterogeneous graph to facili-
tate algorithmic manipulation and discov-
ery. The resulting literature graph consists
of more than 280M nodes, representing pa-
pers, authors, entities and various interac-
tions between them (e.g., authorships, cita-
tions, entity mentions). We reduce litera-
ture graph construction into familiar NLP
tasks (e.g., entity extraction and linking),
point out research challenges due to differ-
ences from standard formulations of these
tasks, and report empirical results for each
task. The methods described in this pa-
per are used to enable semantic features in
www.semanticscholar.org.

1 Introduction

The goal of this work is to facilitate algorithmic
discovery in the scientific literature. Despite no-
table advances in scientific search engines, data
mining and digital libraries (e.g., Wu et al., 2014),
researchers remain unable to answer simple ques-
tions such as:

� What is the percentage of female subjects in
depression clinical trials?

� Which of my co-authors published one or more
papers on coreference resolution?

� Which papers discuss the effects of Ranibizumab
on the Retina?

In this paper, we focus on the problem of ex-
tracting structured data from scientific documents,
which can later be used in natural language inter-
faces (e.g., Iyer et al., 2017) or to improve ranking
of results in academic search (e.g., Xiong et al.,

Figure 1: Part of the literature graph.

2017). We describe methods used in a scalable de-
ployed production system for extracting structured
information from scientific documents into the lit-
erature graph (see Fig. 1). The literature graph is
a directed property graph which summarizes key
information in the literature and can be used to an-
swer the queries mentioned earlier as well as more
complex queries. For example, in order to com-
pute the Erdős number of an author X, the graph
can be queried to find the number of nodes on the
shortest undirected path between author X and Paul
Erdős such that all edges on the path are labeled
“authored”.

We reduce literature graph construction into fa-
miliar NLP tasks such as sequence labeling, entity
linking and relation extraction, and address some
of the impractical assumptions commonly made in
the standard formulations of these tasks. For ex-
ample, most research on named entity recognition
tasks report results on large labeled datasets such
as CoNLL-2003 and ACE-2005 (e.g., Lample et al.,
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2016), and assume that entity types in the test set
match those labeled in the training set (including
work on domain adaptation, e.g., Daumé, 2007).
These assumptions, while useful for developing
and benchmarking new methods, are unrealistic for
many domains and applications. The paper also
serves as an overview of the approach we adopt
at www.semanticscholar.org in a step towards
more intelligent academic search engines (Etzioni,
2011).

In the next section, we start by describing our
symbolic representation of the literature. Then, we
discuss how we extract metadata associated with a
paper such as authors and references, then how we
extract the entities mentioned in paper text. Before
we conclude, we briefly describe other research
challenges we are actively working on in order to
improve the quality of the literature graph.

2 Structure of The Literature Graph

The literature graph is a property graph with di-
rected edges. Unlike Resource Description Frame-
work (RDF) graphs, nodes and edges in property
graphs have an internal structure which is more
suitable for representing complex data types such
as papers and entities. In this section, we describe
the attributes associated with nodes and edges of
different types in the literature graph.

2.1 Node Types

Papers. We obtain metadata and PDF files
of papers via partnerships with publishers (e.g.,
Springer, Nature), catalogs (e.g., DBLP, MED-
LINE), pre-publishing services (e.g., arXiv, bioRx-
ive), as well as web-crawling. Paper nodes are
associated with a set of attributes such as ‘title’, ‘ab-
stract’, ‘full text’, ‘venues’ and ‘publication year’.
While some of the paper sources provide these at-
tributes as metadata, it is often necessary to extract
them from the paper PDF (details in §3). We de-
terministically remove duplicate papers based on
string similarity of their metadata, resulting in 37M
unique paper nodes. Papers in the literature graph
cover a variety of scientific disciplines, including
computer science, molecular biology, microbiology
and neuroscience.

Authors. Each node of this type represents a
unique author, with attributes such as ‘first name’
and ‘last name’. The literature graph has 12M
nodes of this type.

Entities. Each node of this type represents a
unique scientific concept discussed in the literature,
with attributes such as ‘canonical name’, ‘aliases’
and ‘description’. Our literature graph has 0.4M
nodes of this type. We describe how we populate
entity nodes in §4.3.

Entity mentions. Each node of this type rep-
resents a textual reference of an entity in one of
the papers, with attributes such as ‘mention text’,
‘context’, and ‘confidence’. We describe how we
populate the 237M mentions in the literature graph
in §4.1.

2.2 Edge Types
Citations. We instantiate a directed citation

edge from paper nodes p1 �! p2 for each p2

referenced in p1. Citation edges have attributes
such as ‘from paper id’, ‘to paper id’ and ‘contexts’
(the textual contexts where p2 is referenced in p1).
While some of the paper sources provide these at-
tributes as metadata, it is often necessary to extract
them from the paper PDF as detailed in §3.

Authorship. We instantiate a directed author-
ship edge between an author node and a paper node
a �! p for each author of that paper.

Entity linking edges. We instantiate a directed
edge from an extracted entity mention node to the
entity it refers to.

Mention–mention relations. We instantiate
a directed edge between a pair of mentions in the
same sentential context if the textual relation ex-
traction model predicts one of a predefined list of
relation types between them in a sentential con-
text.1 We encode a symmetric relation between
m1 and m2 as two directed edges m1 �! m2 and
m2 �! m1.

Entity–entity relations. While mention–
mention edges represent relations between men-
tions in a particular context, entity–entity edges
represent relations between abstract entities. These
relations may be imported from an existing knowl-
edge base (KB) or inferred from other edges in the
graph.

3 Extracting Metadata

In the previous section, we described the overall
structure of the literature graph. Next, we discuss
how we populate paper nodes, author nodes, au-
thorship edges, and citation edges.

1Due to space constraints, we opted not to discuss our
relation extraction models in this draft.
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Although some publishers provide sufficient
metadata about their papers, many papers are pro-
vided with incomplete metadata. Also, papers ob-
tained via web-crawling are not associated with
any metadata. To fill in this gap, we built the Sci-
enceParse system to predict structured data from
the raw PDFs using recurrent neural networks
(RNNs).2 For each paper, the system extracts the
paper title, list of authors, and list of references;
each reference consists of a title, a list of authors, a
venue, and a year.

Preparing the input layer. We split each
PDF into individual pages, and feed each page to
Apache’s PDFBox library3 to convert it into a se-
quence of tokens, where each token has features,
e.g., ‘text’, ‘font size’, ‘space width’, ‘position on
the page’.

We normalize the token-level features before
feeding them as inputs to the model. For each of the
‘font size’ and ‘space width’ features, we compute
three normalized values (with respect to current
page, current document, and the whole training
corpus), each value ranging between -0.5 to +0.5.
The token’s ‘position on the page’ is given in XY
coordinate points. We scale the values linearly to
range from .�0:5;�0:5/ at the top-left corner of
the page to .0:5; 0:5/ at the bottom-right corner.

In order to capture case information, we add
seven numeric features to the input representa-
tion of each token: whether the first/second let-
ter is uppercase/lowercase, the fraction of upper-
case/lowercase letters and the fraction of digits.

To help the model make correct predictions for
metadata which tend to appear at the beginning
(e.g., titles and authors) or at the end of papers (e.g.,
references), we provide the current page number
as two discrete variables (relative to the beginning
and end of the PDF file) with values 0, 1 and 2+.
These features are repeated for each token on the
same page.

For the k-th token in the sequence, we compute
the input representation ik by concatenating the nu-
meric features, an embedding of the ‘font size’, and
the word embedding of the lowercased token. Word
embeddings are initialized with GloVe (Pennington
et al., 2014).

Model. The input token representations are
passed through one fully-connected layer and then

2The ScienceParse libraries can be found at http://
allenai.org/software/.

3https://pdfbox.apache.org

Field Precision Recall F1

title 85.5 85.5 85.5
authors 92.1 92.1 92.1

bibliography titles 89.3 89.4 89.3
bibliography authors 97.1 97.0 97.0
bibliography venues 91.7 89.7 90.7

bibliography years 98.0 98.0 98.0

Table 1: Results of the ScienceParse system.

fed into a two-layer bidirectional LSTM (Long
Short-Term Memory, Hochreiter and Schmidhuber,
1997), i.e.,

g!k D LSTM.Wik; g!k�1/; gk D Œg!k I g
 
k �;

h!k D LSTM.gk; h!k�1/; hk D Œh!k I g
 
k �

where W is a weight matrix, g 
k

and h 
k

are de-
fined similarly to g!

k
and h!

k
but process token

sequences in the opposite direction.
Following Collobert et al. (2011), we feed the

output of the second layer hk into a dense layer to
predict unnormalized label weights for each token
and learn label bigram feature weights (often de-
scribed as a conditional random field layer when
used in neural architectures) to account for depen-
dencies between labels.

Training. The ScienceParse system is trained
on a snapshot of the data at PubMed Central. It
consists of 1.4M PDFs and their associated meta-
data, which specify the correct titles, authors, and
bibliographies. We use a heuristic labeling pro-
cess that finds the strings from the metadata in the
tokenized PDFs to produce labeled tokens. This la-
beling process succeeds for 76% of the documents.
The remaining documents are not used in the train-
ing process. During training, we only use pages
which have at least one token with a label that is
not “none”.

Decoding. At test time, we use Viterbi decod-
ing to find the most likely global sequence, with
no further constraints. To get the title, we use the
longest continuous sequence of tokens with the
“title” label. Since there can be multiple authors,
we use all continuous sequences of tokens with the
“author” label as authors, but require that all authors
of a paper are mentioned on the same page. If the
author labels are predicted in multiple pages, we
use the one with the largest number of authors.
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Results. We run our final tests on a held-out
set from PubMed Central, consisting of about 54K
documents. The results are detailed in Table 1. We
use a conservative evaluation where an instance is
correct if it exactly matches the gold annotation,
with no credit for partial matching.

To give an example for the type of errors
our model makes, consider the paper (Wang
et al., 2013) titled “Clinical review: Efficacy of
antimicrobial-impregnated catheters in external
ventricular drainage - a systematic review and meta-
analysis.” The title we extract for this paper omits
the first part “Clinical review:”. This is likely to
be a result of the pattern “Foo: Bar Baz” appear-
ing in many training examples with only “Bar Baz”
labeled as the title.

4 Entity Extraction and Linking

In the previous section, we described how we popu-
late the backbone of the literature graph, i.e., paper
nodes, author nodes and citation edges. Next, we
discuss how we populate mentions and entities in
the literature graph using entity extraction and link-
ing on the paper text. In order to focus on more
salient entities in a given paper, we only use the
title and abstract.

4.1 Approaches

We experiment with three approaches for entity
extraction and linking:

I. Statistical: uses one or more statistical models
for predicting mention spans, then uses another sta-
tistical model to link mentions to candidate entities
in a KB.

II. Hybrid: defines a small number of hand-
engineered, deterministic rules for string-based
matching of the input text to candidate entities
in the KB, then uses a statistical model to disam-
biguate the mentions.4

III. Off-the-shelf: uses existing libraries, namely
(Ferragina and Scaiella, 2010, TagMe)5 and
(Demner-Fushman et al., 2017, MetaMap Lite)6,
with minimal post-processing to extract and link
entities to the KB.

4We also experimented with a “pure” rules-based approach
which disambiguates deterministically but the hybrid approach
consistently gave better results.

5The TagMe APIs are described at https://sobigdata.
d4science.org/web/tagme/tagme-help

6We use v3.4 (L0) of MetaMap Lite, available at https:
//metamap.nlm.nih.gov/MetaMapLite.shtml

Approach CS Bio
prec. yield prec. yield

Statistical 98.4 712 94.4 928
Hybrid 91.5 1990 92.1 3126

Off-the-shelf 97.4 873 77.5 1206

Table 2: Document-level evaluation of three ap-
proaches in two scientific areas: computer science
(CS) and biomedical (Bio).

We evaluate the performance of each approach in
two broad scientific areas: computer science (CS)
and biomedical research (Bio). For each unique
(paper ID, entity ID) pair predicted by one of the
approaches, we ask human annotators to label each
mention extracted for this entity in the paper. We
use CrowdFlower to manage human annotations
and only include instances where three or more
annotators agree on the label. If one or more of
the entity mentions in that paper is judged to be
correct, the pair (paper ID, entity ID) counts as
one correct instance. Otherwise, it counts as an
incorrect instance. We report ‘yield’ in lieu of
‘recall’ due to the difficulty of doing a scalable
comprehensive annotation.

Table 2 shows the results based on 500 papers
using v1.1.2 of our entity extraction and linking
components. In both domains, the statistical ap-
proach gives the highest precision and the lowest
yield. The hybrid approach consistently gives the
highest yield, but sacrifices precision. The TagMe
off-the-shelf library used for the CS domain gives
surprisingly good results, with precision within 1
point from the statistical models. However, the
MetaMap Lite off-the-shelf library we used for the
biomedical domain suffered a huge loss in preci-
sion. Our error analysis showed that each of the
approaches is able to predict entities not predicted
by the other approaches so we decided to pool their
outputs in our deployed system, which gives signif-
icantly higher yield than any individual approach
while maintaining reasonably high precision.

4.2 Entity Extraction Models

Given the token sequence t1; : : : ; tN in a sentence,
we need to identify spans which correspond to en-
tity mentions. We use the BILOU scheme to en-
code labels at the token level. Unlike most formula-
tions of named entity recognition problems (NER),
we do not identify the entity type (e.g., protein,
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drug, chemical, disease) for each mention since the
output mentions are further grounded in a KB with
further information about the entity (including its
type), using an entity linking module.

Model. First, we construct the token embed-
ding xk D ŒckIwk� for each token tk in the input
sequence, where ck is a character-based represen-
tation computed using a convolutional neural net-
work (CNN) with filter of size 3 characters, and wk

are learned word embeddings initialized with the
GloVe embeddings (Pennington et al., 2014).

We also compute context-sensitive word embed-
dings, denoted as lmk D Œlm!k I lm

 
k �, by con-

catenating the projected outputs of forward and
backward recurrent neural network language mod-
els (RNN-LM) at position k. The language model
(LM) for each direction is trained independently
and consists of a single layer long short-term mem-
ory (LSTM) network followed by a linear project
layer. While training the LM parameters, lm!k is
used to predict tkC1 and lm k is used to predict
tk�1. We fix the LM parameters during training of
the entity extraction model. See Peters et al. (2017)
and Ammar et al. (2017) for more details.

Given the xk and lmk embeddings for each token
k 2 f1; : : : ; N g, we use a two-layer bidirectional
LSTM to encode the sequence with xk and lmk

feeding into the first and second layer, respectively.
That is,
g!k D LSTM.xk; g!k�1/; gk D Œg!k I g

 
k �;

h!k D LSTM.ŒgkI lmk�; h!k�1/; hk D Œh!k Ih
 
k �;

where g 
k

and h 
k

are defined similarly to g!
k

and
h!

k
but process token sequences in the opposite

direction.
Similar to the model described in §3, we feed the

output of the second LSTM into a dense layer to
predict unnormalized label weights for each token
and learn label bigram feature weights to account
for dependencies between labels.

Results. We use the standard data splits of
the SemEval-2017 Task 10 on entity (and relation)
extraction from scientific papers (Augenstein et al.,
2017). Table 3 compares three variants of our en-
tity extraction model. The first line omits the LM
embeddings lmk , while the second line is the full
model (including LM embeddings) showing a large
improvement of 4.2 F1 points. The third line shows
that creating an ensemble of 15 models further im-
proves the results by 1.1 F1 points.

Model instances. In the deployed system, we
use three instances of the entity extraction model

Description F1

Without LM 49.9
With LM 54.1

Avg. of 15 models with LM 55.2

Table 3: Results of the entity extraction model on
the development set of SemEval-2017 task 10.

with a similar architecture, but trained on differ-
ent datasets. Two instances are trained on the
BC5CDR (Li et al., 2016) and the CHEMDNER
datasets (Krallinger et al., 2015) to extract key en-
tity mentions in the biomedical domain such as dis-
eases, drugs and chemical compounds. The third
instance is trained on mention labels induced from
Wikipedia articles in the computer science domain.
The output of all model instances are pooled to-
gether and combined with the rule-based entity
extraction module, then fed into the entity linking
model (described below).

4.3 Knowledge Bases
In this section, we describe the construction of en-
tity nodes and entity-entity edges. Unlike other
knowledge extraction systems such as the Never-
Ending Language Learner (NELL)7 and OpenIE
4,8 we use existing knowledge bases (KBs) of en-
tities to reduce the burden of identifying coher-
ent concepts. Grounding the entity mentions in
a manually-curated KB also increases user confi-
dence in automated predictions. We use two KBs:
UMLS: The UMLS metathesaurus integrates in-
formation about concepts in specialized ontologies
in several biomedical domains, and is funded by
the U.S. National Library of Medicine.
DBpedia: DBpedia provides access to structured
information in Wikipedia. Rather than including all
Wikipedia pages, we used a short list of Wikipedia
categories about CS and included all pages up to
depth four in their trees in order to exclude irrele-
vant entities, e.g., “Lord of the Rings” in DBpedia.

4.4 Entity Linking Models
Given a text span s identified by the entity extrac-
tion model in §4.2 (or with heuristics) and a ref-
erence KB, the goal of the entity linking model
is to associate the span with the entity it refers to.
A span and its surrounding words are collectively

7http://rtw.ml.cmu.edu/rtw/
8https://github.com/allenai/

openie-standalone
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referred to as a mention. We first identify a set of
candidate entities that a given mention may refer
to. Then, we rank the candidate entities based on
a score computed using a neural model trained on
labeled data.

For example, given the string “. . . database
of facts, an ILP system will . . . ”, the entity ex-
traction model identifies the span “ILP” as a
possible entity and the entity linking model as-
sociates it with “Inductive_Logic_Programming”
as the referent entity (from among other can-
didates like “Integer_Linear_Programming” or
“Instruction-level_Parallelism”).

Datasets. We used two datasets: i) a biomed-
ical dataset formed by combining MSH (Jimeno-
Yepes et al., 2011) and BC5CDR (Li et al., 2016)
with UMLS as the reference KB, and ii) a CS
dataset we curated using Wikipedia articles about
CS concepts with DBpedia as the reference KB.

Candidate selection. In a preprocessing step,
we build an index which maps any token used in
a labeled mention or an entity name in the KB
to associated entity IDs, along with the frequency
this token is associated with that entity. This is
similar to the index used in previous entity linking
systems (e.g., Bhagavatula et al., 2015) to estimate
the probability that a given mention refers to an
entity. At train and test time, we use this index
to find candidate entities for a given mention by
looking up the tokens in the mention. This method
also serves as our baseline in Table 4 by selecting
the entity with the highest frequency for a given
mention.

Scoring candidates. Given a mention (m) and
a candidate entity (e), the neural model constructs a
vector encoding of the mention and the entity. We
encode the mention and entity using the functions
f and g, respectively, as follows:

f.m/ D Œvm.nameI avg.vm.lc; vm.rc/�;

g.e/ D Œve.nameI ve.def�;

where m.surface, m.lc and m.rc are the mention’s
surface form, left and right contexts, and e.name
and e.def are the candidate entity’s name and def-
inition, respectively. vtext is a bag-of-words sum
encoder for text. We use the same encoder for the
mention surface form and the candidate name, and
another encoder for the mention contexts and entity
definition.

Additionally, we include numerical features to
estimate the confidence of a candidate entity based
on the statistics collected in the index described

CS Bio

Baseline 84.2 54.2
Neural 84.6 85.8

Table 4: The Bag of Concepts F1 score of the base-
line and neural model on the two curated datasets.

earlier. We compute two scores based on the word
overlap of (i) mention’s context and candidate’s
definition and (ii) mention’s surface span and the
candidate entity’s name. Finally, we feed the con-
catenation of the cosine similarity between f.m/

and g.e/ and the intersection-based scores into an
affine transformation followed by a sigmoid non-
linearity to compute the final score for the pair (m,
e).

Results. We use the Bag of Concepts F1 metric
(Ling et al., 2015) for comparison. Table 4 com-
pares the performance of the most-frequent-entity
baseline and our neural model described above.

5 Other Research Problems

In the previous sections, we discussed how we con-
struct the main components of the literature graph.
In this section, we briefly describe several other
related challenges we are actively working on.

Author disambiguation. Despite initiatives to
have global author IDs ORCID and ResearcherID,
most publishers provide author information as
names (e.g., arXiv). However, author names cannot
be used as a unique identifier since several people
often share the same name. Moreover, different
venues and sources use different conventions in
reporting the author names, e.g., “first initial, last
name” vs. “last name, first name”. Inspired by
Culotta et al. (2007), we train a supervised binary
classifier for merging pairs of author instances and
use it to incrementally create author clusters. We
only consider merging two author instances if they
have the same last name and share the first initial.
If the first name is spelled out (rather than abbrevi-
ated) in both author instances, we also require that
the first name matches.

Ontology matching. Popular concepts are
often represented in multiple KBs. For example,
the concept of “artificial neural networks” is repre-
sented as entity ID D016571 in the MESH ontology,
and represented as page ID ‘21523’ in DBpedia.
Ontology matching is the problem of identifying
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semantically-equivalent entities across KBs or on-
tologies.9

Limited KB coverage. The convenience of
grounding entities in a hand-curated KB comes at
the cost of limited coverage. Introduction of new
concepts and relations in the scientific literature
occurs at a faster pace than KB curation, resulting
in a large gap in KB coverage of scientific concepts.
In order to close this gap, we need to develop mod-
els which can predict textual relations as well as
detailed concept descriptions in scientific papers.
For the same reasons, we also need to augment
the relations imported from the KB with relations
extracted from text. Our approach to address both
entity and relation coverage is based on distant su-
pervision (Mintz et al., 2009). In short, we train
two models for identifying entity definitions and
relations expressed in natural language in scientific
documents, and automatically generate labeled data
for training these models using known definitions
and relations in the KB.

We note that the literature graph currently lacks
coverage for important entity types (e.g., affilia-
tions) and domains (e.g., physics). Covering af-
filiations requires small modifications to the meta-
data extraction model followed by an algorithm for
matching author names with their affiliations. In
order to cover additional scientific domains, more
agreements need to be signed with publishers.

Figure and table extraction. Non-textual
components such as charts, diagrams and tables
provide key information in many scientific docu-
ments, but the lack of large labeled datasets has im-
peded the development of data-driven methods for
scientific figure extraction. In Siegel et al. (2018),
we induced high-quality training labels for the task
of figure extraction in a large number of scientific
documents, with no human intervention. To accom-
plish this we leveraged the auxiliary data provided
in two large web collections of scientific documents
(arXiv and PubMed) to locate figures and their as-
sociated captions in the rasterized PDF. We use
the resulting dataset to train a deep neural network
for end-to-end figure detection, yielding a model
that can be more easily extended to new domains
compared to previous work.

Understanding and predicting citations.
The citation edges in the literature graph provide
a wealth of information (e.g., at what rate a paper

9Variants of this problem are also known as deduplication
or record linkage.

is being cited and whether it is accelerating), and
opens the door for further research to better under-
stand and predict citations. For example, in order
to allow users to better understand what impact a
paper had and effectively navigate its citations, we
experimented with methods for classifying a cita-
tion as important or incidental, as well as more fine-
grained classes (Valenzuela et al., 2015). The cita-
tion information also enables us to develop models
for estimating the potential of a paper or an author.
In Weihs and Etzioni (2017), we predict citation-
based metrics such as an author’s h-index and the
citation rate of a paper in the future. Also related
is the problem of predicting which papers should
be cited in a given draft (Bhagavatula et al., 2018),
which can help improve the quality of a paper draft
before it is submitted for peer review, or used to
supplement the list of references after a paper is
published.

6 Conclusion and Future Work

In this paper, we discuss the construction of a graph,
providing a symbolic representation of the scien-
tific literature. We describe deployed models for
identifying authors, references and entities in the
paper text, and provide experimental results to eval-
uate the performance of each model.

Three research directions follow from this work
and other similar projects, e.g., Hahn-Powell et al.
(2017); Wu et al. (2014): i) improving quality and
enriching content of the literature graph (e.g., on-
tology matching and knowledge base population).
ii) aggregating domain-specific extractions across
many papers to enable a better understanding of the
literature as a whole (e.g., identifying demographic
biases in clinical trial participants and summarizing
empirical results on important tasks). iii) exploring
the literature via natural language interfaces.

In order to help future research efforts, we make
the following resources publicly available: meta-
data for over 20 million papers,10 meaningful cita-
tions dataset,11 models for figure and table extrac-
tion,12 models for predicting citations in a paper
draft 13 and models for extracting paper metadata,14

among other resources.15

10http://labs.semanticscholar.org/corpus/
11http://allenai.org/data.html
12https://github.com/allenai/
deepfigures-open

13https://github.com/allenai/citeomatic
14https://github.com/allenai/science-parse
15http://allenai.org/software/
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Abstract

We present the first real-world applica-
tion of methods for improving neural ma-
chine translation (NMT) with human rein-
forcement, based on explicit and implicit
user feedback collected on the eBay e-
commerce platform. Previous work has
been confined to simulation experiments,
whereas in this paper we work with real
logged feedback for offline bandit learn-
ing of NMT parameters. We conduct a
thorough analysis of the available explicit
user judgments—five-star ratings of trans-
lation quality—and show that they are not
reliable enough to yield significant im-
provements in bandit learning. In con-
trast, we successfully utilize implicit task-
based feedback collected in a cross-lingual
search task to improve task-specific and
machine translation quality metrics.

1 Introduction

In commercial scenarios of neural machine trans-
lation (NMT), the one-best translation of a text is
shown to multiple users who can reinforce high-
quality (or penalize low-quality) translations by
explicit feedback (e.g., on a Likert scale) or im-
plicit feedback (by clicking on a translated page).
In such settings this type of feedback can be
easily collected in large amounts. While ban-
dit feedback1 in form of user clicks on displayed
ads is the standard learning signal for response
prediction in online advertising (Bottou et al.,
2013), bandit learning for machine translation has
so far been restricted to simulation experiments
(Sokolov et al., 2016b; Lawrence et al., 2017b;

∗The work for this paper was done while the first author
was an intern at eBay.

1The fact that only feedback for a single translation is col-
lected constitutes the “bandit feedback” scenario where the
name is inspired by “one-armed bandit” slot machines.

Nguyen et al., 2017; Kreutzer et al., 2017; Bah-
danau et al., 2017).

The goal of our work is to show that the gold
mine of cheap and abundant real-world human
bandit feedback can be exploited successfully for
machine learning in NMT. We analyze and utilize
human reinforcements that have been collected
from users of the eBay e-commerce platform. We
show that explicit user judgments in form of five-
star ratings are not reliable and do not lead to
downstream BLEU improvements in bandit learn-
ing. In contrast, we find that implicit task-based
feedback that has been gathered in a cross-lingual
search task can be used successfully to improve
task-specific metrics and BLEU.

Another crucial difference of our work to previ-
ous research is the fact that we assume a counter-
factual learning scenario where human feedback
has been given to a historic system different from
the target system. Learning is done offline from
logged data, which is desirable in commercial set-
tings where system updates need to be tested be-
fore deployment and the risk of showing inferior
translations to users needs to be avoided. Our
offline learning algorithms range from a simple
bandit-to-supervised conversion (i.e., using trans-
lations with good feedback for supervised tuning)
to transferring the counterfactual learning tech-
niques presented by Lawrence et al. (2017b) from
statistical machine translation (SMT) to NMT
models. To our surprise, the bandit-to-supervised
conversion proved to be very hard to beat, despite
theoretical indications of poor generalization for
exploration-free learning from logged data (Lang-
ford et al., 2008; Strehl et al., 2010). However, we
show that we can further improve over this method
by computing a task-specific reward scoring func-
tion, resulting in significant improvements in both
BLEU and in task-specific metrics.
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2 Related Work

Sokolov et al. (2016a,b) introduced learning from
bandit feedback for SMT models in an interactive
online learning scenario: the MT model receives a
source sentence from the user, provides a trans-
lation, receives feedback from the user for this
translation, and performs a stochastic gradient up-
date proportional to the feedback quality. Kreutzer
et al. (2017) showed that the objectives proposed
for log-linear models can be transferred to neural
sequence learning and found that standard control
variate techniques do not only reduce variance but
also help to produce best BLEU results. Nguyen
et al. (2017) proposed a very similar approach us-
ing a learned word-based critic in an advantage
actor-critic reinforcement learning framework. A
comparison of current approaches was recently
performed in a shared task where participants had
to build translation models that learn from the in-
teraction with a service that provided e-commerce
product descriptions and feedback for submitted
translations (Sokolov et al., 2017). Lawrence et al.
(2017b,a) were the first to address the more realis-
tic problem of offline learning from logged bandit
feedback, with special attention to the problem of
exploration-free deterministic logging as is done
in commercial MT systems. They show that vari-
ance reduction techniques used in counterfactual
bandit learning (Dudı́k et al., 2011; Bottou et al.,
2013) and off-policy reinforcement learning (Pre-
cup et al., 2000; Jiang and Li, 2016) can be used
to avoid degenerate behavior of estimators under
deterministic logging.

3 User Feedback

3.1 Explicit Feedback via Star Ratings

One way to collect reinforcement signals from hu-
man users of the eBay platform is by explicit rat-
ings of product title translations on a five-point
Likert scale. More specifically, when users visit
product pages with translated titles, they can in-
spect the source when hovering with the mouse
over the title. Then five stars are shown with the
instruction to ‘rate this translation’. A screenshot
of an implementation of this rating interface is
shown in Figure 1. The original title, the trans-
lation and the given star rating are stored. For the
experiments in this paper, we focus on translations
from English to Spanish. The user star rating data
set contains 69,412 rated product titles with 148k

Figure 1: Screenshot of the 5-star rating interface for a prod-
uct on www.ebay.es translated from English to Spanish.

individual ratings. Since 34% of the titles were
rated more than once, the ratings for each title are
averaged. We observe a tendency towards high rat-
ings, in fact one half of the titles are rated with five
stars (cf. Appendix C).

To investigate the reliability and validity of
these ratings, we employed three bilingual anno-
tators (‘experts’) to independently re-evaluate and
give five-star ratings for a balanced subset of 1,000
product title translations. The annotators were pre-
sented the source title and the machine transla-
tion, together with instructions on the task pro-
vided in Appendix B. The inter-annotator agree-
ment between experts is relatively low with Fleiss’
κ = 0.12 (Fleiss, 1971). Furthermore, there is
no correlation of the averaged ‘expert’ ratings and
the averaged user star ratings (Spearman’s ρ =
−0.05). However, when we ask another three an-
notators to indicate whether they agree or disagree
with a balanced subset of 2,000 user ratings, they
agree with 42.3% of the ratings (by majority vot-
ing). In this binary meta-judgment task, the inter-
annotator agreement between experts is moderate
with κ = 0.45. We observe a strong tendency of
the expert annotators to agree with high user rat-
ings and to disagree with low user ratings. Two
examples of user ratings, expert ratings and expert
judgment are given in Table 1. In the first example,
all raters agree that the translation is good, but in
the second example, there is a strong disagreement
between users and experts.

This analysis shows that it is generally not
easy for non-professional users of the e-commerce
platform, and even for expert annotators, to give
star ratings of translations in the domain of user-
generated product titles with high reliability. This
problem is related to low validity, i.e., we do
not know whether the users’ response actually ex-
presses translation quality, since we cannot control
the influence of other factors on their judgment,
e.g., the displayed image (see Figure 1), the prod-
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Source Title Title Translation
User Rating

(avg)
Expert Rating

(avg)
Expert Judgment

(majority)

Universal 4in1 Dual USB Car Charger
Adapter Voltage DC 5V 3.1A Tester For iPhone

Coche Cargador Adaptador De Voltaje
Probador De Corriente Continua 5V 3.1A para iPhone

4.5625 4.33 Correct

BEAN BUSH THREE COLOURS: YELLOW
BERGGOLD, PURPLE KING AND GREEN TOP CROP

Bean Bush tres colores: Amarillo Berggold, púrpura
y verde Top Crop King

1.0 4.66 Incorrect

Table 1: Examples for averaged five-star user ratings, five-star expert ratings and expert judgments on the user ratings.

uct itself, or the users’ general satisfaction with
the e-commerce transaction, nor can we exclude
the possibility that the user judgment is given with
an adversarial purpose. Furthermore, we do not
have control over the quality of sources2, nor can
we discern to which degree a user rating reflects
fluency or adequacy of the translation.

3.2 Task-Based Implicit Feedback

Another form of collecting human reinforcement
signals via the eBay e-commerce platform is to
embed the feedback collection into a cross-lingual
information retrieval task. The product title trans-
lation system is part of the search interaction of a
user with the e-commerce platform in the follow-
ing way: When a user enters a query in Spanish,
it is first translated to English (query translation),
then a search engine retrieves a list of matching
products, and their titles are translated to Span-
ish and displayed to the user. As soon as the
user clicks on one of the translated titles, we store
the original query, the translated query, the source
product title and its translation. From this col-
lection we filter the cases where (a) the original
query and the translated query are the same, or (b)
more than 90% of the words from the query trans-
lation are not contained in the retrieved source ti-
tle. In this way, we attempt to reduce the prop-
agation of errors in query translation and search.
This leaves us with a dataset of 164,065 tuples of
Spanish queries, English product titles and their
Spanish translations (15% of the original collec-
tion). Note that this dataset is more than twice the
size of the explicit feedback dataset. An example
is given in Table 2.

The advantage of embedding feedback collec-
tion into a search task is that we can assume that
users who formulate a search query have a gen-
uine intent of finding products that fit their need,
and are also likely to be satisfied with product ti-
tle translations that match their query, i.e., contain

2Most titles consist of a sequence of keywords rather than
a fluent sentence. See Calixto et al. (2017) for a fluency anal-
ysis of product titles.

terms from the query in their own language. We
exploit this assumption in order to measure the
quality of a product title translation by requiring a
user to click on the translation when it is displayed
as a result of the search, and then quantifying the
quality of the clicked translation by the extent it
matches the query that led the user to the product.
For this purpose, we define a word-based match-
ing function match(w,q) that evaluates whether a
query q contains the word w:

match(w,q) =

{
1, ifw ∈ q

0, otherwise.
(1)

Based on this word-level matching, we compute a
sequence-level reward for a sentence y of length
T as follows:

recall(y,q) =
1

T

T∑

t=1

match(yt,q). (2)

4 Learning from User Feedback

Reward Functions. In reinforcement and bandit
learning, rewards received from the environment
are used as supervision signals for learning. In our
experiments, we investigate several options to ob-
tain a reward function ∆ : Y → [0, 1] from logged
human bandit feedback:

1. Direct User Reward: Explicit feedback,
e.g., in the form of star ratings, can directly
be used as reward by treating the reward func-
tion as a black box. Since human feedback is
usually only available for one translation per
input, learning from direct user rewards re-
quires the use of bandit learning algorithms.
In our setup, human bandit feedback has been
collected for translations of a historic MT
system different from the target system to be
optimized. This restricts the learning setup to
offline learning from logged bandit feedback.

2. Reward Scoring Function: A possibility to
use human bandit feedback to obtain rewards
for more than a single translation per input is
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Query Translated Query Title Translated Title Recall

candado bicicleta bicycle lock New Bicycle Vibration Code Moped Lock
Bike Cycling Security Alarm Sound Lock

Nuevo código de vibración Bicicleta Ciclomotor alarma de seguridad
de bloqueo Bicicleta Ciclismo Cerradura De Sonido

0.5

Table 2: Example for query and product title translation. ‘candado’ is translated to ‘lock’ in the query, but then translated back
to ‘cerradura’ in the title. The recall metric would prefer a title translation with ‘candado’, as it was specified by the user.

to score translations either against a logged
reference or a logged query. The first option
requires a bandit-to-supervised conversion of
data where high-quality logged translations
are used as references against which BLEU
or other MT quality metrics can be measured.
The second option uses logged queries to ob-
tain a matching score as in Equation 2.

3. Estimated Reward: Another option to ex-
tend bandit feedback to all translations is to
learn a parametric model of rewards, e.g., by
optimizing a regression objective. The re-
ward function is known, but the model pa-
rameters need to be trained based on a history
of direct user rewards or by evaluations of a
reward scoring function.

In the following, we present how rewards can be
integrated in various objectives for NMT training.

Maximum Likelihood Estimation by Bandit-
to-Supervised Conversion. Most commonly,
NMT models are trained with Maximum Likeli-
hood Estimation (MLE, Equation 3) on a given
parallel corpus of source and target sequences
D = {(x(s),y(s))}Ss=1

LMLE(θ) =

S∑

s=1

log pθ(y
(s)|x(s)). (3)

The MLE objective requires reference translations
and is agnostic to rewards. However, in a bandit-
to-supervised conversion, rewards can be used to
filter translations to be used as pseudo-references
for MLE training. We apply this scenario to ex-
plicit and implicit human feedback data in our ex-
periments.

Reinforcement Learning by Minimum Risk
Training. When rewards can be obtained for
several translations per input instead of only for
one as in the bandit setup, by using a reward es-
timate or scoring function, Minimum Risk Train-
ing (MRT, Equation 4) can be applied to optimize

NMT from rewards.

RMRT(θ) =
S∑

s=1

∑

ỹ∈S(x(s))

qαθ (ỹ|x(s)) ∆(ỹ), (4)

where sample probabilities are renormalized over
a subset of translation samples S(x) ⊂ Y(x):
qαθ (ỹ|x) = pθ(ỹ|x)α∑

y′∈S(x) pθ(y
′|x)α . The hyper-

parameter α controls the sharpness of q (see Shen
et al. (2016)).

With sequence-level rewards, all words of a
translation of length T are reinforced to the same
extent and are treated as if they contributed equally
to the translation quality. A word-based reward
function, such as the match with a given query
(Equation 1), allows the words to have individ-
ual weights. The following modification of the
sequence-level MRT objective (Equation 4) ac-
counts for word-based rewards ∆(yt):

RW-MRT(θ) =
S∑

s=1

∑

ỹ∈S(x(s))

T∏

t=1
[
qαθ (ỹt|x(s), ỹ<t) ∆(yt)

]
, (5)

where ∆(yt) in our experiments is a matching
score (1). In the following we use the bracketed
prefix (W-) to subsume both sentence-level and
word-level training objectives.

When output spaces are large and reward func-
tions sparse, (W-)MRT objectives typically bene-
fit from a warm start, i.e., pre-training with MLE.
Following Wu et al. (2016), we furthermore adopt
a linear combination of MLE and (W-)MRT to sta-
bilize learning:

R(W-)MIX(θ) = λ ·RMLE(θ) +R(W-)MRT(θ).

Counterfactual Learning by Deterministic
Propensity Matching. Counterfactual learning
attempts to improve a target MT system from a
log of source sentences, translations produced
by a historic MT system, and obtained feed-
back L = {(x(h),y(h),∆(y(h)))}Hh=1. For the
special case of deterministically logged rewards
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Lawrence et al. (2017b) introduced the Deter-
ministic Propensity Matching (DPM) objective
with self-normalization as a multiplicative control
variate (Swaminathan and Joachims, 2015):3

RDPM(θ) =
1

H

H∑

h=1

∆(y(h)) p̄θ(y
(h)|x(h)), (6)

where translation probabilities are reweighted over
the current mini-batch B ⊂ H,B � H:
p̄θ(y

(h)|x(h)) = pθ(y
(h)|x(h))∑B

b=1 pθ(y
(b)|x(b))

. We addi-

tionally normalize the log probability of a trans-
lation y by its length |y|: pnormθ (y|x) =

exp ( log pθ(y|x)|y| ).

Counterfactual Learning by Doubly Controlled
Estimation. Lawrence et al. (2017b) further-
more propose the Doubly Controlled objective
(DC, Equation 7) implementing the idea of doubly
robust estimation (Dudı́k et al., 2011; Jiang and Li,
2016) for deterministic logs. In addition to learn-
ing from the historic reward for the logging sys-
tem, the reward for other translations is estimated
by a parametrized regression model that is trained
on the log ∆̂φ : Y → [0, 1]. This objective con-
tains both a multiplicative (probability reweight-
ing) and an additive (reward estimate) control vari-
ate, hence the name.4

RDC(θ) =
1

H

H∑

h=1

[(
∆(y(h))− ∆̂φ(y(h))

)

× p̄θ(y(h)|x(h)) +
∑

y∈S(x(h))

∆̂φ(y) pθ(y|x(h))

]

(7)

As for MRT, the expectation over the full output
space is approximated with a subset of k sample
translations S(x) ⊂ Y(x).

Relative Rewards. With the objectives as de-
fined above, gradient steps are dependent on the
magnitude of the reward for the current training
instance. In reinforcement learning, an average
reward baseline is commonly subtracted from the
current reward with the primary goal to reduce
variance (Williams, 1992). As a side effect, the

3Lawrence et al. (2017b) propose reweighting over the
whole log, but this is infeasible for NMT. For simplicty we
refer to their DPM-R objective as DPM, and DC-R as DC.

4We find empirically that estimating ĉ over the current
batch as in objective ĉDC in (Lawrence et al., 2017b) does
not improve over the simple setting with c = 1.

current reward is relativized, such that the gra-
dient step is not only determined by the magni-
tude of the current rewards, but is put into re-
lation with previous rewards. We found this ef-
fect to be particularly beneficial in experiments
with suboptimal reward estimators or noisy re-
wards and therefore apply it to all instantiations
of the DPM and DC objectives. For DPM,
the running average of historic rewards ∆̄h =
1
h

∑h
i=1 ∆(y(i)) is subtracted from the current re-

ward. For DC we apply this to both types of
rewards in Equation 7: 1) the logged reward
∆(y(h)), from which we subtract its running aver-
age ∆̄h instead of the estimated reward ∆̂φ(y(h)),
and 2) the estimated reward ∆̂φ(y), from which
we hence subtract the average estimated reward
¯̂
∆h = 1

h

∑h
i=1

1
k

∑
y′∈S(x(i)) ∆̂φ(y′).

5 Experiments

5.1 NMT Model

In our experiments, learning from feedback starts
from a pre-trained English to Spanish NMT
model that has not seen in-domain data (i.e.,
no product title translations). The NMT base-
line model (BL) is a standard subword-based
encoder-decoder architecture with attention (Bah-
danau et al., 2015), implemented with TensorFlow
(Abadi et al., 2015). The model is trained with
MLE on 2.7M parallel sentences of out-of-domain
data until the early stopping point which is de-
termined on a small in-domain dev set of 1,619
product title translations. A beam of size 12 and
length normalization (Wu et al., 2016) are used
for beam search decoding. For significance tests
we used approximate randomization (Clark et al.,
2011), for BLEU score evaluation (lowercased)
the multi-bleu script of the Moses decoder (Koehn
et al., 2007), for TER computation the tercom tool
(Snover et al., 2006). For MRT, DC and (W-
)MIX models we set k = 5, for (W-)MIX mod-
els λ = 0.5 and α = 0.05. For all NMT models
involving random sampling, we report average re-
sults and standard deviation (in subscript) over two
runs. Further details about training data and hy-
perparameters settings are described in Appendix
D.

5.2 Reward Estimator

The model architecture for the reward estimator
used in the DC objective is a bilingual extension
of the convolutional neural network (CNN) for
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Figure 2: Model architecture for the reward estimator. This
example has one filter for each filter size (3: purple, 1: green,
2: blue). Source and target sequences are padded up to a
maximum length, here Tmax = 8.

Data & Model MSE
Macro-avg.

Distance
Micro-Avg.

Distance
Pearson’s

r
Spearman’s

ρ

Star ratings 0.1620 0.0065 0.3203 0.1240 0.1026
sBLEU 0.0096 0.0055 0.0710 0.8816 0.8675

Table 3: Results for the reward estimators trained and eval-
uated on human star ratings and simulated sBLEU.

sentence classification proposed by Kim (2014).
Both source and target sequences are padded up
to a pre-defined maximum sequence length Tmax,
their embeddings are concatenated and further
processed by a 1D-Convolution over the time di-
mension with several filters of sizes from 2 to 15,
which is then followed by a max-over-time pool-
ing and fed to a fully-connected output layer (Fig-
ure 2). The model is trained to minimize the mean
squared error (MSE) on the training portion of the
logged feedback data (60k for simulated sentence-
BLEU feedback, 62,470 for star rating feedback).
The word embeddings of the reward estimator are
initialized by the word embeddings of the trained
baseline NMT system and fine-tuned further to-
gether with the other CNN weights. The best pa-
rameters are identified by early-stopping on the
validation portion of the feedback data (2,162 for
the simulation, 6,942 for the star ratings). Please
find a detailed description of the model’s hyperpa-
rameters in Appendix D.4.

Results for a stand-alone evaluation of the re-
ward estimator on the validation portions of the
feedback data are given in Table 3. The estima-
tor models sBLEU much more accurately than the
user star ratings. This is due to large variance and
skew of the user ratings. An MSE-trained esti-
mator typically predicts values around the mean,
which is not a suitable strategy for such a skewed
distribution of labels, but is successful for the pre-
diction of normal-distributed sBLEU.

5.3 Explicit Star Rating Feedback

Counterfactual Bandit Learning. As shown in
Table 4, counterfactual learning with DPM and
DC on the logged star ratings as direct reward does
not yield improvements over the baseline model in
terms of corpus BLEU or TER. A randomization
of feedback signals for translations gives the same
results (DPM-random), showing that counterfac-
tual learning from logged star ratings is equivalent
to learning from noise. Evaluating the models in
terms of estimated user reward, however, we find
an improvement of +1.49 for DC, +0.04 for DPM
over the baseline (53.93) (not shown in Table 4)—
but these improvements do not transfer to BLEU
because the reward model largely over-estimates
the translation quality of translations with major
faults. Hence it is not desirable to optimize to-
wards this signal directly.

Bandit-to-Supervised Conversion. In the fol-
lowing setup, we utilize the user ratings to filter
the log by using only five star rated translations,
and perform supervised learning of MLE and MIX
using sBLEU against pseudo-references as reward
function. Table 4 shows that this filtering strat-
egy leads to large improvements over the baseline,
for MLE and even more for MIX, even though
the data set size is reduced by 42%. However,
around the same improvements can be achieved
with a random selection of logged translations of
the same size (MIX small, containing 55% five-
star ratings). Using all logged translations for
training MIX achieves the best results. This sug-
gests that the model does not profit from the feed-
back, but mostly from being exposed to in-domain
translations of the logging system. This effect is
similar to training on pseudo-references created by
back-translation (Sennrich et al., 2016b,a).

5.4 Task-Based Implicit Feedback

Bandit-to-Supervised Conversion. We apply
the same filtering technique to the logged implicit
feedback by treating translations with recall = 1
as references for training MIX with sBLEU (re-
duction of the data set by 62%). The results in Ta-
ble 5 show that large improvements over the base-
line can be obtained even without filtering, BLEU
and TER scores being comparable to the ones ob-
served for training on explicit user ratings.

Task-based Feedback. The key difference be-
tween the implicit feedback collected in the query-
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Model Test BLEU Test TER

BL 28.38 57.58

DPM 28.19 57.80
DPM-random 28.19 57.64
DC 28.41±0.85 64.25±1.66

MLE (all) 31.98 51.08
MIX (all) 34.47±0.06 47.97±0.18
MIX (small) 34.16±0.09 48.12±0.33
MIX (stars = 5) 34.35±0.11 47.99±0.13

Table 4: Results for models trained on explicit user ratings
evaluated on the product titles test set. ‘small’ indicates a
random subset of logged translations of the same size as the
filtered log that only contains translations with an average rat-
ing of five stars (‘stars = 5’). The differences in BLEU are
not significant at p ≤ 0.05 between MIX models, but over
other models.

Model Test BLEU Test TER

BL 28.38 57.58

MLE (all) 31.89 51.35
MIX (all) 34.39±0.08 47.94±0.24
MIX (small) 34.13±0.26 48.27±0.60
MIX (recall = 1) 34.17±0.02 47.72±0.26

W-MIX 34.52±0.02 46.91±0.03

Table 5: Results for models trained on implicit task-based
feedback data evaluated on the product titles test set. ‘small’
indicates a random subset of logged translations of the same
size as the filtered log that only contains translations that con-
tain all the query words (‘recall = 1’). The BLEU score of
MIX (small) significantly differs from MIX (all) at p ≤ 0.05,
the score of MIX (recall = 1) does not. Other differences are
significant.

title data and the explicit user ratings, is that it
can be used to define reward functions like re-
call or match (Equations 2, 1). For the exper-
iments we train W-MIX, the word-based MRT
objective (Equation 5) linearly combined with
MLE, on the logged translations accompanying
the queries (160k sentences). This combination is
essential here, since the model would otherwise
learn to produce translations that contain noth-
ing but the query words. To account for user-
generated language in the queries and subwords
in the MT model, we soften the conditions for a
match, counting tokens as a match that are part
of a word w that is either contained in the query,
or has edit distance to a word in the query with
dist(w,qi) < max(3, 0.3× |w|).

Table 6 repeats the best MIX results from Table
4 and 5, and evaluates the models with respect to
query recall. We also report the query recall for the
logged translations and the out-of-domain base-
line. These results are compared to W-MIX train-
ing on implicit feedback data described in Sec-

Logged BL MIX (Tab. 4) MIX (Tab. 5) W-MIX

65.33 45.96 62.92±0.56 63.21±0.24 68.12±0.27

Table 6: Query recall results on the query test set, comparing
the logged translations, the baseline and the best MIX mod-
els trained on logged translations (MIX (all) from Tables 4
and 5) with the W-MIX model trained via word-based query
matching (W-MIX from Table 5).

tion 3.2. The development portion of the query-
title dataset contains 4,065 sentences, the test set
2,000 sentences, which is used for query recall
evaluation. The W-MIX model shows the largest
improvement in query recall (12% points) and
BLEU (6 points) over the baseline out of all tested
learning approaches. It comes very close to the
BLEU/TER results of the model trained on in-
domain references, but surpasses its recall by far.
This is remarkable since the model does not use
any human generated references, only logged data
of task-based human feedback. Appendix F con-
tains a set of examples illustrating what the W-
MIX learned.

6 Conclusion

We presented methods to improve NMT from
human reinforcement signals. The signals were
logged from user activities of an e-commerce plat-
form and consist of explicit ratings on a five-point
Likert scale and implicit task-based feedback col-
lected in a cross-lingual search task. We found that
there are no improvements when learning from
user star ratings, unless the noisy ratings them-
selves are stripped off in a bandit-to-supervised
conversion. Implicit task-based feedback can be
used successfully as a reward signal for NMT op-
timization, leading to improvements both in terms
of enforcing individual word translations and in
terms of automatic evaluation measures. In the
future, we plan transfer these findings to produc-
tion settings by performing regular NMT model
updates with batches of collected user behavior
data, especially focusing on improving translation
of ambiguous and rare terms based on rewards
from implicit partial feedback.
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A Appendix Overview

Section B provides the instructions that were given
to the annotators when judging MT quality. In
Section C we provide histograms for simulated
and explicit rewards. Section D contains details
on the data and NMT model hyperparameters. In
Section E we give results for simulation experi-
ments on the e-commerce product title domain and
a publicly available data set. Finally, we compare
translation examples of different models in Sec-
tion F.

B Annotation Instructions

B.1 Star Ratings
Please rate the translation quality of the segments
on the scale from 1 to 5. Focus on whether or not
the information contained in the source sentence
is correctly and completely translated (ratings 1 -
4). Then, if you are ready to give a 4 based on
the criteria below, check whether or not you can
assign a 5 instead of the 4, focusing on remain-
ing grammatical, morphological and stylistic er-
rors. Remember that even a very fluent translation
that looks like a human-produced sentence can re-
ceive a bad rating if it does not correctly convey
all the information that was present in the source.

Assign the following ratings from 1 to 5:

1. Important information is missing and/or dis-
torted in the translation, and the error is so se-
vere that it may lead to erroneous perception
of the described product. Or the translation
contains profanities/insulting words.

2. Information from the source is partially
present in the translation, but important in-
formation is not translated or translated in-
correctly.

3. The most important information from the
source is translated correctly, but some other
less important information is missing or
translated incorrectly.

4. All of the information from the source is con-
tained in the translation. This should be the
only criterion to decide between 1-3 and 4.
It is okay for a 4-rated translation to con-
tain grammatical errors, disfluencies, or word
choice that is not very appropriate to the style
of the input text. There might be errors in cas-
ing of named entities when it is clear from the
context that these are named entities.

5. All of the information from the source is con-
tained in the translation and is translated cor-
rectly. In contrast to a 4-rated translation,
the translation is fluent, easy to read, and
contains either no or very minor grammati-
cal/morphological/stylistic errors. The brand
names and other named entities have the cor-
rect upper/lower case.

B.2 Binary Judgment
The customers of the eBay e-commerce platform,
when presented with a title translation on the prod-
uct page, can hover with the mouse over the trans-
lation of the title and see the original (source) title
in a pop-up window. There, they have the possi-
bility to rate the translation with 1 to 5 stars.

The goal of this evaluation is to check the rat-
ings - you have to mark “Agree” when you agree
with the rating and “Disagree” otherwise. The rat-
ing (number from 1 to 5) is shown in the Reference
line.

Note that eBay customers did not have any in-
structions on what the rating of 5 stars, 3 stars, or
4 stars means. Thus, the evaluation is subjective
on their side. Please apply your common sense
when agreeing or disagreeing with human judg-
ment. The focus should be on adequacy (correct
information transfer) as opposed to fluency.

C Rewards

C.1 Reward Distributions
Figure 3 shows the distribution of logged user
star ratings, Figure 4 the distribution of sentence
BLEU (sBLEU) scores for the simulation experi-
ments with logged feedback. The logged transla-
tions for the user star ratings were generated by the
production system, the logged translations for the
simulation were generated by the BL NMT sys-
tem.

D Training Details

D.1 Data
We conduct experiments on an English-to-Spanish
e-commerce item titles translation task. The in-
domain data for training with simulated feed-
back is composed of in-house eBay data (item
titles, descriptions, etc.). The out-of-domain
data for training the baselines contains only pub-
licly available parallel corpora, that is Europarl,
TAUS, and OpenSubtitles released by the OPUS
project (Tiedemann, 2009). The out-of-domain
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Figure 3: Distribution of user star ratings. The original rat-
ings on a five-star scale are averaged per title and rescaled.

Figure 4: Distribution of sentence BLEUs of the product title
training set when translated with the out-of-domain baseline
for simulation experiments.

data has been sub-sampled according to the sim-
ilarity to the domain of the product title data, and
25% of the most similar sentence pairs have been
selected. The corpus statistics for parallel data are
shown in Table 7. Before calculating the corpus
statistics, we apply pre-processing including tok-
enization and replacement of numbers and product
specifications with a placeholder token (e.g., ‘6S’,
and ‘1080p’). Table 8 gives an overview of the
type and the size of the translations with feedback.

D.2 NMT Model Architecture

The NMT has a bi-directional RNN encoder with
one layer of 1000 GRUs, a decoder with 1000
GRUs, and source and target word embeddings
of size 620. The vocabulary is generated from
the out-of-domain training corpus with 40k byte-
pair merges (Sennrich et al., 2016c) and contains
40813 source tokens and 41050 target tokens. The
full softmax is approximated by 1024 samples as
proposed in (Jean et al., 2015). Dropout (Gal and
Ghahramani, 2016) is applied with probability p =
0.1 to the embedding matrices, with p = 0.2 to the

En Es

Train: Sentences 2,741,087
Tokens 17,139,416 18,270,753

Vocabulary 327,504 393,757
Singletons 162,834 190,686

Dev.: Sentences 1,619
Tokens 29,063 31,813

Vocabulary 11,314 11,532
OOVs 2,645 2,493

Test Sentences 1000
Tokens 9,851 11,221

Vocabulary 6,735 6,668
OOVs 1,966 1,902

Table 7: Corpus statistics for the out-of domain training data
and in-domain dev and test data.

Description Size

User star ratings 69,412
. . . with 5 stars 40,064

Expert star ratings 1,000
Expert judgments 2,000

Query-title pairs 164,065
. . . with recall = 1 61,965

Title translations 62,162

Table 8: Data set sizes for collected feedback in number of
sentences. The in-domain title translations are only used for
simulation experiments.

input and recurrent connections of the RNNs.

D.3 NMT Training Hyperparameters
The out-of-domain model is trained with mini-
batches of size 100 and L2 regularization with
weight 1× 10−7, optimized with Adam (Kingma
and Ba, 2014) with initial α = 0.0002, then de-
caying α by 0.9 each epoch.

The remaining models are trained with constant
learning rates and mini-batch size 30, regulariza-
tion and dropout stay the same. The settings for
the other hyperparameters are listed in Table 9.
The estimator loss weight is only relevant for DC,
where the pre-trained estimator gets further fine-
tuned during DC training.

D.4 Reward Estimation
We find that for reward estimation a shallow CNN
architecture with wide filters performs superior to
a deeper CNN architecture (Le et al., 2017) and
also to a recurrent architecture. Hence, we use
one convolutional layer with ReLU activation of
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Model Adam’s α Length-Normalization MRT α Sample Size k MIX λ Estimator Loss Weight

Simulated Feedback

MLE 0.002 - - - - -
MIX 0.002 - 0.005 5 0.05 -
EL 2× 10−6 - - - - -
DPM 2× 10−6 x - - - -
DPM-random 2× 10−6 x - - - -
DC 0.002 - - 5 - 1000

Explicit Star Rating Feedback

DPM 2× 10−6 x - - - -
DPM-random 2× 10−6 x - - - -
DC 2× 10−6 x - 5 - 1000
MLE (all) 0.002 - - - - -
MIX (all) 0.002 - 0.005 5 0.05 -
MIX (small) 0.002 - 0.005 5 0.05 -
MIX (stars=5) 0.002 - 0.005 5 0.05 -

Implicit Task-Based Feedback

MLE (all) 0.002 - - - - -
MIX (all) 0.002 - 0.005 5 0.05 -
MIX (small) 0.002 - 0.005 5 0.05 -
MIX (recall=1) 0.002 - 0.005 5 0.05 -
W-MIX 0.002 - 0.005 5 0.05 -

Table 9: Hyperparameter settings for training of the models.

nf filters each for filter sizes from 2 to 15, captur-
ing both local and more global features. For re-
ward estimation on star ratings, nf = 100 and on
simulated sBLEU nf = 20 worked best. Dropout
with p = 0.5 is applied before the output layer
for the simulation setting. We set Tmax = 60.
The loss of each item in the batch is weighted by
inverse frequency of its feedback in the current
batch (counted in 10 buckets) to counterbalance
skewed feedback distributions. The model is op-
timized with Adam (Kingma and Ba, 2014) (con-
stant α = 0.001 for star ratings, α = 0.002 for
the simulation) on minibatches of size 30. Note
that the differences in hyper-parameters between
both settings are the result of tuning and do not
cause the difference in quality of the resulting es-
timators. We do not evaluate on a separate test set,
since their final quality can be measured in how
much well they serve as policy evaluators in coun-
terfactual learning.

E Simulated Bandit Feedback

Expected Loss. When rewards can be retrieved
for sampled translations during learning, the On-
line Bandit Structured Prediction framework pro-
posed by Sokolov et al. (2016a,b) can be ap-
plied for NMT, as demonstrated in Kreutzer et al.

(2017); Sokolov et al. (2017). The Expected Loss
objective (EL, Equation 8) maximizes5 the expec-
tation of a reward over all source and target se-
quences, and does in principle not require refer-
ences:

REL(θ) =Ep(x)pθ(ỹ|x) [∆(ỹ)] . (8)

While we could not apply it to the logged user
feedback since it was obtained offline, we can
compare to its performance in a simulation setting
with simulated rewards instead of human feed-
back. It is expected to outperform methods learn-
ing with logged feedback due to the exploration
during learning. In the following simulation ex-
periments, ∆(ỹ) is computed by comparing a
sampled translation ỹ ∼ pθ(y|x) to a given ref-
erence translation y with smoothed sentence-level
BLEU (sBLEU).

E.1 E-commerce Product Titles
We test several of the proposed learning tech-
niques with an in-domain parallel corpus (62,162
sentences) of product titles where bandit feedback
is simulated by evaluating a sampled translation
against a reference using sBLEU. Similar to pre-
vious studies on SMT (Lawrence et al., 2017b),

5We use the terms reward or loss interchangeably depend-
ing on minimization or maximization contexts.
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Learning Model Test BLEU Test TER

Pre-trained BL 28.38 57.58

Fully Supervised
MLE 31.72 53.02
MIX 34.79±0.02 48.56±0.02

Online Bandit EL 31.78±0.06 51.11±0.36

Counterfactual
DPM 30.19 56.28
DPM-random 28.20 57.89
DC 31.11±0.34 55.05±0.02

Table 10: Results for simulation experiments evaluated on
the product titles test set.

Model SMT NMT (beam search) NMT (greedy)

EP BL 25.27 27.55 26.32
NC BL – 22.35 19.63

MLE 28.08 32.48 31.04

EL – 28.02 27.93

DPM 26.24 27.54 26.36
DC 26.33 28.20 27.39

Table 11: BLEU results for simulation models evaluated on
the News Commentary test set (nc-test2007) with beam
search and greedy decoding. SMT results are from Lawrence
et al. (2017b).

this reward is deterministic and does not contain
user-dependent noise.

Supervised Fine-Tuning. When fine-tuning the
baseline model on in-domain references (Luong
and Manning, 2015), the model improves 3.34
BLEU (MLE in Table 10) on an in-domain test
set (1,000 sentences). By tuning it on the same
in-domain data for sBLEU with MIX, it gains an-
other 3 BLEU points.

Bandit Learning. When feedback is given to
only one translation per input (=online bandit
feedback), the model (EL) achieves comparable
performance to MLE training with references.
When the feedback is logged offline for one round
of deterministic outputs of the baseline model
(=offline bandit feedback), we can still find im-
provements of 1.81 BLEU (DPM). With a reward
estimator trained on this log, DC achieves even
higher improvements of 3 BLEU. To test the con-
tribution of the feedback in contrast to a simple
in-domain training effect, we randomly perturbed
the pairing of feedback signal and translation and
retrain (DPM-random). This clearly degrades re-
sults, confirming feedback to be a useful signal
rather than noise.

E.2 Results on Publicly Available Data
Simulation experiments were also run on publicly
available data. We use the same data, prepro-
cessing and splits as (Lawrence et al., 2017b) to
compare with their French-to-English news exper-
iments on counterfactual learning with determin-
istically logged feedback for statistical machine
translation (SMT). The baseline model is trained
with MLE on 1.6M Europarl (EP) translations,
bandit feedback is then simulated from 40k News
Commentary (NC) translations. For the compari-
son of full supervision vs. weak feedback, we train
in-domain models with MLE on in-domain NC
references: training only on in-domain data (NC
BL), and fine-tuning the out-of-domain baseline
(EP BL) on in-domain data (MLE). The results
are given in Table 11. The NMT baselines out-
perform the SMT equivalents. With fully super-
vised fine-tuning the NMT models improve over
the out-of-domain baseline (EP BL) by 5 BLEU
points, outperforming also the in-domain base-
line (NC BL). Moving to weak feedback, we still
find improvements over the baseline by 0.5 BLEU
with beam search and 1.6 BLEU with greedy de-
coding for online feedback (EL), and 0.6 BLEU
with beam search and 1 BLEU with greedy decod-
ing for counterfactual learning with DC. However,
DPM performs worse than for SMT and those not
manage to improve over the out-of-domain base-
line. Nevertheless these results confirm that – at
least in simulation settings – the DC objective is
very suitable for counterfactual learning from ban-
dit feedback for NMT, almost reaching the gains
of learning from online bandit feedback.

F Examples

Table 12 gives an example where W-MIX train-
ing improved lexical translation choices. Table 13
lists two examples of W-MIX translations in com-
parison to the baseline and logged translations for
given queries and product titles to illustrate the
specific difficulties of the domain.
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Title (en) hall linvatec pro2070 powerpro ao drill synthes dhs & dcs attachment / warranty

Reference-0 (es) hall linvatec pro2070 powerpro ao taladro synthes dhs & dcs accesorio / garantı́a
Reference-1 (es) hall linvatec pro2070 powerpro synthes , perforación , accesorio de dhs y dcs , todo original , garantı́a

BL (es) hall linvatec pro2070 powerpro ao perforadora synthes dhs & dcs adjuntos / garantı́a

MIX on star-rated titles (es) hall linvatec pro2070 powerpro ao perforadora synthes dhs & dcs adjuntos / garantı́a
MIX on query-titles, small (es) hall linvatec pro2070 powerpro ao perforadora synthes dhs & dcs adjuntos / garantı́a
MIX on query-titles, all (es) hall linvatec pro2070 powerpro ao taladro synthes dhs & dcs adjuntos / garantı́a
W-MIX hall linvatec pro2070 powerpro ao taladro synthes dhs & dcs accesorio / garantı́a

Table 12: Example for product title translation from the test set where W-MIX improved the lexical choice over BL and MIX on
in-domain title set and MIX on full query-title set (‘perforadora’ vs ‘taladro’ as translation for ‘drill’, ‘adjuntos’ vs ‘accesorio’
as translation for ‘attachment’).

Title (en) Unicorn Thread 12pcs Makeup Brushes Set Gorgeous Colorful Foundation Brush

Query (es) unicorn brushes // makeup brushes // brochas de unicornio // brochas unicornio
Query (en) unicorn brushes // makeup brushes

BL (es) galletas de maquillaje de 12pcs
Log (es ) Unicorn Rosca 12 un. Conjunto de Pinceles para Maquillaje Hermosa Colorida Base Cepillo

W-MIX unicornio rosca 12pcs brochas maquillaje conjunto precioso colorido fundación cepillo

Title (en) 12 ×Men Women Plastic Shoe Boxes 33*20*12cm Storage Organisers Clear Large Boxes

Query (es) cajas plasticas para zapatos
Query (en) plastic shoe boxes

BL (es) 12 × hombres mujeres zapatos de plástico cajas de almacenamiento 33*20*12cm organizadores de gran tamaño
Log (es) 12 × Zapato De Hombre Mujer De Plástico Cajas Organizadores de almacenamiento 33*20*12cm cajas Grande Claro

W-MIX 12 × para hombres zapatos de plástico cajas de plástico 33*20*12cm almacenamiento organizador transparente grandes cajas

Table 13: Examples for product title translations of the logged query test set. In the first example, the W-MIX model improves
the translation of “brushes”, but also chooses a worse translation for “foundation” (“fundación” vs “base”). In the second
example, one of the tricky parts is to translate the sequence of nouns “Men Women Plastic Shoe Boxes” and to disambiguate
the relations between them. The BL model translates “shoes of plastic”, the Log has “woman of plastic” and the W-MIX
model makes it “shoes of plastic” and “boxes of plastic”. The W-MIX model learns to use “para” from the query, but omits the
translation of “women”.
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Abstract

We describe a batched beam decoding algo-
rithm for NMT with LMBR n-gram posteri-
ors, showing that LMBR techniques still yield
gains on top of the best recently reported re-
sults with Transformers. We also discuss ac-
celeration strategies for deployment, and the
effect of the beam size and batching on mem-
ory and speed.

1 Introduction

The advent of Neural Machine Translation (NMT)
has revolutionized the market. Objective improve-
ments (Sutskever et al., 2014; Bahdanau et al.,
2015; Sennrich et al., 2016b; Gehring et al., 2017;
Vaswani et al., 2017) and a fair amount of neu-
ral hype have increased the pressure on companies
offering Machine Translation services to shift as
quickly as possible to this new paradigm.

Such a radical change entails non-trivial chal-
lenges for deployment; consumers certainly look
forward to better translation quality, but do not
want to lose all the good features that have been
developed over the years along with SMT tech-
nology. With NMT, real time decoding is chal-
lenging without GPUs, and still an avenue for re-
search (Devlin, 2017). Great speeds have been
reported by Junczys-Dowmunt et al. (2016) on
GPUs, for which batching queries to the neural
model is essential. Disk usage and memory foot-
print of pure neural systems are certainly lower
than that of SMT systems, but at the same time
GPU memory is limited and high-end GPUs are
expensive.

Further to that, consumers still need the abil-
ity to constrain translations; in particular, brand-
related information is often as important for com-
panies as translation quality itself, and is cur-
rently under investigation (Chatterjee et al., 2017;
Hokamp and Liu, 2017; Hasler et al., 2018).
It is also well known that pure neural systems

reach very high fluency, often sacrificing ade-
quacy (Tu et al., 2017; Zhang et al., 2017; Koehn
and Knowles, 2017), and have been reported to
behave badly under noisy conditions (Belinkov
and Bisk, 2018). Stahlberg et al. (2017) show an
effective way to counter these problems by tak-
ing advantage of the higher adequacy inherent to
SMT systems via Lattice Minimum Bayes Risk
(LMBR) decoding (Tromble et al., 2008). This
makes the system more robust to pitfalls, such
as over- and under-generation (Feng et al., 2016;
Meng et al., 2016; Tu et al., 2016) which is impor-
tant for commercial applications.

In this paper, we describe a batched beam de-
coding algorithm that uses NMT models with
LMBR n-gram posterior probabilities (Stahlberg
et al., 2017). Batching in NMT beam decod-
ing has been mentioned or assumed in the litera-
ture, e.g. (Devlin, 2017; Junczys-Dowmunt et al.,
2016), but to the best of our knowledge it has not
been formally described, and there are interesting
aspects for deployment worth taking into consid-
eration.

We also report on the effect of LMBR poste-
riors on state-of-the-art neural systems, for five
translation tasks. Finally, we discuss how to pre-
pare (LMBR-based) NMT systems for deploy-
ment, and how our batching algorithm performs
in terms of memory and speed.

2 Neural Machine Translation and
LMBR

Given a source sentence x, a sequence-to-
sequence NMT model scores a candidate transla-
tion sentence y = yT1 with T words as:

PNMT (yT1 |x) =

T∏

t=1

PNMT (yt|yt−11 ,x) (1)

where PNMT (yt|yt−11 ,x) uses a neural func-
tion fNMT (·). To account for batching B neu-
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ral queries together, our abstract function takes the
form of fNMT (St−1,yt−1,A) where St−1 is the
previous batch state with B state vectors in rows,
yt−1 is a vector with the B preceding generated
target words, and A is a matrix with the annota-
tions (Bahdanau et al., 2015) of a source sentence.
The model has a vocabulary size V .

The implementation of this function is deter-
mined by the architecture of specific models. The
most successful ones in the literature typically
share in common an attention mechanism that de-
termines which source word to focus on, informed
by A and St−1. Bahdanau et al. (2015) use recur-
rent layers to both compute A and the next target
word yt. Gehring et al. (2017) use convolutional
layers instead, and Vaswani et al. (2017) prescind
from GRU or LSTM layers, relying heavily on
multi-layered attention mechanisms, stateful only
on the translation side. Finally, this function can
also represent an ensemble of neural models.

Lattice Minimum Bayes Risk decoding com-
putes n-gram posterior probabilities from an evi-
dence space and uses them to score a hypothesis
space (Kumar and Byrne, 2004; Tromble et al.,
2008; Blackwood et al., 2010). It improves single
SMT systems, and also lends itself quite nicely to
system combination (Sim et al., 2007; de Gispert
et al., 2009). Stahlberg et al. (2017) have recently
shown a way to use it with NMT decoding: a tra-
ditional SMT system is first used to create an evi-
dence space ϕe, and the NMT space is then scored
left-to-right with both the NMT model(s) and the
n-gram posteriors gathered from ϕe. More for-
mally:

ŷ = arg max
y

T∑

t=1

(

L(yt−1
t−n,yt)︷ ︸︸ ︷

Θ0 +

4∑

n=1

ΘnPLMBR(ytt−n|ϕe)

+λ logPNMT (yt|yt−11 ,x))

(2)

For our purposes L is arranged as a matrix with
each row uniquely associated to an n-gram history
identified in ϕe: each row contains scores for any
word y in the NMT vocabulary.

L can be precomputed very efficiently, and
stored in the GPU memory. The number of distinct
n-gram histories is typically no more than 500 for
our phrase-based decoder producing 200 hypothe-
ses. Notice that such a matrix only containing
PLMBR contributions would be very sparse, but

it turns into a dense matrix with the summation
of Θ0. Both sparse and dense operations can be
performed on the GPU. We have found it more ef-
ficient to compute first all the sparse operations on
CPU, and then upload to the GPU memory and
sum the constant Θ0 in GPU1.

3 NMT batched beam decoding

Algorithm 1 describes NMT decoding with
LMBR posteriors using beam size B equal to the
batch size. Lines 2-5 initialize the decoder; the
number of time steps T is usually a heuristic func-
tion of the source length. q will keep track of the
B best scores per time step, b and y are indices.

Lines 7-16 are the core of the batch decoding
procedure. At each time step t, given St−1, yt−1
and A, fNMT returns two matrices: Pt, with size
B × V , contains log-probabilities for all possible
candidates in the vocabulary givenB live hypothe-
ses. St is the next batch state. Each row in St is
the vector state that corresponds to any candidate
in the same row of Pt (line 8).

Lines 9, 10 add the n-gram posterior scores.
Given the indices in b and y it is straightforward
to read the unique histories for the B open hy-
potheses: the topology of the hypothesis space
is that of a tree because an NMT state represents
the entire live hypothesis from time step 0. Note
that btj < B is the index to access the previ-
ous word in yt−1. In effect, indices in b func-
tion as backpointers, allowing to reconstruct not
only n-grams per time step, but also complete
hypotheses. As discussed for Equation 2, these
histories are associated to rows in our matrix L.
Function GETMATRIXBYROWS(·) simply creates
a new matrix of size B × V by fetching those B
rows from L. This new matrix is summed to Pt

(line 10).
In line 11, we get the indices and scores in

Pt + q′t−1 of the top B hypotheses. These best
hypotheses could come from any row in Pt. For
example, all B best hypotheses could have been
found in row 0. In that case, the new batch state to
be used in the next time step should contain copies
of row 0 in the other B − 1 rows. This is achieved
again with GETMATRIXBYROWS(·) in line 12.

Finally, lines 13-16 identify whether there are
any end-of-sentence (EOS) candidates; the corre-

1 Ideally we would want to keep L as a sparse matrix and
sum Θ0 on-the-fly. However this is not possible with Array-
Fire 3.6.
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Algorithm 1 Batch decoding with LMBR n-gram posteriors
1: procedure DECODENMT(x, L)
2: T ← Maximum target hypothesis length
3: b,y,q indices and scores, with b0 ← 0,y0 ← 0,q0 ← 0
4: A← Annotations for source sentence x
5: S0 ← Initial decoder state
6: F = {} . Set of EOS survivors
7: for t = 1 to T do
8: Pt,St ← fNMT (St−1,yt−1,A)
9: h← B histories identified through b, y and t

10: Pt ← Pt + GETMATRIXBYROWS(L,h) . Add LMBR contributions
11: bt,yt,qt ← TOPB(Pt + q′t−1)
12: St ← GETMATRIXBYROWS(St,bt)
13: for j = 0 to B − 1 do
14: if ytj = EOS then
15: F ← F ∪ ({t, j, qtj}) . Track indices and score
16: qtj ← −∞ . Mask out to prevent hypothesis extension

17: return GETBESTHYPOTHESIS(F,b,y)

sponding indices and score are pushed into stack
F and these candidates are masked out (i.e. set
to −∞) to prevent further expansion. In line 17,
GETBESTHYPOTHESIS(F ) traces backwards the
best hypothesis in F , again using indices in b and
y. Optionally, normalization by hypothesis length
happens in this step.

It is worth noting that:

1. If we drop lines 9, 10 we have a pure left-to-
right NMT batched beam decoder.

2. Applying a constraint (e.g. for lattice rescor-
ing or other user constraints) involves mask-
ing out scores in Pt before line 11.

3. Because the batch size is tied to the beam
size, the memory footprint increases with the
beam.

4. Due to the beam being used for both EOS and
non EOS candidates, it can be argued that this
empoverishes the beam and it could be kept
in addition to non EOS candidates (either by
using a bigger beam, or keeping separately).
Empirically we have found that this does not
affect quality with real models.

5. The opposite, i.e. that EOS candidates never
survive in the beam for T time steps, can
happen, although very infrequently. Several
pragmatic backoff strategies can be applied
in this situation: for example, running the de-
coder for additional time steps, or tracking

all EOS candidates that did not survive in a
separate stack and picking the best hypothe-
sis from there. We chose the latter.

3.1 Extension to Sentence batching
In addition to batching all B queries to the neural
model needed to compute the next time step for
one sentence, we can do sentence batching: this is,
we translateN sentences simultaneously, batching
B ×N queries per time step.

With small modifications, Algorithm 1 can be
easily extended to handle sentence batching. If the
number of sentences is N ,

1. Instead of one set F to store EOS candidates,
we need F1...FN sets.

2. For every time step, bt,yt and qt need to
be matrices instead of vectors, and minor
changes are required in TOPB(·) to fetch the
best candidates per sentence efficiently.

3. Pt and St can remain as matrices, in which
case the new batch size is simply B ·N .

4. The heuristic function used to compute T is
typically sentence specific.

4 Experiments

4.1 Experimental Setup
We report experiments on English-German,
German-English and Chinese-English language
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WMT17 WAT
ger-eng eng-ger chi-eng eng-jpn jpn-eng

PBMT 28.9 19.6 15.8 33.4 18.0
FNMT 32.8 26.1 20.8 39.1 25.3
LNMT 33.7 26.6 22.0 40.4 26.1
TNMT 35.2 28.9 24.8 44.6 29.4

LTNMT 35.4 29.2 25.4 44.9 30.2
Best submissions 35.1 28.3 26.4 43.3 28.4

Table 1: Quality assessment of our NMT systems with and without LMBR posteriors for GRU-based (FNMT,
LNMT) and Transformer models (TNMT, LTNMT). Cased BLEU scores reported on 5 translation tasks.The exact
PBMT systems used to compute n-gram posteriors for LNMT and LTNMT systems are also reported. The last row
shows scores for the best official submissions to each task.

pairs for the WMT17 task, and Japanese-English
and English-Japanese for the WAT task. For
the German tasks we use news-test2013 as a de-
velopment set, and news-test2017 as a test set;
for Chinese-English, we use news-dev2017 as
a development set, and news-test2017 as a test
set. For Japanese tasks we use the ASPEC cor-
pus (Nakazawa et al., 2016).

We use all available data in each task for
training. In addition, for German we use back-
translation data (Sennrich et al., 2016a). All
training data for neural models is preprocessed
with the byte pair encoding technique described
by Sennrich et al. (2016b). We use Blocks (van
Merriënboer et al., 2015) with Theano (Bastien
et al., 2012) to train attention-based single GRU
layer models (Bahdanau et al., 2015), henceforth
called FNMT. The vocabulary size is 50K. Trans-
former models (Vaswani et al., 2017), called here
TNMT, are trained using the Tensor2Tensor pack-
age2 with a vocabulary size of 30K.

Our proprietary translation system is a mod-
ular homegrown tool that supports pure neural
decoding (FNMT and TNMT) and with LMBR
posteriors (henceforce called LNMT and LT-
NMT respectively), and flexibly uses other com-
ponents (phrase-based decoding, byte pair encod-
ing, etcetera) to seamlessly deploy an end-to-end
translation system.

FNMT/LNMT systems use ensembles of
3 neural models unless specified otherwise;
TNMT/LTNMT systems decode with 1 to 2 mod-
els, each averaging over the last 20 checkpoints.

The Phrase-based decoder (PBMT) uses stan-
dard features with one single 5-gram language

2https://github.com/tensorflow/
tensor2tensor

model (Heafield et al., 2013), and is tuned with
standard MERT (Och, 2003); n-gram posterior
probabilities are computed on-the-fly over rich
translation lattices, with size bounded by the
PBMT stack and distortion limits. The parameter
λ in Equation 2 is set as 0.5 divided by the number
of models in the ensemble. Empirically we have
found this to be a good setting in many tasks.

Unless noted otherwise, the beam size is set to
12 and the NMT beam decoder always batches
queries to the neural model. The beam decoder
relies on an early preview of ArrayFire 3.6 (Yala-
manchili et al., 2015)3, compiled with CUDA 8.0
libraries. For speed measurements, the decoder
uses one single CPU thread. For hardware, we
use an Intel Xeon CPU E5-2640 at 2.60GHz. The
GPU is a GeForce GTX 1080Ti. We report cased
BLEU scores (Papineni et al., 2002), strictly com-
parable to the official scores in each task4.

4.2 The effect of LMBR n-gram posteriors
Table 1 shows contrastive experiments for all five
language pair/tasks. We make the following ob-
servations:

1. LMBR posteriors show consistent gains
on top of the GRU model (LNMT vs
FNMT rows), ranging from +0.5BLEU to
+1.2BLEU. This is consistent with the find-
ings reported by Stahlberg et al. (2017).

2. The TNMT system boasts improvements
across the board, ranging from +1.5BLEU
in German-English to an impressive
+4.2BLEU in English-Japanese WAT

3http://arrayfire.org
4http://matrix.statmt.org/ and

http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html
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Figure 1: Accelerated FNMT and LNMT decoding times for newstest-2017 test set.

(TNMT vs LNMT). This is in line with
findings by Vaswani et al. (2017) and sets
new very strong baselines to improve on.

3. Further, applying LMBR posteriors along
with the Transformer model yields gains
in all tasks (LTNMT vs TNMT), up to
+0.8BLEU in Japanese-English. Interest-
ingly, while we find that rescoring PBMT lat-
tices (Stahlberg et al., 2016) with GRU mod-
els yields similar improvements to those re-
ported by Stahlberg et al. (2017), we did not
find gains when rescoring with the stronger
TNMT models instead.

4.3 Accelerating FNMT and LNMT systems
for deployment

There is no particular constraint on speed for the
research systems reported in Table 1. We now ad-
dress the question of deploying NMT systems so
that MT users get the best quality improvements
at real-time speed and with acceptable memory
footprint. As an example, we analyse in detail
the English-German FNMT and LNMT case and
discuss the main trade-offs if one wanted to ac-
celerate them. Although the actual measurements
vary across all our productised NMT engines, the
trends are similar to the ones reported here.

In this particular case we specify a beam width
of 0.01 for early pruning (Wu et al., 2016; De-
laney et al., 2006) and reduce the beam size to
4. We also shrink the ensemble into one single
big model5 using the data-free shrinking method
described by Stahlberg and Byrne (2017), an in-
expensive way to improve both speed and GPU
memory footprint.

5The file size of each 3 individual models of the ensemble
is 510MB; the size of the shrunken model is 1.2GB.

In addition, for LNMT systems we tune phrase-
based decoder parameters such as the distortion
limit, the number of translations per source phrase
and the stack limit. To compute n-gram posteri-
ors we now only take a 200-best from the phrase-
based translation lattice.

Table 2 shows a contrast of our English-German
WMT17 research systems versus the respective
accelerated ones.

Research Accelerated
BLEU speed BLEU speed

FNMT 26.1 2207 25.2 9449
LNMT 26.6 263 25.7 4927

Table 2: Cased BLEU scores for research vs acceler-
ated English-to-German WMT17 systems. Speed re-
ported in words per minute.

In the process, both accelerated systems have
lost 0.9 BLEU relative to the baseline. As an
example, let us break down the effects of accel-
erating the LNMT system: using only 200-best
hypotheses from the phrase-based translation lat-
tice reduces 0.3 BLEU. Replacing the ensemble
with a data-free shrunken model reduces another
0.2 BLEU and decreasing the beam size reduces
0.4 BLEU. The impact of reducing the beam size
varies from system to system, although often does
not result in substantial quality loss for NMT mod-
els (Britz et al., 2017).

It is worth noting that these two systems share
exactly the same neural model and parameter val-
ues. However, LNMT runs 4500 words per minute
(wpm) slower than FNMT. Figure 1 breaks down
the decoding times for both the accelerated FNMT
and LNMT systems. The LNMT pipeline also re-
quires a phrase-based decoder and the extra com-
ponent to compute the n-gram posterior probabil-
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Figure 2: Batch beam decoder speed measured over newstest-2017 test set, using the accelerated FNMT system
(25.2 BLEU for beam size = 4).

Figure 3: Batch beam decoder speed measured over newstest-2017 test set, using the accelerated eng-ger-wmt17
FNMT system (26.1 BLEU) with additional sentence batching, up to 7 sentences.

ities. In effect, while both are remarkably fast by
themselves (e.g. the phrase-based decoder is run-
ning at 20000 wpm), these extra contributions ex-
plain most of the speed reduction for the acceler-
ated LNMT system. In addition, the beam decoder
itself is slightly slower for LNMT than for FNMT.
This is mainly due to the computation of L as ex-
plained in Section 2. Finally, the respective GPU
memory footprints for FNMT and LNMT are 4.1
and 4.8 GB.

4.4 Batched beam decoding and beam size

We next discuss the impact of using batch de-
coding and the beam size. To this end we use
the accelerated FNMT system (25.2 BLEU, 9449
wpm) to decode with and without batching; we
also widen the beam. Figure 2 shows the results.

The accelerated system itself with batched
beam decoding and beam size of 4 is 3 times faster
than without batching (3053 wpm). The GPU
memory footprint is 1 GB bigger when batching

(4.1 vs 3.1 GB). As can be expected, widening the
beam decreases the speed of both decoders. The
relative speed-up ratio favours the batch decoder
for wider beams, i.e. it is 5 times faster for beam
size 12. However, because the batch size is tied to
the beam size, this comes at a cost in GPU mem-
ory footprint (under 8 GB).

4.5 Sentence batching

As described in Section 3.1, it is straightforward to
extend beam batching to sentence batching. Fig-
ure 3 shows the effect of sentence batching up to 7
sentences on our accelerated FNMT system.

Whilst the speed-up of our implementation is
sub-linear, when batching 5 sentences the de-
coder runs at almost 21000 wpm, and goes be-
yond 24000 for 7 sentences. Thus, our implemen-
tation of sentence batching is 2.5 times faster on
top of beam batching. Again, this comes at a cost:
the GPU memory footprint increases as we batch
more and more sentences together, up to 11 GB for
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7 sentences, which approaches the limit of GPU
memory.

Note that sentence batching does not change
translation quality. For example, when translating
7 sentences, we are effectively batching 28 neural
queries per time step. Indeed, each individual sen-
tence is still being translated with a beam size of
4.

Figure 3 also shows the effect of sorting the test
set by sentence length. Because sentences have
similar lengths, less padding is required and hence
we have less wasteful GPU computation. With 7
batched sentences the decoder would run at barely
17000 wpm, this is, 7000 wpm less due to not sort-
ing by sentence length. A similar strategy is com-
mon for neural training (Sutskever et al., 2014;
Morishita et al., 2017).

5 Conclusions

We have described a left-to-right batched beam
NMT decoding algorithm that is transparent to the
neural model and can be combined with LMBR
n-gram posteriors. Our quality assessment with
Transformer models (Vaswani et al., 2017) has
shown that LMBR posteriors can still improve
such a strong baseline in terms of BLEU. Finally,
we have also discussed our acceleration strategy
for deployment and the effect of batching and the
beam size on memory and speed.
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Abstract

Neural machine translation has achieved lev-
els of fluency and adequacy that would have
been surprising a short time ago. Output qual-
ity is extremely relevant for industry purposes,
however it is equally important to produce re-
sults in the shortest time possible, mainly for
latency-sensitive applications and to control
cloud hosting costs. In this paper we show the
effectiveness of translating with 8-bit quanti-
zation for models that have been trained us-
ing 32-bit floating point values. Results show
that 8-bit translation makes a non-negligible
impact in terms of speed with no degradation
in accuracy and adequacy.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2014; Sutskever et al., 2014) has recently
achieved remarkable performance improving flu-
ency and adequacy over phrase-based machine
translation and is being deployed in commercial
settings (Koehn and Knowles, 2017). However,
this comes at a cost of slow decoding speeds com-
pared to phrase-based and syntax-based SMT (see
section 3).

NMT models are generally trained using 32-bit
floating point values. At training time, multiple
sentences can be processed in parallel leveraging
graphical processing units (GPUs) to good advan-
tage since the data is processed in batches. This is
also true for decoding for non-interactive applica-
tions such as bulk document translation.

Why is fast execution on CPUs important?
First, CPUs are cheaper than GPUs. Fast CPU
computation will reduce commercial deployment
costs. Second, for low-latency applications such
as speech-to-speech translation (Neubig et al.,

∗A piece of eight was a Spanish dollar that was divided
into 8 reales, also known as Real de a Ocho.

2017a), it is important to translate individual sen-
tences quickly enough so that users can have an
application experience that responds seamlessly.
Translating individual sentences with NMT re-
quires many memory bandwidth intensive matrix-
vector or matrix-narrow matrix multiplications
(Abdelfattah et al., 2016). In addition, the batch
size is 1 and GPUs do not have a speed advan-
tage over CPUs due to the lack of adequate par-
allel work (as evidenced by increasingly difficult
batching scenarios in dynamic frameworks (Neu-
big et al., 2017b)).

Others have successfully used low precision ap-
proximations to neural net models. Vanhoucke
et al. (2011) explored 8-bit quantization for feed-
forward neural nets for speech recognition. Devlin
(2017) explored 16-bit quantization for machine
translation. In this paper we show the effective-
ness of 8-bit decoding for models that have been
trained using 32-bit floating point values. Results
show that 8-bit decoding does not hurt the fluency
or adequacy of the output, while producing results
up to 4-6x times faster. In addition, implementa-
tion is straightforward and we can use the models
as is without altering training.

The paper is organized as follows: Section 2
reviews the attentional model of translation to be
sped up, Section 3 presents our 8-bit quantization
in our implementation, Section 4 presents auto-
matic measurements of speed and translation qual-
ity plus human evaluations, Section 5 discusses the
results and some illustrative examples, Section 6
describes prior work, and Section 7 concludes the
paper.

2 The Attentional Model of Translation

Our translation system implements the attentional
model of translation (Bahdanau et al., 2014) con-
sisting of an encoder-decoder network with an at-
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tention mechanism.
The encoder uses a bidirectional GRU recur-

rent neural network (Cho et al., 2014) to encode
a source sentence x = (x1, ..., xl), where xi is
the embedding vector for the ith word and l is the
sentence length. The encoded form is a sequence
of hidden states h = (h1, ..., hl) where each hi is
computed as follows

hi =

[←−
hi−→
hi

]
=

[←−
f (xi,

←−
h i+1)−→

f (xi,
−→
h i−1)

]
, (1)

where
−→
h0 =

←−
h0 = 0. Here

←−
f and

−→
f are GRU

cells.
Given h, the decoder predicts the target trans-

lation y by computing the output token sequence
(y1, ...ym), where m is the length of the sequence.
At each time t, the probability of each token yt
from a target vocabulary is

p(yt|h, yt−1..y1) = g(st, yt−1, Ht), (2)

where g is a two layer feed-forward network over
the embedding of the previous target word (yt−1),
the decoder hidden state (st), and the weighted
sum of encoder states h (Ht), followed by a soft-
max to predict the probability distribution over the
output vocabulary.

We compute st with a two layer GRU as

s′t = r(st−1, y∗t−1) (3)

and
st = q(s′t, Ht), (4)

where s′t is an intermediate state and s0 =
←−
h0. The

two GRU units r and q together with the attention
constitute the conditional GRU layer of Sennrich
et al. (2017). Ht is computed as

Ht =

[∑l
i=1(αt,i ·

←−
h i)∑l

i=1(αt,i ·
−→
h i)

]
, (5)

where αt,i are the elements of αt which is the out-
put vector of the attention model. This is com-
puted with a two layer feed-forward network

α′t = v(tanh(w(hi) + u(s′t−1))), (6)

where w and u are weight matrices, and v is an-
other matrix resulting in one real value per encoder
state hi. αt is then the softmax over α′t.

We train our model using a program writ-
ten using the Theano framework (Bastien et al.,

2012). Generally models are trained with batch
sizes ranging from 64 to 128 and unbiased Adam
stochastic optimizer (Kingma and Ba, 2014). We
use an embedding size of 620 and hidden layer
sizes of 1000. We select model parameters accord-
ing to the best BLEU score on a held-out develop-
ment set over 10 epochs.

3 8-bit Translation

Our translation engine is a C++ implementation.
The engine is implemented using the Eigen ma-
trix library, which provides efficient matrix oper-
ations. Each CPU core translates a single sen-
tence at a time. The same engine supports both
batch and interactive applications, the latter mak-
ing single-sentence translation latency important.
We report speed numbers as both words per sec-
ond (WPS) and words per core second (WPCS),
which is WPS divided by the number of cores run-
ning. This gives us a measure of overall scaling
across many cores and memory buses as well as
the single-sentence speed.

Phrase-based SMT systems, such as (Tillmann,
2006), for English-German run at 170 words per
core second (3400 words per second) on a 20 core
Xeon 2690v2 system. Similarly, syntax-based
SMT systems, such as (Zhao and Al-onaizan,
2008), for the same language pair run at 21.5
words per core second (430 words per second).

In contrast, our NMT system (described in Sec-
tion 2) with 32-bit decoding runs at 6.5 words per
core second (131 words per second). Our goal is
to increase decoding speed for the NMT system to
what can be achieved with phrase-based systems
while maintaining the levels of fluency and ade-
quacy that NMT offers.

Benchmarks of our NMT decoder unsurpris-
ingly show matrix multiplication as the number
one source of compute cycles. In Table 1 we see
that more than 85% of computation is spent in
Eigen’s matrix and vector multiply routines (Eigen
matrix vector product and Eigen matrix multiply).
It dwarfs the costs of the transcendental function
computations as well as the bias additions.

Given this distribution of computing time, it
makes sense to try to accelerate the matrix oper-
ations as much as possible. One approach to in-
creasing speed is to quantize matrix operations.
Replacing 32-bit floating point math operations
with 8-bit integer approximations in neural nets
has been shown to give speedups and similar ac-
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Time Function
50.77% Eigen matrix vector product
35.02% Eigen matrix multiply
1.95% NMT decoder layer
1.68% Eigen fast tanh
1.35% NMT tanh wrapper

Table 1: Profile before 8-bit conversion. More than
85% is spent in Eigen matrix/vector multiply routines.

curacy (Vanhoucke et al., 2011). We chose to ap-
ply similar optimization to our translation system,
both to reduce memory traffic as well as increase
parallelism in the CPU.

Our 8-bit matrix multiply routine uses a naive
implementation with no blocking or copy. The
code is implemented using Intel SSE4 vector in-
structions and computes 4 rows at a time, similar
to (Devlin, 2017). Simplicity led to implementing
8-bit matrix multiplication with the results being
placed into a 32-bit floating point result. This has
the advantage of not needing to know the scale of
the result. In addition, the output is a vector or
narrow matrix, so little extra memory bandwidth
is consumed.

Multilayer matrix multiply algorithms result in
significantly faster performance than naive algo-
rithms (Goto and Geijn, 2008). This is due to
the fact that there are O(N3) math operations on
O(N2) elements when multiplying NxN matri-
ces, therefore it is worth significant effort to min-
imize memory operations while maximizing math
operations. However, when multiplying an NxN
matrix by an NxP matrix where P is very small
(<10), memory operations dominate and perfor-
mance does not benefit from the complex algo-
rithm. When decoding single sentences, we typ-
ically set our beam size to a value less than 8 fol-
lowing standard practice in this kind of systems
(Koehn and Knowles, 2017). We actually find that
at such small values of P, the naive algorithm is a
bit faster.

Time Function
69.54% 8-bit matrix multiply
6.37% Eigen fast tanh
2.06% NMT decoder layer
0.95% NMT tanh wrapper

Table 2: Profile after 8-bit conversion. Matrix multiply
includes matrix-vector multiply. Matrix multiply is still
70% of computation. Tanh is larger but still relatively
small.

Table 2 shows the profile after converting
the matrix routines to 8-bit integer computation.
There is only one entry for matrix-matrix and
matrix-vector multiplies since they are handled by
the same routine. After conversion, tanh and sig-
moid still consume less than 7% of CPU time. We
decided not to convert these operations to integer
in light of that fact.

It is possible to replace all the operations with
8-bit approximations (Wu et al., 2016), but this
makes implementation more complex, as the scale
of the result of a matrix multiplication must be
known to correctly output 8-bit numbers without
dangerous loss of precision.

Assuming we have 2 matrices of size
1000x1000 with a range of values [−10, 10],
the individual dot products in the result could be
as large as 108. In practice with neural nets, the
scale of the result is similar to that of the input
matrices. So if we scale the result to [−127, 127]
assuming the worst case, the loss of precision will
give us a matrix full of zeros. The choices are to
either scale the result of the matrix multiplication
with a reasonable value, or to store the result as
floating point. We opted for the latter.

8-bit computation achieves 32.3 words per core
second (646 words per second), compared to the
6.5 words per core second (131 words per second)
of the 32-bit system (both systems load parameters
from the same model). This is even faster than
the syntax-based system that runs at 21.5 words
per core second (430 words per second). Table 3
summarizes running speeds for the phrase-based
SMT system, syntax-based system and NMT with
32-bit decoding and 8-bit decoding.

System WPCS
Phrase-based 170
Syntax-based 21.5
NMT 32-bit 6.5
NMT 8-bit 32.3

Table 3: Running speed (in words per core second)
of the phrase-based SMT system, syntax-based system,
NMT with 32-bit decoding and NMT with 8-bit decod-
ing.

4 Measurements

To demonstrate the effectiveness of approximat-
ing the floating point math with 8-bit integer com-
putation, we show automatic evaluation results
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on several models, as well as independent human
evaluations. We report results on Dutch-English,
English-Dutch, Russian-English, German-English
and English-German models. Table 4 shows train-
ing data sizes and vocabulary sizes. All models
have 620 dimension embeddings and 1000 dimen-
sion hidden states.

Lang Training Source Target
Sentences Vocabulary Vocabulary

En-Nl 17M 42112 33658
Nl-En 17M 33658 42212
Ru-En 31M 42388 42840
En-De 31M 57867 63644
De-En 31M 63644 57867

Table 4: Model training data and vocabulary sizes

4.1 Automatic results

Here we report automatic results comparing de-
coding results on 32-bit and 8-bit implementa-
tions. As others have found (Wu et al., 2016), 8-bit
implementations impact quality very little.

In Table 6, we compared automatic scores
and speeds for Dutch-English, English-Dutch,
Russian-English, German-English and English-
German models on news data. The English-
German model was run with both a single model
(1x) and an ensemble of two models (2x) (Freitag
et al., 2017). Table 5 gives the number of sen-
tences and average sentence length for the test sets
used.

Lang Test Src Sent Tgt Sent
Sentences Length Length

En-Nl 990 22.5 25.9
Nl-En 990 25.9 22.5
Ru-En 555 27.2 35.2
En-De 168 51.8 46.0
De-En 168 46.0 51.8

Table 5: Test data sizes and sentence lengths

Speed is reported in words per core second
(WPCS). This gives us a better sense of the speed
of individual engines when deployed on multi-
core systems with all cores performing transla-
tions. Total throughput is simply the product of
WPCS and the number of cores in the machine.
The reported speed is the median of 9 runs to en-
sure consistent numbers. The results show that we
see a 4-6x speedup over 32-bit floating point de-

Lang Mode BLEU Speed (WPSC)
En-Nl 32-bit 31.2 12.6
En-Nl 8-bit 31.2 58.9

Nl-En 32-bit 36.1 10.3
Nl-En 8-bit 36.3 45.8

Ru-En 32-bit 24.5 8.9
Ru-En 8-bit 24.3 51.4

De-En 32-bit 32.6 7.3
De-En 8-bit 32.2 37.5

En-De 2x 32-bit 30.5 7.1
En-De 2x 8-bit 30.6 33.7

En-De 1x 32-bit 29.7 15.9
En-De 1x 8-bit 29.7 71.3

Table 6: BLEU scores and speeds for 8-bit and 32-
bit versions of several models. Speeds are reported in
words per core second.

coding. German-English shows the largest deficit
for the 8-bit mode versus the 32-bit mode. The
German-English test set only includes 168 sen-
tences so this may be a spurious difference.

4.2 Human evaluation

These automatic results suggest that 8-bit quan-
tization can be done without perceptible degrada-
tion. To confirm this, we carried out a human eval-
uation experiment.

In Table 7, we show the results of performing
human evaluations on some of the same language
pairs in the previous section. An independent
native speaker of the language being translated
to/from different than English (who is also pro-
ficient in English) scored 100 randomly selected
sentences. The sentences were shuffled during the
evaluation to avoid evaluator bias towards differ-
ent runs. We employ a scale from 0 to 5, with
0 being unintelligible and 5 being perfect transla-
tion.

Language 32-bit 8-bit
En-Nl 4.02 4.08
Nl-En 4.03 4.03
Ru-En 4.10 4.06

En-De 2x 4.05 4.16
En-De 1x 3.84 3.90

Table 7: Human evaluation scores for 8-bit and 32-bit
systems. All tests are news domain.

The Table shows that the automatic scores
shown in the previous section are also sustained
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Source Time Sie standen seit 1946 an der Parteispitze
32-bit 720 ms They had been at the party leadership since 1946
8-bit 180 ms They stood at the top of the party since 1946.

Source Time So erwarten die Experten für dieses Jahr lediglich einen Anstieg der Weltproduktion
von 3,7 statt der im Juni prognostizierten 3,9 Prozent. Für 2009 sagt das Kieler
Institut sogar eine Abschwächung auf 3,3 statt 3,7 Prozent voraus.

32-bit 4440 ms For this year, the experts expect only an increase in world production of 3.7
instead of the 3.9 percent forecast in June. In 2009, the Kiel Institute
predictated a slowdown to 3.3 percent instead of 3.7 percent.

8-bit 750 ms For this year, the experts expect only an increase in world production of 3.7
instead of the 3.9 percent forecast in June. In 2009, the Kiel Institute even
forecast a slowdown to 3.3% instead of 3.7 per cent.

Source Time Heftige Regenfälle wegen “Ike” werden möglicherweise schwerere Schäden anrichten
als seine Windböen. Besonders gefährdet sind dicht besiedelte Gebiete im Tal des Rio
Grande, die noch immer unter den Folgen des Hurrikans “Dolly” im Juli leiden.

32-bit 6150 ms Heavy rainfall due to “Ike” may cause more severe damage than its gusts of wind,
particularly in densely populated areas in the Rio Grande valley, which are still
suffering from the consequences of the “dolly” hurricane in July.

8-bit 1050 ms Heavy rainfall due to “Ike” may cause heavier damage than its gusts of wind,
particularly in densely populated areas in the Rio Grande valley, which still
suffer from the consequences of the “dolly” hurricane in July.

Table 8: Examples of De-En news translation system comparing 32-bit and 8-bit decoding. Differences are in
boldface. Sentence times are average of 10 runs.

Source Time Het is tijd om de kloof te overbruggen.
32-bit 730 ms It’s time to bridge the gap.
8-bit 180 ms It is time to bridge the gap.

Source Time Niet dat Barientos met zijn vader van plaats zou willen wisselen.
32-bit 1120 ms Not that Barientos would want to change his father’s place.
8-bit 290 ms Not that Barientos would like to switch places with his father.

Table 9: Examples of Nl-En news translation system comparing 32-bit and 8-bit decoding. Differences are in
boldface. Sentence times are average of 10 runs.

by humans. 8-bit decoding is as good as 32-bit
decoding according to the human evaluators.

5 Discussion

Having a faster NMT engine with no loss of ac-
curacy is commercially useful. In our deployment
scenarios, it is the difference between an interac-
tive user experience that is sluggish and one that
is not. Even in batch mode operation, the same
throughput can be delivered with 1/4 the hardware.

In addition, this speedup makes it practical to
deploy small ensembles of models. As shown
above in the En-De model in Table 6, an ensem-
ble can deliver higher accuracy at the cost of a 2x
slowdown. This work makes it possible to trans-
late with higher quality while still being at least
twice as fast as the previous baseline.

As the numbers reported in Section 4 demon-
strate, 8-bit and 32-bit decoding have similar av-
erage quality. As expected, the outputs produced
by the two decoders are not identical. In fact, on a
run of 166 sentences of De-En translation, only 51
were identical between the two. In addition, our
human evaluation results and the automatic scor-
ing suggest that there is no specific degradation by
the 8-bit decoder compared to the 32-bit decoder.
In order to emphasize these claims, Table 8 shows
several examples of output from the two systems
for a German-English system. Table 9 shows 2
more examples from a Dutch-English system.

In general, there are minor differences without
any loss in adequacy or fluency due to 8-bit de-
coding. Sentence 2 in Table 8 shows a spelling
error (“predictated”) in the 32-bit output due to re-
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assembly of incorrect subword units.1

6 Related Work

Reducing the resources required for decoding neu-
ral nets in general and neural machine translation
in particular has been the focus of some attention
in recent years.

Vanhoucke et al. (2011) explored accelerating
convolutional neural nets with 8-bit integer decod-
ing for speech recognition. They demonstrated
that low precision computation could be used with
no significant loss of accuracy. Han et al. (2015)
investigated highly compressing image classifica-
tion neural networks using network pruning, quan-
tization, and Huffman coding so as to fit com-
pletely into on-chip cache, seeing significant im-
provements in speed and energy efficiency while
keeping accuracy losses small.

Focusing on machine translation, Devlin (2017)
implemented 16-bit fixed-point integer math to
speed up matrix multiplication operations, see-
ing a 2.59x improvement. They show com-
petitive BLEU scores on WMT English-French
NewsTest2014 while offering significant speedup.
Similarly, (Wu et al., 2016) applies 8-bit end-to-
end quantization in translation models. They also
show that automatic metrics do not suffer as a re-
sult. In this work, quantization requires modifica-
tion to model training to limit the size of matrix
outputs.

7 Conclusions and Future Work

In this paper, we show that 8-bit decoding for neu-
ral machine translation runs up to 4-6x times faster
than a similar optimized floating point implemen-
tation. We show that the quality of this approxima-
tion is similar to that of the 32-bit version. We also
show that it is unnecessary to modify the training
procedure to produce models compatible with 8-
bit decoding.

To conclude, this paper shows that 8-bit decod-
ing is as good as 32-bit decoding both in automatic
measures and from a human perception perspec-
tive, while it improves latency substantially.

In the future we plan to implement a multi-
layered matrix multiplication that falls back to the
naive algorithm for matrix-panel multiplications.
This will provide speed for batch decoding for ap-
plications that can take advantage of it. We also

1In order to limit the vocabulary, we use BPE subword
units (Sennrich et al., 2016) in all models.

plan to explore training with low precision for
faster experiment turnaround time.

Our results offer hints of improved accuracy
rather than just parity. Other work has used train-
ing as part of the compression process. We would
like to see if training quantized models changes
the results for better or worse.
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Miceli Barone, Jozef Mokry, and Maria Nadejde.
2017. Nematus: a toolkit for neural machine trans-
lation. In Proceedings of the Software Demonstra-
tions of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics.
Association for Computational Linguistics, Valen-
cia, Spain, pages 65–68. http://aclweb.org/
anthology/E17-3017.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics, Berlin, Germany, pages
1715–1725.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada. pages 3104–
3112.

Christoph Tillmann. 2006. Efficient dynamic pro-
gramming search algorithms for phrase-based smt.
In Proceedings of the Workshop on Computation-
ally Hard Problems and Joint Inference in Speech
and Language Processing. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, CHSLP
’06, pages 9–16.

Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao.
2011. Improving the speed of neural networks on
cpus. In Deep Learning and Unsupervised Feature
Learning Workshop, NIPS 2011.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin

Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR
abs/1609.08144.

Bing Zhao and Yaser Al-onaizan. 2008. Generaliz-
ing local and non-local word-reordering patterns for
syntax-based machine translation. In Proceedings
of the Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, EMNLP
’08, pages 572–581. http://dl.acm.org/
citation.cfm?id=1613715.1613785.

120



Proceedings of NAACL-HLT 2018, pages 121–128
New Orleans, Louisiana, June 1 - 6, 2018. c©2017 Association for Computational Linguistics

From dictations to clinical reports using machine translation

Greg P. Finley, Wael Salloum, Najmeh
Sadoughi, Erik Edwards, Amanda Robinson,

Mark Miller, David Suendermann-Oeft∗
EMR.AI Inc.

San Francisco, CA, USA
greg.finley@emr.ai

Michael Brenndoerfer
University of California

Berkeley, CA, USA

Nico Axtmann
DHBW, Karlsruhe, Germany

Abstract
A typical workflow to document clinical en-
counters entails dictating a summary, run-
ning speech recognition, and post-processing
the resulting text into a formatted letter.
Post-processing entails a host of transforma-
tions including punctuation restoration, true-
casing, marking sections and headers, convert-
ing dates and numerical expressions, parsing
lists, etc. In conventional implementations,
most of these tasks are accomplished by indi-
vidual modules. We introduce a novel holis-
tic approach to post-processing that relies on
machine callytranslation. We show how this
technique outperforms an alternative conven-
tional system—even learning to correct speech
recognition errors during post-processing—
while being much simpler to maintain.

1 Introduction

Medical dictation is one of the most common
ways of documenting clinical encounters (Rosen-
bloom et al., 2010). The dictated material needs
to be transformed into a textual representation
to be printed as a clinical letter or inserted into
electronic medical record (EMR) systems. This
can be done using one of the following tech-
niques (Alapetite et al., 2009):

1) the speech recording is manually transcribed
by a third party and returned to the physician
for sign-off at a later point in time;

2) the recording is processed by a medical
speech recognizer, controlled and corrected
by a quality assurance team (mostly an ex-
ternal entity), and returned to the physician;

3) while the physician is dictating, a medical
speech recognizer transforms the speech into
text which is subject to immediate correction
and sign-off by the physician.

∗Patent pending.

this is doctor mike miller dictating

a maximum medical improvement slash

impairment rating evaluation for

john j o h n doe d o e social one

two three four five six seven eight

nine service i d one two three four

five six seven eight nine service

date august eight two thousand

and seventeen subjective and

treatment to date the examinee is

a thirty nine year old golf course

maintenance worker with the apache

harding park who was injured on

eight seven two thousand seventeen

Figure 1: Raw output of a medical speech recognizer.

In this paper, we focus on the text processing
that follows the application of automated speech
recognition (ASR) in Techniques 2 and 3. The
role of ASR is simply to transform spoken words
into plain text, as exemplified in the excerpt of a
medical dictation in Figure 1: ASR output is typi
case insensitive and contains only alphabetic char-
acters, transcribed verbatim including command
words, repetitions, grammatical errors, etc.

In contrast, clinical letters follow rigorous for-
matting standards which require a sophisticated
post-processor to transform the ASR output into
a full-fledged letter. Major responsibilities of
the post-processor include: truecasing, punctua-
tion restoration, carrying out dictated commands
(e.g., ‘new paragraph’, ‘scratch that’), converting
numerical and temporal expressions, formatting
acronyms and abbreviations, numbering itemized
lists, separating sections and section headers, and
inserting physician “normals” (sections of boiler-
plate text or templates).

Figure 2 shows a post-processed version of the
raw ASR output of Figure 1. This example makes

121



clear that many of the tokens of the ASR output
need to be altered in order to create a properly for-
matted output document. In fact, informal exper-
iments indicated that, on average, more than half
of spoken tokens are subject to modification when
preparing a clinical report from a dictation.

Conventional implementations of post-
processors comprise a multitude of predominantly
rule-based techniques (Sistrom et al., 2001; Liu
et al., 2006; Frankel and Santisteban, 2011),
mostly covering subsets of the operations listed
above. There has been a fair amount of machine
learning research on punctuation restoration (PR),
which does constitute a significant component
of post-processing, over the last two decades
(Beeferman et al., 1998; Peitz et al., 2011).
PR has even been addressed for medical ASR
specifically, using methods such as finite state
models for punctuation insertion (Deoras and
Fritsch, 2008), or identifying punctuated tokens
using recurrent neural networks (Salloum et al.,
2017b).

Of course, PR is only one necessary module
of a post-processing system. Typical modular ap-
proaches, especially those that are predominantly
rule based, are subject to serious disadvantages
in practical use. For one, the task may grow in
complexity over time through the introduction of
specific rules for certain hospitals or physicians.
Another issue is that these systems must follow
an ASR stage, where unforeseen errors (Johnson
et al., 2014; Hodgson and Coiera, 2016; Edwards
et al., 2017) may interfere destructively with post-
processing, for which rules or models are typically
designed or trained for idealized transcriptions.

In this paper, we present a holistic, data-driven
approach to post-processing which makes use of
recent advances in statistical machine translation,
covering most of the aforementioned operations
in a single shot and exhibiting accuracy superior
to an existing modular system. After a brief in-
troduction to machine translation in Section 2, we
describe methods, data sets, and evaluation in Sec-
tion 3 and experimental results in Section 4.

2 Machine translation

We approach the post-processing problem as a
case of machine translation (MT), in which the
source language is the raw ASR output as in Fig-
ure 1, and the target language is the final writ-
ten letter from Figure 2—or, more accurately, a

This is Dr Mike Miller dictating a Maximum
Medical Improvement/Impairment Rating
Evaluation for John Doe.
SSN: 123-45-6789
Service ID: 123 456 789
Service Date: 08/08/17

Subjective and Treatment:
To date, the examinee is a 39 year-old golf
course maintenance worker with the Apache
Harding Park who was injured on 08/07/17.

Figure 2: Output of post-processor.

form that can be trivially converted into the fi-
nal text, and in which formatting elements are
represented themselves as words. To our knowl-
edge, ours is the first system to frame ASR post-
processing as MT, and one of very few described
post-processing systems for the medical domain.

Most standard MT approaches require both par-
allel data (bitexts) and an additional quantity of
data in the target language only, which is used to
build a language model; likelihoods from both the
translational and the language model are balanced
during translation (Ney et al., 2000; Koehn et al.,
2003, 2007; Lopez, 2008).

Koehn et al. (2003) introduce a phrase-based
statistical machine translation (SMT) approach.
Their model is defined based on Bayes’ rule and
includes the phrase translation probability, the lan-
guage model for the target, and the distortion prob-
ability of the target language to account for occur-
rences of reordering. The phrase translation model
and the distortion probabilities are trained on the
aligned phrases of source and target language, and
the language model is trained on the target lan-
guage. During decoding, a sequence of translated
phrases is chosen by performing a beam search to
limit the set of phrase candidates.

3 Methods

In this section we describe our methods for prepar-
ing data for training, tuning, and evaluating our
MT methods. To reframe the post-processing
problem as MT is not a trivial matter—it requires
careful attention to how training data is prepared,
due to the requirements for MT and the peculiari-
ties of medical text; we describe our methods for
doing so in 3.2. Crucially, we also explore the inte-
gration of our models within a working production
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Set # Reports # Words

Training 8,775
4,785,986 (Rep.)
5,363,580 (Tra.)
5,681,630 (Hyp.)

Tuning 500
276,551 (Rep.)
311,538 (Tra.)
305,672 (Hyp.)

Development 300
187,472 (Rep.)
211,740 (Tra.)
209,587 (Hyp.)

Test 300
177,756 (Rep.)
198,722 (Tra.)
196,198 (Hyp.)

Table 1: Statistics of the data sets used for training,
tuning, development, and test.

system in 3.4, enabling us to evaluate the contribu-
tion of MT towards improving real-world results.

3.1 Data sources

All models and experiments in this paper use ac-
tual clinical notes. Reports and dictations from
a variety of specialties at two different US hospi-
tals were considered. As required under HIPAA,
EMR.AI has a Business Associate Agreement
with the Covered Entity that supplied the data.

We first identified a set of 9,875 reports for
which we had manual transcriptions and ASR hy-
potheses available. This set was split into four
smaller sets (see Table 3.1 for corpus statistics).
The training set was used to generate source-to-
target alignments and build the phrase and distor-
tion models, as well as to train the monolingual
language model. (The latter was trained on ad-
ditional text as well, for a total of 23,754 reports
and 14,208,546 words.) The tuning set was used
for tuning the relative contribution of the various
models for MT. The development set was used for
evaluation along the way. Finally, we set aside a
blind test set, used solely and exclusively for the
results in this paper.

We also set out to test whether transcriptions or
hypotheses make better training data. As the task
is posed, hypotheses would seem more relevant;
however, they are a noisier source of data than
transcriptions, and it was not guaranteed that the
needed correspondences could be learned through
the noise. Therefore, for both training and tuning,
we tried transcripts, hypotheses, or a combination
of the two (nine separate conditions).

3.2 Finding parallel training samples

Although our data set contains dictations and their
corresponding reports, these do not represent true
bitexts of the type that are typically used for MT,
for several reasons: boilerplate language or meta-
data may be added to the letter; whole sections
may be reordered, or even inserted from prior
notes in the patient’s history; pleasantries, dis-
continuities, or corrections by the speaker will
be omitted. Furthermore, notes can be thou-
sands of words in length, and it is not practical to
learn alignments from such long “sentences” given
computational constraints.

To solve these problems, we developed a
method to extract matching stretches of up to 100
words from the source and target, which can then
be used as training samples. The procedure entails
five major steps.
Text preprocessing. Punctuation, newlines, tabs,
headings, and list items are separated from adja-
cent tokens and converted into dummy tokens. All
digits become their own tokens.
Dynamic alignment. All matches and edits be-
tween source and target are determined using a
dynamic program, similar to that used for Leven-
shtein distance but with key differences: matches
are permitted between non-exact string matches if
they are determined, in a previous run of the al-
gorithm, to be possible substitutions; edits can be
longer than one token; and extending an edit in-
curs a lesser penalty than beginning a new edit.
Merging edits. Short substitutions are merged to-
gether if there is an intervening single-word match
between them, and the entire range is considered
a substitution. The resulting edits allow for longer
stretches of parallel sentence data.
Calculating confidence. For every edit, a score is
calculated based on a mix of statistics (calculated
from a prior run of the dynamic program), and a
heuristic that assigns higher scores to longer sub-
stitutions, to shorter insertions or deletions, and to
edits that are adjacent to other long edits.
Extracting sentences. An iterative algorithm tra-
verses all edits and matches from left to right,
building a parallel source–target “sentence” as it
goes. A sentence ends when an edit of too low
confidence is reached, or once it exceeds 100
words. In the latter case, the next sentence will
start one-third of the way through the previous
one, so sentences may overlap by up to 67 tokens.

Each extracted sentence becomes a training
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Figure 3: Basic design of the MTPP. Stages within the MTPP shaded in orange are responsible for transforming
the MT target language (“tgt”) into properly formatted written language.

sample. Any single-word string matches are also
written as training samples—because this is not a
typical MT problem in that the source and target
“languages” are both English, we want to bias the
system towards simply regurgitating input words
it does not know how to translate. From 8,775 re-
ports, this method generates many training sam-
ples: 4,402,612 for transcripts, 4,385,545 for hy-
potheses, and 8,788,157 for the combined set.

3.3 Model training

For the translation model, we employed typi-
cal statistical MT techniques. Optimal word-to-
word alignments between source and target were
learned using expectation maximization (Och and
Ney, 2003). Subject to these alignments, parallel
phrases of up to seven words in length were ex-
tracted. For the monolingual language model, we
trained a 6-gram model with typical interpolation
and backoff parameters.

The MT training stage yields a phrase substi-
tution model and a distortion model. To deter-
mine the relative contribution of the phrase, distor-
tion, and language models in computing transla-
tion option likelihoods, we tuned using minimum
error rate training (Och, 2003): translate all text
in a held-out tuning set, iteratively adjusting the
weights of each contributing model until conver-
gence on an error metric. We used an interpola-
tion of word error rate (WER) and CDER (Leusch
et al., 2006), which only assesses a single penalty
for “block” movements. We include CDER to re-
duce the impact on tuning when entire sentences
are reordered between the dictation and final let-
ter; note that WER would assess numerous single-
word insertion and deletion penalties in such a
case.

3.4 Integration with medical post-processor

To use the MT system in production, it had to
be integrated into a complete software product,
which we refer to as the machine translation post-
processor (MTPP), responsible for all stages of
transformation between the raw ASR hypothesis
and the generated report. Although the bulk of
the decisions made during this process are handled
by MT, the MTPP is responsible for selecting and
preparing inputs for MT and transforming outputs
into human-readable form. We present a simpli-
fied graphical overview of the MTPP in Figure 3.1.

At the first stage, the “preamble” (spoken meta-
data that is often not present in the final report)
and any commands to insert a template are iso-
lated and not sent to MT. Of the pieces that are
subject to MT, any that exceed 1,000 tokens are
split. The resulting chunks are sent to an MT dae-
mon which has models pre-loaded into memory
and can perform multiple translations in parallel.
To each translated chunk, we apply truecasing and
post-editing: several steps including joining digits,
formatting headings, counting and labeling entries
of numbered lists, etc. Finally, all chunks are uni-
fied and put into the correct order.

The preamble detector is based on a two-class
recurrent neural network (RNN) classifier with
pre-trained word embeddings and long short-term
memory (LSTM) units, which tags tokens as either
in- or out-of-preamble, then finds the split bound-
ary according to a heuristic. The RNN truecaser
has a similar architecture but predicts one of three
classes for each token—all lowercase, first letter
uppercase, or all uppercase—through one layer of
softmax output shared across all time frames. This
classifier was trained on automatically generated
data from 15,635 reports. Truecasing is also sup-
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ported through rule-based decisions as well as lists
of truecased forms compiled from ontologies and
prior reports, which include non-initial capitaliza-
tions (‘pH’, e.g.).

3.5 Evaluation

We assess performance of all models in two text
domains: the MT target domain, which is the text
format described in Section 3.2 in which numer-
als are split into individual digits, headers are sur-
rounded by dummy tokens, and case is ignored;
and the post-processor error rate (PER) domain.
The latter is used to estimate the manual effort re-
quired to correct errors in the hypothesis report.
PER can only be calculated from final outputs of
a post-processor, and thus depends upon the inte-
gration described in Section 3.4.

PER is calculated similarly to WER except
that it considers punctuation, newlines, and tabs
as separate tokens, and it excludes any detected
preamble from consideration (keeping the pream-
ble leads to a slight increase in PER globally).
PER is an especially harsh metric in real-world
use, as it penalizes ASR errors, post-processing
errors, and any other source of distance between
the post-processor’s output and the final letter fol-
lowing multiple rounds of manual review.

We measure PER of the MTPP against a base-
line system, which was also developed internally
within EMR.AI for specific use with clinical dic-
tations. The baseline system employs a modu-
lar pipeline, where each module is responsible for
a particular transformation—for instance, one de-
tects a metadata-heavy “preamble” in the dictation
(Salloum et al., 2017a); another converts spelled-
out numbers to numerals, dates, etc. Some com-
ponents of the system are rule based, while oth-
ers rely on machine learning. This system had
been the focus of significant development previ-
ously and was in regular production use prior to
the advent of the MTPP.

4 Results

In the MT target domain, we present three stan-
dard measures of MT performance: WER, CDER,
and BLEU. Results for all possible configurations
of training and tuning data sources are given in
Table 2. Note that these results are on a filtered
test set: only source texts of 1,000 tokens or fewer
were used (190 out of 300 in the test set), as this
was found to be a point beyond which decoding

Tune
Train

Hyp. Tra. Hyp. + Tra. Metric

Hyp.
0.742 0.746 0.741 BLEU
0.266 0.277 0.262 WER
0.170 0.171 0.170 CDER

Tra.
0.754 0.745 0.747 BLEU
0.259 0.276 0.258 WER
0.164 0.171 0.167 CDER

Hyp. + Tra.
0.751 0.721 0.748 BLEU
0.273 0.317 0.262 WER
0.166 0.167 0.166 CDER

Table 2: Evaluation of test set on different training and
tuning configurations with BLEU, WER, and CDER.

Tune
Train

Hyp. Tra. Hyp. + Tra.

Hyp. 0.322 0.331 0.324
Tra. 0.324 0.338 0.321

Hyp. + Tra. 0.328 0.349 0.323

Table 3: Evaluation of the test set on different training
and tuning configurations in terms of PER.

PER
Method In: hyp. In: tra.

No post-processing 0.619 0.574
Non-MT post-proc. 0.411 0.341

MTPP (best MT model) 0.321 0.271

Table 4: Comparison of PER in several conditions. Re-
sults are reported using ASR hypotheses as input (“In:
hyp.”), as in our other experiments, as well as using
manual transcriptions as input (“In: tra.”).

slowed considerably. Note that all BLEU are well
above 0.7; these may appear to be exceptionally
high scores, but note that our task here is easier
than a “standard” translation task—to give some
idea of a baseline, comparing the totally untrans-
lated dictations in the test set to their matching re-
ports yields a BLEU of 0.318 (as well as WER
0.514, CDER 0.483), which would be quite im-
possible in a case of translating between two dif-
ferent languages.

For the realistic evaluation of the complete sys-
tem, we present PER measurements on final out-
puts of the MTPP in Table 3. Because the MTPP
contains logic for breaking up the translation task
across longer notes, no filtering is necessary and
all 300 notes in the test set can be used. We must
emphasize that these results cannot be compared
with any quantities in Table 2, as they are mea-
sured in different domains entirely.
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Tra. . . . her mother was here and had them gave her ibuprofen as soon as she started . . .
Hyp. . . . her mother was here and have him give her an i v profile missing she started . . .

MTPP . . . her mother was here and gave her ibuprofen missing, she started . . .
Tra. in the meantime comma i will have hospitalist come by and see the patient . . .
Hyp. in the meantime comma i will have our hospital was combine to the patient . . .

MTPP In the meantime, I will have hospitalist was come by and see the patient . . .
Tra. carafate one gram a c and h s venlafaxine e r seventy five milligrams a day
Hyp. carafate one gram a c n h s meloxicam m e r seventy five milligrams a day

MTPP 6. Carafate 1 g before meals and at bedtime. / 7. Venlafaxine ER 75 mg a day.

Table 5: Examples where the MTPP has “corrected” ASR errors. In each set of three lines, the first is the manual
speech transcript, the second is the ASR hypothesis of the same audio, and the third is the output of the MTPP given
the ASR hypothesis. Bolded text shows where the MTPP has generated output closer to the actual speech than
to its input. Note, for the third example, that the abbreviation ‘a.c.’ (ante cibum) indicates to take the medication
before meals, and ‘h.s.’ (hora somni) at bedtime.

The comparison of PER between all nine condi-
tions suggests that the best results are achieved on
training data that includes ASR hypotheses (test
of proportions: χ2 = 533, p < .001, when com-
paring average PER with and without hypotheses
in training). This is not a highly surprising result,
as the evaluation task is to translate hypotheses,
although we had wondered before if hypotheses
were too noisy to constitute good training data.
For tuning data, it appears that either hypotheses
or transcripts yield good results, but a mixed set
is always worse (χ2 = 44.8, p < .001, comparing
average PER when tuned on the mix to PER when
tuned on transcripts).

To quantify the impact of MT on post-
processing accuracy, we also measured PER of
the source hypotheses both before any post-
processing and after passing through our baseline
post-processor. Results are reported in Table 4.
Overall, the MTPP results in a significant decrease
in PER from the previous post-processor: a rela-
tive reduction of 21.9% error rate for hypotheses
(χ2 = 4102, p < .001).

For further context, we also report PER using
manual speech transcriptions as input (the right-
most column of Table 4). This is not a realistic
use case, but we provide the measurements here
to give a sense of the effect ASR errors have on
typical PER measurements. The ASR WER of
our MT test set was 0.142—much greater than the
observed PER difference between hypotheses and
transcripts, indicating that many formatting errors
in PER occur on the same tokens as ASR errors.

4.1 Correcting ASR mistakes

For the MT models that learn from hypotheses, it
was conceivable that they could actually learn to
correct ASR mistakes by identifying common er-
ror patterns and how they are typically corrected in
the final letter. To the MT system, there is no es-
sential difference between, say, inserting format-
ting elements around a section header and replac-
ing an erroneously recognized phrase with the in-
tended phrase from the report; all words, numer-
als, and structural elements are tokens alike.

Indeed, we found several occurrences in our test
set of phrases in MTPP output that were more sim-
ilar to manual transcriptions of these dictations
than to the ASR hypotheses that served as input
to the MTPP. Refer to the examples in Table 5:
each shows a transcript of a segment of speech
(first line), the ASR hypothesis on that same seg-
ment (second line), and the output of the MTPP
when given the ASR hypothesis as input (third
line). In each, the MTPP output contains a bolded
segment that is closer to the transcription than to
the hypothesis. (Although note some incomplete
cases, such as “hospitalist was come by and see” in
the second example.) All of these examples were
taken from the same test set as the other results in
this paper. None of the transcriptions from the test
set were ever seen by any system during training,
tuning, or testing (all previous quantitative results
used ASR hypotheses, not manual transcriptions,
as the source language).

5 Discussion

Using MT for the post-processing task has numer-
ous advantages over other approaches. Most ob-

126



viously from our results, it achieves a high level
of accuracy, even roundly outperforming a sys-
tem containing numerous hand-designed rules and
deep learning approaches that were trained on
large amounts of annotated data.

Additionally, MT is a better solution for an
adaptable and improvable system. The core of the
system can be adapted to other dialects of English
or even other languages by retraining the models.
Even in the simplest use case, however, retrain-
ing can be periodically undertaken to improve per-
formance on current data, accounting for possible
changes over time in dictation or report writing
style, as well as any ongoing development of the
associated speech recognizer.

A final advantage is in the cost of maintaining
the system. Although MT training has relatively
high compute and memory requirements, there is
very little cost in human time to retrain new mod-
els. Although our very best results did use tran-
scriptions, our experiments demonstrate that the
entire process can be reproduced fruitfully with-
out them (and may even be subject to less unpre-
dictability). To continuously improve a rule-based
system, direct human intervention is required to
write and validate new rules. For any supervised
machine learning modules of a post-processor, hu-
man annotators may also be required.

6 Conclusion

In this paper we presented an overview of a com-
plete and validated medical ASR post-processing
system that relies on MT, as well as the novel pro-
cessing methods required to ensure that MT is a vi-
able approach for clinical dictations. Our strategy
has multiple significant advantages compared to
traditional rule-based approaches, and even other
machine learning-based ones—not only does the
MT design result in substantially reduced format-
ting errors, achieved in part by its ability to cor-
rect errors made by the speech recognizer in the
first place, but it can also be retrained and im-
proved fully automatically, without the need for
costly manual adjustments.
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Abstract
We address the problem of determining entity-
oriented polarity in business news. This can be
viewed as classifying the polarity of the senti-
ment expressed toward a given mention of a
company in a news article. We present a com-
plete, end-to-end approach to the problem. We
introduce a new dataset of over 17,000 manu-
ally labeled documents, which is substantially
larger than any currently available resources.
We propose a benchmark solution based on
convolutional neural networks for classifying
entity-oriented polarity. Although our dataset
is much larger than those currently available,
it is small on the scale of datasets commonly
used for training robust neural network mod-
els. To compensate for this, we use trans-
fer learning—pre-train the model on a much
larger dataset, annotated for a related but dif-
ferent classification task, in order to learn a
good representation for business text, and then
fine-tune it on the smaller polarity dataset.

1 Introduction

We report on research done in the context of
PULS—a project for monitoring business news
media (Du et al., 2016; Huttunen et al., 2013).1

The system gathers 8,000–10,000 documents daily;
each document is processed by a cascade of clas-
sifiers, including a named entity (NE) recognizer.
A key NE in business news type is company or
organization, which can be mentioned in a posi-
tive or negative context. For example, launching
a new product or signing a new contract is viewed
as a positive event; involvement in a product recall,
bankruptcy or fraud is considered negative.

We focus on determining the polarity of a men-
tion of a given company in news media. Polarity
classification is important, since if a company ap-
pears in negative contexts frequently, it may affect

1http://newsweb.cs.helsinki.fi or
http://puls.cs.helsinki.fi

its reputation, impact its stock price, etc. Polar-
ity prediction, as defined here, is similar to sen-
timent analysis (Liu and Zhang, 2012): both re-
quire the system to classify a span of text as posi-
tive or negative. However, there are crucial differ-
ences. Business news articles typically do not aim
to express emotion or subjectivity—positive and
negative events are usually described in a neutral
tone. Thus, vocabularies of affective terms—e.g.,
amazing or terrific—commonly used in sentiment
analysis, are not helpful for business polarity. Anal-
ysis should rather focus on affective events (Ding
and Riloff, 2016), i.e., stereotypically positive or
negative events. Further, business news employs
genre-specific word usage; words seen as negative
in “generic” contexts, may indicate a positive con-
text here, and vice versa.Negative terms in (Hu and
Liu, 2004), e.g., include “cancer”, which in busi-
ness often appears in positive contexts, as when a
pharmaceuticals unveil novel treatments.

While most work in sentiment analysis is done at
the document level, we aim to classify entity men-
tions in text. This requires changes to document-
based classification models. We explore two con-
volutional neural network (CNN) architectures, ini-
tially proposed for document-level classification,
and adapt them for entity-oriented classification.
The modified models have an additional input chan-
nel: the focus—the position(s) in text where a target
company is mentioned. Focus helps the model dis-
tinguish among different companies mentioned in
text and assign them polarity independently.

As far as we aware no suitable datasets exist for
training models for entity-oriented polarity classi-
fication. We annotated a dataset of over 17,000
business news articles, which we release for public
use, to provide a foundation for an eventual stan-
dard evaluation. Despite being much larger than
any existing datasets for business polarity detec-
tion, it is still small compared to what is typically

129



used when training CNNs for text classification.
We attempt to compensate for the small training

data by transferring knowledge from a different cor-
pus. The second corpus is large, but annotated for
a different task: each document has a set of event
labels; some of these may be mapped to polarity
labels. We explore two strategies for knowledge
transfer: i) manually mapping from event labels to
polarity labels, and ii) pre-training CNNs for the
event classification task, followed by unsupervised
transfer of high-level features from event classifica-
tion to polarity. We demonstrate that unsupervised
transfer improves performance.

2 Related work

Sentiment analysis: Deep learning for sentiment
analysis is an active area of research. Some
methods learn vector representations for entire
phrases (Dos Santos and Gatti, 2014; Socher et al.,
2011); others learn syntactic tree structures (Tai
et al., 2015; Socher et al., 2013). A simpler ap-
proach using CNNs (Kim, 2014) has demonstrated
state-of-the-art performance (Tai et al., 2015).

Interest in applying sentiment mining to the busi-
ness domain is spurred by important industry appli-
cations, such as analyzing the impact of news on fi-
nancial markets (Ahmad et al., 2016; Van de Kauter
et al., 2015; Loughran and McDonald, 2011). If
a company frequently appears in news in nega-
tive contexts it may affect its reputation, impact its
stock price, etc., (Saggion and Funk, 2009). Al-
though news reports usually have a time lag, events
reported in news have longer-term impact on in-
vestor sentiment and attitudes toward a given com-
pany (Boudoukh et al., 2013).

A major difficulty in training entity-oriented
polarity models is the lack of publicly available
datasets. In the corpus of 5,000 sentences published
by Takala et al. (2014), most instances (sentences)
contain no company name, and hence cannot be
used for predicting polarity for specific entities. A
dataset of 679 sentences in Dutch, annotated with
entity-oriented business sentiment, was published
by Van de Kauter et al. (2015). They demonstrate
that a. in financial news, not all sentiment expres-
sions within a sentence relate to the target company;
b. sentiment is often expressed implicitly.

A shared task on fine-grained sentiment analysis
of financial microblogs and news was held recently
as part of SemEval (Cortis et al., 2017), and pro-
vided a small dataset containing company names.

This dataset contains only 1,000 news headlines,
of which only 165 instances mention more than
one company name, of which only 20 instances
contain names with different polarities (positive
for one company but negative for another). Thus,
using entity-oriented methods on this dataset may
not lead to an advantage in performance. Of the
ten best-performing systems on the news sentiment
task, many used sentence-level classification with
no treatment of target company (Rotim et al., 2017;
Cabanski et al., 2017; Ghosal et al., 2017; Kumar
et al., 2017); others replace the target name with
a special token (Mansar et al., 2017; Moore and
Rayson, 2017; Jiang et al., 2017) or use company
name as a feature (Kar et al., 2017), though none of
the papers provide any evidence that special treat-
ment of the target yields a gain in performance. In
our experiments with the SemEval dataset (Pivo-
varova et al., 2017) a model with explicitly speci-
fied target worked slightly worse than a baseline.

The dataset that we release with this paper is 20
times larger and contains entire documents, where
a given entity may be mentioned multiple times,
with many different names mentioned in the same
document. This corpus is suitable for experiments
with entity-oriented polarity, and our experiments
explicitly contrast models that take focus as an
input against models that do not use the information
about the target company’s position.

Transfer learning: a.k.a. inductive transfer, is
a technique for applying knowledge accumulated
from solving one problem to improve the solution
for a different problem. We use feature transfer,
where the goal is to learn transferable representa-
tions for data, which are meaningful for multiple
tasks (Pan and Yang, 2010; Bengio et al., 2013;
Conneau et al., 2017), i.e., very general, low-level
representations. On the other hand, one might con-
sider two related tasks, and try to gain knowledge
from one to help with the other. In such cases,
one wishes to transfer representations at a much
higher level (Glorot et al., 2011). An analysis of
the trade-offs between generality and specificity of
learned features can be found at (Yosinski et al.,
2014). Deep learning with knowledge transfer has
been previously applied to sentiment analysis in the
context of domain adaptation (Glorot et al., 2011)
and cross-lingual applications (Zhou et al., 2016).
In our experiments, we apply knowledge transfer
from event classification to sentiment analysis.
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3 The Model

We train a classifier for entity-oriented polarity,
which receives on input a text and a “focus” vector—
the positions of mentions of the target company in
text—and outputs the polarity for this company.
For this purpose we extend state-of-the-art models
in (Kim, 2014). The rationale for introducing focus
is that polarity is not a feature of the text as a whole,
but of each company mention; two company men-
tions in a text may have opposing polarities, and
the model needs be able to distinguish them.

The architecture of the model is shown in Fig-
ure 1. The inputs are fed into the network as sen-
tences of a fixed size, zero-padded; each word
is a fixed-dimensional embedding vector comple-
mented with a scalar indicating the focus. The
focus vector is shown in darker grey in Figure 1,
with the the company mention framed in red. This
provides an additional dimension to the word em-
bedding, and is crucial for distinguishing between
instances that differ only in focus and polarity.

The inputs are fed into a layer of convolutional
filters with multiple widths, optionally followed
by deeper convolutional layers. The results of the
last convolutional layer are max-pooled, produc-
ing a vector with one scalar per filter, which is
then fed into a fully-connected layer with dropout
regularization and a soft-max output layer. The
output is a 2-dimensional vector that is a proba-
bility distribution over the two possible outcomes:
positive and negative. In manual annotation we
use five values: “very negative” [1 0], “somewhat
negative” [.7 .3], “neutral” [.5 .5], “somewhat posi-
tive” [.3 .7] and “very positive” [0 1]. The model
may output any possible distribution. The loss is
cross-entropy between the network’s output and
the true distribution; the loss updates the weights
via back-propagation.

We represent words by embeddings, trained us-
ing the GloVe algorithm (Pennington et al., 2014)
on a corpus of 5 million news articles. Each arti-
cle was pre-processed using lemmatization and the
PULS NE recognition system. All NEs of the same
type are mapped to the same special token; i.e.,
all company names have the same embedding, all
person names another, etc. We continue to train the
embeddings during polarity training by updating
them at each iteration. This allows the model to
learn properties of words significant for polarity,
such as the difference between antonyms, which
may not be captured well by the initial embeddings.

Class # instances Class # instances
very positive 2709 very negative 2532
positive 4001 negative 4645
neutral 285 contradictory 146

Table 1: Class distribution in annotated data.

4 Data

The dataset contains 17,354 different documents
with 19,689 company names. PULS clusters news
into groups, each group containing documents de-
scribing the same story.2 Then we manually anno-
tate each group with business polarity of the most
salient company names.

In our experiments, each training instance is the
first five sentences in the document beginning from
the first mention of the focus company. This choice
was made because typically the beginning of an
article carries information about the principal event,
whereas later text contains background information
which may mention the company, but where the
polarity may be different. In case this processing
results in identical instances, we remove duplicates,
and keep only one copy.

The resulting dataset used in the experiments
contains 14,172 distinct instances. The distribution
of the data among the polarity classes is shown in
Table 1. Instances labeled “contradictory” are not
used for testing and training at present. The data
were split into five folds for cross-validation.

We also have a separate, large collection of news
articles (Pivovarova et al., 2013), which is anno-
tated for business events—for example, Merger,
Contract, Investment, Product launch, Product re-
call, Fraud, Bankruptcy—291 labels in all. An
article may have multiple event labels. Some of
these labels may imply (or strongly correlate with)
positive or negative polarity. We attempt to exploit
this large data to improve polarity prediction. To
this end, we attempt two approaches, with several
variations: manual mapping and high-level fea-
ture transfer.

For manual mapping, we manually selected
those labels which we believe most clearly imply
a polarity: e.g., Investment, Product launch and
Sponsorship are considered positive, while Fraud,
Layoff and Bankruptcy are negative; in all, we iden-
tified 26 “positive” and 12 “negative” labels. Using

2The grouping algorithm takes into account the semantic
similarity of the keywords, and the distributions of NEs within
the documents (Escoter et al., 2017)

131



  

A 

US 

appeals 

Court 

 revived 

a 

civil 

suit 

accusing 

Apple 

of 

creating 

a 

monopoly 

text representation
with word embeddings

focus 
vector

first convolutional layer
with multiple filter widths

feature maps feature mapssecond convolutional layer
with multiple filter widths

max-pooling fully-connected layer
with dropout and softmax or 

sigmoid output

Figure 1: A model architecture with focus vector and two convolution layers

only these 38 event labels, we constructed a train-
ing set, removing documents with labels that result
in no polarity, or conflicting polarities. Further,
since it is impossible to know to which company
the label refers, only documents whose headlines
and the first sentence contain exactly one com-
pany mention were kept. (For example, if one
company goes bankrupt and another acquires its
assets—such documents are not used.)

The resulting dataset is highly skewed with 90%
of the data positive. To assure that the positive and
negative subsets have similar size, we apply ran-
dom undersampling (Dendamrongvit and Kubat,
2010), i.e., we use a random subset of the positive
documents. Of more than two million documents
in the original event corpus, 100,000 have a non-
ambiguous negative label and mention exactly one
company. The resulting dataset consists of 200,000
documents; 10% is used as a development set to
decide when to stop training. We use this newly
generated 200K document event corpus in 2 ways:
Tuning: a two-stage learning procedure where the
model is first trained using the event corpus, and
then is tuned using the smaller polarity corpus.
Training on combined data: in this strategy, data
from both corpora are mixed together, and used for
training in random order.

In high-level feature transfer, we aim to reuse
relatively high-level, task-specific features. We ini-
tially train a model to predict event types—using
all event labels and all documents, irrespective of
how many companies they mention. This requires
a change in the models: because event labels are
not mutually exclusive, we use a sigmoid function

instead of soft-max in the topmost layer. After the
event model is fully trained on the event labels, we
strip off the last fully-connected layer of the net-
work, replace it with a two-class output layer for
polarity, and resume training using the smaller po-
larity dataset. We expect that the more task-specific
features—ones obtained closer to the output layer—
will be useful to determine polarity values, due to
the latent relatedness between the two tasks. Thus,
we keep almost the entire model, with the exception
of the very final layer.

From the large dataset labeled with events, we
use 10% as a development set, to determine when
to stop training, and to find the best model; another
10% is used as a test set. Results from representa-
tive runs are shown in Table 2.

The bigger model gives better performance—
with a much larger number of filters (1000 vs. 128).
It is not possible to use such large models for learn-
ing polarity without transfer, because these models
are trained on much smaller data and would quickly
overfit. Therefore, in subsequent experiments we
use two convolutional layers with filter sizes 3,4,5,
with 128 filters of each size. 3

5 Experiments

We present experiments with focus and knowledge
transfer variants. Table 3 shows the results for
each model variant, averaged across five-fold cross-
validation. We report accuracy and cosine similar-

3The overall accuracy of the method can likely be im-
proved further by careful tuning of hyper-parameters. Here
we focus on the comparison of architectures, and defer hyper-
parameters for future work.
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Hyper-Parameters rec prec F1
conv 2; filters 128; sizes {3,4,5} 35.85 75.42 48.53
conv 1; filters 1000; sizes {3,7,11} 50.80 58.13 53.89

Table 2: Event classification results

Transfer Strategy Focus Accuracy Cosine
none – 81.22 71.51
none + 81.44 72.93
manual tuning + 82.07 73.98
manual combined data + 82.01 70.92
feature transfer – 83.94 71.17
feature transfer + 84.44 71.76
baseline (SVM) 52.02

Table 3: Experimental results (multiplied by 100, for readability.)

ity between the model output and the annotation.
To compute accuracy as follows. In annotation

we treat polarity detection as a three-way classifica-
tion task; values inside [−0.1, 0.1] are considered
neutral; values further from 0.0 are positive or neg-
ative. However, for reasons presented below, the
models do not do well on identifying neutral in-
stances. Thus, in the experiments presented here,
we evaluate prediction of binary polarity4: negative
vs. positive or neutral. Accuracy measures how of-
ten a model blunders, and predicts negative polarity
rather than positive or neutral, or vice versa.

Cosine similarity5 is computed by collecting all
of the model’s polarity probabilities into one vector
and one for the manually assigned polarities, and
measuring the cosine between the vectors; also, po-
larities are mapped into the interval [−1, 1]. This
gives a measure of closeness between model pre-
diction and the ground truth, including differences
between “positive” and “very positive” classes.

As the results show, accuracy and cosine similar-
ity do not produce consistent rankings, because
they measure different aspects of performance.
From a practical, user-oriented point of view, it
may be more important that a model avoid gross er-
rors, rather than capturing subtle shades of polarity.
In manual annotation we noticed that some dis-
tinctions (“positive” vs. “very positive”) is far from

4Due to the industry-level requirements: in business news
negative polarity has important implications; “neutral” cover-
age may even be viewed mildly positive, as the entity men-
tioned is receiving (non-negative) publicity, etc.

5This is the official measure of the SemEval business po-
larity classification task (Cortis et al., 2017); we include it
because it may be useful for indirect comparison of results.

clear for human annotators. Thus, we are interested
in the models that yield the best accuracy.

In addition, we used a SVM classifier as a base-
line. The baseline does not use any information
about the target company. We use a one-vs-all
strategy to obtain three-way classification. For the
baseline we report only the accuracy, since this
method does not directly produce probabilities.

6 Discussion

Knowledge transfer: Table 3 shows that high-
level feature transfer outperforms manual mapping.
The main reason might be that feature transfer can
benefit from a very large corpus of 2 million docu-
ments, while only 200,000 documents can be used
with the manual mapping approach, which prevents
us from training larger models due to over-fitting.
The mapped dataset may suffer from other prob-
lems, resulting from how it is created. First, it con-
tains no articles with neutral polarity—if an article
has no positive or negative label, we cannot as-
sume it to be neutral. For example, articles labeled
Corporate appointments may have positive or nega-
tive polarity. Second, although we choose only the
most “trusted” event labels for mapping to polarity,
the dataset still contains noise: e.g., a document
labeled as Merger and assumed to be positive may
in fact discuss a canceled merger. Third, since we
use only a small subset of the labels, the dataset is
highly skewed and incomplete—most event types
and data are not used. Most importantly, using man-
ually mapped data, a model is trained to perform
a task different from our target—it learns to dis-
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Example Truth +Focus –Focus Comment
1 Valeant to sell Dendreon unit to Sanpower for $820

million. Canada’s Valeant Pharmaceuticals Inter-
national Inc. said its affiliate will sell its Dendreon
cancer business to Sanpower Group Co. Ltd. for
$819.9 million, as the drugmaker continues to shed
its non-core assets to repay debt.

-1.0 0.022 -0.322 The model without focus per-
forms better since the company
name is mentioned far away
from the polarity expression and
there is another name in be-
tween.

2 Samsung wins over Apple in $399 million patent
appeal.

-1.0 -0.333 0.004 Model without focus fails: two
companies with opposite polari-
ties involved in same event.

3 Facebook CEO Mark Zuckerberg and his wife are
dropping controversial suits they filed in December
to buy small plots of land that are part of a [...]
estate they own on the island of Kauai in Hawaii.

0.0 -0.743 -0.397 Text is about Facebook CEO,
not the company itself. None of
the models handle neutral com-
pany mentions well.

Table 4: Model comparison: CNN with/without focus using transfer. Company in focus is in bold

tinguish not positive vs. negative polarity, but one
(sub-)set of event labels from another. We cannot
assume that the model learns polarity patterns, only
that polarity correlates with certain event types.

Focus: The results indicate that focus further
improves performance.6 On some test instances,
models without focus outperforms models with
focus—this happens when polarity expressions lie
outside the filter window around the focus com-
pany, e.g., as in Example 1 in Table 4.

If two companies within the same text have oppo-
site polarities, a model without focus can assign the
correct polarity to at most one of them, as in exam-
ple 2 in Table 4. Such cases are rare in our dataset;
typically, when two companies are involved in the
same event, they have the same polarity, e.g., when
they strike a deal. Only 6% of instances in our
dataset have a paired instance that has identical text
but different focus and opposite polarity. Another
case when focus is useful is when a document con-
tains much background information, which may
contain opposite polarity statements. Estimating
the number of such cases is an arduous task. Since
in some cases a model with focus performs worse
than a model without focus, there is no clear gain in
that regard. However, the best-performing transfer
strategy works slightly better, as seen from Table 3.

Neutral polarity: Another observation is that
all of our models have difficulty in detecting neu-
tral polarities, as shown in Example 3 (which is
about Facebook’s CEO, rather than the company
itself). Neutral examples are rare in our dataset,
as shown in Table 1. This is probably the main
reason why the models are unable to distinguish
neutral polarity. This problem may be helped by
annotating more neutral instances.

6Results are statistically significant at p < 0.05 or lower.

7 Conclusion

We address the problem of entity-oriented business
polarity detection. The main contributions are: I. a
dataset of 17,000 annotated documents, which is an
order of magnitude larger than any previously avail-
able resources for this task;7 II. we propose bench-
mark solutions to this problem, based on CNN ar-
chitectures originally intended for document-level
polarity classification, modified for entity-oriented
polarity classification by explicitly incorporating
focus into the model; III. we demonstrate that per-
formance can be improved via transfer learning,
by training a network on a much larger corpus,
which is annotated for a different, distantly related
task—namely, classification of event types.

We compare manual label mapping with transfer-
ring high-level features, and demonstrate that the
latter approach performs better, and is less subjec-
tive; i.e., features relevant for finding event types
work better than a simplistic mapping between the
two tasks. The rationale behind this is that busi-
ness polarity is latently inherent in the event types
themselves: some event types carry a positive or
negative polarity, while others do not indicate an
unambiguous polarity. Therefore, attempting to
map event labels directly to polarity is problematic.

For manual mapping of event labels, we can use
only documents with exactly one company and “un-
ambiguous” event labels, while for transfer learn-
ing we can use the entire event dataset, which lets
us use much more data for training bigger models.

High-level feature transfer yields 15.8% error
reduction—81% to 84% accuracy—as compared
to using only the small polarity-annotated corpus.

7The corpus is available at puls.cs.helsinki.fi/
polarity
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Abstract

This paper investigates the use of Machine
Translation (MT) to bootstrap a Natural Lan-
guage Understanding (NLU) system for a new
language for the use case of a large-scale
voice-controlled device. The goal is to de-
crease the cost and time needed to get an an-
notated corpus for the new language, while
still having a large enough coverage of user
requests. Different methods of filtering MT
data in order to keep utterances that improve
NLU performance and language-specific post-
processing methods are investigated. These
methods are tested in a large-scale NLU task
with translating around 10 millions training ut-
terances from English to German. The results
show a large improvement for using MT data
over a grammar-based and over an in-house
data collection baseline, while reducing the
manual effort greatly. Both filtering and post-
processing approaches improve results further.

1 Introduction

In recent years, there has been growing inter-
est in voice-controlled devices, such as Amazon
Alexa or Google home. This success makes the
quick bootstrapping of corresponding systems, in-
cluding NLU models, for new languages a priori-
tised goal. However, building a new NLU model
for each language from scratch and gathering the
necessary annotated corpora implies a significant
amount of human time and effort both by anno-
tators and scientists. In addition, this procedure
is not scalable to supporting an increasing number
of languages. On the other hand, a large amount
of data is usually available for the language(s) that
are already supported. Leveraging this source of
data seems an obvious solution. In this paper,

The author Rajen Chatterjee conducted the work for this
paper during an internship at Amazon, Cambridge, UK

we investigate the use of Machine Translation to
translate existing data sources to a new target lan-
guage and use them to bootstrap an NLU system
for this target language.

A common procedure for data gathering for a
new language starts by some grammar-generated
data. Significant time and effort is consumed at
this stage by language specialists to build gram-
mars that offer a good coverage needed for a first
working system. Once this first system reaches
a certain performance threshold, it can be shared
with beta users. This step allows more data that
cover real user’s queries to be generated. All exist-
ing data sources are then used to train the system
that will be released to the final customers, once
a new higher performance threshold is reached.
Finally, when the system is released to the cus-
tomers, customer data become available. Beta and
customer data better cover the user utterances than
grammar-generated data and are, thus, valuable for
the development of a good and generalisable NLU
system. However, it takes a significant amount of
time and human annotation effort in order to have
enough annotated beta, and later customer data,
needed to build a good NLU system. Furthermore,
having a system robust to new domains and fea-
tures is very challenging and requires data with a
wide coverage.

Machine Translation can be a useful tool for the
quick expansion to new languages by automati-
cally translating customer data from existing re-
sources to new languages. This could decrease
significantly the time needed to develop an NLU
system that replies well to customer queries and is
robust to new features. In this paper, we work with
a large-scale system where around 10 millions an-
notated customer data are available for US English
with a wide coverage of domains and features. We
use this corpus to augment the training data of a
new language. In particular, we will present our
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experiments on applying our technique to boot-
strap a German NLU system based on existing US
English training data.

In addition, we explore ways to choose the
“good” translations from the translated ones, i.e.
the ones that improve the NLU performance. The
investigated methods fall in the following cate-
gories. First, we investigate filtering based on
MT quality. This method makes use of scores
generated by the MT model to assign the qual-
ity of translations. The second method explores
improving the NLU performance by making sure
the filtered translations keep the semantic infor-
mation required by the NLU system. In this case,
the matching of the NLU labels after a backward
translation task is used as the filtering criterion.
Lastly, some language-specific post-processing is
applied on the translation output. This includes
resampling data with catalogues of the new lan-
guage. Another post-processing step applied is to
keep the original (EN) version of certain slots that
the users tend to leave untranslated.

This paper is organised as follows. In Section 2,
we give an overview of related literature. In Sec-
tion 3, we present the methods for MT filtering
for bootstrapping a new language while improv-
ing NLU performance. Next, we detail the experi-
mental setup in section 4, including details on the
used NLU and MT systems as well as the mono-
lingual and bilingual corpora used. Afterwards,
we present results in Section 5 before concluding
the paper in Section 6 .

2 Background work

Many efforts to avoid or minimize this manual
work have been made in the last few years us-
ing transfer learning, active learning and semi-
supervised training. One of the successful ap-
proaches has been making use of an MT system
to obtain annotated corpora. The results of such
works depend on the availability of an MT sys-
tem (general-purpose or in-domain), on the qual-
ity of the acquired translations and on the preci-
sion of NLU label-word alignment when passing
from one language to another. Garcı́a et al. (2012)
combine multiple online general-purpose trans-
lation systems to achieve transferability between
French and Spanish for a dialog system. Jabaian
et al. (2011) study phrase-based translation as an
alternative to Conditional Random Fields (CRF)
to keep NLU label-word alignment info in the

decoding process. Lefèvre et al. (2010) propose
the Semantic Tuple Classifiers (STC) model with-
out any need for alignment information. Servan
et al. (2010) translate the conceptual segments (i.e.
NLU labeled) separately to maintain the chunking
between source and target language but at the cost
of degrading the translation quality.

There is a wide literature on assessing the MT
quality. Evaluating the quality of MT output has
been a topic in the Workshop of Machine Trans-
lation (WMT) since its beginnings (WMT06) and
a separate task since 2008 (“Shared Evaluation
Task” (WMT08)). Since 2012 a more specific
“Quality Estimation Task” (WMT12) appears with
a focus on deciding whether a translation is good
and how to filter out translations that are not good
enough. In addition, in 2017 (WMT17) other re-
lated topics appear including post-editing and ban-
dit learning as specific tasks of correcting errors
and improving MT quality by learning from feed-
back. A straight-forward method is using human
translated data as the true reference and correct
MT errors using this ground truth. Automatic
Post-Editing (APE) can also improve MT qual-
ity by modifying MT output to the correct version
(Chatterjee et al., 2017). Bandit learning (Sokolov
et al., 2017) replaces human reference and post-
edits by a weak user’s feedback. This feedback is
introduced in the training process in a reinforce-
ment learning framework updating the gradient
to maximize the rewards corresponding to user’s
feedback.

However, all previous method focus on improv-
ing MT quality (i.e. BLEU score) and not the NLU
task of interest. Jabaian et al. (2011) add noise to
translation data and use translation post-editing to
increase the robustness of NLU to translation er-
rors. Other methods include measuring the proba-
bility of a translated utterance by applying a target
language LM, i.e. measuring if a translated utter-
ance is typical, or computing the likelihood that
an alignment between the source and the trans-
lated utterance is correct, as Klinger and Cimiano
(2015) explore for the sentiment analysis task. We
will do something similar in this paper by using
directly the MT scores (alignment, translation and
language model scores) as a measure of MT qual-
ity independent of the NLU tasks. In addition, we
explore and extend a different approach for filter-
ing which was presented by Misu et al. (2012).
In order to select utterances among possibly er-
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roneous translation results, the authors use back-
translation results to check whether the translation
result maintains the semantic meaning of the origi-
nal sentence. The main difference though is that in
the latter paper the method is applied using a very
small dataset (less than 3k translated utterances)
while we work with around 10 millions.

3 Method

In this paper, we explore bootstrapping of NLU
models for a new language by translating train-
ing data from an NLU system for a different
language. The training data is representative of
user requests to voice-controlled assistants; anno-
tations are projected from source to target utter-
ances during MT decoding. Since the quality of
NLU models trained on MT data depends heavily
on the quality of the MT data, we explore differ-
ent methods for filtering and post-processing. In
the following, we describe all approaches in more
detail.

3.1 Filtering

The goal of the filtering approaches is to choose
”good” translations, i.e. we aim to keep primary
translations in the training data which are likely
to be useful for building NLU models. We ex-
plore two approaches for filtering, one based on
MT system scores and one based on semantic in-
formation.

3.1.1 Filtering based on semantic information

Misu et al. (2012) remove erroneous machine
translations in the NLU training data by using
back-translations to measure whether the seman-
tic information of a source utterance is retained in
the translated utterance. In particular, they apply
the following steps:

1. Label the source utterance with an NLU
model

2. Translate the source utterance
3. Label the translated utterance by aligning

with the result of step 1
4. Translate the translated utterance back into

the source language
5. Label the back-translated utterance with an

NLU model
6. Keep the target utterance, if the the recog-

nised intents of steps 1 and 5 are the same

The authors present results with Japanese as the
source and English as the target language, sug-
gesting improved spoken language understanding
results by filtering translations for the training data
with their approach. Thus, this approach aims to
keep translations for which some semantic infor-
mation of utterances is retained, potentially avoid-
ing errors in the NLU models trained on these
data. We apply this approach in an adapted form,
i.e. instead of the additional alignment step (3),
we project labels using the MT system, i.e. we
make use of the alignment model trained for the
MT system. In addition, we extend the approach
by 1) determining if the recognised slots are re-
tained in addition to the intent, and 2) making use
of the NLU model’s confidence, i.e. we remove
utterances retaining the intent, if the confidence of
the NLU model is very low (< 0.1 on a scale from
0− 1).

3.1.2 Filtering based on MT scores
This approach explores the scores returned by the
MT system for choosing translations from a train-
ing dataset. Since annotating the translations for
quality judgement by humans is expensive, we
considered to use the translation score as a qual-
ity metric that can give us relative quality judge-
ment among a list of translations. In particu-
lar, we computed a threshold for each domain
based on translation scores. The score we used
is the weighted overall translation score as given
by Moses MT toolkit and combining the scores of
the translation model, the language model, the re-
ordering score and some word penalty. To create
a domain-wise threshold, given a translated utter-
ance and its score, we first normalised the score by
utterance length. Afterwards, we computed mean
and standard deviation per domain. We then se-
lected translations that have a score greater than
or equal to the threshold. In this work, we eval-
uated different thresholds like mean of the trans-
lation scores, mean+stdev (standard deviation),
mean+(0.5*stdev), and mean+(0.25*stdev).

3.2 Language-specific post-processing

Aiming to improve the quality of slot values in
the translated data, we explore two strategies for
language-specific post-processing.

3.2.1 Slot resampling
If data are translated from another language, slot
values related to the countries in the source lan-

139



guage might not model those of user requests in
the target language. For example, when request-
ing a weather forecast, American customers would
much more frequently ask for an American city
than a German one. Thus, an utterance ”how is
the weather in New York” is likely to be much
more frequent in the resulting training data than
an utterance ”how is the weather in Berlin”, and
consequently it would appear more frequently in
the data after translation to German. This, how-
ever, doesn’t seem to model language use by Ger-
man customers well and can hence potentially de-
grade performance of statistical models trained on
these data. Aiming to decrease the mismatch in
slots values between source language and target
language use, we used catalogs to resample slot
values for slots where this seemed to be appro-
priate. In particular, we replaced slot values in
the translated data using target language catalog
entries corresponding to the slot. For instance, a
catalog with German cities can be used to replace
”New York” by ”Berlin” in the previously men-
tioned example. For catalogs comprising informa-
tion, which can be used for weighting catalog en-
tities, we made use of it in that we sample entities
according to weights, i.e. the higher the weight,
the more often the corresponding entity is sam-
pled. For example, the number of orders can be
used to weight albums and population size can be
used to weight cities.

3.2.2 Keeping some original slot values
Machine translation systems might incorrectly
translate slot values which should not be trans-
lated. For example, in an utterance ”play we
are the champions by queen”, the song title ”we
are the champions” and the band name ”queen”
should not be translated. While we can apply slot
resampling to ingest existing slot values into such
utterances, we also explore a different approach.
In particular, in this approach we post-process the
translated utterances to retain the slot values from
the source language utterances for certain slots,
such as artists or song titles.

4 Experimental setup

We ran experiments using US English as the
source and German as the target language. Since
we are interested in bootstrapping an NLU model
for a new language which would first be deployed
to beta customers, we evaluate our approach on
German beta data. In the following, we first briefly

describe the MT and NLU systems and subse-
quently the datasets.

4.1 MT and NLU systems
We used a phrase-based MT system which was
built using Moses (Koehn et al., 2007) for a sim-
ilar task, i.e. Question Answering (QA). The
MT system is a multi-domain model trained on
a mixture of internal and external parallel data
sources, which are not from the QA domain;
overall the out-of-domain data sources comprised
28,733,606 segments. The system was fine-tuned
using a small manually created parallel corpus for
QA, comprising 4,000 segments, and 424,921 in-
domain target language segments were used for
the target language model. Training data were pre-
processed, in particular they were converted into
spoken form before building the MT system to bet-
ter match spoken user utterances of an NLU sys-
tem. We used an MT system for a similar task
rather than an MT system adapted for our data,
because we would expect that suitable in-domain
data for adaptation might not yet be available for
early bootstrapping, i.e. when target language data
have not yet been collected.

For building NLU models, we use Conditional
Random Fields (Lafferty et al., 2001; Okazaki,
2007) for Named Entity Recognition and a Max-
imum Entropy classifier (Berger et al., 1996) for
Intent Classification; we keep the sets of features,
hyper-parameters and configuration constant for
our experiments.

4.2 Datasets
We translated 10M of training data utterances
from a US English NLU system. Overall, the data
cover several domains with a large number of dif-
ferent intents and slots/named entities. We trans-
lated the data using the previously described MT
system. NLU labels were kept and aligned dur-
ing the MT decoding to project them from the En-
glish source utterances to the corresponding Ger-
man translations. The final training dataset com-
prised 9,963,624 utterances.

For testing, we created a dataset collected from
German Beta users; German test data were man-
ually transcribed and annotated with intents and
slots/named entities. The resulting test dataset
comprised 119,772 utterances.
To create a baseline, we used an in-house data
collection of 10k utterances, which were manu-
ally transcribed and annotated with intents and
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slots. While in-house data collections are costly
and time-consuming, they constitute a reasonable
approach for bootstrapping a model from scratch
when customer data are not yet available.

The data amounts are summarised in Table 1.

Dataset No. utt.
US EN→DE translated data (train) 9,963,624
DE Beta data (test) 119,772
In-house data collection (train) 10,000

Table 1: Number of utterances per dataset.

In addition, we created a grammar-based base-
line. In particular, we randomly sampled ut-
terances from grammars and created a training
dataset from them. For this, we used around 200
grammars written by language experts covering
(most) intents and slots supported by the NLU sys-
tem. However, one of the domains was not cov-
ered by grammars, because it supports very di-
verse features and requests, which are difficult to
capture by a grammar.

We report results by means of a semantic er-
ror rate (SemER) which is computed based on the
number of insertions, deletions and substitutions
for slots and the intent in a recognised utterance
compared to a reference utterance, i.e.

SemER = # (slot + intent errors)
# (slots + intents in reference)

5 Results

First, we compare our approach to the baseline
approaches based on grammars and an in-house
data collection. For this, we trained NLU mod-
els on MT data, on the in-house data collection,
on grammar-generated data as well as on MT data
together with each baseline dataset. Subsequently,
we evaluated the models on the German beta data
test set. Results for model trained on the MT
dataset and on the baseline datasets are presented
in Table 2.

Training data SemER (%)
Grammar-generated data (baseline) 55.44
In-house collection (baseline) 23.30
MT data 21.38
MT data + grammar-generated data 20.00
MT data + in-house collection 17.20

Table 2: Comparison for NLU models trained on MT
data to our baseline models, i.e. models trained on
grammar-generated data and models trained on an in-
house data collection of 10k utterances.

As can be seen, the MT approach outperforms
the grammar-based one by a large percentage (i.e.
around 33% absolute in SemER), while requiring
much less manual effort. In addition, training on
both MT and grammar-generated data improves
performance over training solely on either one of
the datasets; the improvement of the joined ap-
proach is particularly large over training solely on
grammar-generated data (i.e. around 35 % abso-
lute in SemER). As noted before, the grammars
did not cover one of the domains, yielding errors
for its test utterances. To get an estimate of this im-
pact, we removed all utterances from this domain
from the test set and recomputed SemER for the
grammar-based baseline. While SemER dropped
to 34.23, there is still a large difference in perfor-
mance compared to training on MT data and one
domain is not supported at all, even though it is
needed by the system. Compared to the grammar-
based baseline, training on the in-house data col-
lection yields a lower SemER of 23.3. Still, train-
ing on MT data outperforms this baseline as well,
and combining MT data with the in-house data
collection improves further over training solely on
either one of the datasets (i.e. 17.2 for both vs
21.38 for MT and 23.3 for the in-house collection).
Thus, MT data appear to be useful for both boot-
strapping an NLU model from scratch and enhanc-
ing models trained on grammar-generated data or
on an in-house data collection of 10k.

In the following, we evaluate whether our filter-
ing and post-processing approaches can improve
the quality of the MT training data further. Ta-
ble 3 presents the results for our filtering ap-
proaches. While filtering based on semantic in-
formation yields an improvement in SemER over
using MT data as they are, filtering based on MT
scores only yields a slight improvement in one of
the conditions. For filtering based on semantic in-
formation, our results confirm in a large-scale in-
dustry setting that training on utterances for which
the intent is retained after back-translation is use-
ful. In addition, our results show that perfor-
mance can be improved further by either addi-
tionally removing utterances for which the slots
are not retained or by removing utterances for
which the confidence is very low. Here, removing
low confidence utterances yields slightly better re-
sults. While we tested with 0.1 as a threshold, re-
sults might be improved further by optimising this
threshold, potentially even per domain.
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Approach(es) Dataset size SemER (%)
Translated data (baseline) 9,963,624 21.38
Sem. filtering, intents only 6,694,739 20.72 (-3.10)
Sem. filtering, intents + slots 6,194,498 20.60 (-3.64)
Sem. filtering, intents, exclude low confidence 6,500,127 20.32 (-4.97)
Filtering based on MT scores, mean 5,281,331 23.62 (+10.48)
Filtering based on MT scores, standard deviation 8,798,330 21.92 (+2.50)
Filtering based on MT scores, standard deviation, 0.25 6,286,603 21.05 (-1.54)
Filtering based on MT scores, standard deviation, 0.5 7,547,861 23.24 (+8.68)

Table 3: Results of the filtering approaches. Relative changes with respect to the baseline are given in parentheses.

Filtering based on MT scores decreases per-
formance in all considered conditions, except
mean+(0.25*stdev), which yields a very slight im-
provement. However, results were not consistent
across domains, i.e., while overall SemER as well
as SemER for several domains increased in most
cases, it decreased for several domains with rel-
ative decreases of up to 48.35%. Here, manual
inspection of the data indicates that this approach
is not well-suited for domains comprising very di-
verse data, since one threshold based on a mean
score cannot capture diverse data well. In ad-
dition, manual inspection revealed that a rather
large percentage of the increase in SemER was due
to removing ambiguous utterances, as these typi-
cally have a rather low MT score, but are some-
times very frequently used and hence need to be
captured by the NLU system. For example, the
German utterance ”weiter” is frequently used, but
can mean both ”forward” and ”resume” in En-
glish, implying also different user intents. Remov-
ing only this one utterance from the training data
yielded around 2.5k errors, since this utterance is
frequent in the test data. However, frequent errors
could potentially be fixed manually with little ef-
fort by a rule-based approach. Since the approach
based on MT scores yields improvements for cer-
tain domains, further investigations on the nature
of datasets/domains it works well with could be in-
teresting. Since it also yields improved results for
some domains compared to the approach based on
semantic information, further experiments investi-
gating the combination of both approaches could
potentially improve results further.

Table 4 shows the results of our language-
specific post-processing approaches.

The results show that slot resampling has al-
most no impact on the error rates. The reason
might be that the statistical model uses catalogs

Approach(es) SemER (%)
Translated data (baseline) 21.38
Slot resampling 21.53 (+0.69)
Original slots 23.82 (+11.40)
Original slots + resampling 20.18 (-5.60)

Table 4: Results of the language-specific post-
processing approaches. Relative changes in relation to
the baseline are given in parentheses.

also as gazetteers, and hence already includes in-
formation on German entities during training. Fu-
ture work might investigate the effect of slot re-
sampling for models which do not use gazetteers.
Keeping some original slot values degrades per-
formance from 21.38% to 23.82%. One reason for
the decrease in performance might be that keep-
ing a few original slot values decreases the fre-
quency of appearance of some German words that
still appear in the test set and are requested by
users in German. However, it is not consistent that
some words or some slots are always in German
or English, yielding some mismatches between
translated training data and test data. Aiming to
counterbalance the increase of English words’ fre-
quency, but also consider the original slot values,
we combined both approaches. As can be seen
in the table, the combined approach yields an im-
provement, i.e. SemER is 20.18% compared to
21.38% for training on MT data as they are. With
20.18%, this approach is also performing better
than our best-performing filtering approach which
yields 20.32% in SemER. One interesting ques-
tion for future work will be to explore if combin-
ing filtering and language-specific post-processing
approaches will improve results further.
Overall, compared to the grammar-based base-
line, the best-performing post-processing ap-
proach yields a large improvement in SemER
(20.18% vs 55.44%) and also yields results very
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similar to the NLU model trained on both the
initial MT data and the grammar-generated data
(20.18% vs 20.0%). However, our proposed post-
processing approach can be applied automatically
and quickly, while grammar writing is very costly
and time-consuming.

6 Conclusion

Aiming to reduce time and costs needed to boot-
strap an NLU model for a new language, in this
paper we made use of MT data to build NLU mod-
els. In addition, we compared different techniques
to filter and post-process the MT data, aiming to
improve NLU performance further. These meth-
ods were evaluated in large-scale experiments for
a voice-controlled assistant to bootstrap a Ger-
man system using English data. The results when
using MT data showed a large improvement in
performance compared to a grammar-based base-
line and outperformed a baseline using an in-
house data collection. The applied filtering and
post-processing techniques improved results fur-
ther over using MT data as they are.
In future work, we plan to apply our approach to
further languages and explore bootstrapping new
domains for an existing NLU system.
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Abstract

Fast expansion of natural language functional-
ity of intelligent virtual agents is critical for
achieving engaging and informative interac-
tions. However, developing accurate models
for new natural language domains is a time
and data intensive process. We propose ef-
ficient deep neural network architectures that
maximally re-use available resources through
transfer learning. Our methods are applied
for expanding the understanding capabilities
of a popular commercial agent and are eval-
uated on hundreds of new domains, designed
by internal or external developers. We demon-
strate that our proposed methods significantly
increase accuracy in low resource settings and
enable rapid development of accurate models
with less data.

1 Introduction

Voice powered artificial agents have become
widespread among consumer devices, with agents
like Amazon Alexa, Google Now and Apple Siri
being popular and widely used. Their success re-
lies not only on accurately recognizing user re-
quests, but also on continuously expanding the
range of requests that they can understand. An
ever growing set of functionalities is critical for
creating an agent that is engaging, useful and
human-like.

This presents significant scalability challenges
regarding rapidly developing the models at the
heart of the natural language understanding (NLU)
engines of such agents. Building accurate mod-
els for new functionality typically requires collec-
tion and manual annotation of new data resources,
an expensive and lengthy process, often requir-
ing highly skilled teams. In addition, data col-
lected from real user interactions is very valuable
for developing accurate models but without an ac-
curate model already in place, the agent will not

enjoy widespread use thereby hindering collection
of high quality data.

Presented with this challenge, our goal is to
speed up the natural language expansion process
for Amazon Alexa, a popular commercial artificial
agent, through methods that maximize re-usability
of resources across areas of functionality. Each
area of Alexa’s functionality, e.g., Music, Calen-
dar, is called a domain. Our focus is to a) increase
accuracy of low resource domains b) rapidly build
new domains such that the functionality can be
made available to Alexa’s users as soon as possi-
ble, and thus start benefiting from user interaction
data. To achieve this, we adapt recent ideas at the
intersection of deep learning and transfer learning
that enable us to leverage available user interaction
data from other areas of functionality.

To summarize our contributions, we describe
data efficient deep learning architectures for NLU
that facilitate knowledge transfer from similar
tasks. We evaluate our methods at a much larger
scale than related transfer learning work in NLU,
for fast and scalable expansion of hundreds of
new natural language domains of Amazon Alexa,
a commercial artificial agent. We show that our
methods achieve significant performance gains in
low resource settings and enable building accurate
functionality faster during early stages of model
development by reducing reliance on large anno-
tated datasets.

2 Related Work

Deep learning models, including Long-Short term
memory networks (LSTM) (Gers et al., 1999),
are state of the art for many natural language
processing tasks (NLP), such as sequence label-
ing (Chung et al., 2014), named entity recogni-
tion (NER) (Chiu and Nichols, 2015) and part
of speech (POS) tagging (Huang et al., 2015).
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Multitask learning is also widely applied in NLP,
where a network is jointly trained for multiple re-
lated tasks. Multitask architectures have been suc-
cesfully applied for joint learning of NER, POS,
chunking and supertagging tasks, as in (Collobert
et al., 2011; Collobert and Weston, 2008; Søgaard
and Goldberg, 2016).

Similarly, transfer learning addresses the trans-
fer of knowledge from data-rich source tasks
to under-resourced target tasks. Neural transfer
learning has been successfully applied in com-
puter vision tasks where lower layers of a net-
work learn generic features that are transferred
well to different tasks (Zeiler and Fergus, 2014;
Krizhevsky et al., 2012). Such methods led to im-
pressive results for image classification and object
detection (Donahue et al., 2014; Sharif Razavian
et al., 2014; Girshick et al., 2014) In NLP, trans-
ferring neural features across tasks with disparate
label spaces is relatively less common. In (Mou
et al., 2016), authors conclude that network trans-
ferability depends on the semantic relatedness of
the source and target tasks. In cross-language
transfer learning, (Buys and Botha, 2016) use
weak supervision to project morphology tags to
a common label set, while (Kim et al., 2017a)
transfer lower layer representations across lan-
guages for POS tagging. Other related work ad-
dresses transfer learning where source and target
share the same label space, while feature and la-
bel distributions differ, including deep learning
methods (Glorot et al., 2011; Kim et al., 2017b),
and earlier domain adaptation methods such as
EasyAdapt (Daumé III, 2007), instance weight-
ing (Jiang and Zhai, 2007) and structural corre-
spondence learning (Blitzer et al., 2006).

Fast functionality expansion is critical in indus-
try settings. Related work has focused on scalabil-
ity and ability to learn from few resources when
developing a new domain, and includes zero-shot
learning (Chen et al., 2016; Ferreira et al., 2015),
domain attention (Kim et al., 2017c), and scal-
able, modular classifiers (Li et al., 2014). There
is a multitude of commercial tools for develop-
ers to build their own custom natural language ap-
plications, including Amazon Alexa ASK (Kumar
et al., 2017), DialogFlow by Google (DialogFlow)
and LUIS by Microsoft (LUIS). Along these lines,
we propose scalable methods that can be applied
for rapid development of hundreds of low resource
domains across disparate label spaces.

3 NLU Functionality Expansion

We focus on Amazon Alexa, an intelligent conver-
sational agent that interacts with the user through
voice commands and is able to process requests on
a range of natural language domains, e.g., playing
music, asking for weather information and editing
a calendar. In addition to this built-in functionality
that is designed and built by internal developers,
the Alexa Skills Kit (ASK) (Kumar et al., 2017)
enables external developers to build their own cus-
tom functionality which they can share with other
users, effectively allowing for unlimited new capa-
bilities. Below, we describe the development pro-
cess and challenges associated with natural lan-
guage domain expansion.

For each new domain, the internal or exter-
nal developers define a set of intents and slots
for the target functionality. Intents correspond to
user intention, e.g., ‘FindRecipeIntent’, and slots
correspond to domain-specific entities of interest
e.g.,‘FoodItem’. Developers also define a set of
commonly used utterances that cover the core use
cases of the functionality, e.g., ‘find a recipe for
chicken’. We call those core utterances. In addi-
tion, developers need to create gazetteers for their
domain, which are lists of slot values. For exam-
ple, a gazetteer for ‘FoodItem’ will contain differ-
ent food names like ‘chicken’. We have devel-
oped infrastructure to allow internal and external
teams to define their domain, and create or ex-
pand linguistic resources such as core utterances
and gazetteers. We have also built tools that en-
able extracting carrier phrases from the example
utterances by abstracting the utterance slot values,
such as ‘find a recipe for {FoodItem}’. The col-
lection of carrier phrases and gazetteers for a do-
main is called a grammar. Grammars can be sam-
pled to generate synthetic data for model training.
For example, we can generate the utterance ‘find
a recipe for pasta’ if the latter dish is contained in
the ‘FoodItem’ gazetteer.

Next, developers enrich the linguistic resources
available for a new domain, to cover more linguis-
tic variations for intents and slots. This includes
creating bootstrap data for model development, in-
cluding collecting utterances that cover the new
functionality, manually writing variations of ex-
ample utterances, and expanding the gazetteer val-
ues. In general, this is a time and data intensive
process. External developers can also continu-
ously enrich the data they provide for their cus-
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tom domain. However, external developers typi-
cally lack the time, resources or expertise to pro-
vide rich datasets, therefore in practice custom do-
mains are significantly under-resourced compared
to built-in domains.

Once the new domain model is bootstrapped
using the collected datasets, it becomes part
of Alexa’s natural language functionality and is
available for user interactions. The data from such
user interactions can be sampled and annotated in
order to provide additional targeted training data
for improving the accuracy of the domain. A good
bootstrap model accuracy will lead to higher user
engagement with the new functionality and hence
to a larger opportunity to learn from user interac-
tion data.

Considering these challenges, our goal is to re-
duce our reliance on large annotated datasets for
a new domain by re-using resources from existing
domains. Specifically, we aim to achieve higher
model accuracy in low resource settings and accel-
erate new domain development by building good
quality bootstrap models faster.

4 Methodology

In this section, we describe transfer learning meth-
ods for efficient data re-use. Transfer learning
refers to transferring the knowledge gained while
performing a task in a source domain Ds to ben-
efit a related task in a target domain Dt. Typi-
cally, we have a large dataset for Ds, while Dt is
an under-resourced new task. Here, the target do-
main is the new built-in or custom domain, while
the source domain contains functionality that we
have released, for which we have large amounts of
data. The tasks of interest in both Ds and Dt are
the same, namely slot tagging and intent classifi-
cation. However Ds and Dt have different label
spaces Ys and Yt, because a new domain will con-
tain new intent and slot labels compared to previ-
ously released domains.

4.1 DNN-based natural language engine
We first present our NLU system where we per-
form slot tagging (ST) and intent classification
(IC) for a given input user utterance. We are
inspired by the neural architecture of (Søgaard
and Goldberg, 2016), where a multi-task learn-
ing architecture is used with deep bi-directional
Recurrent Neural Networks (RNNs). Supervision
for the different tasks happens at different lay-
ers. Our neural network contains three layers

Figure 1: Multitask stacked bi-LSTM architecture for
ST and IC, with a shared bottom layer, two separate top
layers for ST and IC. Gazetteer features can be added
as optional input to the ST and IC layers during the
fine-tuning stage. (see also Sec. 4.2)

of bi-directional Long Short Term Memory net-
works (LSTMs) (Graves and Schmidhuber, 2005;
Hochreiter and Schmidhuber, 1997). The two top
layers are optimized separately for the ST and
IC tasks, while the common bottom layer is op-
timized for both tasks, as shown in Figure 1.

Specifically let rct denote the common represen-
tation computed by the bottommost bi-LSTM for
each word input at time t. The ST forward LSTM
layer learns a representation rST,ft = φ(rct , r

ST
t−1),

where φ denotes the LSTM operation. The IC
forward LSTM layer learns rIC,f

t = φ(rct , r
IC
t−1).

Similarly, the backward LSTM layers learn rST,bt

and rIC,b
t . To obtain the slot tagging decision, we

feed the ST bi-LSTM layer’s output per step into a
softmax, and produce a slot label at each time step
(e.g., at each input word). For the intent decision,
we concatenate the last time step from the forward
LSTM with the first step of the backward LSTM,
and feed it into a softmax for classification:

rslott = rST,ft ⊕ rST,bt , rintent = rIC,f
T ⊕ rIC,b

1

Ŝt = softmax(Wsr
slot
t + bs)

Î = softmax(WIr
intent + bI)

where ⊕ denotes concatenation. Ws,WI , bs, bI
are the weights and biases for the slot and intent
softmax layers respectively. Ŝt is the predicted
slot tag per time step (per input word), and Î is
the predicted intent label for the sentence.

The overall objective function for the multi-
task network combines the IC and ST objectives.
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Therefore we jointly learn a shared representation
rct that leverages the correlations between the re-
lated IC and ST tasks, and shares beneficial knowl-
edge across tasks. Empirically, we have observed
that this multitask architecture achieves better re-
sults than separately training intent and slot mod-
els, with the added advantage of having a single
model, and a smaller total parameter size.

In our setup, each input word is embedded into
a 300-dimensional embedding, where the embed-
dings are estimated from our data. We also use
pre-trained word embeddings as a separate input,
that allows incorporating unsupervised word infor-
mation from much larger corpora (FastText (Bo-
janowski et al., 2016)). We encode slot spans us-
ing the IOB tagging scheme (Ramshaw and Mar-
cus, 1995). When we have available gazetteers rel-
evant to the ST task, we use gazetteer features as
an additional input. Such features are binary indi-
cators of the presence of an n-gram in a gazetteer,
and are common for ST tasks (Radford et al.,
2015; Nadeau and Sekine, 2007).

4.2 Transfer learning for the DNN engine

Typically, a new domain Dt contains little avail-
able data for training the multitask DNN architec-
ture of Sec 4.1. We propose to leverage existing
data from mature released domains (source Ds) to
build generic models, which are then adapted to
the new tasks (target Dt).

We train our DNN engine using labeled data
from Ds in a supervised way. The source slot tags
space Y slot

s and intent label space Y intent
s con-

tain labels from previously released slots and in-
tents respectively. We refer to this stage as pre-
training, where the stacked layers in the network
learn to generate features which are useful for the
ST and IC tasks of Ds. Our hypothesis is that
such features will also be useful for Dt. After
pre-training is complete, we replace the top-most
affine transform and softmax layers for IC and ST
with layer dimensions that correspond to the tar-
get label space for intents and slots respectively,
i.e., Y intent

t and Y slot
t . The network is then trained

again using the available target labeled data for IC
and ST. We refer to this stage as fine-tuning of the
DNN parameters for adapting to Dt.

A network can be pre-trained on large datasets
from Ds and later fine tuned separately for many
low resource new domains Dt. In some cases,
when developing a new domain Dt, new domain-

specific information becomes available, such as
domain gazetteers (which were not available at
pre-training). To incorporate this information dur-
ing fine-tuning, we add gazetteer features as an
extra input to the two top-most ST and IC layers,
as shown in Figure 1. We found that adding new
features during fine-tuning significantly changes
the upper layer distributions. Therefore, in such
cases, it is better to train the ST and IC layers from
scratch and only transfer and fine-tune weights
from the common representation rc of the bottom
layer. However, when no gazetteers are available,
it is beneficial to pre-train all stacked Bi-LSTM
layers (common, IC and ST), except from the task-
specific affine transform leading to the softmax.

4.3 Baseline natural language engine
While DNNs are strong models for both ST and
IC, they typically need large amounts of training
data. As we focus on under-resourced function-
ality, we examine an alternative baseline that re-
lies on simpler models; namely a Maximum En-
tropy (MaxEnt) (Berger et al., 1996) model for in-
tent classification and a Conditional Random Field
(CRF) (Lafferty et al., 2001) model for slot tag-
ging. MaxEnt models are regularized log-linear
models that have been shown to be effective for
text classification tasks (Berger et al., 1996). Sim-
ilarly, CRFs have been popular tagging models
in the NLP literature (Nadeau and Sekine, 2007)
prior to the recent growth in deep learning. In
our experience, these models require less data to
train well and represent strong baselines for low
resource classification and tagging tasks.

5 Experiments and Results

We evaluate the transfer learning methods of Sec-
tion 4.2 for both custom and built-in domains, and
compare with baselines that do not benefit from
knowledge transfer (Sections 4.1, 4.3). We exper-
iment with around 200 developer defined custom
domains, whose statistics are presented in Table
1. Looking at the median numbers, which are less
influenced by a few large custom domains com-
pared to mean values, we note that typically devel-
opers provide just a few tens of example phrases
and few tens of values per gazetteer (slot gazetteer
size). Therefore, most custom domains are sig-
nificantly under-resourced. We also select three
new built-in domains, and evaluate them at various
early stages of domain development. Here, we as-
sume that variable amounts of training data grad-
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ually become available, including bootstrap and
user interaction data.

We pre-train DNN models using millions of an-
notated utterances from existing mature built-in
domains. Each annotated utterance has an associ-
ated domain label, which we use to make sure that
the pre-training data does not contain utterances
labeled as any of the custom or built-in target do-
mains. After excluding the target domains, the
pre-training data is randomly selected from a vari-
ety of mature Alexa domains covering hundreds
of intents and slots across a wide range of nat-
ural language functionality. For all experiments,
we use L1 and L2 to regularize our DNN, CRF
and MaxEnt models, while DNNs are additionally
regularized with dropout.

The test sets contain user data, annotated for
each custom or built-in domain. For custom do-
mains, test set size is a few hundred utterances per
domain, while for built-in domains it is a few thou-
sand utterances per domain. Our metrics include
standard F1 scores for the SC and IC tasks, and
a sentence error rate (SER) defined as the ratio of
utterances with at least one IC or ST error over all
utterances. The latter metric combines IC and ST
errors per utterance and reflects how many utter-
ances we could not understand correctly.

Data type Mean Median

number of intents 8.02 3
number of slots 2.07 1

slot gazetteer size 441.35 11
number of example phrases 268.11 42

Table 1: Statistics of data for around 200 developer de-
fined custom domains

5.1 Results for custom developer domains
For the custom domain experiments, we focus on
a low resource experimental setup, where we as-
sume that our only target training data is the data
provided by the external developer. We report re-
sults for around 200 custom domains, which is a
subset of all domains we support. We compare
the proposed transfer learning method, denoted
as DNN Pretrained, with the two baseline meth-
ods described in sections 4.1 and 4.3, denoted as
DNN Baseline and CRF/MaxEnt Baseline, respec-
tively. For training the baselines, we use the avail-
able data provided by the developer for each do-
main, e.g., example phrases and gazetteers. From
these resources, we create grammars and we sam-
ple them to generate 50K training utterances per

domain, using the process described in Section
3. This training data size was selected empiri-
cally based on baseline model accuracy. The gen-
erated utterances may contain repetitions for do-
mains where the external developer provided a
small amount of example phrases and few slot val-
ues per gazetteer. For the proposed method, we
pre-train a DNN model on 4 million utterances and
fine tune it per domain using the 50K grammar ut-
terances of that domain and any available gazetteer
information (for extracting gazetteer features). In
Table 2, we show the mean and median across cus-
tom domains for F1slot, F1intent and SER.

Table 2 shows that the CRF and MaxEnt mod-
els present a strong baseline and generally outper-
form the DNN model without pretraining, which
has a larger number of parameters. This suggests
that the baseline DNN models (without pretrain-
ing) cannot be trained robustly without large avail-
able training data. The proposed pre-trained DNN
significantly outperforms both baselines across all
metrics (paired t-test, p < .01). Median SER re-
duces by around 14% relative when we use trans-
fer learning compared to both baselines. We are
able to harness the knowledge obtained from data
of multiple mature source domains Ds and trans-
fer it to our under-resourced target domains Dt,
across disparate label spaces.

To investigate the effect of semantic similarity
across source and target domains we selected a
subset of 30 custom domains with high seman-
tic similarity with the source tasks. Semantic
similarity was computed by comparing the sen-
tence representations computed by the common
bi-LSTM layer across source and target sentences,
and selecting target custom domains with sen-
tences close to at least one of the source tasks.
For these 30 domains, we observed higher gains of
around 19% relative median SER reduction. This
corroborates observations of (Mou et al., 2016),
that neural feature transferability for NLP depends
on the semantic similarity between source and tar-
get. In our low resource tasks, we see a benefit
from transfer learning and this benefit increases as
we select more semantically similar data.

Our approach is scalable and is does not rely
on manual domain-specific annotations, besides
developer provided data. Also, pretrained DNN
models are about five times faster to train dur-
ing the fine-tuning stage, compared to training
the model from scratch for each custom domain,

149



Approach F1Intent F1Slot SER
Mean Median Mean Median Mean Median

Baseline CRF/MaxEnt 94.6 96.6 80.0 91.5 14.5 9.2

Baseline DNN 91.9 95.9 85.1 92.9 14.7 9.2

Proposed Pretrained DNN * 95.2 97.2 88.6 93.0 13.1 7.9

Table 2: Results for around 200 custom developer domains. For F1, higher values are better, while for SER lower
values are better. * denotes statistically significant SER difference compared to both baselines.

which speeds up model turn-around time.

5.2 Results for built-in domains

We evaluate our methods on three new built-in do-
mains referred here as domain A (5 intents, 36 slot
types), domain B (2 intents, 17 slot types) and do-
main C (22 intents, 43 slot types). Table 3 shows
results for domains A, B and C across experimen-
tal early stages of domain development, where dif-
ferent data types and amounts of data per data type
gradually become available. Core data refers to
core example utterances, bootstrap data refers to
domain data collection and generation of synthetic
(grammar) utterances, and user data refers to user
interactions with our agent. As described in Sec-
tion 3, the collection and annotation of these data
sources is a lengthy process. Here we evaluate
whether we can accelerate the development pro-
cess by achieving accuracy gains in early, low re-
source stages, and bootstrap a model faster.

For each data setting and size, we compare our
proposed pretrained DNN models with the base-
line CRF/MaxEnt baseline, which is the better
performing baseline of Section 5.1. Results for
the non pre-trained DNN baseline are similar, and
omitted for lack of space. Our proposed DNN
models are pre-trained on 4 million data from ma-
ture domains and then fine tuned on the available
target data. The baseline CRF/MaxEnt models are
trained on the available target data. Note that the
datasets of Table 3 represent early stages of model
development and do not reflect final training size
or model performance. The types of target data
slightly differ across domains according to domain
development characteristics. For example, for do-
main B there was very small amount of core data
available and it was combined with the bootstrap
data for experiments.

Overall, we notice that our proposed DNN pre-
training method improves performance over the
CRF/MaxEnt baseline, for almost all data settings.
As we would expect, we see the largest gains for
the most low resource data settings. For example,
for domain A, we observe a 7% and 5% relative

Train Set Size Method F1intent F1slot SER

Domain A (5 intents, 36 slots)
Core*

500
Baseline 85.0 63.9 51.9

data Proposed 86.6 66.6 48.2

Bootstrap
18K

Baseline 86.1 72.8 49.6
data* Proposed 86.9 73.8 47.0

Core +
3.5K

Baseline 90.4 74.3 40.5
user data* Proposed 90.1 75.8 37.9

Core +
43K

Baseline 92.1 80.6 33.4
bootstrap + Proposed 91.9 80.8 32.8
user data

Domain B (2 intents, 17 slots)
Bootstrap

2K
Baseline 97.0 94.7 10.1

data* Proposed 97.8 95.3 6.3

User data
2.5K

Baseline 97.0 94.7 8.2
Proposed 97.1 96.4 7.1

Bootstrap +
52K

Baseline 96.7 95.2 8.2
user data* Proposed 97.0 96.6 6.4

Domain C (22 intents, 43 slots)
Core*

300
Baseline 77.9 47.8 64.2

data Proposed 85.6 46.6 51.8

Bootstrap
26K

Baseline 46.1 65.8 64.0
data* Proposed 49.1 68.9 62.8

Core +
126K

Baseline 92.3 78.3 28.1
bootstrap. + Proposed 92.7 72.7 31.9
user data*

Table 3: Results on domains A, B and C for the
proposed pretrained DNN method and the baseline
CRF/MaxEnt method during experimental early stages
of domain development. * denotes statistically signifi-
cant SER difference between proposed and baseline

SER improvement on core and bootstrap data set-
tings respectively. The performance gain we ob-
tain on those early stages of development brings us
closer to our goal of rapidly bootstrapping models
with less data. From domains A and C, we also
notice that we achieve the highest performance in
settings that leverage user data, which highlights
the importance of such data. Note that the drop in
Fintent for domain C between core and bootstrap
data is because the available bootstrap data did not
contain data for all of the 22 intents of domain C.
Finally, we notice that the gain from transfer learn-
ing diminishes in some larger data settings, and we
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may see degradation (domain C, 126K data set-
ting). We hypothesize that as larger training data
becomes available it may be better to not pre-train
or pre-train with source data that are semantically
similar to the target. We will investigate this as
part of future work.

6 Conclusions and Future Work

We have described the process and challenges as-
sociated with large scale natural language func-
tionality expansion for built-in and custom do-
mains for Amazon Alexa, a popular commercial
intelligent agent. To address scalability and data
collection bottlenecks, we have proposed data effi-
cient deep learning architectures that benefit from
transfer learning from resource-rich functionality
domains. Our models are pre-trained on existing
resources and then adapted to hundreds of new,
low resource tasks, allowing for rapid and accurate
expansion of NLU functionality. In the future, we
plan to explore unsupervised methods for transfer
learning and the effect of semantic similarity be-
tween source and target tasks.

References
Adam L Berger, Vincent J Della Pietra, and Stephen

A Della Pietra. 1996. A maximum entropy approach
to natural language processing. Computational lin-
guistics, 22(1):39–71.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of the 2006 confer-
ence on empirical methods in natural language pro-
cessing, pages 120–128. Association for Computa-
tional Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Jan Buys and Jan A. Botha. 2016. Cross-lingual mor-
phological tagging for low-resource languages. In
Proceedings of the Association for Computational
Linguistics (ACL). Association for Computational
Linguistics.

Yun-Nung Chen, Dilek Hakkani-Tür, and Xiaodong
He. 2016. Zero-shot learning of intent embed-
dings for expansion by convolutional deep struc-
tured semantic models. In Acoustics, Speech and
Signal Processing (ICASSP), 2016 IEEE Interna-
tional Conference on, pages 6045–6049. IEEE.

Jason PC Chiu and Eric Nichols. 2015. Named en-
tity recognition with bidirectional lstm-cnns. arXiv
preprint arXiv:1511.08308.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. 2014.
Empirical evaluation of gated recurrent neural net-
works on sequence modeling. In NIPS 2014 Work-
shop on Deep Learning,.

R. Collobert and J. Weston. 2008. A unified architec-
ture for natural language processing: Deep neural
networks with multitask learning. In Proc. of Inter-
national Conference of Machine Learning (ICML)
2008.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

Slot tagging, the task of detecting entities in
input user utterances, is a key component of
natural language understanding systems for
personal digital assistants. Since each new
domain requires a different set of slots, the
annotation costs for labeling data for train-
ing slot tagging models increases rapidly as
the number of domains grow. To tackle this,
we describe Bag of Experts (BoE) architec-
tures for model reuse for both LSTM and CRF
based models. Extensive experimentation over
a dataset of 10 domains drawn from data rel-
evant to our commercial personal digital as-
sistant shows that our BoE models outperform
the baseline models with a statistically signif-
icant average margin of 5.06% in absolute F1-
score when training with 2000 instances per
domain, and achieve an even higher improve-
ment of 12.16% when only 25% of the training
data is used.

1 Introduction

Natural language understanding (NLU) is a key
component of dialog systems for commercial per-
sonal digital assistants (PDAs) such as Amazon
Alexa, Google Home, Microsoft Cortana and Ap-
ple Siri. The task of the NLU component is to map
input user utterances into a semantic frame con-
sisting of domain, intent and slots (Kurata et al.,
2016). The semantic frame is used by the dialog
manager for state tracking and action selection.

Slot tagging can be formulated as a sequence
classification task where each input word in the
user utterance must be classified as belonging
to one of the slot types in a predefined schema
(Sarikaya et al., 2016). In a standard NLU archi-
tecture, each new domain defines a new domain-
specific schema for its slots. Figure 1 shows ex-
amples of annotated queries from three different
domains relevant to a typical commercial digital

assistant. Since the schemas for different domains
can vary, the usual strategy is to train a separate
slot tagging model for each new domain. How-
ever, the number of domains increases rapidly as
the PDAs are required to support new scenarios
and training a separate slot tagging model for each
new domain becomes prohibitively expensive in
terms of annotation costs.

Travel
What are the [best]rating [hotels]service in
[Austin]location
I need a room from [March 23rd]start date to
[April 7th]end date

Flight Status
Check flight heading for [New Y ork]location
on [October 16]start date at [3 pm]start time

What time will [Lufthansa]airline flight
[182]flight from [Denver]location land?

Real Estate
See [houses]property type [for rent]listing type

in [Houston]location
Find out if [123 main street]location is on the
market

Figure 1: Example utterances with the output slot
tags for three different domains.

Even though different domains have different
slot tagging schemas, some classes of slots ap-
pear across a number of domains, as suggested by
the examples in Figure 1. Both travel and flight
status have date and time related slots, and all
three domains have the location slot. Reusing an-
notated data for these common slots would allow
us to train models with better accuracy using less
data. However, since both the input distribution
and the label distribution are different across do-
mains, we must use domain adaptation methods to
train on the joint data (Daume, 2007; Kim et al.,
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(a)

(b)

Figure 2: Examples for two different strategies for reusing annotated data from reusable slots. Figure
(a) shows data-driven adaptation, while Figure (b) shows model-driven adaptation. Solid lines show the
flow at training time, while the dashed lines show the flow at run-time for the deployed travel model. The
model output at run-time is a slot-tagged user utterance.

2016c; Blitzer et al., 2006).
In this data-driven adaptation approach, we

build a repository of annotated data containing
date, time, location and other reusable slots. We
then combine relevant data from the reusable
repository with the domain specific data during
model training. Figure 2(a) shows an example of
this architecture where reusable date/time data is
used for training travel domain.

A drawback of the data-driven adaptation ap-
proach is that as the repository of data for reusable
slots grows, the training time for new domains in-
creases. The training data for a new domain might
be in the hundreds of samples, while the training
data for the reusable slots might contain hundreds
of thousands of samples. This increase in train-
ing time makes iterative refinement difficult in the
initial design of new domains, which is when the
ability to deploy new models quickly is crucial.

An alternative strategy is to use model-driven
adaptation approaches (Kim et al., 2017b) as
shown in Figure 2(b). Here, instead of retraining
on the data for the reusable slots, we train “ex-
pert” models for these slots, and use the output of
these models directly when training new domains.
Using model-driven adaptation ensures that model
training time is proportional to the data size of new

target domains, as opposed to the large data size
for reusable slots, allowing for faster training.

In this paper, we present a model-driven adap-
tation approach for slot tagging called Bag of
Experts (BoE). In Section 2, we first describe
how this approach can be applied to two popu-
lar machine learning methods used for slot tag-
ging: Long Short Term Memory (LSTM) and
Conditional Random Fields (CRF) models. We
then describe a dataset of 10 target domains and
2 reusable domains that we’ve collected for use in
a commercial digital assistant, in Section 3. Using
this data, we conduct experiments comparing the
BoE models with their non-expert counterparts,
and show that BoE models can lead to significant
F1-score improvements. The experimental setup
is described in Section 4.1 and the results are dis-
cussed in Section 4.3. This is followed by a survey
of related work in Section 5 and the conclusion in
Section 6.

2 Approaches

We first describe our LSTM and CRF models
for slot tagging, followed by their BoE variants:
LSTM-BoE and CRF-BoE. Tensorflow (Abadi
et al., 2015) was used for implementing the LSTM
models, while a custom C++ implementation was
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Domain #Train #Test #Dev #Slots Example Utterance
Fashion 5273 701 696 8 Show me the [turtleneck]item I wore [last Tuesday]date

Flight Stat. 9481 553 492 9 Is flight [283]flight number at [Kennedy airport]location on time

[today]start date?

Deals 25598 1271 2036 5 Find [mexican]category deals in [seattle]location

Purchase 5033 397 402 18 Buy the [shirt]item I was looking at [yesterday]date
Real Estate 5633 525 498 7 Show me the [rental]property type at [13 Holt Street]location

Shopping 19725 1106 892 16 Find the [Nov 2017]date [iphone]brand name model

Soc. Net. 38450 432 441 21 Display [Mike]username’s [tweets]media type from

[yesterday]date

Sports 20341 1048 1048 21 Display games [this week]date for [texas tech]team name

Transport. 162951 19706 19724 17 [Driving]transport type directions to [union station]location

Travel 49300 2027 1990 27 How much for [2]number rooms rooms at the [Hilton]place name in

[SF ]location?

Table 1: List of target domains used for our experiments, along with some statistics and example ut-
terances. The test and development data sets are sampled at 10% of the total annotated data. “Flight
Stat.” stands for “Flight Status”, “Soc. Net.” stands for “Social Network”, and “Transport.” stands for
“Transportation”.

used for the CRF models.

2.1 LSTM

For our LSTM model, we follow a standard bidi-
rectional LSTM architecture (Huang et al., 2015;
Ma and Hovy, 2016; Lample et al., 2016). Let
w1...wn denote the input word sequence. For ev-
ery input word wi, let fC

i and bCi be the out-
puts of the forward and backward character level
LSTMs respectively, and let mi be the word em-
bedding (initialized either randomly or with pre-
trained embeddings). The input to the word level
LSTMs, gi, is the concatenation of these three vec-
tors:

gi = [fC
i ; bCi ;mi]

where both fC
i , bCi ∈ R25 and mi has the same

dimensions as the pre-trained embeddings. The
forward and backward word level LSTMs take gi
as input and produce fW

i and bWi , which are then
concatenated to produce hi:

hi = [fW
i , bWi ]

where fW
i , bWi ∈ R100, making hi ∈ R200. hi

is then input to a dense feed forward layer with a
softmax activation to predict the label probabilities
for each word. We train using stochastic gradient
descent with Adam (Kingma and Ba, 2015). To
avoid overfitting, we also use dropout on top of mi

and hi layers, with a default dropout keep proba-
bility of 0.8. We experiment with some variations

of this default LSTM architecture, the results are
described in Section 4.2.

2.2 LSTM-BoE

We now describe the LSTM Bag of Experts
(LSTM-BoE) architecture. Let e1...ek ∈ E be
the set of reusable expert domains. For each ex-
pert ej , we train a separate LSTM with the archi-
tecture described in Section 2.1. Let heji be the
bi-directional word LSTM output for expert ej on
word wi.

When training on a target domain, for each
word wi, we first compute the character level
LSTMs fC

i , bCi similarly to Section 2.1. We then
compute a BoE representation for this word as:

hE =
∑

ei∈E
h
ej
i

The input to the word level LSTM for word wi

in the target domain is now a concatenation of the
character level LSTM outputs (fC

i , bCi ), the word
embedding mi, and hE :

gi = [fC
i ; bCi ;mi;h

E ]

gi is then input to the word level LSTM for the
target domain to produce hi in the same way as
Section 2.1. This architecture is similar to the one
presented in (Kim et al., 2017b), with the excep-
tion that in their architecture, hE is concatenated
with the word level LSTM output hi for the target
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domain. In our architecture, we add hE before the
word-level LSTM in order to capture long-range
dependencies of label prediction for a word on ex-
pert predictions for context words.

2.3 CRF
Conditional Random Fields (CRF) are a popular
family of models that have been proven to work
well in a variety of sequence tagging NLP applica-
tions (Lafferty et al., 2001). For our experiments,
we use a standard linear-chain CRF architecture
with n-gram and context features.

In particular, for each token, we use unigram,
bigram and trigram features, along with previous
and next unigrams, bigrams, and trigrams for con-
text length of up to 3 words. We also use a skip
bigram feature created by concatenating the cur-
rent unigram and skip-one unigram.

We train our CRF using stochastic gradient de-
scent with L1 regularization to prevent overfitting.
The L1 coefficient was set to 0.1 and we use a
learning rate of 0.1 with exponential decay for
learning rate scheduling (Tsuruoka et al., 2009).

2.4 CRF-BoE
Similar to the LSTM-BoE model, we first train a
CRF model cj for each of the reusable expert do-
mains ej ∈ E. When training on a target domain,
for every query word wi, a one-hot label vector lji
is emitted by each expert CRF model cj .

The length of the label vector lji is the number
of labels in the expert domain, with the value cor-
responding to the label predicted by cj for word wi

set to 1, and values for all other labels set to 0. For
each word, the label vectors for all the expert CRF
models are concatenated and provided as features
for the target domain CRF training, along with the
n-gram features.

3 Data

3.1 Target Domains
We built a dataset of 10 target domains for exper-
imentation. Table 1 shows the list of domains as
well as some statistics and example utterances. We
treated these as new domains - that is, we do not
have real interaction data with users for these do-
mains. The annotated data is therefore prepared in
two steps.

First, utterances are obtained using crowdsourc-
ing, where workers are provided with prompts for
different intents of a domain and asked to generate

Variation Average Diff P-val
Embeddings
Glove (100) +1.61± 0.71∗ 0.048
Glove (200) +2.01± 0.64∗ 0.012
Glove (300) +1.92± 0.94 0.073
PDA Logs (500) +2.60± 0.61∗ 0.002
Output Layer
CRF +0.67± 0.30 0.054
Dropout (default keep probability 0.8)
keep prob. = 0.5 −2.53± 0.62∗ 0.003
keep prob. = 0.6 −1.60± 0.31∗ 0.001
keep prob. = 0.7 −0.29± 0.28 0.330
keep prob. = 0.9 +0.36± 0.25 0.176
keep prob. = 1.0 +0.63± 0.30 0.065

Table 2: Average absolute F1-score improvement
on the dev data for different LSTM variations. ∗
indicates the improvement is statistically signifi-
cant with p-value < 0.05.

natural language utterances corresponding to those
intents. Next, the generated utterances are anno-
tated by a different set of crowd workers, using
the slot schema for each domain. Inter-annotator
agreement as well as manual inspection are used
to ensure data quality in both stages.

The amount of data collected varies for each do-
main based on its complexity and business prior-
ity. Dataset size statistics for the data used in our
experiments are presented in section 4.1. Test and
dev data are sampled at 10% of the total annotated
data, with stratified sampling used in order to pre-
serve the distribution of the intents.

3.2 Reusable Domains
We experiment with two domains containing
reusable slots: timex and location. The timex do-
main consists of utterances containing the slots
date, time and duration. The location do-
main consists of utterances containing location,
location type and place name slots. Both of
these types of slots appear in more than 20 of a set
of 40 domains developed for use in our commer-
cial personal assistant, making them ideal candi-
dates for reuse.1

1Several other candidate reusable domains exist, includ-
ing: the name domain containing the slot contact name;
the number domain containing the slots rating, quantity
and price; and the reference domain containing the slots
ordinal (whose values include “first”, “second” or “third”)
and order ref (with values such as “before” or “after”). All
of these slots appear in more than 25% of the available do-
mains.
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Data for these domains was sampled from the
input utterances from our commercial digital as-
sistant. Each reusable domain contains about a
million utterances. There is no overlap between
utterances in the target domains used for our ex-
periments and utterances in the reusable domains.
The data for the reusable domains is sampled from
other domains available to the digital assistant, not
including our target domains.

Grouping the reusable slots into domains in this
way provides additional opportunities for a com-
mercial system: the trained reusable domain mod-
els can be used in other related products which
need to identify time and location related entities.
Models trained on the timex and location data have
F1-scores of 96% and 89% respectively on test
data from their respective domains.

4 Experiments

4.1 Experimental Setup

We want to verify if BoE models can improve
slot tagging performance by using the information
from reusable domains. To simulate the low data
scenario for the initial model training, we create
three training datasets by sampling 2000, 1000 and
500 training examples from every domain. We
use stratified sampling to maintain the input dis-
tribution of the intents across the three training
datasets.

For each training dataset, we train the four mod-
els as described in Section 2 and compute the pre-
cision, recall and F1-score on the test data. Fixed
seeds are used when training all models to make
the results reproducible. Table 3 summarizes these
results, with only F1-scores reported to save space.
We describe these results in Section 4.3.

4.2 LSTM architecture variants

Using the dev data set for the 10 domains, we
experimented with using different pretrained em-
beddings, dropout probabilities and a CRF output
layer in our LSTM architecture. The results are
summarized in Table 2. For each of the 10 do-
mains, we trained using each variant with 10 dif-
ferent seeds, and computed the mean F1-score for
each domain. For comparing two variants, we
computed the mean difference in the F1-scores
over the 10 domains and its p-value.

We tried word level Glove embeddings of
100, 200 and 300 dimensions as well as 500-
dimensional word embeddings trained over the ut-

terances from our commercial PDA logs. Both
100 and 200 dimensional Glove embeddings led
to statistically significant improvements, but the
word embeddings trained over our logs led to the
biggest improvement. We also tried using a CRF
output layer (Lample et al., 2016) and different
values of dropout keep probability, but none of
them gave statistically significant improvements
over the default model. Based on this, we used
PDA trained 500-dimensional word embeddings
for our final experiments on test data.

4.3 Results and Discussion

Table 3(a) shows the F1-scores obtained by the
different methods for the training data set of 2000
training instances for each of the 10 domains.
LSTM based models in general perform better
than the CRF based models. The LSTM mod-
els have a statistically significant average improve-
ment of 3.14 absolute F1-score over the CRF mod-
els. The better performance of LSTM over CRF
can be explained by the LSTM being able to use
information over longer contexts to make predic-
tions, while the CRF model is limited to at most
the previous and next 3 words.

The results in Table 3(a) also show that both
the CRF-BoE and LSTM-BoE outperform the ba-
sic CRF and LSTM models. LSTM-BoE has a
statistically significant mean improvement of 1.92
points over LSTM. CRF-BoE also shows an av-
erage improvement of 2.19 points over the CRF
model, but the results are not statistically signif-
icant. Looking at results for individual domains,
the highest improvement for BoE models are seen
for transportation and travel. This can be ex-
plained by these domains having a high frequency
of timex and location slots, as shown in Table 4.

The shopping model shows a regression for
BoE models, and a reason could be the low fre-
quency of expert slots (Table 4). However, low
frequency of expert slots does not always mean
that BoE methods can’t help, as shown by the
improvement in the purchase domain. Finally,
for sports, social network and deals domains,
the LSTM-BoE improves over LSTM, while CRF-
BoE does not improve over CRF. Our hypothesis
is that given the query patterns for these domains,
the dense vector output used by LSTM-BoE is able
to transfer some information, while the categorical
label output used by CRF-BoE is not.

Table 3(b) shows the results with 500 and 1000
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Train size 2000
Domain CRF LSTM CRF-BoE LSTM-BoE
Fashion 79.54 82.18 80.87 83.21
Purchase 66.24 77.56 70.09 79.72
Flight Status 87.60 89.86 89.30 91.51
Deals 83.74 85.69 83.59 87.31
Travel 66.39 71.02 72.81 75.52
Transportation 79.18 80.93 89.65 85.95
Sports 75.70 77.82 75.08 79.43
Social Network 81.71 81.02 81.65 83.74
Shopping 77.16 81.67 76.07 80.65
Real Estate 96.16 97.07 96.18 97.01
Average improvement +3.14∗ +2.19 +5.06∗

(a)

Train size 500 1000
Domain CRF LSTM CRF-BoE LSTM-BoE CRF LSTM CRF-BoE LSTM-BoE
Fashion 69.05 75.31 71.52 76.85 73.81 79.63 75.49 80.07
Purchase 53.12 63.58 54.52 70.66 61.04 69.39 62.23 64.46
Flight Status 78.03 84.33 82.59 88.29 84.14 88.12 86.17 89.85
Deals 69.82 78.31 72.66 81.11 78.60 81.58 78.01 82.95
Travel 47.66 58.71 64.28 70.00 57.37 65.77 67.53 73.91
Transportation 70.37 75.02 87.12 85.59 75.03 76.53 88.21 86.68
Sports 55.93 65.71 56.88 68.94 66.92 71.78 66.52 71.96
Social Network 69.73 78.08 66.59 79.91 78.45 80.31 75.78 79.27
Shopping 59.26 66.55 57.11 71.10 70.01 76.32 69.26 77.04
Real Estate 91.04 93.66 92.59 93.15 93.76 95.07 94.29 95.34
Average improvement +7.52∗ +4.19 +12.16∗ +4.54∗ +2.44 +6.24∗

(b)

Table 3: F1-scores obtained by each of the four models for the 10 domains, with the highest score in each
row marked as bold. Table (a) reports the results for 2000 training instances, and Table (b) reports the
results for 500 and 1000 training instances. The average improvement is computed over the CRF model,
with the ones marked ∗ being statistically significant with p-value < 0.05. The average improvement
of LSTM-BoE over LSTM is +1.92∗, +1.70 and +4.63∗ for 2000, 1000, and 500 training instances
respectively.

training data instances. Note that the improve-
ments are even higher for the experiments with
smaller training data. In particular, LSTM-BoE
shows an improvement of 4.63 in absolute F1-
score over LSTM when training with 500 in-
stances. Thus, as we reduce the amount of train-
ing data in the target domain, the performance im-
provement from BoE models is even higher.

As an example, in the purchase domain,
the LSTM-BoE model achieves an F1-score of
70.66% with only 500 training instances, while
even with 2000 training instances the CRF model
achieves an F1-score of only 66.24%. Thus the
LSTM-BoE model achieves better F1-score with
only one-fourth the training data. Similarly, for
flight status, travel, and transportation domains,
the LSTM-BoE model gets better performance
with 500 training instances, compared to a CRF
model with 2000 training instances. The LSTM-
BoE architecture, therefore, allows us to reuse the
domain experts to produce better performing mod-

els with much lower data annotation costs. As the
target domain training data increases, the contri-
bution due to domain experts goes down, but more
experimentation is needed to establish the thresh-
old at which it is no longer useful to add experts.

5 Related Work

Early methods for slot-tagging used rule-based ap-
proaches (Ward and Issar, 1994). Much of the later
work on supervised learning focused on CRFs,
for example (Sarikaya et al., 2016), or neural net-
works (Deoras and Sarikaya, 2013; Yao et al.,
2013; Liu et al., 2015; Celikyilmaz and Hakkani-
Tur, 2015). Unsupervised (or weakly-supervised)
methods also were used for NLU tasks, primarily
leveraging search query click logs (Hakkani-Tur
et al., 2011a,b, 2013) and knowledge graphs (Tur
et al., 2012; Heck and Hakkani-Tur, 2012; Heck
et al., 2013); hybrid methods, for example as de-
scribed in (Kim et al., 2015a; Celikyilmaz et al.,
2015; Chen et al., 2016), also exist. Our approach
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Domain %Timex %Location
Fashion 16.08 0.00
Purchase 3.83 0.00
Flight Status 23.42 33.01
Deals 0.00 21.07
Travel 4.79 32.91
Transportation 2.08 85.87
Sports 23.30 3.29
Social Network 5.63 16.83
Shopping 1.84 0.00
Real Estate 0.00 85.74

Table 4: Percentange of queries with timex and lo-
cation slots in each of our target domains.

in this paper is a purely supervised one.
Transfer learning is a vast area of research, with

too many publications for an exhaustive list. We
discuss some of the recent work most relevant to
our methods. In (Kim et al., 2015b), the slot la-
bels from across different domains are mapped
into a shared space using Canonical Correlation
Analysis (CCA) and automatically-induced em-
beddings over the label space. These label repre-
sentations allow mapping of label types between
different domains, which makes it possible to ap-
ply standard data-driven domain adaptation ap-
proaches (Daume, 2007). They also introduce a
model-driven adaptation technique based on train-
ing a hidden unit CRF (HUCRF) on the source do-
main, which is then used to initialize the training
for the target domain. The limitation of this ap-
proach is that only one source domain can be used,
while multiple experts can be used in the proposed
BoE approach.

(Kim et al., 2016a) build a single, universal slot
tagging model, and constrain the decoding process
to subsets of slots for various domains; this pro-
cess assumes that a mapping of slot tags in the
new domain to the ones in the universal slot model
has already been generated. A related work by
(Kim et al., 2016b) directly predicts the required
schema prior to performing the constrained decod-
ing. These approaches are attractive because only
one universal model needs to be trained, but do
not work in cases when a new domain contains a
mixture of new and existing slots. Our approach
allows transfer of partial knowledge in such cases.

(Kim et al., 2016c) uses a neural version of the
approach first described in (Daume, 2007), by us-
ing existing annotated data in a variety of domains

to adapt the slot tag models of new domains where
the tag space is partly shared. The drawback of
such data-driven domain adaptation is the increase
in training time as more experts are added.

An expert-based adaptation, similar to the tech-
niques applied in this paper, was first described in
(Kim et al., 2017b). (Jaech et al., 2016) use multi-
task learning, training a bidirectional LSTM with
character-level embeddings, trained jointly to pro-
duce slot tags for a number of travel-related do-
mains. Finally, (Kim et al., 2017a) frame the prob-
lem of temporal shift in data of a single domain
(and the related problem of bootstrapping a new
domain with imperfectly-matched synthetic data)
as one of domain adaptation, applying adversarial
training approaches.

A number of researchers also investigated boot-
strapping NLU systems using zero-shot learning.
(Dauphin et al., 2014; Kumar et al., 2017) both in-
vestigated domain classification; most relevant to
us is the work by (Bapna et al., 2017), who studied
full semantic frame tagging using zero-shot learn-
ing, by projecting the tags into a shared embedding
space, similar to work done by (Kim et al., 2015b).

6 Conclusion

We experimented with Bag of Experts (BoE) ar-
chitectures for CRF and LSTM based slot tagging
models. Our experimental results over a set of
10 domains show that BoE architectures are able
to use the information from reusable expert mod-
els to perform significantly better than their non-
expert counterparts. In particular, the LSTM-BoE
model shows a statistically significant improve-
ment of 1.92% over the LSTM model on aver-
age when training with 2000 instances. When
training with 500 instances, the improvement of
LSTM-BoE model over LSTM is even higher at
4.63%. For multiple domains, an LSTM-BoE
model trained on only 500 instances is able to
outperform a baseline CRF model trained over 4
times the data. Thus, the BoE approach produces
high performing models for slot tagging at much
lower annotation costs.
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Abstract

To provide better access of the inventory to
buyers and better search engine optimization,
e-Commerce websites are automatically gen-
erating millions of easily searchable browse
pages. A browse page groups multiple items
with shared characteristics together. It con-
sists of a set of slot name/value pairs within
a given category that are linked among each
other and can be organized in a hierarchy. This
structure allows users to navigate laterally be-
tween different browse pages (i.e. browse be-
tween related items) or to dive deeper and
refine their search. These browse pages re-
quire a title describing the content of the
page. Since the number of browse pages is
huge, manual creation of these titles is infea-
sible. Previous statistical and neural genera-
tion approaches depend heavily on the avail-
ability of large amounts of data in a lan-
guage. In this research, we apply sequence-to-
sequence models to generate titles for high- &
low-resourced languages by leveraging trans-
fer learning. We train these models on multi-
lingual data, thereby creating one joint model
which can generate titles in various different
languages. Performance of the title genera-
tion system is evaluated on three different lan-
guages; English, German, and French, with a
particular focus on low-resourced French lan-
guage.

1 Introduction

Natural language generation (NLG) has a broad
range of applications, from question answering
systems to story generation, summarization etc.
In this paper, we target a particular use case
that is important for e-Commerce websites, which
group multiple items on common pages called
browse pages (BP). Each browse page contains an
overview of various items which share some char-
acteristics expressed as slot/value pairs.

For example, we can have a browse page for
Halloween decoration, which will display differ-
ent types like lights, figurines, and candy bowls.
These different items of decoration have their own
browse pages, which are linked from the BP for
Halloween decoration. A ceramic candy bowl for
Halloween can appear on various browse pages,
e.g. on the BP for Halloween decoration, BP
for Halloween candy bowls, as well as the (non
Halloween-specific) BP for ceramic candy bowls.

To show customers which items are grouped on
a browse page, we need a human-readable title of
the content of that particular page. Different com-
binations of characteristics bijectively correspond
to different browse pages, and consequently to dif-
ferent browse page titles.

Note that here, different from other natural lan-
guage generation tasks described in the literature,
slot names are already given; the task is to gen-
erate a title for a set of slots. Moreover, we do
not perform any selection of the slots that the ti-
tle should realize; but all slots need to be realized
in order to have a unique title. E-Commerce sites
may have tens of millions of such browse pages in
many different languages. The number of unique
slot-value pairs are in the order of hundreds of
thousands. All these factors render the task of hu-
man creation of BP titles infeasible.

Mathur, Ueffing, and Leusch (2017) developed
several different systems which generated titles
for these pages automatically. These systems in-
clude rule-based approaches, statistical models,
and combinations of the two. In this work, we in-
vestigate the use of neural sequence-to-sequence
models for browse page title generation. These
models have recently received much attention in
the research community, and are becoming the
new state of the art in machine translation (refer
Section 4).

We will compare our neural generation models
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against two state-of-the-art systems.

1. The baseline system for English and French
implements a hybrid generation approach,
which combines a rule-based approach (with
a manually created grammar) and statistical
machine translation (SMT) techniques. For
French, we have monolingual data for train-
ing language model, which can be used in
the SMT system. For English, we also have
human-curated titles and can use those for
training additional “translation” components
for this hybrid system.

2. The system for German is an Automatic
Post-Editing (APE) system – first introduced
by Simard et al. (2007) – which gener-
ates titles with the rule-based approach, and
then uses statistical machine translation tech-
niques for automatically correcting the errors
made by the rule-based approach.

In the following section, we describe a few of
the previous works in the field of language gener-
ation from a knowledge base or linked data. Sec-
tion 3 addresses the idea of lexicalization of a
browse node in linear form along with the normal-
ization step to replace the slot values with place-
holders. Sequence-to-sequence models for gener-
ation of titles are described in Section 4, followed
by a description of joint learning over multiple lan-
guages in Section 5. Experiments and results are
described in Sections 6 and 7.

2 Related work

The first works on NLG were mostly focused on
rule-based language generation (Dale et al., 1998;
Reiter et al., 2005; Green, 2006). NLG systems
typically perform three different steps: content
selection, where a subset of relevant slot/value
pairs are selected, followed by sentence planning,
where these selected pairs are realized into their
respective linguistic variations, and finally surface
realization, where these linguistic structures are
combined to generate text. Our use case differs
from the above in that there is no selection done
on the slot/value pairs, but all of them undergo the
sentence planning step. In rule-based systems, all
of the above steps rely on hand-crafted rules.

Data driven approaches, on the other hand, ei-
ther try to learn each of the steps automatically
from the data Barzilay and Lapata (2005)

Dale et al. (1998) described the problem of
generating natural language titles and short de-
scriptions of structured nodes which consist of
slot/value pairs. There are many research which
deal with learning a generation model from paral-
lel data. These parallel data consist of the struc-
tured data and natural-language text, so that the
model can learn to transform the structured data
into text. Duma and Klein (2013) generate short
natural-language descriptions, taking structured
DBPedia data as input. Their approach learns text
templates which are filled with the information
from the structured data.

Mei et al. (September, 2015) use recurrent neu-
ral network (LSTM) models to generate text from
facts given in a knowledge base. Chisholm et al.
(2017) solve the same problem by applying a ma-
chine translation system to a linearized version of
the pairs. Several recent papers tackle the problem
of generating a one-sentence introduction for a bi-
ography given structured biographical slot/value
pairs. One difference between our work and the
papers above, (Mei et al., September, 2015), and
(Chisholm et al., 2017), is that they perform selec-
tive generation, i.e. they run a selection step that
determines the slot/value pairs which will be in-
cluded in the realization. In our use case however,
all slot/value pairs are relevant and need to be re-
alized.

Serban et al. (2016) generate questions from
facts (structured input) by leveraging fact embed-
dings and then employing placeholders for han-
dling rare words. In their work, the placeholders
are heuristically mapped to the facts, however, we
map our placeholders depending on the neural at-
tention (for details, see Section 4).

3 Lexicalization

Our first step towards title generation is verbaliza-
tion of all slot/value pairs. This can be achieved
by a rule-based approach as described in (Mathur
et al., 2017). However, in the work presented
here, we do not directly lexicalize the slot/value
pairs, but realize them in a pseudo language first.
For example, the pseudo-language sequence for
the slot/value pairs in Table 1 is “ brand ACME
cat Cell Phones & Smart Phones color white
capacity 32GB”.1

1 cat refers to an e-Commerce category in the browse
page.
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Slot Name Value
Category Cell Phones & Smart Phones
Brand ACME
Color white
Storage Capacity 32GB

Table 1: Example of browse page slot/value pairs.

3.1 Normalization
Pseudo-language browse pages can still contain a
large number of unique slot values. For exam-
ple, there exist many different brands for smart
phones (Samsung, Apple, Huawei, etc.). Large
vocabulary is a known problem for neural sys-
tems, because rare or less frequent words tend to
translate incorrectly due to data sparseness (Lu-
ong et al., 2015). At the same time, the soft-
max computation over the large vocabulary be-
comes intractable in current hardware. To avoid
this issue, we normalize the pseudo-language se-
quences and thereby reduce the vocabulary size.
For each language, we computed the 30 most fre-
quent slot names and normalized their values via
placeholders (Luong et al., August, 2015). For
example, the lexicalization of “Brand: ACME”
is “ brand ACME”, but after normalization, this
becomes brand $brand|ACME. This representa-
tion means that the slot name brand has the value
of a placeholder brand which contains the en-
tity called “ACME”. During training, we remove
the entity from the normalized sequence, while
keeping them during translation of development
or evaluation set. The mapping of placeholders in
the target text back to entity names is described in
Section 4.

The largest reduction in vocabulary size would
be achieved by normalizing all slots. However,
this would create several issues in generation.
Consider the pseudo-language sequence “ bike
Road bike type Racing”. If we replace all slot
values with placeholders, i.e. “ bike $bike type
$type”, then the system will not have enough
information for generating the title “Road rac-
ing bike”. Moreover, the boolean slots, such as
“ comic Marvel comics signed No” would be
normalized to placeholders as “ comic $comic
signed $signed”, and we would loose the in-

formation (“No”) necessary to realize this title as
“Unsigned Marvel comics”.

3.2 Sub-word units
We applied another way of reducing the vocab-
ulary, called byte pair encoding (BPE) (Sennrich

et al., 2016), a technique often used in NMT sys-
tems (Bojar et al., 2017). BPE is essentially a data
compression technique which splits each word
into sub-word units and allows the NMT system
to train on a smaller vocabulary. One of the ad-
vantages of BPE is that it propagates generation
of unseen words (even with different morphologi-
cal variations). However, in our use case, this can
create issues, because if BPE splits a brand and
generates an incorrect brand name in the target,
an e-Commerce company could be legally liable
for the mistake. In such case, one can first run
the normalization with placeholders followed by
BPE, but due to time constraints, we do not report
experiments on the same.

4 Sequence-to-Sequence Models

Sequence-to-sequence models in this work are
based on an encoder-decoder model and an atten-
tion mechanism as described by Bahdanau et al.
(May, 2016). In this network, the encoder is a bi-
directional RNN which encodes the information of
a sentence X = (x1, x2, . . . xm) of length m into
a fixed length vector of size |hi|, where hi is the
hidden state produced by the encoder for token
xi. Since our encoder is a bi-directional model,
the encoded hidden state is hi = hi,fwd + hi,bwd,
where hfwd and hbwd are unidirectional encoders,
running from left to right and right to left, respec-
tively. That is, they are encoding the context to the
left and to the right of the current token.

Our decoder is a simple recurrent neural net-
work (RNN) consisting of gated recurrent units
(GRU) (Cho et al., 2014) because of their com-
putationally efficiency. The RNN predicts the tar-
get sequence Y = (y1, y2, . . . , yj , . . . , yl) based
on the final encoded state h. Basically, the RNN
predicts the target token yj ∈ V (with target vo-
cabulary V) and emits a hidden state sj based on
the previous recurrent state sj−1, the previous se-
quence of words Yj−1 = (y1, y2, . . . , yj−1) and
Cj , a weighted attention vector. The attention vec-
tor is a weighted average of all the hidden source
states hi, where i = 1, . . . ,m. Attention weight
(aij) is computed between the hidden states hi and
sj and is leveraged as a weight of that source state
hi. In generation, we make use of these align-
ment scores to align our placeholders.2 The tar-
get placeholders are bijectively mapped to those

2These placeholders are not to be confused with the place-
holder for a tensor.
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source placeholders whose alignment score (aij)
is the highest at the time of generation.

The decoder predicts a score for all the tokens in
the target vocabulary, which is then normalized by
a softmax function, and the token with the highest
probability is predicted.

5 Multilingual Generation

In this section, we present the extension of our
work from a single-language setting to multi-
language settings. There have been various studies
in the past that target neural machine translation
from multiple source languages into a single tar-
get language (Zoph and Knight, Jan, 2016), from
single source to multiple target languages (Dong
et al., 2015) and multiple source to multiple tar-
get languages (Johnson et al., June, 2016). One
of the main motivation of joint learning in above
works is to improve the translation quality on a
low-resource language pair via transfer learning
between related languages. For example, John-
son et al. (June, 2016) had no parallel data avail-
able to train a Japanese-to-Korean MT system,
but training Japanese-English and English-Korean
language pairs allowed their model to learn trans-
lations from Japanese to Korean without seeing
any parallel data. In our case, the amount of train-
ing data for French is small compared to English
and German (cf. Section 6.1). We propose joint
learning of English, French and German, because
we expect that transfer learning will improve gen-
eration for French. We investigate the joint train-
ing of pairs of these languages as well the combi-
nation of all three.

On top of the multi-lingual approach, we fol-
low the work of Currey et al. (2017) who proposed
copying monolingual data on both sides (source
and target) as a way to improve the performance
of NMT systems on low-resource languages. In
machine translation, there are often named enti-
ties and nouns which need to be translated verba-
tim, and this copying mechanism helps in iden-
tifying them. Since our use case is monolingual
generation, we expect a large gain from this copy-
ing approach because we have many brands and
other slot values which need to occur verbatim in
the generated titles.

6 Experiments

6.1 Data
We have access to a large number of human-
created titles (curated titles) for English and Ger-
man, and a small number of curated titles for
French. When generating these titles, human an-
notators were specifically asked to realize all slots
in the title.

We make use of a large monolingual out-of-
domain corpus for French, as it is a low-resource
language. We collect item description data from
an e-Commerce website and clean the data in the
following way: 1) we train a language model (LM)
on the small amount of French curated titles, 2) we
tokenize the out-of-domain data, 3) we remove all
sentences with length less than 5, 4) we compute
the LM perplexity for each sentence in the out-of-
domain data, 5) we sort the sentences in increas-
ing order of their perplexities and 6) select the top
500K sentences. Statistics of the data sets are re-
ported in Table 2.

Languages Set #Titles #trg Tokens

English
Train 222k 1.5M
Dev 1000 6682
Test 1000 6633

German
Train 226k 1.9M
Dev 1000 8876
Test 500 4414

French
Train 10k 95k

Monolingual 500k 5.54M
Dev 486 6403
Test 478 3886

Table 2: Training and test data statistics per language. ‘k’
and ‘M’ stands for thousand and million, respectively.

6.2 Systems
We compared the NLG systems in the single-,
dual-, and multi-lingual settings.

Single-language setting: This is the baseline
NLG system, a straightforward sequence-to-
sequence model with attention as described in Lu-
ong et al. (August, 2015), trained separately for
each language. The vocabulary is computed on
the concatenation of both source and target data,
and the same vocabulary is used for both source
and target languages in the experiments.

We use Adam (Kingma and Ba, December,
2014) as a gradient descent approach for faster
convergence. Initial learning rate is set to 0.0002
with a decay rate of 0.9. The dimension of word
embeddings is set to 620 and hidden layer size to
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1000. Dropout is set to 0.2 and is activated for
all layers except the initial word embedding layer,
because we want to realize all aspects, we cannot
afford to zero out any token in the source. We con-
tinue training of the model and evaluate on the de-
velopment set after each epoch, stopping the train-
ing if the BLEU score on the development set does
not increase for 10 iterations.

Baselines: We compare our neural system with a
fair baseline system (Baseline 1), which is a statis-
tical MT system trained on the same parallel data
as the neural system: the source side is the lin-
earized pseudo-language sequence, and the target
side is the curated title in natural language. Base-
line 2 is the either the hybrid system (for French
and English) or the APE system (for German),
both described in Section 1. These are unfair
baselines, because (1) the hybrid system employs
a large number of hand-made rules in combina-
tion with statistical models (Mathur, Ueffing, and
Leusch, 2017), while the neural systems are un-
aware of the knowledge encoded in those rules,
(2) the APE system and neural systems learn from
same amount of parallel data, but the APE sys-
tem aims at correcting rule-based generated titles,
whereas the neural system aims at generating titles
directly from a linearized form, which is a harder
task. We compare our systems with the best per-
forming systems of (Mathur et al., 2017), i.e. hy-
brid system for English and French, and APE sys-
tem for German.

Multi-lingual setting: We train the neural
model jointly on multiple languages to leverage
transfer learning from a high-resource language
to a low-resource one. In our multi-lingual set-
ting, we experiment with three different combi-
nations to improve models for French: 1) En-
glish+French (en-fr) 2) German+French (de-fr) 3)
English+French+German (en-fr-de). English and
French being close languages, we expect the en-
fr system to benefit more from transfer learning
across languages than any other combination. Al-
though, as evident in Zoph and Knight (Jan, 2016),
joint learning between the distant languages works
better as they tend to disambiguate each other bet-
ter than two languages which are close. For com-
parison, we also run a combination of two high-
resource languages, i.e. English and German (en-
de), to see if transfer learning works for them. It
is important to note that in all multi-lingual sys-

tems the low-resourced language is over-sampled
to balance the data.

We used the same design parameters on the neu-
ral network in both the single-language and the
multi-lingual setting.

Normalized setting: On top of the systems
above, we also experimented with the normaliza-
tion scheme presented in Section 3.1. Normaliza-
tion is useful in two ways: 1) It reduces the vocab-
ulary size and 2) it avoids spurious generation of
important aspect values (slot values). The second
point is especially important in our case because
this avoids highly sensitive issues such as brand vi-
olations. MT researches have observed that NMT
systems often generate very fluent output, but have
a tendency to generate inadequate output, i.e. sen-
tences or words which are not related to the given
input (Koehn and Knowles, June, 2017). We alle-
viate this problem through the normalization de-
scribed above. After normalization, we see vo-
cabulary reductions of 15% for French, 20% for
German and as high as 35% for English.

As described in Section 5, we also use byte pair
encoding, with a BPE code size of 30,000 for all
systems (with BPE). We train the codes on the
concatenation of source and target since (in this
monolingual generation task) the vocabularies are
very similar; the vocabulary size is around 30k for
systems using BPE for both source and target.

7 Results

We evaluate our systems with three different au-
tomatic metrics: BLEU (Papineni et al., 2002),
TER (Snover et al., 2006) and character F-
Score (Popović, 2016). Note that BLEU and char-
acter F-score are quality metrics, i.e. higher scores
mean higher quality, while TER is an error met-
ric, where lower scores indicate higher quality. All
metrics compare the automatically generated title
against a human-curated title and determine se-
quence matches on the word or character level.

Table 3 summarizes results from all systems on
the English test set. All neural systems are better
than the fair Baseline 1 system.

Normalization with tags (i.e. using placehold-
ers) has a negative effect on English title qual-
ity both in the single-language setting en (67.1
vs. 68.4 BLEU) and in the dual-language set-
ting en-fr (67.1 vs. 70.7 BLEU). However, title
quality increases when using BPE instead (71.9
vs. 70.7 BLEU). On en-de, we observe gains
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System Norm. BLEU↑ chrF1↑ TER↓
Baseline 1 n/a 64.2 82.9 26.5
Baseline 2 n/a 74.3 86.1 19.8
en No 68.4 82.8 21.2
en Yes(Tags) 67.1 82.5 21.7
en-fr No 70.7 83.9 20.1
en-fr Yes(Tags) 67.1 82.1 22.8
en-fr Yes(BPE) 71.9 85.2 18.5
en-frbig Yes(BPE) 74.1 86.2 17.3
en-de No 65.8 80.7 23.6
en-de Yes(Tags) 67.1 82.8 22.3
en-de Yes(BPE) 72.7 85.4 18.8
en-fr-de Yes(BPE) 74.5 86.3 17.0

Table 3: Results on EN test, cased and detokenized.

both from normalization with tags and from BPE.
Again, BPE normalization works best. Both dual-
language systems with BPE achieve better perfor-
mance that the best monolingual English system
(71.9 and 72.7 vs. 68.4 BLEU).

The system en-frbig contains monolingual
French data added via the copying mechanism,
which improves title quality. It outperforms any
other neural system and is on par with Baseline 2
(unfair baseline), even outperforming it in terms
of TER. The multi-lingual system en-fr-de is very
close to en-frbig according to all three metrics.

System Norm. BLEU↑ chrF1↑ TER↓
Baseline 1 n/a 58.5 88.3 31.4
Baseline 2 n/a 79.4 90.7 17.1
de No 78.2 87.0 20.7
de Yes(Tags) 71.1 85.0 27.2
en-de No 74.0 87.3 22.6
en-de Yes(Tags) 65.6 84.0 30.2
en-de Yes(BPE) 79.6 91.1 16.6
de-fr No 77.2 88.9 18.9
de-fr Yes(Tags) 63.3 83.0 30.7
de-fr Yes(BPE) 77.6 89.0 19.2
de-frbig Yes(BPE) 80.0 91.6 16.2
en-fr-de Yes(BPE) 80.6 92.0 15.3

Table 4: Results on DE test, cased and detokenized.

Table 4 collects the results for all systems on the
German test set. For the single-language setting,
we see a loss of 7 BLEU points when normalizing
the input sequence, which is caused by incorrect
morphology in the titles. When using placehold-
ers, the system generates entities in the title in the
exact form in which they occur in the input. In
German, however, the words often need to be in-
flected. For example, the slot “ brand Markenlos”
should be realized as “Markenlose” (Unbranded)
in the title, but the placeholder generates the in-
put form “Markenlos” (without suffix ‘e’). This
causes a huge deterioration in the word-level met-

rics BLEU and TER, but not as drastic in chrF1,
which evaluates on the character level.

For German, there is a positive effect of trans-
fer learning for both dual-language systems en-
de and de-frbig with BPE (79.6 and 80.0 vs. 78.2
BLEU). However, the combination of languages
hurts when we combine languages at token level,
i.e. without normalization or with tags. The per-
formance of systems with BPE is even on par with
or better than the strong baseline of 79.4 BLEU,
both for combinations of two and of three lan-
guages.

System Norm. BLEU↑ chrF1↑ TER↓
Baseline 1 n/a 44.6 77.7 44.3
Baseline 2 n/a 76.8 89.0 18.4
fr small No 23.0 52.0 71.1
fr small Yes(Tags) 27.4 56.2 60.1
frbig Yes(BPE) 29.5 57.3 58.5
frbig Yes(Both) 31.4 61.3 60.9
en-fr No 22.5 51.3 69.6
en-fr Yes(Tags) 20.1 47.1 70.3
en-fr Yes(BPE) 21.6 50.7 73.9
en-frbig Yes(BPE) 32.6 61.8 51.2
de-fr No 21.7 50.2 71.4
de-fr Yes(Tags) 23.2 49.9 67.3
de-fr Yes(BPE) 30.9 63.0 61.8
de-frbig Yes(BPE) 38.8 67.8 50.5
en-fr-de Yes(BPE) 45.3 73.2 42.0

Table 5: Results on FR test, cased and detokenized.

System Title
src cat Équipements de garage brand Outifrance
ref Équipements de garage Outifrance
fr small Équipements de suspension et de travail
fr small,tags Équipements de garage Outifrance
src cat Cylindres émetteurs d’embrayage pour au-

tomobiles brand Vauxhall
ref Cylindres émetteurs d’embrayage pour auto-

mobiles Vauxhall
fr small Perles d’embrayage pour automobile Vauxhall
frbig Cylindres émetteurs d’embrayage pour auto-

mobile Vauxhall
src cat Dessous de verre de table brand Amadeus
ref Dessous de verre de table Amadeus
frbig Guirlandes de verre Dunlop de table
en-fr-de Dessous de verre de table Amadeus

Table 6: Examples from the french test set.

Table 5 summarizes the results from all sys-
tems on the French test set. The single-language
fr NMT system achieves a low BLEU score
compared to the SMT system Baseline 1 (23.0
vs. 44.6). This is due to the very small amount
of parallel data, which is a setting where SMT
typically outperforms NMT as evidenced in Zoph
et al. (April, 2016). Normalization has a big
positive impact on all French systems (e.g. 27.4
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vs. 23.0 BLEU for fr).
The de-fr systems show a much larger gain from

transfer learning than the en-fr systems, which val-
idates Zoph and Knight (Jan, 2016)’s results, who
show that transfer learning is better for distant lan-
guages than for similar languages.

For all three languages, copying monolingual
data improves the NMT system by a large margin.

The multi-lingual en-fr-de (BPE) system (with
copied monolingual data) is the best system for all
three languages. It has the additional advantage of
being one single model that can cater to all three
languages at once.

Table 6 presents the example titles comparing
different phenomena. The first block shows the
usefulness of placeholders in system fr small ,tags

(i.e. fr small , normalized with tags) where in com-
parison to fr small the brand is generated verbatim.
The second block shows the effectiveness of copy-
ing the data where “Cylindres” is generated cor-
rectly in the frbig (with BPE) system in compari-
son to fr small . The last block shows that reorder-
ing and adequacy in generation can be improved
with the helpful signals from high-resourced En-
glish and German languages.

8 Conclusion

We developed neural language generation systems
for an e-Commerce use case for three languages
with very different amounts of training data and
came to the following conclusions:

(1) The lack of resources in French leads to gen-
eration of low quality titles, but this can be dras-
tically improved upon with transfer learning be-
tween French and English and/or German.

(2) In case of low-resource languages, copy-
ing monolingual data (even if out-of-domain) im-
proves the performance of the system.

(3) Normalization with placeholders usually
helps for languages with relatively easy morphol-
ogy.

(4) It is important to over-sample the low-
resourced languages in order to balance the high-
& low-resourced data, thereby, creating a stable
NLG system.

(5) For French, a low-resource language in our
use case, the hybrid system which combines man-
ual rules and SMT technology is still far better
than the best neural system.

(6) The multi-lingual model has the best trade-
off, as it achieves the best results among the neural

systems in all three languages and it is one single
model which can be deployed easily on a single
GPU machine.
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Abstract 

As a specialized example of information 

extraction, part name extraction is an area 

that presents unique challenges. Part names 

are typically multiword terms longer than 

two words.  There is little consistency in 

how terms are described in noisy free text, 

with variations spawned by typos, ad hoc 

abbreviations, acronyms, and incomplete 

names.  This makes search and analyses of 

parts in these data extremely challenging. 

In this paper, we present our algorithm, 

PANDA (Part Name Discovery Analytics), 

based on a unique method that exploits sta-

tistical, linguistic and machine learning 

techniques to discover part names in noisy 

text such as that in manufacturing quality 

documentation, supply chain management 

records, service communication logs, and 

maintenance reports. Experiments show 

that PANDA is scalable and outperforms 

existing techniques significantly.  

1 Introduction 

Part information plays a key role in manufacturing, 

maintenance, supplier management and customer 

support of any large complex system, such as an 

airplane, which may easily involve over 30,000 

types of parts.  Parts can be described by part num-

bers or nomenclature.  Furthermore, a given part 

serving the same function can often be supplied by 

multiple suppliers, who may use different part 

numbers and do not always use the same nomen-

clature to describe functionally equivalent parts.  In 

addition, part names are very frequent in the ser-

vice descriptions and notes written by mechanics 

and engineers around the world. Due to time con-

straints, working conditions (maintenance mechan-

ics do not work in an office environment), time 

crunch, and job focus (primarily getting the aircraft 

ready for on-time takeoff, not writing perfect Eng-

lish), compounded by the fact that many of those 

involved are not native speakers of English, the 

data often contains a high percentage of non-stand-

ard spellings and ad hoc shorthand notations and 

typos. Table 1 exemplifies these issues with real 

sample maintenance records. 

 
In order to pinpoint types of issues involved in 

manufacturing, maintenance support, or supply 

chain management, it is crucial to identify the spe-

cific part involved.  Importantly, a robust and scal-

able approach for extracting parts from text of the 

nature described above should never rely on simple 

matching from a list of predefined part names. It 

should also have a way of exploiting abundant free 

text data amassed over years. 

 While information extraction is a well-studied 

field, typically information extraction focuses on 

people, organization, time, location, event and their 

relationship.  Part name extraction is much less 

studied.  Part name extraction has the following 

unique properties.  First, the language of part 

names as well as their context in these data sources 

is very domain-specific. This means that, not only 

is there nothing analogous to special word lists like 

people’s first and last names or city, state and coun-

try names, but general language resources like 

WorldNet (Miller, 1995) and Freebase (Freebase, 

2018) are also virtually useless. In addition, part 

names are often longer than the names of people, 

organizations, or locations and can be as long as 5-

lh side sidewall panel between sta 1600 and 1700 

(pos 41l and 42l) worn 

new electrical panel fitted iaw amm task xx-xx- 

lwr ctr display selected lt inop on display selec-

tor pnl. 

Table 1:  Sample maintenance records containing 

parts (highlighted), typos, and ad hoc abbrevia-

tions (lh for left, pnl for panel, lwr for lower, etc.) 
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7 words (e.g. variable speed constant frequency 

cool fan).  Furthermore, it is often the case that a 

substring Y (e.g. landing gear) of a part name X 

(e.g. main landing gear) is also a valid part name.  

This creates a challenge for a system to identify X 

instead of Y as the part being mentioned.  In addi-

tion, as noted above, the free text data containing 

the part names are often non-professionally au-

thored and contain a high percentage of spelling 

variants (both ad hoc abbreviations and typos) and 

domain-specific acronyms. The spelling chal-

lenges do not just occur in part names, but occur 

throughout the free text, posing challenges for ei-

ther traditional grammar-based parsing or n-gram 

approaches. 

In this paper we present PANDA (Part Name 

Discovery Analytics), a fast and scalable method 

that exploits statistical, linguistic and supervised 

machine learning techniques in a unique way such 

that minimal human supervision is sufficient to dis-

cover thousands of part names from noisy text.  

2 Related Work  

Basic information extraction methods typically 

rely on language models and hand-crafted rules. 

The n-gram approach derives common strings from 

a large corpus and, together with hand-crafted 

rules, makes for an easy-to-implement way of in-

ferring entities (Chandramouli, Subramanian, & 

Bal, 2013). A more sophisticated approach would 

define rules based on regular expressions over text 

content or their parts-of-speech tags to extract in-

formation. Noun-phrase identification is a typical 

approach under this category (Vilain and Day, 

2000). Rule-based and language model-based sys-

tems are very effective in cases when the entities of 

interest follow specific patterns. However, when 

the text is very noisy, generating hand-crafted rules 

and patterns is cost-prohibitive and not feasible. 

To our knowledge, there is only one previously 

published work specifically focusing on part name 

extraction (Chandramouli, Subramanian, & Bal, 

2013).  The authors propose an n-gram based ap-

proach which extracts part names from service 

logs. Given a list of basic part types (e.g. valve), 

they generate bigrams and trigrams ending with 

those part types and consider them as part candi-

dates. The candidates are ranked using a mutual in-

formation metric. Furthermore, the authors found 

that Part-of-Speech (POS) based filtering improved 

the quality of prediction. While this work is unsu-

pervised and easy to implement, it has important 

limitations. First, it cannot predict any new part 

types, because it relies on predefined part types. 

Therefore, any part types which are not already 

known will be missed. Secondly, their system can-

not extract part names which have more than three 

tokens. In our data, part names consisting of more 

than three tokens occur frequently (i.e. left main 

landing gear, horizontal stabilizer trim actuator). 

Importantly, all n-gram based approaches suffer 

from the pervasive misspellings and abbreviations 

in noisy data.  They may not be able to extract out-

flow vlv, trim act or door switche, as the respective 

part types valve, actuator and switch are misspelled 

or written in a non-standard way.  

To enable more flexibility and more power in ex-

tracting entities, machine learning methods, espe-

cially supervised learning methods, have become a 

natural choice in modern day information extrac-

tion.  Typical machine learning methods consid-

ered include Hidden Markov Models (HMM) 

(Skounakis, Craven and Ray, 2003;   Freitag and 

McCallum, 1999), and Conditional Random Fields 

(CRFs) (McCallum, 2002). The supervised sys-

tems learn a set of rules or models from the sup-

plied hand-tagged samples for the training phase of 

machine learning.  Once a new model is built based 

on training data, the model can be applied to new 

documents to extract entities. Rules and models 

learned by supervised techniques are effective for 

extracting information from the same genre of doc-

uments they are trained on, but they may perform 

poorly when applied to a different genre. In addi-

tion, acquiring the right training examples can be 

very expensive.  Part information extraction is one 

such area which requires SME (Subject Matter Ex-

pert) knowledge and is thus not suited to crowd 

sourcing. 

Recent approaches that address the scalability 

problem in training data associated with supervised 

machine learning include weakly-supervised meth-

ods (Pasca, 2007), bootstrapping techniques (Vi-

lain and Day, 2000; Maedche, 2003), and active 

learning (Thompson, Callif and Mooney, 1999;  

Williams et al., 2015). Active learning starts with 

bootstrap samples creating an initial model and 

uses that model to select the most informative ex-

amples in order to minimize the annotation cost re-

quired to generate training examples. A new model 

is created with the new examples and the process 

continues until a stopping criteria is met.  However, 

such iteration still requires SME involvement.  

When the free text data contain a high degree of 
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noise, and the number of parts involved is in the 

tens of thousands, it is not clear how fast an active 

learning approach will converge. Besides, SMEs 

are very expensive and reducing their efforts in part 

name extraction process, as do ne by our method 

PANDA, offers a huge cost saving for a company. 

Studies show that open-ended and domain inde-

pendent information extraction systems do not 

work well for domain-specific information extrac-

tion (Etzioni et al., 2004). As such, existing ap-

proaches can be expected to perform poorly for part 

extraction, a domain specific information extrac-

tion problem.   To this end, we propose a system 

that is tuned to extract parts from the target natural 

language text (e.g. maintenance logs). The pro-

posed system is robust so that it can operate on 

noisy text and yet scalable as it demands very min-

imal supervision.  

3 Part Name Discovery Analytics  

The intent of Part Name Discovery Analytics 

(PANDA) is primarily to extract part information 

in the domain of aircraft to support vehicle health 

management by exploiting hundreds of thousands 

of free text records. However, its use can extend to 

any large data sets containing part name mentions.  

The primary design philosophy is to utilize ma-

chine learning capabilities and at the same time ex-

ploit linguistic knowledge of how part names are 

constructed in English. This allows discovery of 

new parts and at the same time minimizes the ex-

pensive training process required for supervised 

machine learning.  Dealing with highly noisy data 

is a key requirement of this domain. Therefore, a 

non-learning based method would not meet our re-

quirements.  As we show later, PANDA learns to 

infer new part names from the noisy text.  

We leverage the linguistic fact that the most im-

portant term in a multiword part name is the head 

noun (the “Head”), and in English, the Head is the 

last term in a multiword term.  These Heads are 

terms such as panel, valve, switch etc.  Although 

most people who are somewhat familiar with this 

domain can easily come up with 10-20 examples of 

these Heads, it is important to note that there is no 

knowledge base anywhere that contains all of 

them.  By utilizing linguistic knowledge, we can 

automatically provide the most effective training 

examples to the machine learning algorithm, as 

well as greatly minimize SME review in providing 

crucial feedback for the machine learning process.   

 

At a high level, PANDA cleverly shuttles be-

tween Heads and Heads plus modifiers, which are 

the full part names of interest.  The requirement for 

SME’s attention are focused on Heads. Since 

SME’s need only review Heads, and not the full 

parts associated with each Head, the training is 

highly efficient. 

Fig. 1 shows the architecture of PANDA. It con-

sists of a loop which starts with seed Heads, a small 

set of basic part names such as gear, panel, switch, 

etc. The collected Heads are used to predict the part 

names in the Extract Part Names step (Section 3.1). 

The extracted part names are “purified” using sev-

eral filtering mechanisms (Section 3.2). The puri-

fied parts are used to generate training examples 

(Section 3.3) for a CRF model (Section 3.4) which, 

in turn, is used to predict new part names in the data 

set (Section 3.5). The predicted part names are 

again purified (Section 3.2) and new Heads are ex-

tracted (Section 3.6). The extracted Heads them-

selves are also purified (Section 3.7). Finally, the 

purified Heads are added back to the earlier list 

forming a larger initial set of Heads. The loop is 

repeated until a stopping criteria is met (Section 

3.8). Parts predicted by CRF and trie in the last run 

are collected as the final output.  

3.1 Trie-based Part Name Prediction 

The purpose of this step is to use part Heads and 

automatically generate complete part names that 

we need later to generate training examples for a 

machine learning model. To do this, we construct a 

data structure called a trie (Trie, 2018) from a large 

corpus such that the first level nodes are the given 

part Heads (e.g. gear) and their descendant nodes 

are the tokens appearing before them in the data set 

(see Fig. 2 below). This type of trie is computed by 

 

Figure 1: PANDA Processing Loop. 
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scanning the tokens in reverse order, and is highly 

efficient. We then traverse the trie in depth-first 

fashion as long as it satisfies the minimum fre-

quency criteria. We collect the potential part name 

sequence as we traverse.  To further ensure better 

examples are used in the training example genera-

tion process, we could have a constraint to only use 

the Heads having certain minimum frequency.  

3.2 Purify Part Names 

As is the case of all machine learning methods, a 

significant amount of bad training samples may 

negatively impact the resulting model. Thus, to fur-

ther improve the quality of part names predicted in 

the previous step, this step applies a number of heu-

ristics based on POS features. For instance, a part 

name must not start with a verb or an article. If it 

does, we remove them and considered the remain-

ing chunk as part name (e.g. replaced main landing 

gear becomes main landing gear). Similarly, 

PANDA requires that all part name tokens must ei-

ther be nouns or adjectives. 

3.3 Generate Training Examples 

The goal of this phase is to generate training data 

for a machine learning model by annotating the 

data in the corpus with the part names resulting 

from the previous steps. Since the goal is to lever-

age patterns in the part names and their context to 

discover new part names, additional features need 

to be provided. PANDA currently employs k-pre-

vious and k-next word tokens and their POS tags as 

well as the POS tags of part names themselves as 

these features.  The POS features can be generated 

using a POS Tagger such as Brill Tagger (Brill, 

1992). Fig. 3 shows a sample annotated record with 

the part name left main landing gear and corre-

sponding POS-tags. 

 
Figure 3: A sentence annotated with a part name. 

3.4 Train a Sequence Model 

The goal of this phase is to use the annotated corpus 

as training data to generate a model that identifies 

part names in the data. Any sequence model that 

extracts sequences of tokens, such as a CRF (Laf-

ferty, McCallum and Pereira, 2001) or Long Short 

Term Memory network (Gers, Schmidhuber and 

Cummins, 1999), can be used at this phase.  We use 

CRF in our experiments. 

3.5 Predict Part Names 

The goal of this phase is to use the sequence model 

trained in Section 3.4 on the corpus to extract new 

potential part names. The newly predicted parts are 

collected and purified using the approach presented 

in Section 3.2. 

3.6 Extract Head Nouns 

This step is to extract Heads from the newly iden-

tified potential part names in the machine learning 

output.  It extracts the last token of the supplied part 

and returns that as the Head. For instance, it returns 

cap for oil filter cap.    

3.7 Purify Head Nouns 

The goal of this step is for PANDA to validate 

Heads generated in the previous phase. The feed-

back can be done with a human-in-the-loop (a 

SME). The SME will review all generated Heads 

and classify them into different categories, typi-

cally Good (e.g. antenna) or Bad (e.g. inoperable). 

Optionally, an additional category Borderline (e.g. 

unit) can be used.  However, only Good Heads are 

used in the next iteration of the loop to generate ad-

ditional new part names.  Borderline heads will not 

be used to generate new part names for the training 

purpose, but will be accepted as potentially valid 

heads at the last run. 

3.8 Stopping Criteria for the Loop 

PANDA supports various types of stopping criteria. 

It can be stopped after a certain number of itera-

tions or after a certain number of parts are gener-

ated, or after it reaches a certain ratio of bad vs. 

good new parts generated. 

 

Figure 2: Sample trie generating parts main land-

ing gear and left main landing gear. 
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3.9 Part Prediction using PANDA 

The parts collected after the final run can be used 

to extract the part names in new incoming records. 

Alternatively, the final CRF model can also be used 

to predict the parts. Or a combination of both of 

these can be used. 

4 Experiments and Results 

We conducted experiments using three major key 

data sources in the aerospace domain: (a) Mainte-

nance Logbook (MLB) includes key maintenance 

condition, maintenance action and parts involved 

for issues identified on an aircraft. (b) Schedule In-

terruption (SI) includes records generated by doz-

ens of major airlines at airports all over the world. 

It contains reasons for significant delays in depar-

ture or landing, often due to the condition of one or 

more parts/systems. (c) Communication Systems 

(CS) includes professional help desk type corre-

spondence between an aircraft manufacturing com-

pany and airline operators. MLB and SI are very 

noisy (as shown in Table 1) compared to CS. All 

data sets contained multiple records, had compara-

ble sizes of 1 million tokens each, and were subject 

to the same preprocessing steps and POS-tagging. 

We ran PANDA on SI data set using 36 seed 

head nouns. We set PANDA to identify full part 

names of length up to 5 tokens with minimum fre-

quency threshold of 1, to capture maximum recall, 

and allowed it to run till no new good Head was 

generated. The results are presented in Table 2. 

PANDA stopped after iteration 7 generating 9374 

parts. SME’s feedback to predicted Heads in each 

iteration as Good, Bad and Borderline heads, de-

fined in Section 3.7, are also presented in the table. 

Starting from 36 initial Heads, PANDA was able to 

extract 382 (= 317 Good + 65 Borderline) new part 

Heads.  This demonstrates PANDA’s ability to infer 

new part Heads which are not known initially. This 

is crucial because all Heads are not known in ad-

vance and hundreds of new full parts may be asso-

ciated with a single new Head.  

Table 2 also shows the total number of parts col-

lected up to a given iteration. It extracted 9374 full 

parts at the end of the final iteration but only re-

quired annotations of 780 part Heads. Since the an-

notation task only involves annotating the Heads 

and not the full parts, the annotation is very fast. As 

a reference, this whole experiment took less than 2 

hours to complete. This demonstrates the scalabil-

ity of PANDA in that it requires minimal human 

input in the training phase of machine learning. 

Since previously annotated Heads can be reused in 

subsequent experiments, PANDA will run even 

faster in the later experiments.  

 

 
Next we sought to evaluate the quality of full 

parts generated by PANDA. However, no gold data 

set is currently available for that purpose. Also, 

evaluation in terms of recall by annotating all parts 

is not feasible, as annotating all 9374 full parts 

would be very costly. Therefore, we randomly se-

lected 1000 parts for evaluation. PANDA scored 

80.9% accuracy on this evaluation. This clearly 

shows that, though a SME only provides feedback 

on Heads during the training process, PANDA is 

still able to extract full part names from noisy data 

with a high degree of accuracy. 

4.1 PANDA VS Baseline 

As noted in Section 2, the only known algorithm in 

the literature to extract part names from free text is 

by Chandramouli, Subramanian, and Bal (2013). It 

considers parts as n-grams ending at provided 

heads and ranks them by a collocation measure. We 

implemented their best performing algorithm that 

purifies parts with POS tags as baseline. We ran 

both the baseline and PANDA to extract full part 

names of length up to 5 words from the SI data, 

with a minimum acceptable collocation value of 25 

for the baseline. The results are shown in Table 3. 

Since the baseline relies on provided Heads - 36 

in this case - and has no way of inferring new part 

Heads and their corresponding parts, it suffers from 

  

Good 

 

Bad 

 

Borderline 

Total 

Parts 

Seed 36 - - - 

Iter 1 98 97 19 3370 

Iter 2 127 146 30 7853 

Iter 3 48 95 9 8794 

Iter 4 27 27 3 9020 

Iter 5 12 18 2 9249 

Iter 6 3 11 2 9283 

Iter 7 2 4 0 9374 

Total 

(1-7) 

317 398 65 9374 

Table 2: PANDA results showing annotation 

counts for Good, Bad and Borderline heads 

and total full parts on SI data set 

 Heads Parts 

Baseline 36 979 

PANDA 382 9374 

Table 3: Baseline and PANDA extracted parts 

using same 36 seed heads 
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low recall. PANDA, on the other hand can easily 

infer new Heads and associated parts. For instance, 

although annunciator was not in the initial Head 

list, PANDA was able to infer it and its variants 

such as annunc, annuc, and ann. In addition, 

PANDA extracted 32 types of annunciators such as 

antiskid annunciator, door warn annunciator, and 

cabin zone temp annunc.  

In addition, PANDA captured the longest part 

name possible (a very specific part ) while the base-

line broke it down to its constituent chunks, creat-

ing parts that did not exist in the data set or were 

incorrect. Baseline results contained 186 such 

over-generated parts.  In one example, when access 

always preceded door panel, PANDA only gener-

ated access door panel. In contrast, the baseline 

generated door panel (a non-existence part) as well 

as access door panel. Since door panel can easily 

be derived from access door panel (a specific part), 

PANDA still is able to identify generic parts, if they 

exist, in new incoming records without generating 

the parts that do not exist in the current data set, 

which may lead to error. For instance, the constitu-

ent part one valve that the baseline generates from 

generator one valve is not by itself a valid part.  

Lastly, the baseline generated incorrect parts 

when there were more than one head in a part 

name. It extracted temperature control valve, tem-

perature control, and control valve from the record 

containing “temperature control valve” as they 

were n-grams ending at known heads control and 

valve. In fact, out of 979 baseline parts, 466 were 

common with PANDA and the rest were either 

over-generated or invalid parts. These facts clearly 

demonstrate PANDA’s superiority over the base-

line model in terms of recall, learning ability for 

heads and parts, and accuracy of extracted parts.   

4.2 PANDA on Diverse Data Sets  

To test the generality of PANDA across different 

genres of part records, we ran PANDA on MLB, SI 

and BCS data sets for 5 iterations each. As noted 

above, MLB and SI are very noisy compared to 

BCS. Each of these experiments needed less than 2 

hours. We report head annotation counts and total 

extracted parts in each of these data sets in Table 4. 

The results show that PANDA can process data sets 

of different genres with minimal annotations and 

can extract thousands of complex part names from 

them. As expected, fewer parts were discovered in 

BCS than in SI and MLB since it consisted of email 

conversations with boilerplate texts.  

 

4.3 Error Analysis 

We identified some error types that affected 

PANDA results. First, there are certain parts that 

PANDA could not correctly extract due to its as-

sumption that the last word of a part is the head of 

the part. From the text “Replaced handle of door”, 

it could capture handle and door separately but not 

as door handle or handle of door. Such cases, how-

ever, were very rare.  Second, POS-tagging errors 

affected some of PANDA’s predictions.  It captured 

report generator drive instead of generator drive 

due to report being incorrectly tagged as a noun. 

Third, a few parts were only partially captured due 

to the maximum part length setting. For instance 

variable was missed in the 6-word part variable 

speed constant frequency cool fan.  

5 Conclusion and Future Work 

We presented PANDA, a novel approach that dis-

covers part names in noisy text. PANDA cleverly 

exploits the linguistic characteristics of part names 

in English to automatically generate full part names 

using basic part names. This automates the training 

example generation process, the most expensive 

step for building a supervised machine learning 

model. Experiments demonstrated that: 

• PANDA required minimal human input for 

training the machine learning model 

• PANDA was superior to the existing sys-

tem in that it was able to infer new heads 

and parts and dramatically improved recall 

as compared to the existing system 

• PANDA extracted high quality full parts 

• PANDA can scale across diverse data sets  

With these promising results, PANDA is cur-

rently being deployed to extract part names from 

several data sets for different aircraft models and 

subsystems. In the future, we plan to focus on the 

normalization of heads (e.g. pnl and panal to panel) 

and parts (e.g. lft valve and left vlv to left valve) 

from PANDA extracted results. 

  

Data 

Set 

 

Good 

 

Bad 

 

Borderline 

Total 

Ann. 

Total 

Parts 

MLB 463 604 92 1159 8721 

SI 312 379 63 754 9249 

BCS 293 390 64 747 6554 

Table 4: Head annotation counts and total 

parts across data sets of different part genre 
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Abstract

This paper introduces a meaning represen-
tation for spoken language understanding.
The Alexa meaning representation language
(AMRL), unlike previous approaches, which
factor spoken utterances into domains, pro-
vides a common representation for how peo-
ple communicate in spoken language. AMRL
is a rooted graph, links to a large-scale on-
tology, supports cross-domain queries, fine-
grained types, complex utterances and com-
position. A spoken language dataset has been
collected for Alexa, which contains ∼ 20k ex-
amples across eight domains. A version of this
meaning representation was released to devel-
opers at a trade show in 2016.

1 Introduction

Amazon has developed Alexa, a voice assistant
that has been deployed across millions of de-
vices and processes voice requests in multiple lan-
guages. This paper addresses improvements to the
Alexa voice service, whose core capabilities (as
measured by the number of supported intents and
slots) has expanded more than four-fold over the
last two years. In addition more than ten thousand
voice skills have been created by third-party devel-
opers using the Alexa Skills Kit (ASK). In order
to continue this expansion, new voice experiences
must be both accurate and capable of supporting
complex interactions.

However, as the number of features has ex-
panded, adding new features has become increas-
ingly difficult for four primary reasons. First, re-
quests with a similar surface form may belong to
different domains, which makes it challenging to
add features without degrading the accuracy of ex-
isting domains. For example, similar linguistic
phrases such as “order me an echo dot” (e.g., for
Shopping) have a similar form to phrases used for
a ride-hailing feature such as, “Alexa, order me

a taxi”. The second challenge is that a fixed flat
structure is unable to easily support certain fea-
tures (Gupta et al., 2006b), such as cross-domain
queries or complex utterances, which cannot be
clearly categorized into a given domain. For ex-
ample, “Find me a restaurant near the sharks
game” contains both local businesses and sporting
events and “Play hunger games and turn the lights
down to 3” requires a representation that supports
assigning an utterance to two intents. The third
challenge is that there is no mechanism to repre-
sent ambiguity, forcing the choice of a fixed in-
terpretation for ambiguous utterances. For exam-
ple, “Play Hunger Games” could refer to an au-
diobook, a movie, or a soundtrack. Finally, repre-
sentations are not reused between skills, leading to
the need for each developer to create a custom data
and representations for their voice experiences.

In order to address these challenges and make
Alexa more capable and accurate, we have devel-
oped two key components. The first is the Alexa
ontology, a large hierarchical ontology that con-
tains fine-grained types, properties, actions and
roles. Actions represent a predicate that deter-
mines what the agent should do, roles express the
arguments to an action, types categorize textual
mentions and properties are relations between type
mentions. The second component is the Alexa
Meaning Representation Language (AMRL), a
graph-based domain and language independent
meaning representation that can capture the mean-
ing of spoken language utterances to intelligent as-
sistants. AMRL is a rooted graph where action,
operators, relations and classes are labeled vertices
and properties and roles are labeled edges. Un-
like typical representations for spoken language
understanding (SLU), which factors language un-
derstanding into the prediction of intents (non-
overlapping actions) and slots (e.g., named enti-
ties) (Gupta et al., 2006a), our representation is
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grounded in the Alexa ontology, which provides a
common semantic representation for spoken lan-
guage understanding and can directly represent
ambiguity, complex nested utterances and cross-
domain queries. Unlike similar meaning repre-
sentations such as AMR (Banarescu et al., 2013),
AMRL is designed to be cross-lingual, explicitly
represent fine-grained entity types, logical state-
ments, spatial prepositions and relationships and
support type mentions. Examples of AMRL and
the SLU representations can be seen in Figure 1.

The AMRL has been released via Alexa Skills
Kit (ASK) built-in intents and slots in 2016 at a
developers conference, offering coverage for eight
of the ∼20 SLU domains 1. In addition to these
domains, we have demonstrated that the AMRL
can cover a wide range of additional utterances
by annotating a sample from all first and third-
party applications. We have manually annotated
data for 20k examples using the Alexa ontology.
This data includes the annotation of∼100 actions,
∼500 types, ∼20 roles and ∼172 properties.

2 Approach

This paper describes a common representation for
SLU, consisting of two primary components:
• The Alexa ontology - A large-scale hierarchi-

cal ontology developed to cover all spoken
language usage.
• The Alexa meaning representation language

(AMRL) - A rooted graph that provides a
common semantic representation, is compo-
sitional and can support complex user re-
quests.

These two components are described in the fol-
lowing sections.

2.1 The Alexa ontology

The Alexa ontology provides a common semantics
for SLU. The Alexa ontology is developed in RDF
and consists of five primary components:
• Classes A hierarchy of Classes, also re-

ferred to as types, is defined in the ontology.
This hierarchy is a rooted tree, with finer-
grained types at deeper levels. Coarse types
that are children of THING include PERSON,
PLACE, INTANGIBLE, ACTION, PRODUCT,
CREATIVEWORK, EVENT and ORGANIZA-
TION. Fine-grained types include MUSI-
CRECORDING and RESTAURANT.

1https://amzn.to/2qDjNcJ

• Properties A given class contains a list of
properties, which relate that class to other
classes. Properties are defined in a hierar-
chy, with finer-grained classes inheriting the
properties of its parent. There are range re-
strictions on the available types for both the
domain and range of the property.
• Actions A hierarchy of actions are defined as

classes within the ontology. ACTIONS cover
the core functionality of Alexa.
• Roles ACTIONS operate on entities via roles.

The most common role for an ACTION is the
.object role, which is defined to be the entity
on which the ACTION operates.
• Operators and Relations A hierarchy of op-

erators and relations represent complex rela-
tionships that cannot be expressed easily as
properties. Represented as classes, these in-
clude ComparativeOperator, Equals and Co-
ordinator (Figure 2).

The Alexa ontology utilized schema.org as its
base and has been updated to include support for
spoken language. In addition, using schema.org
as the base of the Alexa Ontology means that it
shares a vocabulary used by more than 10 million
websites, which can be linked to the Alexa ontol-
ogy.

2.2 Alexa meaning representation language

AMRL leverages classes, properties, actions, roles
and operators in the main ontology to create a
compositional, graph-based representation of the
meaning of an utterance. The graph-based rep-
resentation conceptualizes each arc as a property
and each node as an instance of a type; each type
can have multiple parents. Conventions have been
developed to annotate the AMRL for an utterance
accurately and consistently. These conventions fo-
cus primarily on linguistic annotation, and only
consider filled pauses, edits, and repairs in limited
contexts. The conventions include:
• Fine-grained type mentions When an entity

type appears in an utterance, the most fine-
grained type will be annotated. For “turn on
the light”, the mention ‘light’ could be an-
notated as a DEVICE. However, there is a
more appropriate finer-grained type, LIGHT-
ING which will be selected instead.
• Ambiguous type mentions When more than

one fine-grained type is possible, then the
annotator will utilize a more coarse-grained
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“turn on the song thriller by michael jackson”
D MusicApp
I ListenMediaIntent
S turn on the [song]SongType [thriller]Song by [michael jackson]Singer

“turn on the living room lights”
D HomeAutomation
I ActivateIntent
S turn on the [living room]Location [lights]Device

(a) SLU Example 1 (b) AMRL Example 2

Figure 1: This figure shows the SLU representation on the left and the AMRL representation on the right.
The three components of the SLU representation, domain (D), intent (I) and slots (S) are shown. The
intent is different (e.g., “ListenMediaIntent” vs. “ActivateIntent”), despite the presence of“turn on”. On
the right are the same utterances represented in the AMRL. The nodes represent the instances of classes
defined in an ontology, while the directed arcs connecting the class instances are properties. The root
node of both graphs is the action, ACTIVATEACTION is shared across these two utterances, providing the
domain-less annotation with a uniform representation for the same carrier phrase. “-0” indicates the first
mention of a type in the utterance, and can be used used to denote co-reference across multiple dialog
turns.

type in the hierarchy. This type should be the
finest-grained type that still captures the am-
biguity. For example, in the utterance “play
thriller’, “thriller” can either be a MUSICAL-
BUM or a MUSICRECORDING. Instead of
selecting one of these a more coarse-grained
type of MUSICCREATIVEWORK will be cho-
sen. When the ambiguity would force fall-
back to the root class of the ontology THING,
AMRL annotation chooses a sub-class and
marks the usage of it as uncertain.
• Properties Properties are annotated when

they are unambiguous. For example, “find
books by truman capote”, the use of the .au-
thor property on the BOOK class is unam-
biguous. Similarly, for “find books about tru-
man capote” the use of the .about property
on the BOOK class is unambiguous.
• Ambiguous property usage When there is

uncertainty in the property that should be se-
lected for the representation, the annotator
may fall back to a more generic property.
• Property inverses When a property can

be annotated in two different directions, a
canonical property is defined in the ontol-
ogy and used for all annotations. For ex-
ample, .parentOrganization has an inverse
of .subOrganization. The former is selected
as canonical for annotation flexibility and to

eliminate cycles in the graph.

A few of these properties have special meaning
at annotation time. Specifically, for the annotation
of textual mentions there exist three primary prop-
erties: .name, .value and .type. The conventions
for these properties are as follows:

• .name This is a nominal mention in the ut-
terance, the .name property links the text to
an instance of a class. .name is only used
for mentions that are not a numeric quantity
or enumeration. An example of .name for a
MUSICIAN class would be “madonna”.
• .value This is defined in the same way as

.name but is used for mentions that are nu-
meric quantities or enumerations. For in-
stance, “two” would be a .value of an IN-
TEGER class.
• .type This is a generic mention of an entity

type. For example, “musician” is a .type
mention of the MUSICIAN class.

One action (NULLACTION) has a special mean-
ing. This is annotated whenever a SLU query does
not have an associated action or the action is un-
clear. This happens, for example, when someone
says, “temperature”. In contrast, “show me the
temperature” is annotated with the more specific
DISPLAYACTION.
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2.3 Expanded Language Support

AMRL has been used to represent utterances that
are either not supported or challenging to support
using standard SLU representations. The follow-
ing section describes support for anaphora, com-
plex and cross-domain utterances, referring ex-
pressions for locations and composition.

2.3.1 Anaphora
AMRL can natively support pronominal anaphora
resolution both within the same utterance or across
utterances. For example:
• Within utterance: “Find the highest-rated

toaster and show me its reviews’’
• Across utterances: “What is Madonna’s lat-

est album” “Play it.”
Terminal nodes refer back to the same (unique)

entity. An example annotation across multiple ut-
terances can be seen in Figures 3a and 3b. Sim-
ilar to the above, it can handle bridges within dis-
course, such as, “find me an italian restaurant” and
“what’s on its menu.”

2.3.2 Inferred nodes
AMRL contains nodes that are not grounded in
the text. For example, for the utterance, in Fig-
ure 2a there are two inferred nodes, one for the
address of the restaurant and another for the ad-
dress of the sports event. Not explicitly represent-
ing types has two primary benefits. First, certain
linguistic phenomena such as anaphora are easier
to support. Second, the representation is aligned to
the ontology, which enables direct queries against
the knowledge base. Inferred nodes are the AMRL
way to perform reification.

2.3.3 Cross-domain utterances
Using the common semantics of AMRL means
that parses do not need to obey domain bound-
aries. For example, these utterances would be-
long to two domains (e.g., sports and local search):
“Where is the nearest restaurant” and “What is
happening at the Sharks game”. AMRL, as in
Figure 2a, can handle utterances that span multi-
ple domains, such as the one shown in Figure 2a.

2.3.4 Conjunctions, disjunctions and
negations

AMRL can cover logical expressions, where there
can be an arbitrary combination of conjunctions,
disjunctions, or conditional statements. Some ex-
amples of object-level or clause-level conjunctions

include:
• Object-level conjunction: “Add milk, bread,

and eggs to my shopping list”
• Clause-level conjunction: “Restart this song

and turn the volume up to seven”
Conjunctions and disjunctions are represented us-
ing a Coordinator class. The “.value” property de-
fined which logical operation is to be performed.
Examples of the AMRL representation for these is
shown in Figure 2b and 2c.

2.3.5 Conditional statements
Conditional statements are not usually represented
in other formalisms. An example of a condi-
tional statement is, “when its raining, turn off the
sprinklers”. Time-based conditional statements
are special cased due to their frequency in spo-
ken language. For time-based expressions (e.g.,
“when it is three p.m., turn on the lights”), a start-
Time (or endTime) property is used on the action
to denote the condition of when the action should
start (or stop). For all other expressions, we use
the ConditionalOperator, which has a “condition”
property as well as a “result” property. When the
condition is true, then the result would apply. The
constrained properties are defining the arguments
of the Equals operator. An example can be seen in
Figure 4. A deterministic transformation from the
simplified time-based scheme to ConditionalOper-
ator form when greater consistency is desired.

2.3.6 Referring expressions for locations
AMRL can represent locations and their relation-
ships. For simpler expressions that are common,
such as “on” or “in,” properties are used to repre-
sent the relationship between two entity mentions.
For other spatial relations, such as “between” or
“around,” an operator is introduced. Two exam-
ples of spatial relationships can be seen in Fig-
ure 2d. In this example “beside” grounds to the
relation being used (e.g., “beside”) and uses two
properties (e.g., constrained and target), which are
the the first and second arguments to the spatial
preposition.

2.3.7 Composition
AMRL supports composition, which enables reuse
of types and subgraphs to represent utterances
with similar meanings. For example, Figures 2e
and 2f show the ability to create significantly dif-
ferent actions only by changing the type of the ob-
ject of the utterance. Such substitution can occur
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(a) Cross-domain (b) Conjunction (c) Conjunction (multiple actions)

(d) Spatial relations (e) Composition (1) (f) Composition (2)

Figure 2: Examples of complex queries. In (a) is the utterance “find restaurants near the sharks game.”.
In (b) is the utterance “find red and silver toasters”. In (c) is “play charlie brown and turn the volume
up to 10”. In (d) is “find the wendy’s on 5th avenue beside the park.” In (e) and (f) are an illustration
composition for, “play girl from the north country” and “play blue velvet.”.

(a) Turn 1 (b) Turn 2

Figure 3: (a) shows the first turn of a conversation,
“play songs by madonna” (b) shows the second
turn of a conversation, “what’s her address”. Be-
cause the node SINGER-0 has the same “-0” ID in
both turns, the previous turn can be directly used
to infer that the address should be for the person
whose name is “Madonna.”

anywhere in the annotation graph. PlaybackAc-
tion is used to denote playing of the entity referred
to by the object role.

2.3.8 Unsupported features

Although many linguistic phenomena can be sup-
ported in AMRL, there are a few that have not
been explicitly supported and are left for future
work. These include existential and universal
quantification and scoping and conventions for
agency (most requests are imperative). In addi-
tion, there is currently no easy way to convert to
first order logic (e.g., lambda calculus), due to
conventions that simplify annotation, but lose in-
formation about operators such as spatial relation-
ships.

3 Dataset

Data has been collected for the AMRL across
many spoken language use-cases. The current do-
mains that are supported include music, books,
video, local search, weather and calendar. We
have prototyped mechanisms to speed up anno-
tation via paraphrasing (Berant and Liang, 2014)
and conversion from our current SLU represen-
tation, in order to leverage the much larger data
available. The primary mechanism we have for
data-acquisition is via manual annotation. Tools
have been developed in order to acquire the full
graph annotated with all the properties, classes,
actions and operators.

AMRL manual annotation is performed by data
annotators in four stages. In the first stage an ac-
tion is selected, for example ACTIVATEACTION

in Figure 1b. The second stage defines the text
spans in an utterance that link to a class in the
ontology (e.g., “michael jackson” is a Musician
type and “thriller” and “song” are MusicRecord-
ing types, the first is a .name mention, while the
latter is a .type mention. The third stage creates
connections between the classes and defines any
missing nodes in the graph. In the final stage a
skilled annotator reviews the graph for mistakes
and and re-annotates it if necessary. There is a
visualization of the semantic annotation available,
enabling an annotator to verify that they have built
the graph in a semantically accurate manner. Man-
ual annotation happens at the rate of 40 per hour.
The manually annotated dataset contains∼20k an-
notated utterances and contains 93 unique actions,
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(a) AMRL for “when it is raining, turn off the sprin-
klers”

(b) AMRL for “when it is three p.m., turn on the
lights.”

Figure 4: Two examples of conditional statements. In (b) are the annotation for time-based conditions,
while in (a) is a non-time based trigger.

448 types, 172 properties and 23 roles.

4 Parsing

Any graph parsing method can be used to predict
AMRL given a natural language utterance. One
approach is to use hyperedge replacement gram-
mars (Chiang et al., 2013) (Peng et al., 2015),
though these require large datasets in order to train
accurate parsers. Alternatively, the graph can be
linearized, as in (Gildea et al., 2017) and sequence
to sequence or sequential models can be used to
predict AMRL (Perera and Strubell, 2018). We
have shown that AMRL full-parse accuracy is at
78%, though the serialization, use of embeddings
from related tasks can improve parser accuracy.
More details can be found in (Perera and Strubell,
2018).

5 Related Work

FreeBase (Bollacker et al., 2008) (now WikiData)
and schema.org (Guha et al., 2016) are two com-
mon ontologies. Schema.org is widely used on
the web and contains actions, types and proper-
ties. The Alexa ontology expands schema.org to
cover types, properties and roles used in spoken
language.

Semantic parsing has been investigated in the
content of small domain-specific datasets such as
GeoQuery (Wong and Mooney, 2006) and in the
context of larger broad-coverage representations
such as the Groningen Meaning Bank (GMB) (Bos
et al., 2017), the Abstract Meaning Representation
(AMR) (Banarescu et al., 2013), UCCA (Abend
and Rappoport, 2013), PropBank (Kingsbury
and Palmer, 2002), Raiment (Baker et al.,
1998) and lambda-DCS (Kingsbury and Palmer,
2002). OntoNotes (Hovy et al., 2006), lambda-
DCS s (Liang, 2013) (Baker et al., 1998),
FrameNet (Baker et al., 1998), combinatory
categorial grammars (CCG) (Steedman and

Baldridge, 2011) (Hockenmaier and Steedman,
2007), universal dependencies (Nivre et al., 2016)
are all related representations. A comparison of
semantic representations for natural language se-
mantics is described in Abend and Rappoport. Un-
like these meaning representations for written lan-
guage, AMRL covers question answering, imper-
ative actions, and a wide range of new types and
properties (e.g., smart home, timers, etc.).

AMR and AMRL are both rooted, directed,
leaf-labeled and edge-labeled graphs. AMRL
does not reuse PropBank frame arguments, cov-
ers predicate-argument relations, including a wide
variety of semantic roles, modifiers, co-reference,
named entities and time expressions (Banarescu
et al., 2013). There are more than 1000 named-
entity types in AMRL (AMR has around 80). Re-
entrancy is not used in AMRL notation. In ad-
dition to the AMR “name” property, AMRL con-
tains a “type” property for mentions of a type
(or class) and a “value” property for the men-
tion of numeric values. Anaphora is handled
in AMRL for spoken dialog Poesio and Art-
stein (Gross et al., 1993). Unlike representations
used for spoken language understanding (SLU)
(Gupta et al., 2006b), AMRL represents both en-
tity spans, complex natural language expressions,
and fine-grained named-entity types.

6 Conclusions and Future Work

This paper develops AMRL, a meaning represen-
tation for spoken language. We have shown how it
can be used to expand the set of supported use-
cases to complex and cross-domain utterances,
while leveraging a single compositional seman-
tics. The representation has been released at AWS
Re:Invent 2016 2. It is also being used as a rep-
resentation for expanded support for complex ut-
terances, such as those with sequential composi-

2https://amzn.to/2qDjNcJ
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tion. Continued development of a common mean-
ing representation for spoken language will enable
Alexa to become capable and accurate, expanding
the set of functionality for all Alexa users.
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Abstract
Spoken Language Understanding (SLU),
which extracts semantic information from
speech, is not flawless, specially in practical
applications. The reliability of the output of an
SLU system can be evaluated using a semantic
confidence measure. Confidence measures are
a solution to improve the quality of spoken
dialogue systems, by rejecting low-confidence
SLU results. In this study we discuss real-
world applications of confidence scoring
in a customer service scenario. We build
confidence models for three major types of
dialogue states that are considered as different
domains: how may I help you, number cap-
ture, and confirmation. Practical challenges to
train domain-dependent confidence models,
including data limitations, are discussed, and
it is shown that feature engineering plays an
important role to improve performance. We
explore a wide variety of predictor features
based on speech recognition, intent classifica-
tion, and high-level domain knowledge, and
find the combined feature set with the best
rejection performance for each application.

1 Introduction

The purpose of an SLU system is to interpret the
meaning of a speech signal (De Mori et al., 2008).
SLU systems use Automatic Speech Recognition
(ASR) to convert speech signal to the text of what
was spoken (hypothesis), followed by semantic
meaning extraction from the ASR hypothesis us-
ing Natural Language Processing (NLP). Seman-
tic information that can be extracted from an utter-
ance include the intent of speaker, as well as any
entities such as names, products, numbers, places,
etc., where depending on the application, one or
more of these information are of importance.

While SLU systems have achieved considerable
success during the past few decades, errors are in-

∗ This work was done while at Interactions LLC.

evitable in real applications due to a number of
factors including noisy speech conditions, speaker
variations such as accent, speaking style, inherent
ambiguity of human language, lack of enough in-
domain training data, etc. With the rise of virtual
assistants and their increasing utilization from ev-
eryday voice inquiries on smart phones and voice
commands in smart home scenarios to customer
service applications, it is crucial to keep the accu-
racy of SLU systems above an acceptable thresh-
old. Therefore, to keep the natural flow of conver-
sation between human and automatic agent, using
human agents when automatic system fails to pro-
vide an accurate response improves user satisfac-
tion. However, the question is: “how do we know
that SLU system failed?”

A confidence score is a scalar quantity that mea-
sures the reliability of an automatic system. In
the literature, several studies have applied ASR-
based feature vectors to train statistical models
that predict word and/or utterance level confi-
dence scores for ASR systems (Wessel et al., 2001;
Jiang, 2005; Yu et al., 2011; White et al., 2007;
Williams and Balakrishnan, 2009), and SLU sys-
tems (Hazen et al., 2002). Furthermore, semantic-
based features have been applied in predicting
confidence measures for spoken dialogue systems
(San-Segundo et al., 2001; Sarikaya et al., 2005;
Higashinaka et al., 2006; Jung et al., 2008), as well
as other applications such as machine translation
(Gandrabur et al., 2006).

The purpose of this study, is to show the impor-
tance of confidence modeling in real-world SLU
applications, discuss practical challenges to train
confidence models, and create a guideline to build
efficient confidence models. We build domain-
dependent semantic confidence models to improve
the rejection of unreliable SLU results. Such re-
jection process is designed to maintain a high ac-
curacy, while minimizing the number of rejected
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utterances. Our experiments are based on improv-
ing rejection performance for three different types
of dialogue states in a customer service scenario:
opening (i.e., how may I help you), number cap-
ture (e.g., phone or account number), and confir-
mation (i.e., yes/no).

The contributions of this study are:

1. Building efficient confidence models based
on domain-dependent feature engineering
with limited labeled data for training, which
makes confidence modeling process scalable
for real applications.

2. Proposing an evaluation methodology for
practical applications of rejection confidence
scoring, based on which an operating point
can be selected to balance cost vs. accuracy.

3. Comparing linear and nonlinear confidence
models with limited training data, and
proposing time-efficient nonlinear features
that improve performance.

2 Problem Formulation

In this study we focus on improving confidence
measure for SLU systems, where the input is a
speech waveform and the output is the seman-
tic information extracted from speech. We con-
sider the semantic output of SLU system to be ei-
ther true (i.e., all the relevant information required
for the application is extracted correctly) or false.
Confidence score c ∈ R in this context is a num-
ber associated with every pair of input utterance
x ∈ X and estimated semantic output ŷ ∈ Y,
which computes how likely is the output of SLU
system (ŷ) to be equal to the reference output (y).

When probabilistic models are used, posterior
probability P (y|x) can be applied as confidence
score. However, proper normalization of posterior
probabilities is important to obtain a reliable confi-
dence score (Jiang, 2005). In this study, we define
the SLU confidence measure as P (ŷ = y|x, y).
A statistical model is trained to predict the se-
mantic correctness of SLU system. The posterior
probability from this binary classifier is applied as
confidence measure. While training a confidence
model requires data, it outperforms unsupervised
approaches. The features that are used to train the
confidence model are functions of the input and
output of SLU system: f(x, y).

2.1 System Layout

Figure 1 illustrates the components of SLU system
we used for our experiments including rejection
based on confidence score. The main components
of any SLU system are ASR and NL. However,
we do not accept all the outputs of SLU system. A
confidence model is used to decide wether or not
the extracted semantic information by SLU sys-
tem is accurate. The confidence model produces a
score based on several predictor features including
ASR scores, NL scores, and domain knowledge.
If the confidence score is higher than a threshold,
SLU result is accepted. The semantic information
of rejected (i.e., more challenging) utterances is
extracted by human labelers.

2.2 Evaluation Methodology

The performance of SLU system with an ac-
cept/reject backend, shown in Figure 1, can not
simply be evaluated based on the accuracy of the
output. An essential component of such system,
is rejection confidence scoring, which depends on
both confidence score and confidence threshold.
Confidence modeling can be formulated as a bi-
nary classification problem, and be evaluated us-
ing standard measures such as Receiver Operat-
ing Characteristic (ROC) curve, or area under the
curve (AUC). However, in a practical application,
business objectives have to be considered in per-
formance evaluations. In a virtual intelligent cus-
tomer service scenario, it is important to maximize
customer satisfaction while minimizing the cost.
Customer satisfaction is directly related to the ac-
curacy, and accuracy can be improved by using
higher confidence threshold. Nevertheless, with a
higher confidence threshold, more utterances that
are labeled by the automated system are rejected
and this will increase the cost of manual labeling.
Therefore, there is a trade-off between cost (i.e.,
the number of rejected utterances) and precision
(i.e., the accuracy of accepted utterances).

In this study, we focus on improving the con-
fidence measurement to maintain the accuracy
while reducing the rejection rate. To evaluate dif-
ferent confidence measures, we plot False Accept
(FA) percentage on accepted utterances versus the
rejection percentage. For the remaining of this
study we call these plots FA-Rej. In production
system, confidence threshold is set based on the
required semantic accuracy for each application,
and generally the higher the rejection, the lower is
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Figure 1: Flowchart of SLU system used for our experiments with an accept/reject backend based on confidence
score to ensure the highest accuracy.

the error rate. If a FA-Rej plot has lower rejection
rates at all FA rates compared to another plot, it
shows a performance improvement.

2.3 Practical Challenges

The main challenge to build confidence models
for a real-world application is data limitation. To
train a confidence model, a dataset is required with
true labels for each sample. In a customer service
scenario, semantic information that should be cap-
tured, including intents, products, etc., vary from
one client to the other. Furthermore, there are sev-
eral dialog turns/states for each client with differ-
ent intent sets. Our experiments show that train-
ing domain-dependent confidence models signif-
icantly improves performance. This makes the
data preparation even more challenging, since cre-
ating labeled data for a large number of applica-
tions/clients is expensive. Therefore, in this study
we focus on improving confidence measurement
with minimum data.

We show the importance of feature engineer-
ing to select the best predictive feature set from
a combination of ASR and NLP features, as well
as using domain knowledge to improve perfor-
mance of confidence models for each domain. In
this context, domain is defined as a group of di-
alog states with similar intent types. We show
that with low amounts of training data, Maxi-
mum Entropy (MaxEnt) model with a linear fea-
ture function is the most efficient classifier. We
also apply several other classifiers including neu-
ral networks and random forest and compare per-
formance for different feature sets. However due
to train data limitations, nonlinear classifiers do
not significantly outperform MaxEnt. Another ad-
vantage of MaxEnt is lower runtime, which is very
important in practical applications.

2.4 Data Specification

We present results on three different types of dia-
logue states, which are widely used for customer
service applications in automatic spoken dialogue
systems. Our data is selected from real conver-
sations between enterprise customers and the au-
tomatic agent. The first dialogue state is the re-
sponse to an open-ended question, asking “how
may I help you”. For the remaining of this paper
we call this dataset: “opening”. In this dialogue
state, the user is prompted to explain why they are
calling customer service using natural language.
The second dataset is based on a “number capture”
dialogue state, where the system prompts users to
provide an identification number, such as phone or
account number. The third dataset is a “confirma-
tion” dialogue state, where the user is prompted to
confirm some information.

“Opening”, “number capture”, and “confirma-
tion” datasets include approximately 15k, 11k, and
10k utterances, respectively. We use 10-fold cross
validation for evaluation with a baseline MaxEnt
model. These datasets were labeled manually to
create the reference intents for each utterance. The
“Opening” dataset consists of a large number of
intents due to speakers being allowed to use an
open language. Furthermore, an “opening” utter-
ance might have more than one intent. For in-
stance, if the speaker says: “I would like to talk
to a live agent about my bill”, the intent will be
“live-agent/billing”. In addition to intents, other
semantic information such as products are also ex-
tracted from “opening” utterances.

For “number capture” dataset, if the speaker
provides a number, SLU system is considered ac-
curate if the hypothesized phone or account num-
ber exactly matches the reference number. We
considered a few more intents for when speak-
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ers do not provide a number, such as “don’t-have”
(i.e., speaker does not have an account number) or
“live-agent” (i.e., speaker would like to talk to a
live agent). The main intents for “confirmation”
dataset are: “true” and “false”. A few other in-
tents such as “live-agent” were also considered for
this dialogue state. We used a statistical language
model and intent classifier for “opening” and
“confirmation” datasets, while a Speech Recogni-
tion Grammar Specification (SRGS), which is a
rule-based language model that also provides the
intent was used for “number capture”. Note that
our objective in this study is to improve rejection
based on confidence modeling without any modi-
fications in the SLU (i.e., ASR and NL) system.

3 Combining ASR and NL Features

During speech recognition, several scores are cre-
ated that can be aggregated at word or utterance
level and be applied to estimate ASR confidence.
Since speech understanding process is a combina-
tion of speech recognition and natural language
understanding of ASR hypothesis, additional se-
mantic information and intent classification scores
can also be used to predict the semantic confidence
measure associated with a spoken utterance.

3.1 ASR Features

Previous studies have used a variety of speech
recognition predictor features, such as posterior
probabilities, acoustic and language model scores,
n-best and lattice related scores, etc., to esti-
mate the ASR confidence for different applica-
tions (Jiang, 2005; Yu et al., 2011; White et al.,
2007; Williams and Balakrishnan, 2009; Hazen
et al., 2002; San-Segundo et al., 2001). We ex-
amined several feature sets to achieve the best per-
formance on rejecting the utterances with inaccu-
rate semantic interpretation for “opening”, “num-
ber capture”, and “confirmation” domains. Partic-
ularly, two groups of ASR predictor features were
applied: scores extracted from Word Confusion
Network (WCN) (i.e., a compact representation of
lattice (Mangu et al., 2000)), and delta scores that
are based on comparing the best path score to an
alternative path. Williams et al. (Williams and
Balakrishnan, 2009) showed the effectiveness of
these two feature types to estimate the probability
of correctness for each item in an ASR n-best list.

The WCN feature set that we used includes
utterance-level best path score, as well as statis-

Feature'Number' Feature'Descrip0on'

F1# WCN#u(erance.level#best#path#score#

F2#–#F4# Mean,#min,#max#of#WCN#word.level#scores#

F5# Total#number#of#paths#in#WCN#

F6# Number#of#WCN#segments#

F7# Average#u(erance.level#gdelta#score#

F8#–#F10# Mean,#min,#max#of#gdelta#word.level#scores#

F11# Average#u(erance.level#udelta#score#

F12#–#F14# Mean,#min,#max#of#udelta#word.level#scores#

F15# Number#of#n.best#

F16# Number#of#Speech#frames#

F17# Total#number#of#frames#

Table 1: List of ASR features

tics of word-level scores such as mean, min, max
(adding standard deviation did not improve the re-
sults), total number of different paths in WCN, and
number of segments in WCN. Delta feature set in-
cludes two categories: gdelta and udelta. Gdelta
score is the log likelihood difference between the
best path and the best path through garbage model
(i.e., a filler model that is trained with non-speech
and extraneous speech), while udelta is the log
likelihood difference between the best path and
best possible path without any language model
constraint (if hopping from phone to phone was
allowed). We used average utterance-level gdelta
and udelta, as well as min, max, and mean of the
word-level gdelta and udelta scores. Our best ASR
feature set is a combination of WCN and delta fea-
ture sets with the addition of a few more features
including number of speech frames, total number
of frames, and number of n-best. Table 1 summa-
rizes the ASR features that were used for confi-
dence modeling in all three domains.

3.2 Semantic Features and NL Scores

As speech recognition errors contribute to seman-
tic inaccuracy, ASR confidence predictor features,
which mainly predict the probability of correct-
ness of speech recognition hypothesis, can be ap-
plied in predicting the semantic confidence. Nev-
ertheless, there are other factors that affect the se-
mantic accuracy, even with an accurate ASR hy-
pothesis. Such factors are related to the mean-
ing interpreted from the text. Therefore, using
semantic and high-level features that include do-
main knowledge can improve the rejection perfor-
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mance for an SLU system, especially with lim-
ited training data. A number of studies have ap-
plied semantic features for confidence prediction
(San-Segundo et al., 2001; Sarikaya et al., 2005;
Higashinaka et al., 2006; Jung et al., 2008). In
this study, we identify domain-dependent features
and show that semantic features based on domain
knowledge for “opening” and “number capture”
domains, as well as using statistical intent classi-
fier scores for “opening” and “confirmation” dia-
logue states considerably improve performance.

Opening Dialogue State: Confidence predic-
tor features based on word distribution and word
identity have been previously studied (Yu et al.,
2011; Huang et al., 2013). In this study, we cre-
ated word distributions using a separate training
dataset. Next, we tested various methods of cre-
ating predictor features based on the most com-
mon words in each application. For “opening”
dataset this type of predictor features improved
performance, and the best results were achieved
by using the occurrence of top 450 words via a
bag of words feature vector. Larger and smaller
number of words were also tested, which deteri-
orated the performance. Furthermore, we tested
using the word scores from WCN instead of bi-
nary occurrence vector, which did not improve the
performance. Features based on significant or top
words did not improve performance for “number
capture” and “confirmation” datasets, which can
be due to more limited vocabulary in those do-
mains compared to “opening”.

We also applied the top three intent scores from
classifier as additional confidence predictor fea-
tures, which significantly improved the results.
For “opening” application, an SVM model was
used to classify intents. Intent scores in this con-
text are the raw scores computed based on clas-
sifier’s decision function. Figure 2 shows the FA-
Rej results of using NL features in addition to ASR
features. As shown, compared to the best perfor-
mance with ASR features, using significant words
feature vector improves the performance. The best
performance is achieved by combining ASR fea-
tures with intent classifier scores. Our experi-
ments show that when intent classification scores
are used, adding the significant word feature vec-
tor deteriorates rejection performance. Figure 2
also shows the result of using the top intent score
as final confidence measure for rejection, which
has better performance than ASR features. How-

Figure 2: FA-Rej plots on“opening” dataset

ever, if intent classification scores are not avail-
able, the combination of ASR features and top
word features obtains the best results.

Number Capture Dialogue State: The impact
of using semantic and high-level features in ad-
dition to ASR features to predict semantic confi-
dence for “number capture” application is shown
in Figure 3. Since a rule-based grammar is used to
perform speech recognition for this dataset, which
also generates the intent (i.e., a sequence of digits
or another intent), there are no intent classification
scores to be applied to predicting the confidence.
The additional feature set that we used as NL fea-
tures include: encoded intent category, digit se-
quence length as a bag of words vector, binary
feature showing the occurrence of the word ‘oh’,
and binary feature comparing the first and second
best intents. Our experiments show that using the
length of digit sequence as a predictor feature vec-
tor improves confidence prediction. We used a 20-
dimensional vector for length feature (the length
of digit sequences in our dataset varied from zero
to nineteen). Encoded intent identity (i.e., number,
live agent, etc.) as another feature improved the
performance for “number capture” domain. The
occurence of the word ‘oh’ was used as another
feature, since it is ambiguous and can mean ‘zero’
in a digit sequence or be used to show exclama-
tion. Finally, the first and second intents based
on the first best and second best ASR hypothe-
ses were compared to generate another semantic
feature that shows the certainty of SLU response.
If both intents were numbers, but the digits did
not exactly match, we set this feature to zero. As
shown in Figure 3, using semantic features based
on domain knowledge significantly improves the
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Figure 3: FA-Rej plots on “number capture” dataset

rejection performance, and performance improve-
ment (i.e., the difference between the number of
utterances that have to be rejected to obtain a spe-
cific FA on accepted utterances) is higher at lower
FA rates. This is especially of importance when
the system is expected to have a high accuracy.

Confirmation Dialogue State: The result of in-
tegrating NL classification scores with ASR scores
for “confirmation” dataset is compared to using
ASR scores in Figure 4. As shown, considerable
improvement is achieved by using intent classifi-
cation scores. Due to the high accuracy of “con-
firmation” domain compared to the other domains,
using other semantic features did not improve the
performance.

Table 2 summarizes effective semantic and NL
features for each domain. Relative performance
improvement using the best semantic feature set in
addition to ASR features at 20% rejection rate (i.e.
when 80% of utterances are accepted based on
confidence score) is shown in Table 3. As shown,
while “confirmation” dialogue state achieves the
highest accuracy compared to other applications,
it has the highest relative improvement by using
NL scores in addition to ASR scores. The differ-
ence in FA rates at 20% rejection when using ASR
features versus using both ASR and NL features is
illustrated by arrows in Figures 2-4.

4 Confidence Models

So far we have explored a variety of features using
MaxEnt classifier with a linear feature function. In
this section, we apply nonlinear feature functions
with MaxEnt, as well as nonlinear models. Pre-
vious studies have shown the success of MaxEnt
models for confidence prediction (Yu et al., 2011;

Figure 4: FA-Rej plots on “confirmation” dataset

Feature(s)* Applica0on(s)*

NL#classifica*on#scores# Opening,#Confirma*on#

Occurrence#of#top#words# Opening#

Intent#category# Number#Capture#

Length#of#digit#sequence# Number#Capture#

Occurrence#of#“oh”# Number#Capture#

Comparing#1st#and#2nd#intents# Number#Capture#

Table 2: List of domain-dependent semantic features

Opening' Number'Capture' Confirma2on'

Performance'
Improvement' 29.98%%% 27.92%%% 72.46%%%

Table 3: Relative performance improvement on ac-
cepted utterances at 20% rejection

White et al., 2007). The principle of maximum
entropy states that given a set of training sam-
ples (xi, yi), the best estimation of the distribu-
tion p(y|x) subject to a set of constraints is the one
with the largest entropy (Jaynes, 1957). A typical
constraint is that the empirical average from the
training samples for each feature function fj(x, y)
should match the expected value. The MaxEnt dis-
tribution with this constraint can be characterized
with a log-linear form (White et al., 2007):

p(y|x) =
exp(

∑
j λjfj(x, y))∑

y exp(
∑

j λjfj(x, y))
(1)

In this study, x is in fact a confidence predictor
feature vector ~x, and y is a binary random vari-
able. The predictor feature vector includes binary,
categorical, and continuous random variables.
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As our baseline classifier, we used MaxEnt with
a linear predictor feature function f . Philips et al.
(Phillips et al., 2006) applied a number of meth-
ods to use nonlinear relations in data to improve
performance of a MaxEnt classifier, from which
we evaluated quadratic function and product of
features. Furthermore, we tested binning, where
bins were defined based on the Cumulative Dis-
tribution Function (CDF) of each continuous fea-
ture, which did not improve performance. In ad-
dition to the nonlinear feature functions proposed
in previous studies, we used a logarithmic func-
tion of predictor features: f(x) = ln(|x| + ε),
where ε is a very small number used to prevent
the log of zero. We also applied nonlinear models
such as Neural Networks (NN) and Random For-
est. The best NN performance was achieved using
a feedforward fully-connected network with one
hidden layer, and Adam (Kingma and Ba, 2014)
optimizer. Due to limited training data, DNN with
larger number of hidden layers did not show any
improvements.

Our experiments showed that performance im-
provement using nonlinear methods is limited due
to data limitation, and depends on the domain
and the feature set. As shown in Figure 5 us-
ing logarithmic function of features that we pro-
posed in this study, in addition to linear features
improves the rejection performance for “number
capture” when ASR features are used. The ad-
vantage of logarithmic features is time efficiency
in both training and runtime compared to previ-
ously used nonlinear features. Figure 6 illustrates
the performance improvement in low FA when ap-
plying nonlinear classifiers on “opening” dataset
with the largest feature dimension (ASR features
combined with top word features described in 3.2).
However, with the best predictor feature set for
each domain, nonlinear methods did not improve
performance.

5 Discussion and Conclusions

The focus of this study was on the practical ap-
plication of confidence measurement in rejecting
unreliable SLU outputs with an important impact
on the quality of spoken dialogue systems by re-
prompting or using human annotations for chal-
lenging (e.g., noisy or vague) utterances. We per-
formed a comprehensive feature engineering to
identify the best set of features to train statisti-
cal semantic confidence models for three com-

Figure 5: FA-Rej plots on “number capture” dataset
with MaxEnt linear and nonlinear features

Figure 6: FA-Rej plots on “opening” dataset with base-
line MaxEnt, random forest, and neural networks

mon types of dialogue states in a customer ser-
vice scenario. It was shown that applying a
combination of ASR confidence scores, NL-based
features and domain-dependent predictors signif-
icantly improves the confidence measure perfor-
mance. Our experiments showed that with a pre-
dictive set of features, MaxEnt is a proper clas-
sifier for confidence estimation in terms of per-
formance and computational efficiency. Due to
practical challenges, such as the limitation of
application-specific supervised data to train confi-
dence models and the importance of real-time re-
jection (and therefore confidence prediction), the
application of more complex models requires a
significant performance improvement.
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Abstract
The overwhelming success of the Web and
mobile technologies has enabled millions to
share their opinions publicly at any time. But
the same success also endangers this freedom
of speech due to closing down of participatory
sites misused by individuals or interest groups.
We propose to support manual moderation by
proactively drawing the attention of our mod-
erators to article discussions that most likely
need their intervention. To this end, we predict
which articles will receive a high number of
comments. In contrast to existing work, we en-
rich the article with metadata, extract semantic
and linguistic features, and exploit annotated
data from a foreign language corpus. Our lo-
gistic regression model improves F1-scores by
over 80% in comparison to state-of-the-art ap-
proaches.

1 Exploding Comment Threads

In the last decades, media and news business un-
derwent a fundamental shift, from one-directional
to bi-directional communication between users on
the one side and journalists on the other. The use
of social media, blogs, and the possibility to im-
mediately share, like, and comment digital con-
tent transformed readers into active and power-
ful agents in the media business. This shift from
passive “consumers” to active “agents” deeply im-
pacts both media and communication science and
has many positive aspects.

However, the possibilities and powers can also
be misused. Pressure groups, lobbyists, trolls, and
others are effectively trying to influence discus-
sions according to their (very different) interests.
An easy approach consists in burying unwanted
arguments or simply destroying a discussion by
blowing it up. After such an attack, readers have
to crawl through hundreds of nonsense and mean-
ingless comments to extract meaningful and in-
teresting arguments. Blowing up a thread can be

1.

2.

3.
...

Comment Volume
Prediction

Time

Figure 1: Integration of comment volume prediction
into the newsroom workflow.

achieved by injecting provocative (but not neces-
sarily off-topic) arguments into discussions. By-
standers are completing the goal of the destroyers,
and they do so often unknowingly: with each —
often well-intentioned — reaction to the provoca-
tion, they make it more difficult for others to fol-
low the actual argumentation path and/or tree.

It is costly in terms of working power and time
to keep the discussion area of a news site clean
from attacks like that, and to watch the compli-
ance of users (“netiquette”). As a reaction, many
large online media sites worldwide closed their
discussion areas or downsized them significantly
(prominent examples of the last years are the In-
ternet Movie Database, Bloomberg or the US-
American National Public Radio). Other news
provider and media sites, including us, take a dif-
ferent approach: A team of editors reads and fil-
ters comments on a 24/7-basis. This results in a
huge workload with several thousand reader com-
ments published each day. In its lifetime, an arti-
cle receives between less than ten and more than
1500 comments; typical are about 100 to 150
comments. The number of published comments
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presumably depends to a large extent on time,
weather, and season as well as for each article on
subject, length, style of writing, and author, among
others.

Being able to predict which articles will receive
high comment volume would be beneficial at two
positions in the newsroom:

1. for the news director to schedule the publica-
tion of news stories, and

2. for scheduling team sizes and guiding the fo-
cus of the comment moderators and editors.

Figure 1 gives an overview of how comment vol-
ume prediction can be integrated into the work-
flow of a modern online news site. The incoming
news articles are ranked based on the estimated
number of comments they will attract. The news
director takes these numbers into account in the
decision process when to schedule which article
for publication. This can balance the distribution
of highly controversial topics across a day, giving
not only readers and commenters the possibility to
engage in each single one, but also distribute the
moderation workload for comment editors evenly.
Further, knowing which articles will receive many
comments can help in the moderation process.
Guiding the main focus of attention of moderators
towards controversial topics not only facilitates ef-
ficient moderation, but also improves the quality
of a comment thread. Our experience has shown
that moderators entering the online discussion at
an early stage can help keeping the discussion fo-
cused and fruitful.

In this paper, we study the task of identify-
ing the weekly top 10% articles with the highest
comment volume. We consider a new real-world
dataset of 7 million news comments collected over
more than nine years. In order to enrich our
dataset and increase its meaningfulness, we pro-
pose to transfer a classifier trained on the English-
language Yahoo News Annotated Comments Cor-
pus (Napoles et al., 2017b) to our German-
language dataset and leverage the additional class
labels for comments in a post-publication predic-
tion scenario. Experiments show that our logistic
regression model based on article metadata, lin-
guistic, and topical features outperforms state-of-
the-art approaches significantly. Our contributions
are summarized as (1) a transfer learning approach
to learn early comments’ characteristics, (2) an
analysis of a new 7-million-comment dataset and

(3) an improvement of F1-score by 81% compared
to state-of-the-art in predicting most commented
articles.

2 Related Work

Related work on newsroom assistants focuses on
comment volume prediction for pre-publication
and post-publication scenarios. By the nature of
news articles, the attention span after article publi-
cation is short and in practice post-publication pre-
diction is valuable only within a short time frame.
Tsagkias et al. (2009) classify online newspaper
articles using random forests. First, they classify
whether an article will receive any comments at
all. Second, they classify articles as receiving a
high or low amount of comments. The authors
find that the second task is much harder and that
predicting the actual number of comments is prac-
tically infeasible. Badari et al. (2012) conclude
the same, analyzing Twitter activity as a popularity
indicator for news: Predicting popularity as a re-
gression task results in large errors. Therefore, the
authors predict classes of popularity by binning
the absolute numbers (1-20, 20-100, 100-2400 re-
ceived tweets). However, predicting the number of
received tweets includes modeling both, the user
behavior and the platform, which is problematic.
It is part of a platform’s business secrets how con-
tent is internally ranked and distributed to users,
making it hard to distinguish cause and effect from
the outside. In our scenario, we even see no ben-
efit in predicting the exact number of comments.
Instead, we predict which articles belong to the
weekly top 10% articles with the highest com-
ment volume, which is one of the tasks defined by
Tsagkias et al. (2009).

In a post-publication scenario, Tsagkias et al.
(2010) consider the comments received within the
first ten hours after article publication. Based on
this feature, they propose a linear model to predict
the final number of comments. Comparing com-
ment behavior at eight online news platforms, they
observe seasonal trends. Tatar et al. (2011) con-
sider the shorter time frame of five hours after ar-
ticle publication to predict article popularity. They
also use a linear model and find that neither adding
publication time and article category to the feature
set nor extending the dataset from three months to
two years improves prediction results. Their sur-
vey on popularity prediction for web content sum-
marizes features with good predictive capabilities
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and lists fields of application for popularity pre-
diction (Tatar et al., 2012).

Rizos et al. (2016) focus on user comments to
predict a discussion’s controversiality. They ex-
tract a comment tree and a user graph from the
discussion and investigate for example comment
count, number of users, and vote score. The
demonstrated improvement of popularity predic-
tion with this limited, focused features motivates
us to further explore content-based features of
comments in our work.

Recently, research on deep learning (Nobata
et al., 2016; Pavlopoulos et al., 2017) addresses
(semi-) automation of the entire moderation task,
but we see several issues that prevent us from
putting these approaches into practice. First, the
accuracy of these methods is not high enough.
For example, reported recall (0.79) and precision
(0.77) at the task of abusive language detection
(Nobata et al., 2016) are not sufficient for use in
production. With this recall, an algorithm would
let pass every fifth inappropriate comment (con-
taining hate speech, derogatory statements, or pro-
fanity), which is not acceptable. Pavlopoulos et
al. (2017) address this problem by letting human
moderators review comments that an algorithm
could not classify with high confidence. Second,
acceptance of these kind of black-box solutions is
still limited in the community and the models lack
comprehensibility. A compromise can be (ensem-
ble) decision trees, because they achieve compara-
ble results and can give reasons for their decisions
(Kennedy et al., 2017). Still, moderators and users
do not feel comfortable with machines deciding
which comments are allowed to be published – not
least because of fear of concealed censorship or
bias.

3 Predicting High Comment Volume

For each news article, we want to predict whether
it belongs to the weekly top 10% articles with the
highest comment volume. We chose this relative
amount to account for seasonal fluctuations and
also to even out periods with low news worthiness.
This traditional classification setting enables us to
use established methods, such as logistic regres-
sion, to solve the task and provide explanations
on why a particular article will receive many com-
ments or not.

As a baseline to compare against, we imple-
mented a random forest model with features from
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Figure 2: The number of received comments is not af-
fected by a peek of article publications on Thursdays.

Tsagkias et al. (2009). For our approach we extend
this feature set and categorize the features into five
groups. Our metadata features consist of article
publication time, day of the week, and whether
the article is promoted on our Facebook page.
We consider temperature and humidity during the
hour of publication1 and the number of “compet-
ing articles” as context features. Competing arti-
cles is the number of similar articles and the total
number of articles published by our newspaper in
the same hour. These articles compete for read-
ers and user comments. Figure 2 visualizes how
the number of received comments is not affected
by the significantly higher number of published
articles on Thursdays. The publication peek on
Thursdays is caused by articles that are published
in our weekly printed edition and at the same time
published online one-to-one. Further, we incorpo-
rate publisher information, such as genre, depart-
ment, and which news agency served as a source
for the article. We include these features in order
to study their impact and performance at comment
volume prediction tasks and not in order to focus
on engineering complex features.

In addition, we propose to leverage the arti-
cle content itself. Starting with headline fea-
tures, we use ngrams of length one to three as
well as author provided keywords for the arti-
cle. To capture topical information in the body,
we rely on topic modeling and document embed-
ding besides traditional bag-of-word (BOW) fea-
tures. These guarantee that we also grasp some
semantic representations of the articles. To this
end, topic distributions, document embeddings,
and word n-grams serve as semantic representa-

1as obtained for three large German cities, Berlin, Ham-
burg, and Frankfurt from http://www.dwd.de/
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Table 1: Precision (P), recall (R), and F1-score for pre-
diction of weekly top articles on the validation set.

Features P R F1

Metadata .12 .72 .21
Publication Time .12 .74 .21
Promoted on Facebook .29 .02 .01

Context .13 .59 .22
Competing Articles .11 .94 .20
Temperature and Humidity .12 .27 .17

Publisher .17 .85 .28
Author .11 .96 .19
Genre .16 .17 .17
Department .15 .91 .26
Sources .10 .38 .16
Medium .11 .86 .20
Editor .12 .82 .21

Headline .15 .99 .26
Ngram 1-3 Words .23 .48 .31
Keywords .21 .57 .30

Body
Doc2vec .17 .63 .27
Stemmed BOW .27 .61 .38
Topic model .20 .66 .30

tions of articles. In order to model topics of news
article bodies, we apply standard latent Dirichlet
allocation (Blei et al., 2003). For the document
embedding, we use a Doc2Vec implementation
that downsamples higher-frequency words for the
composition (Mikolov et al., 2013). We choose the
vector length, number of topics, and window size
based on F1-score evaluation on a validation set.

Despite recent advances of deep neural net-
works for natural language processing, there is a
reason to focus on other models: For the appli-
cation in newsrooms and the integration in semi-
automatic processes, comprehensibility of the pre-
diction results is very important. A black-box
model — even if it achieved better performance —
is not helpful in this scenario. Human moderators
need to understand why the number of comments
is predicted to be high or low. This comprehen-
sibility issue justifies the application of decision
trees and regression models, which allow to trace
back predictions to their decisive factors. Table 1
lists precision, recall, and F1-score for the pre-
diction of weekly top 10% articles with the high-
est comment volume. Especially the bag-of-words
(BOW) and the topics of the article body, but also
headline keywords and publisher metadata achieve

higher F1-score than the metadata features. The
highest precision is achieved with the binary fea-
ture whether an article is promoted on Facebook,
whereas author and competing articles achieve the
highest recall.

3.1 Automatic Translation of Comments

Whether the first comment is a provocative ques-
tion in disagreement with the article or an off-
topic statement influences the route of further con-
versation. We assume that this assumption holds
not only for social networks (Berry and Taylor,
2017), but also for comment sections at news web-
sites. Therefore, we consider the tone and senti-
ment of the first comments received shortly after
article publication as an additional feature. Typi-
cal layouts of news websites (including ours) list
comments in chronological order and show only
the first few comments to readers below an ar-
ticle. Pagination hides later received comments
and most users do not click through dozens of
pages to read through all comments. As a con-
sequence, early comments attract a lot more atten-
tion and, with their tone and sentiment, influence
comment volume to a larger extent. Presumably,
articles that receive controversial comments in the
first few minutes after publication are more likely
to receive a high number of comments in total.

To classify comments as controversial or engag-
ing, we need to train a supervised classification al-
gorithm, which takes thousands of annotated com-
ments. Such training corpora exist, if at all, mostly
for English comments, while our comments are
written in German. We propose to apply ma-
chine translation to overcome this language bar-
rier: Given a German comment, we automatically
translate it into English. From a classifier that has
been trained on an annotated English dataset, we
can derive automatic annotations for the translated
comment. The derived annotations serve as an-
other feature for our actual task of comment vol-
ume prediction.

We reimplemented the classifier by Napoles et
al. (2017a) and train on their English dataset. The
considered annotations consist of 12 binary labels:
addressed audience (reply to a particular user or
broadcast message to a general audience), agree-
ment/disagreement with previous comment, infor-
mative, mean, controversial, persuasive, off-topic
regarding the corresponding news article, neutral,
positive, negative, and mixed sentiment. We au-
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Table 2: ZOCC is of similar structure as YNACC but
contains 700 times more labeled comments.

YNACC ZOCC

Comments 9160 6,831,741
Comment Threads 2400 192,647

tomatically translate all comments in our German
dataset into English using the DeepL translation
service2. For the translated comments, we auto-
matically generate annotations based on Napoles
et al.’s classifier. Thereby, we transfer the knowl-
edge that the classifier learned on English train-
ing data to our German dataset despite its differ-
ent language. This approach builds on the similar
content style of both corpora, which is described
in the next section.

4 Dataset

We consider two datasets that both contain user
comments received by news articles with simi-
lar topics. First, our German 7-million-comment
dataset, which we call Zeit Online Comment
Corpus (ZOCC)3 and second, the English 10k-
comment Yahoo News Annotated Comments Cor-
pus (YNACC) (Napoles et al., 2017b). ZOCC con-
sists of roughly 200,000 online news articles pub-
lished between 2008 and 2017 and 7 million asso-
ciated user comments in German. Out of 174,699
users in total, 60% posted more than one com-
ment, 23% more than 10 comments and 7% more
than 100 comments. For both, articles and com-
ments, extensive metadata is available, such as au-
thor list, department, publication date, and tags
(for articles) and user name, parent comment (if
posted in response), and number of recommen-
dations by other users (for comments). Not sur-
prisingly, ZOCC is following a popularity growth
with an increasing number of articles and com-
ments over time. While our newspaper published
roughly 1,300 articles per month in 2010 and each
article received roughly 20 comments on average,
we nowadays publish roughly 1,500 articles per
month, each receiving 110 comments on average.
As both corpora’s articles and comments cover a
similar time span of several years and many dif-
ferent departments, they deal with a broad range of
topics. While the majority of articles in YNACC is

2https://deepl.com
3http://www.zeit.de/

about economy, ZOCC’s major department is pol-
itics. More than 50% of the comments in ZOCC
are posted in response to articles in the politics de-
partment, whereas in YNACC culture, society, and
economy share an almost equal amount of around
20% each and politics on forth rank with 12%.
On average, an article in ZOCC receives 90% of
its comments within 48 hours, while it takes 61
hours for an article in YNACC. Despite their slight
differences, both corpora cover most popular de-
partments, which motivates the idea to transfer
a classifier trained on YNACC to ZOCC. For
YNACC, Napoles et al. propose a machine learn-
ing approach to automatically identify engaging,
respectful, and informative conversations (2017a).
By identifying weekly top 10% articles with the
highest comment volume, we focus on a differ-
ent task. Nonetheless, both corpora, ZOCC and
YNACC, have similar properties: both corpora
contain user comments posted in reaction to news
articles across similar time span and similar topics.
However, only the much smaller YNACC provides
detailed annotations regarding, for example, com-
ments’ tone and sentiment.

5 Evaluation

We compare to the approach by Tsagkias et al. and
evaluate on the same task (Tsagkias et al., 2009,
2010). Therefore, we consider a binary classifica-
tion task, which is to identify the weekly top 10%
articles with the largest comment volume. Table 3
lists our final evaluation results on the hold-out
test set. We choose F1-score as our evaluation
metric, since precision and recall are equally rele-
vant in our scenario. On the one hand, we want to
achieve high recall so that no important article and
its discussion is overlooked. On the other hand, we
have limited resources and cannot afford to mod-
erate each and every discussion. A high preci-
sion is crucial so that our moderators focus only
on articles that need their attention. All exper-
iments are conducted using time-wise split with
years 2014 to 2016 for training, January 2017 to
March 2017 for validation, and April 2017 for test-
ing. We find that our additional article and meta-
data features, but also the automatically annotated
first comments outperform the baseline. Due to
the diversity of the different features, their combi-
nation further improves the prediction results. In
comparison to the approach by Tsagkias et al., we
finally achieve an 81% larger F1-score.
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Table 3: Precision (P), recall (R), and F1-score of the
baseline, all article and metadata features, annotations
of comments shown on the first page, and all combined.

Features P R F1

Tsagkias et al. 0.16 0.72 0.26
Article and metadata 0.26 0.75 0.39
1st page comments 0.29 0.50 0.36
Combined approach 0.42 0.52 0.47

Table 4: Precision (P) and recall (R) decline slightly
after translation from English (E) into German (G).

Label P(E) R(E) P(G) R(G)

audience .80 .80 .81 .82
agreement .76 .18 .65 .09
informative .55 .71 .51 .85
mean .64 .52 .52 .37
controversial .61 .90 .58 .94
disagreement .60 .75 .58 .81
persuasive .51 .89 .44 .97
off topic .67 .57 .66 .40
neutral .68 .35 .62 .41
positive .46 .13 .80 .10
negative .70 .93 .71 .92
mixed .45 .52 .40 .78

5.1 Automatically Translated Comments

With another experiment, we study the classifica-
tion error introduced by translation. Therefore, we
train two classifiers with the approach by Napoles
et al.: First, we train and test a classifier on the
original, English YNACC. Second, we automati-
cally translate all comments in YNACC from En-
glish into German and use this translated data for
training and testing of the second classifier. Com-
paring these two classifiers, we find that both pre-
cision and recall slightly decrease after translation,
as shown in Table 4. Based on this result, we can
assume that the translation of German comments
into English introduces only a small error. Al-
though YNACC and ZOCC differ in language, we
can transfer a classifier that has been trained on
YNACC to ZOCC. For each article, we use the la-
bels assigned to the first four comments, which are
visible on the first comment page below an arti-
cle. The first four comments are typically received
within very few minutes after article publication.

Table 5: Prediction of weekly top articles based on the
number of comments received in the first x minutes af-
ter article publication.

Number of received comments F1

after 2min 0.03
after 4min 0.03
after 8min 0.17
after 16min 0.33
after 32min 0.41
after 64min 0.45
sequence (after 2, 4, 8, 16, 32, 64min) 0.46

5.2 Number of Early Comments

As a baseline feature for comparison, we use the
number of comments4 received in a short time
span after article publication. Annotated first page
comments, but also article and metadata features
significantly outperform the baseline until 32 min-
utes after article publication. After 32 minutes,
the number of received comments outperforms ev-
ery single feature (but not the combination of all
our features). This is because the difference be-
tween final number of comments and so far re-
ceived comments converges over time.

6 Conclusions

In this paper, we studied the task of predicting
the weekly top 10% articles with the highest com-
ment volume. This prediction helps to schedule
the publication of news stories and supports mod-
eration teams in focusing on article discussions
that require most likely their attention. Our super-
vised classification approach is based on a com-
bination of metadata and content-based features,
such as article body and topics. Further, we au-
tomatically translate German comments into En-
glish to make use of a classifier pre-trained on En-
glish data: We classify the tone and sentiment of
comments received in the first minutes after article
publication, which improves prediction even fur-
ther. On a 7-million-comment real-world dataset
our approach outperforms the current state-of-the-
art by over 81% larger F1-score. We hope that
our prediction will help to reduce the number of
cases where newspapers have no other choice but
to close down a discussion section because of lim-
ited moderation resources.

4To allow for non-linear correlations, we pass the number
of comments as an absolute count and a squared count.
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Abstract

In this paper we introduce the notion of
Demand-Weighted Completeness, allowing
estimation of the completeness of a knowledge
base with respect to how it is used. Defin-
ing an entity by its classes, we employ usage
data to predict the distribution over relations
for that entity. For example, instances of per-
son in a knowledge base may require a birth
date, name and nationality to be considered
complete. These predicted relation distribu-
tions enable detection of important gaps in the
knowledge base, and define the required facts
for unseen entities. Such characterisation of
the knowledge base can also quantify how us-
age and completeness change over time. We
demonstrate a method to measure Demand-
Weighted Completeness, and show that a sim-
ple neural network model performs well at this
prediction task.

1 Introduction

Knowledge Bases (KBs) are widely used for
representing information in a structured format.
Such KBs, including Wikidata (Vrandečić and
Krötzsch, 2014), Google Knowledge Vault (Dong
et al., 2014), and YAGO (Suchanek et al., 2007),
often store information as facts in the form of
triples, consisting of two entities and a relation be-
tween them. KBs have many applications in fields
such as machine translation, information retrieval
and question answering (Ferrucci, 2012).

When considering a KB’s suitability for a task,
primary considerations are the number of facts it
contains (Färber et al., 2015), and the precision of
those facts. One metric which is often overlooked
is completeness. This can be defined as the propor-
tion of facts about an entity that are present in the
KB as compared to an ideal KB which has every

fact that can be known about that entity. For ex-
ample, previous research (Suchanek et al., 2011;
Min et al., 2013) has shown that between 69% and
99% of entities in popular KBs lack at least one
relation that other entities in the same class have.
As of 2016, Wikidata knows the father of only 2%
of all people in the KB (Galárraga et al., 2017).
Google found that 71% of people in Freebase have
no known place of birth, and 75% have no known
nationality (Dong et al., 2014).

Previous work has focused on a general con-
cept of completeness, where all KB entities are ex-
pected to be fully complete, independent of how
the KB is used (Motro, 1989; Razniewski et al.,
2016; Zaveri et al., 2013). This is a problem be-
cause different use cases of a KB may have dif-
ferent completeness requirements. For this work,
we were interested in determining a KB’s com-
pleteness with respect to its query usage, which
we term Demand-Weighted Completeness. For ex-
ample, a relation used 100 times per day is more
important than one only used twice per day.

1.1 Problem specification

We define our task as follows:
‘Given an entity E in a KB, and query usage

data of the KB, predict the distribution of relations
that E must have in order for 95% of queries about
E to be answered successfully.’

1.2 Motivation

Demand-Weighted Completeness allows us to pre-
dict both important missing relations for existing
entities, and relations required for unseen entities.
As a result we can target acquisition of sources to
fill important KB gaps.

It is possible to be entirely reactive when ad-
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dressing gaps in KB data. Failing queries can be
examined and missing fields marked for investiga-
tion. However, this approach assumes that:

1. the same KB entity will be accessed again
in future, making the data acquisition useful.
This is far from guaranteed.

2. the KB already contains all entities needed.
While this may hold for some use cases, the
most useful KB’s today grow and change to
reflect a changing world.

Both assumptions become unnecessary with an
abstract representation of entities, allowing gen-
eralization to predict usage. The appropriateness
of the abstract representation can be measured by
how well the model distinguishes different entity
types, and how well the model predicts actual us-
age for a set of entities, either known or unknown.

Further, the Demand-Weighted Completeness
of a KB with respect to a specific task can be used
as a metric for system performance at that task.
By identifying gaps in the KB, it allows targeting
of specific improvements to achieve the greatest
increase in completeness.

Our work is the first to consider KB complete-
ness using the distribution of observed KB queries
as a signal. This paper details a learning-based
approach that predicts the required relation dis-
tributions for both seen and unseen class signa-
tures (Section 3), and shows that a neural net-
work model can generalize relation distributions
efficiently and accurately compared to a baseline
frequency-based approach (Section 6).

2 Related work

Previous work has studied the completeness of the
individual properties or database tables over which
queries are executed (Razniewski and Nutt, 2011;
Razniewski et al., 2015). This approach is suit-
able for KBs or use cases where individual tables,
and individual rows in those tables, are all of equal
importance to the KB, or are queried separately.

Completeness of KBs has also been measured
based on the cardinality of properties. Galárraga
et al. (2017) and Mirza et al. (2016) estimated car-
dinality for several relations with respect to indi-
vidual entities, yielding targeted completeness in-
formation for specific entities. This approach de-
pends on the availability of relevant free text, and
uses handcrafted regular expressions to extract the

barackObama:
person: 1
politician: 1
democrat: 1
republican: 0
writer: 1

Figure 1: Class signature for barackObama. Other en-
tities with the same class membership will have the
same signature.

information, which can be noisy and doesn’t scale
to large numbers of relations.

The potential for metrics around completeness
and dynamicity of a KB are explored in Zaveri
et al. (2013), focusing on the task-independent
idea of completeness, and the temporal currency,
volatility and timeliness of the KB contents. While
their concept of timeliness has some similari-
ties to demand-weighted completeness in its task-
specific ’data currency’, we focus more on how the
demand varies over time, and how the complete-
ness of the KB varies with respect to that change
in demand.

3 Representing Entities

3.1 Class Distributions

The data for a single entity does not generalize
on its own. In order to generalize from observed
usage information to unseen entities and unseen
usage, and smooth out outliers, we need to com-
bine data from similar entities. Such combination
requires a shared entity representation, allowing
combination of similar entities while preventing
their confusion with dissimilar entities.

For this work, an entity may be a member of
multiple classes (or types). We aggregate us-
age across multiple entities by abstracting to their
classes. Membership of a class can be considered
as a binary attribute for an entity, with the entity’s
membership of all the classes considered in the
analysis forming a class signature.

For example, the entity barackObama is a per-
son, politician, democrat, and writer, among other
classes. He is not a republican. Considering these
five classes as our class space, the class signature
for barackObama would look like Figure 1.

Defining an entity by its classes has precedent in
previous work (Galárraga et al., 2017; Razniewski
et al., 2016). It allows consideration of entities and
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Figure 2: Graph representation of the facts needed to
solve the query in Equation 1. The path walked by the
query can branch arbitrarily, but maintains a direction-
ality from initial entities to result entities.

USA:
hasPresident: 13
hasCapital: 8
hasPopulation: 6
...

Figure 3: Absolute usage data for the entity USA.

class combinations not yet seen in the KB (though
not entirely new classes).

3.2 Relation Distributions

KB queries can be considered as graph traversals,
stepping through multiple edges of the knowl-
edge graph to determine the result of multi-clause
query. For example, the query:

y : hasPresident(USA, x) ∧ hasSpouse(y, x) (1)

determines the spouse of the president of the
United States by composing two clauses, as shown
in Figure 2.

The demand-weighted importance of a relation
R for an entity E is defined as the number of query
clauses about E which contain R, as a fraction
of the total number of clauses about E. For ex-
ample, Equation 1 contains two clauses. As the
first clause queries for the hasPresident relation
of the USA entity, we attribute this occurrence of
hasPresident to the USA entity. Aggregating the
clauses for an entity gives a total entity usage of
the form seen in Figure 3.

Since the distribution of relation usage is domi-
nated by a few high-value relations (see Figure 6),
we only consider relations required to satisfy 95%
of queries.

3.3 Predicting Relations from Classes

Combining the two representation methods above,
we aim to predict the relation distribution for a

barackObama:
hasHeight: 0.16
hasBirthdate: 0.12
hasBirthplace: 0.08
hasSpouse: 0.07
hasChild: 0.05

Figure 4: An example of a predicted relation distribu-
tion for an individual entity. The values represent the
proportion of usage of the entity that requires the given
relation.

given entity (as in Figure 4) using the class mem-
bership for the entity (as in Figure 1). This pro-
vides the expected usage profile of an entity, po-
tentially before it has seen any usage.

4 Data and Models

4.1 Our knowledge base
We make use of a proprietary KB (Tunstall-Pedoe,
2010) constructed over several years, combining
a hand-curated ontology with publicly available
data from Wikipedia, Freebase, DBPedia, and
other sources. However, the task can be applied
to any KB with usage data, relations and classes.
We use a subset of our KB for this analysis due
to the limitation of model size as a function of the
number of classes (input features) and the number
of relations (output features).

Our usage data is generated by our Natural Lan-
guage Understanding system, which produces KB
queries from text utterances. Though it is difficult
to remove all biases and errors from the system
when operated at industrial scale, we use a hybrid
system of curated rules and statistical methods to
reduce such problems to a minimum. Such errors
should not impact the way we evaluate different
models for their ability to model the data itself.

4.2 Datasets
To create a class signature, we first determine the
binary class membership vector for every entity in
the usage dataset. We then group entities by class
signature, so entities with identical class member-
ship are grouped together.

For each class signature, we generate the rela-
tion distribution from the usage data of the entities
with that signature. In our case, this usage data
is a random subset of query traffic against the KB
taken from a specific period of time. The more us-
age a class signature has, the more fine-grained the
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Dataset Classes Relations Signatures

D1small 4400 1300 12000
D2medium 8000 2000 25000
D3large 9400 2100 37000

Table 1: Dataset statistics.

person:
hasName: 31
hasAge: 18
hasHeight: 11
...

Figure 5: Aggregated usage data for the class person.

distribution of relations becomes. The data is di-
vided into 10 cross-validation folds to ensure that
no class signature appears in both the validation
and training sets.

We generate 3 different sizes of dataset for ex-
perimentation (see Table 1), to see how dataset
size influences the models.

4.3 Relation prediction models
4.3.1 Baseline - Frequency-Based
In this approach, we compute the relation distri-
bution for each individual class by summing the
usage data for all entities of that class (see Section
3). This gives a combined raw relation usage as
seen in Figure 5.

For every class in the training set we store this
raw relation distribution. At test time, we compute
the predicted relation distribution for a class sig-
nature as the normalized sum of the raw distribu-
tions of all its classes. However, these single-class
distributions do not capture the influence of class
co-occurrence, where the presence of two classes
together may have a stronger influence on the im-
portance of a relation than each class on their own.
Additionally, storing distributions for each class
signature does not scale, and does not generalize
to unseen class combinations.

4.3.2 Learning-Based Approaches
To investigate the impact of class co-occurrence,
we use two different learning models to predict the
relation distribution for a given set of input classes.
The vector of classes comprising the class signa-
ture is used as input to the learned models.

Linear regression. Using the normalized re-
lation distribution for each class signature, we

Figure 6: Example histogram of the predicted (using a
neural model) and observed relation distributions for a
single class signature, showing the region of intersec-
tion in green and the weighted Jaccard index in black.

trained a least-squares linear regression model to
predict the relation distribution from a binary vec-
tor of classes. This model has (n×m) parameters,
where n is the number of input classes and m is the
number of relations. We implemented our linear
regression model using Scikit-learn toolkit (Pe-
dregosa et al., 2011).

Neural network. We trained a feed-forward
neural network using the binary class vector as
the input layer, with a low-dimensional (h) hidden
layer (with rectified linear unit as activation) fol-
lowed by a softmax output layer of the size of the
relation set. This model has h(n+m) parameters,
which depending on the value of h is significantly
smaller than the linear regression model. The ob-
jective function used for training was Kullback-
Liebler Divergence. We chose Keras (Chollet,
2015) to implement the neural network model.
The model had a single 10-node Rectified Linear
Unit hidden layer, with a softmax over the output.

5 Evaluation

We compare the predicted relation distributions to
those observed for the test examples in two ways:

Weighted Jaccard Index. We modified the
Jaccard index (Jaccard, 1912) to include a weight-
ing term, which weights every relation with the
mean weight in the predicted and observed dis-
tribution (see Figure 6). This rewards a correctly
predicted relation without focusing on the propor-
tion predicted for that relation, and is sufficient to
define a set of important relations for a class sig-
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nature. This is given by:

J =

∑
i
W (Ri)×Ri ∈ (P ∩O)

∑
i
W (Ri)×Ri ∈ (P ∪O)

(2)

where P is the predicted distribution, O is the ob-
served distribution, W (Ri) is the mean weight of
relation Ri in P and O. We also calculate false
negatives (observed but not predicted) and false
positives (predicted but not observed), by modify-
ing the second term in the numerator of Equation
2 to give P\O and O\P , rather than P ∩O.

Intersection. We compute the intersection of
the two distributions (see Figure 6). This is a more
strict comparison between the distributions which
penalizes differences in weight for individual rela-
tions. This is given by:

I =
∑

i

min(P (Ri), O(Ri)) (3)

5.1 Usage Weighted Evaluation
We also evaluated the models using the Weighted
Jaccard index and Intersection methods, but
weighting by usage counts for each signature.
This metric rewards the models more for correctly
predicting relation distributions for common class
signatures in the usage data. While unweighted
analysis is useful to examine how the model covers
the breadth of the problem space, weighted evalu-
ation more closely reflects the model’s utility for
real usage data.

5.2 Temporal Prediction
Additionally, we evaluated the models on their
ability to predict future usage. With an unchang-
ing usage pattern, evaluation against future usage
would be equivalent to cross-validation (assum-
ing the same signature distribution in the folds).
However, in many real world cases, usage of a KB
varies over time, seasonally or as a result of chang-
ing user requirements.

Therefore we also evaluated a neural model
against future usage data to measure how elapsed
time affected model performance. The datasets
T1, T2, and T3 each contain 3 datasets (of simi-
lar size to D1small, D2medium, and D1large), and
were created using usage data from time periods
with a fixed offset, t. The base set was created at
time t0, T1 at time t0 + t, T2 at time t0 + 2t, and
T3 at time t0+3t. A time interval was chosen that
reflected the known variability of the usage data,

Model Jaccard False Neg. False Pos.

D1small

Freq. 0.604 0.084 0.311
Regr. 0.522 0.102 0.376
NN 0.661 0.036 0.303

D2medium

Freq. 0.611 0.101 0.287
Regr. 0.557 0.084 0.358
NN 0.687 0.035 0.278

D3large

Freq. 0.616 0.105 0.278
Regr. 0.573 0.080 0.347
NN 0.700 0.034 0.266

Table 2: Unweighted results for the three models on the
three datasets.

such that we would expect the usage to not be the
same.

6 Results

6.1 Cross-Validation

10-fold cross-validation results are shown in Ta-
ble 2. The neural network model performs best,
outperforming the baseline model by 6-8 per-
centage points. The regression model performs
worst, trailing the baseline model by 4-8 percent-
age points.

6.1.1 Baseline
The baseline model shows little improvement with
increasing amounts of data - the results from
D1small to D3large (3x more data points) only im-
prove by just over 1 percentage point. This sug-
gests that this model is unable to generalise from
the data, which is expected from the lack of class
co-occurrence information in the model. Inter-
estingly, the baseline model shows an increase in
false negatives on the larger datasets, implying
the lack of generalisation is more problematic for
more fine-grained relation distributions.

6.1.2 Linear Regression
The linear regression model gives a much lower
Jaccard measure than the baseline model. This
is likely due to the number of parameters in the
model relative to the number of examples. For
D1small, the model has approximately 6m param-
eters, with 12k training examples, making this an
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under-determined system. For D3large the number
of parameters rises to 20m, with 37k training ex-
amples, maintaining the poor example:parameter
ratio. From this we might expect the performance
of the model to be invariant with the amount of
data.

However, the larger datasets also have higher
resolution relation distributions, as they are aggre-
gated from more individual examples. This has the
effect of reducing the impact of outliers in the data,
giving improved predictions when the model gen-
eralises. We do indeed see that the linear regres-
sion model improves notably with larger datasets,
closing the gap to the baseline model from 8 per-
centage points to 4.

6.1.3 Neural Network

The neural network model shows much better per-
formance than either of the other two methods.
The Jaccard score is consistently 6-8% above the
regression model, with far fewer false negatives
and smaller numbers of false positives. This is
likely to be due to the smaller number of param-
eters of the neural model versus the linear regres-
sion model. For D3large, the 10-node hidden layer
model amounts to 115k parameters with 37k train-
ing examples, a far better ratio (though still not
ideal) than for the linear regression model.

6.1.4 Weighted Evaluation

We include in Table 3 the results using the
weighted evaluation scheme described in Sec-
tion 5.1. This gives more usage-focused evalua-
tion, emphasizing the non-uniform usage of dif-
ferent class signatures. The D3large neural model
achieves 85% precision with a weighted evalua-
tion. With the low rate of false negatives, this indi-
cates that a similar model could be used to predict
the necessary relations for KB usage.

6.2 Intersection

Table 4 gives measurements of the intersection
metric. These show a similar trend to the Jac-
card scores, with lower absolute values from the
stricter evaluation metric. Although the Jaccard
measure shows correct relation set prediction with
a precision of 0.700, predicting the proportions for
those relations accurately remains a difficult prob-
lem. The best value we achieved was 0.398.

Model Jaccard False Neg. False Pos.

D1small

Freq. 0.779 0.066 0.123
Regr. 0.667 0.090 0.242
NN 0.808 0.032 0.159

D2medium

Freq. 0.816 0.059 0.094
Regr. 0.703 0.077 0.220
NN 0.840 0.037 0.123

D3large

Freq. 0.819 0.062 0.088
Regr. 0.720 0.069 0.210
NN 0.850 0.038 0.113

Table 3: Usage-weighted results for the three models
on the three datasets.

Model Freq. Regr. NN

Inter. 0.319 0.278 0.398

Table 4: Results for the three methods for the D3large

dataset using the intersection metric. The difference
between the methods is similar to the Jaccard measure
above.

Interval T1 T2 T3

D1small 0.661 0.659 0.657
D2medium 0.705 0.699 0.696
D3large 0.712 0.708 0.704

Table 5: Results of training a neural model on all avail-
able data for D1small - D3large, then evaluating on T1-
T3. The values for D2medium and D3large are higher
than cross-validation, as cross-validation never tests a
model on examples used to train it. However, the T
datasets contain all data from the specified period. The
downward trend with increasing T is clear, but slight.
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6.3 Unweighted Temporal Prediction

In addition to evaluating models on their ability to
predict the behaviour of unseen class signatures,
we also evaluated the neural model on its ability
to predict future usage behaviour. The results of
this experiment are given in Table 5.

We observe a very slight downward trend in
the precision of the model using all three base
datasets (D1small - D3large), with a steeper (but
still slight) downward trend for the larger datasets.
This suggests that a model trained on usage data
from one period of time will have significant pre-
dictive power on future datasets.

7 Measuring Completeness of a KB

Once we have a suitable model of the expected re-
lation distributions for class combinations, we use
the model to predict the expected relation distribu-
tion for specific entities in our KB. We then com-
pare the predicted relation distribution to the ob-
served relations for each specific entity. The com-
pleteness of an entity is given by the sum of the
relation proportions for the predicted relations the
entity has in the KB.

Any gaps for an entity represent relations that,
if added to the KB, would have a quantifiable pos-
itive impact on the performance of the KB. By fo-
cussing on the most important entities according
to our usage, we can target fact addition to have
the greatest impact to the usage the KB receives.

By aggregating the completeness values for a
set of entities, we may estimate the completeness
of subsets of the KB. This aggregation is weighted
by the frequency with which the entity appears in
the usage data, giving a usage-weighted measure
of the subset’s completeness. These subsets can
represent individual topics, individual classes of
entity, or overall information about the KB as a
whole.

For example, using the best neural model above
on an unrepresentative subset of our KB, we evalu-
ate the completeness of that subset at 58.3%. This
not only implies that we are missing a substantial
amount of necessary information for these entities
with respect to the usage data chosen, but permits
targeting of source acquisition to improve the en-
tity completness in aggregate. For example, if we
are missing a large number of hasBirthdate facts
for people, we might locate a source that has that
information. We can quantify the benefit of that
effort in terms of improved usage performance.

8 Conclusions and Future Work

We have introduced the notion of Demand-
Weighted Completeness as a way of determining
a KB’s suitability by employing usage data. We
have demonstrated a method to predict the distri-
bution of relations needed in a KB for entities of
a given class signature, and have compared three
different models for predicting these distributions.
Further, we have described a method to measure
the completeness of a KB using these distribu-
tions.

For future work we would like to try com-
plex neural network architectures, regularisation,
and semantic embeddings or other abstracted re-
lations to enhance the signatures. We would also
like to investigate Good-Turing frequency estima-
tion (Good, 1953).
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Abstract

Query auto completion (QAC) systems are a
standard part of search engines in industry,
helping users formulate their query. Such sys-
tems update their suggestions after the user
types each character, predicting the user’s in-
tent using various signals — one of the most
common being popularity. Recently, deep
learning approaches have been proposed for
the QAC task, to specifically address the main
limitation of previous popularity-based meth-
ods: the inability to predict unseen queries. In
this work we improve previous methods based
on neural language modeling, with the goal of
building an end-to-end system. We particu-
larly focus on using real-world data by inte-
grating user information for personalized sug-
gestions when possible. We also make use of
time information and study how to increase di-
versity in the suggestions while studying the
impact on scalability. Our empirical results
demonstrate a marked improvement on two
separate datasets over previous best methods
in both accuracy and scalability, making a step
towards neural query auto-completion in pro-
duction search engines.

1 Introduction

Predicting the next characters or words follow-
ing a prefix has had multiple uses from helping
handicapped people (Swiffin et al., 1987) to, more
recently, helping search engine users (Cai et al.,
2016). In practice, most search engines today use
query auto completion (QAC) systems, consisting
of suggesting queries as users type in the search
box (Fiorini et al., 2017). The task suffers from
high dimensionality, because the number of possi-
ble solutions increases as the length of the target
query increases. Historically, the query prediction
task has been addressed by relying on query logs,
particularly the popularity of past queries (Bar-
Yossef and Kraus, 2011; Lu et al., 2009). The idea
is to rely on the wisdom of the crowd, as popular

queries matching a typed prefix are more likely to
be the user’s intent.

This traditional approach is usually referred
to as MostPopularCompletion (MPC)(Bar-Yossef
and Kraus, 2011). However, the performance of
MPC is skewed: it is very high for popular queries
and very low for rare queries. At the extreme,
MPC simply cannot predict a query it has never
seen. This becomes a bigger problem in academic
search (Lankinen et al., 2016), where systems are
typically less used, with a wider range of possible
queries. Recent advances in deep learning, partic-
ularly in semantic modeling (Mitra and Craswell,
2015) and neural language modeling (Park and
Chiba, 2017) showed promising results for pre-
dicting rare queries. In this work, we propose to
improve the state-of-the-art approaches in neural
QAC by integrating personalization and time sen-
sitivity information as well as addressing current
MPC limitations by diversifying the suggestions,
thus approaching a production-ready architecture.

2 Related work

2.1 Neural query auto completion

While QAC has been well studied, the field has
recently started to shift towards deep learning-
based models, which can be categorized into two
main classes: semantic models (using Convolu-
tional Neural Nets, or CNNs) (Mitra and Craswell,
2015) and language models (using Recurrent Neu-
ral Nets, or RNNs) (Park and Chiba, 2017). Both
approaches are frequently used in natural language
processing in general (Kim et al., 2016) and tend
to capture different features. In this work, we fo-
cus on RNNs as they provide a flexible solution to
generate text, even when it is not previously seen
in the training data.

Yet, recent work in this field (Park and Chiba,
2017) suffers from some limitations. Most im-
portantly, the probability estimates for full queries

208



are directly correlated to the length of the sug-
gestions, consequently favoring shorter queries
in some cases and hampering some predictions
(Park and Chiba, 2017). By appending these re-
sults to MPC’s and re-ranking the list with Lamb-
daMART (Burges, 2010) in another step as sug-
gested in previous work (Mitra and Craswell,
2015), they achieve state-of-the-art performance
in neural query auto completion at the cost of a
higher complexity and more computation time.

2.2 Context information

Still, these preliminary approaches have yet to in-
tegrate standards in QAC, e.g. query personal-
ization (Koutrika and Ioannidis, 2005; Margaris
et al., 2018) and time sensitivity (Cai et al., 2014).
This integration has to differ from traditional ap-
proaches by taking full advantage of neural lan-
guage modeling. For example, neural language
models could be refined to capture interests of
some users as well as their actual language or
query formulation. The same can apply to time-
sensitivity, where the probability of queries might
change over time (e.g. for queries such as “tv
guide”, or “weather”). Furthermore, the feasibil-
ity of these approaches in real-world settings has
not been demonstrated, even more so on special-
ized domains.

By addressing these issues, we make the follow-
ing contributions in this work compared to the pre-
vious approaches:

• We propose a more straightforward architec-
ture with improved scalability;

• Our method integrates user information
when available as well as time-sensitivity;

• We propose to use a balanced beam search
for ensuring diversity;

• We test on a second dataset and compare the
generalizability of different methods in a spe-
cialized domain;

• Our method achieves stronger performance
than the state of the art on both datasets.

Finally, our source code is made available in a
public repository1. This allows complete repro-
ducibility of our results and future comparisons.

1https://github.com/ncbi-nlp/NQAC

3 Methods

3.1 Personalized neural Language Model
The justification of using a neural language model
for the task of predicting queries is that it has been
proven to perform well to generate text that has
never been seen in the training data (Sutskever
et al., 2011). Particularly, character-level models
work with a finer granularity. That is, if a given
prefix has not been seen in the training data (e.g.
a novel or incomplete word), the model can use
the information shared across similar prefixes to
make a prediction nonetheless.

Recurrent Neural Network The difficulty
of predicting queries given a prefix is that the
number of candidates explodes as the query
becomes longer. RNNs allow to represent each
character (or word) of a sequence as a cell state,
therefore reducing the dimensionality of the task.
However, they also introduce the vanishing gradi-
ent problem during backpropagation, preventing
them from learning long-term dependencies. Both
gated recurrent units (GRU) (Cho et al., 2014) and
long-short term memory cells (LSTMs) solve this
limitation — albeit with a different approach —
and are increasingly used. In preliminary experi-
ments, we tried various forms of RNNs: vanilla
RNNs, GRUs and LSTMs. GRUs performed
similarly to LSTM with a smaller computational
complexity due to fewer parameters to learn as
was previously observed (Jozefowicz et al., 2015).

Word embedded character-level Neural
Language Model The main novelty in (Park and
Chiba, 2017) is to combine a character-level neu-
ral language model with a word-embedded space
character. The incentive is that character-level
neural language models benefit from a finer gran-
ularity for predictions but they lack the semantic
understanding words-level models provide, and
vice versa. Therefore, they encode text sequences
using one-hot encoding of characters, character
embedding and pre-trained word embedding
(using word2vec (Mikolov et al., 2013)) of the
previous word when a space character is encoun-
tered. Our preliminary results showed that the
character embedding does not bring much to the
learning, so we traded it with the context feature
vectors below to save some computation time
while enriching the model with additional, diverse
information.
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User representation We make the assumption
that the way a user types a query is a function of
their actual language/vocabulary, but also a func-
tion of their interests. Therefore, a language model
could capture these user characteristics to better
predict the query, if we feed the learner with the
information. Each query qi is a set of words such
that qi = {w1, ..., wn}. U is a column matrix and a
user u ∈ U is characterized by the union of words
in their k past queries, i.e. Qu = ∪ki=1qi. The
objective is to reduce, for each user, the vocabu-
lary used in their queries to a vector of a dimen-
sionality d of choice, or Qu → Rd. We chose
d = 30, in order to stay in the same computa-
tion order of previous work using character em-
bedding (Park and Chiba, 2017). To this end, we
adapted the approach PV-DBOW detailed in (Le
and Mikolov, 2014). That is, at each training iter-
ation, a random word wi is sampled from Qu. The
model is trained by maximizing the probability of
predicting the user u given the word wi, i.e.:

1

|U |
∑

u∈U

∑

wi∈Qu

log P (u|wi). (1)

The resulting vectors are stored for each user ID
and are used as input for the neural net (NN) (see
Architecture section).

Time representation As an example, in the
background data (see Section 4.1), the query “tv
guide” appears 1,682 times and it is vastly repre-
sented in evening and nights. For this reason, we
propose to integrate time features in the language
model. While there has been more elaborated ap-
proaches to model it in the past (Shokouhi and
Radinsky, 2012), we instead propose a straightfor-
ward encoding and leave the rest of the work to the
neural net. For each query, we look at the time it
was issued, consisting of hour x , minute y and
second z, and we derive the following features:

sin

(
2π(3600x+ 60y + z)

86400

)
,

cos

(
2π(3600x+ 60y + z)

86400

)
.

(2)

This encoding has the benefit of belonging to
[−1, 1], which is a range comparable to the rest
of the features. It is also capable to model cyclic
data, which is important particularly around
boundaries (e.g. considering a query at 11:55PM

and another at 00:05AM). We proceed the same
way to encode weekdays and we end up with four
time features.

Overall architecture An overview of the ar-
chitecture is proposed in Figure 1. The input of
our neural language model is a concatenation of
the vectors defined above, for each character and
for each query in the training set. We use zero-
padding after the “\n” character to keep the se-
quence length consistent, and the NN learns to rec-
ognize it. We feed this input vector into 2 layers
of 1024 GRUs2, each followed by a dropout layer
(with a dropout rate of 50%) to prevent overfitting.
Each GRU cell is activated with ReLu(x) = x+

and gradients are clipped to a norm of 0.5 to avoid
gradient exploding problems. The output of the
second dropout layer is fed to a temporal softmax
layer, which allows to make predictions at each
state. The softmax function returns the probabil-
ity P (ci|c1, ..., ci−1) of the character ci given the
previous characters of the sequence, which is then
used to calculate the loss function by comparing it
to the next character in the target query. Instead
of using the objective denoted in (Park and Chiba,
2017), we minimize the loss L defined as the aver-
age cross entropy of this probability with the ref-
erence probability P̂ (ci) across all queries, that is

L =

− 1

|Q|
∑

q∈Q

|q|−1∑

i=1

P̂ (ci+1)× log P (ci+1|c1, ..., ci).

(3)

Q is the set of queries in the training dataset, |Q|
is the total number of queries in the set and |q|
is the number of characters in the query q. Con-
vergence stabilizes around 5-10 epochs for the
AOL dataset (depending on the model) and 15-20
epochs for the biomedical specialized dataset (see
Section 4.1).

3.2 Balanced diverse beam search
The straightforward approach for decoding the
most likely output sequence — in this case, a suf-
fix given a prefix — is to use a greedy approach.
That is, we feed the prefix into the trained NN and
pick the most likely output at every step, until the
sequence is complete. This approach has a high

2It was reported that using more cells may not help the
prediction while hurting computation (Park and Chiba, 2017).
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Figure 1: Architecture of our proposed model.

chance to output a locally optimal sequence and
a common alternative is to use a beam search in-
stead. We propose to improve the beam search
by adding a greedy heuristic within it, in order to
account for the diversity in the results. A similar
suggestion has been made in (Vijayakumar et al.,
2016), and our proposition differs by rebalancing
the probabilities after diversity was introduced. In
(Vijayakumar et al., 2016), at every step the most
likely prediction is not weighted while all others
are, by greedily comparing them. This approach
effectively always prefers the most likely charac-
ter over all other alternatives at each step. The
first result will thus be the same as the local op-
timum using a greedy approach, which becomes
problematic for QAC where order is critical. By
rebalancing the probability of the most likely sug-
gestion with the average diversity weight given to
other suggestions, we make sure probabilities stay
uniform yet suggestions are diverse. We use a nor-
malized Levenshtein distance to assess the diver-
sity.

4 Experiments

4.1 Dataset

The AOL query logs (Pass et al., 2006) are com-
monly used to evaluate the quality of QAC sys-
tems. We rely on a background dataset for the

NN; training and validation datasets for lamb-
daMART integrations; and a test dataset for eval-
uations. Some adaptations are done to the AOL
background dataset as in (Park and Chiba, 2017),
such as removing the queries appearing less than 3
times or longer that 100 characters. For each query
in the training, validation and test datasets, we use
all possible prefixes starting after the first word as
in (Shokouhi, 2013). We use the sets from (Park
and Chiba, 2017) available online, enriched with
user and time information provided in the original
AOL dataset. In addition, we evaluate the systems
on a second real-world dataset from a production
search engine in the biomedical domain, PubMed
(Fiorini et al., 2017; Lu, 2011; Mohan et al., 2018),
that was created in the same manner. The biomed-
ical dataset consists of 8,490,317 queries. The
sizes of training, validation and test sets are com-
parable to those used for the AOL dataset.

4.2 Evaluation
Systems are evaluated using the traditional Mean
Reciprocal Rank (MRR) metric. This metric as-
sesses the quality of suggestions by identifying the
rank of the real query in the suggestions given one
of its prefixes. We also tested PMRR as introduced
in (Park and Chiba, 2017) and observed the same
trends in results as MRR, so we do not show them
due to space limitation. Given the set of prefixes
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P in the test dataset, MRR is defined as follows:

MRR =
1

|Q|
∑

r∈P

1

rp
, (4)

where rp represent the rank of the match. Paired
t-tests measure the significance of score variations
among systems and are reported in the Results sec-
tion. We also evaluate prediction time as this is an
important parameter for building production sys-
tems. The prediction time is averaged over 10 runs
on the test set, on the same hardware for all mod-
els. We do not evaluate throughput but rather com-
pare the time required by all approaches to process
one prefix.

4.3 Systems and setups
We implemented the method in (Park and Chiba,
2017) and used their best-performing model as a
baseline. We also compare our results to the stan-
dard MPC (Bar-Yossef and Kraus, 2011). For our
method, we evaluate several incremental versions,
starting with NQAC which follows the architec-
ture detailed above but with the word embeddings
and the one-hot encoding of characters only. We
add the subscript U when the language model is
enriched with user vectors and T when it inte-
grates time features. We append +D to indicate the
use of the diverse beam search to predict queries
instead of a standard beam search. Finally, we
also study the impact of adding MPC and Lamb-
daMART (+MPC, +λMART).

5 Results

A summary of the results is presented in Table 1.
Interestingly, our simple NQAC model performs
similarly to the state-of-the-art on this dataset,
called Neural Query Language Model (NQLM),
on all queries. It is significantly less good for seen
queries (-5.6%) and significantly better for unseen
queries (+4.2%). Although GRUs have less ex-
pressive power than LSTMs, their smaller num-
ber of parameters to train allowed them to bet-
ter converge than all LSTM models we tested, in-
cluding that of (Park and Chiba, 2017). NQAC
also benefits from a significantly better scalabil-
ity (28% faster than NQLM) and thus seems more
appropriate for production systems. When we
enrich the language model with user informa-
tion, it becomes better for seen queries (+1.9%)
while being about as fast. Adding time sensitiv-
ity does not yield significant improvements on this

dataset overall, but improves significantly the per-
formance for seen queries (+1.7%). Relying on
the diverse beam search significantly hurts the pro-
cessing time (39% longer) while not providing sig-
nificantly better performance. Our integration of
MPC differs from previous studies. We noticed
that for Web search, MPC performs extremely
well and is computationally cheap (0.24 seconds).
On the other hand, all neural QAC systems are
better for unseen queries but struggle to stay un-
der a second of processing time. Since identifying
if a query has been seen or not is done in con-
stant time, we route the query either to MPC or
to NQACUT and we note the overall performance
as NQACUT+MPC. This method provides a sig-
nificant improvement over NQLM (+6.7%) overall
while being faster on average. Finally, appending
NQACUT ’s results to MPC’s and reranking the list
with LambdaMART provides the best results on
this dataset, but at the expense of greater compu-
tational cost (+60%).

While NQACUT+MPC appears clearly as the
best compromise between performance and qual-
ity for the AOL dataset, the landscape changes
drastically on the biomedical dataset and the qual-
ity drops significantly for all systems. This shows
the potential difficulties associated with real-world
systems, which particularly occur in specialized
domains. In this case, the drop in performance
is mostly due to the fact that biomedical queries
are longer and it becomes more difficult for mod-
els to predict the entire query accurately only with
the first keywords. While the generated queries
make sense and are relevant candidates, the chance
for generative models to predict the exact target
query diminishes as the target query is longer be-
cause of combinatorial explosion. This is even
more true when the target queries are diverse as in
specialized domains (Islamaj Dogan et al., 2009;
Névéol et al., 2011). For example, for the pre-
fix “breast cancer”, there are 1169 diverse suffixes
in a single day of logs used for training. These
include “local recurrence”, “nodular prognosis”,
“hormone receptor”, “circulating cells”, “family
history”, “chromosome 4p16” or “herceptin re-
view”, to cite only a few. Hence, while the model
predicts plausible queries, it is a lot more diffi-
cult to predict the one the user intended. The tar-
get query length also has an impact on prediction
time, as roughly twice the time is needed for Web
searches. MPC is the exception, however, it per-
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Table 1: MRR results for all tested models on the AOL and biomedical datasets with their average prediction time
in seconds.

AOL dataset Biomedical dataset

Model
MRR

Time
MRR

Time
Seen Unseen All Seen Unseen All

MPC (Bar-Yossef and Kraus, 2011) 0.461 0.000 0.184 0.24 0.165 0.000 0.046 0.29
NQLM(L)+WE+MPC+λMART (Park and Chiba, 2017) 0.430 0.306 0.356 1.33 0.159 0.152 0.154 2.35

Our models in this paper
NQAC 0.406 0.319 0.354 0.94 0.155 0.139 0.143 1.73
NQACU 0.417 0.325 0.361 0.98 0.191 0.161 0.169 1.77
NQACUT 0.424 0.326 0.365 0.95 0.101 0.195 0.157 1.81
NQACUT+D 0.427 0.326 0.366 1.32 0.186 0.185 0.185 2.04
NQACUT+MPC 0.461 0.326 0.380 0.68 0.165 0.195 0.187 1.20
NQACUT+MPC+λMART 0.459 0.330 0.382 1.09 0.154 0.179 0.172 2.01

forms poorly even on seen queries (0.165). This
observation suggests that more elaborate models
are specifically needed for specialized domains.
On this dataset, NQAC does not perform as well as
NQLM and it seems this time that the higher num-
ber of parameters in NQLM is more appropriate
for the task. Still, user information helps signifi-
cantly for seen queries (+23%), probably because
some users frequently check the same queries to
keep up-to-date. Time sensitivity seems to help
significantly unseen queries (+21%) while signifi-
cantly hurting the quality for seen queries (-47%).
Diversity is significantly helpful on this dataset
(+19%) and provides a balance in performance for
both seen and unseen queries. NQACUT+MPC
yields the best overall MRR score for this dataset,
and LambdaMART is unable to learn how to re-
rank the suggestions, thus decreasing the score.
From these results, we draw several conclusions.
First, MPC performs very well on seen queries
for Web searches and it should be used on them.
For unseen queries, the NQACUT model we pro-
pose achieves a sub-second state-of-the-art perfor-
mance. Second, it is clear that the field of appli-
cation will affect many of the decisions when de-
signing a QAC system. On a specialized domain,
the task is more challenging: fast approaches like
MPC perform too poorly while more elaborate
approaches do not meet production requirements.
NQACU performs best on seen queries, NQACUT

on unseen queries. Finally, NQACUT+D provides
an equilibrium between the two at a greater com-
putational cost. Its overall MRR is similar to that
of NQACUT+MPC but it is less redundant (see Ta-
ble 2). Particularly, the system seems not to be
limited anymore by the higher probability associ-

Table 2: Comparison of the 10 top query candidates
from the baselines and our approach for the prefix
“www”.

MPC (Park and Chiba, 2017) NQAC+D

www google com www google com www google com
www yahoo com www yahoo com www myspace com
www myspace com www myspace com www mapquest com
www google www google www yahoo com
www ebay com www hotmail com www hotmail com
www hotmail com www my www bankofamerica com
www mapquest com www myspace com www chase com
www myspace www mapquest com www disneychannel com
www msn com www yahoo www myspace
www bankofamerica com www disney channel com www disney channel com

ated with shorter suggestions (e.g. “www google”,
a form of “www google com”), thus bringing more
diversity. This aspect can be more useful for
specialized domains where the range of possible
queries is broader. Finally, we found that a lot
more data was needed for the biomedical domain
than for general Web search. After about a million
queries, NQAC suggests meaningful and plausi-
ble queries for both datasets. However, for the
biomedical dataset, the loss needs more epochs to
stabilize than for the AOL dataset, mainly due to
the combinatorial explosion mentioned above.

6 Conclusions and future work

To the best of our knowledge, we proposed the first
neural language model that integrates user infor-
mation and time sensitivity for query auto com-
pletion with a focus on scalability for real-world
systems. Personalization is provided through pre-
trained user vectors based on their past queries.
By incorporating this information and by adapt-
ing the architecture, we were able to achieve state-
of-the-art performance in neural query auto com-
pletion without relying on re-ranking, making this
approach significantly more scalable in practice.
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We studied multiple variants, their benefits and
drawbacks for various use cases. We also demon-
strate the utility of this method for specialized do-
mains such as biomedicine, where the query diver-
sity and vocabulary are broader and MPC fails to
provide the same performance as in Web search.
We also found that user information and diversity
improve the performance significantly more than
for Web search engines. To allow readers to easily
reproduce, evaluate and improve our models, we
provide all the code on a public repository.
The handling of time-sensitivity may benefit from
a more elaborate integration, for example session-
based rather than absolute time. Also, we evalu-
ated our approaches on a general search setup for
both datasets, while searches in the biomedical do-
main commonly contain fields (i.e. authors, title,
abstract, etc.) which adds to the difficulty. The
choice of a diversity metric is also important and
could be faster or more efficient (e.g., using word
embeddings to diversify the semantics of the sug-
gestions). These limitations warrant further work
and we leave them as perspectives.
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Abstract
Job boards and professional social networks
heavily use recommender systems in order to
better support users in exploring job adver-
tisements. Detecting the similarity between
job advertisements is important for job recom-
mendation systems as it allows, for example,
the application of item-to-item based recom-
mendations. In this work, we research the us-
age of dense vector representations to enhance
a large-scale job recommendation system and
to rank German job advertisements regarding
their similarity. We follow a two-folded eval-
uation scheme: (1) we exploit historic user
interactions to automatically create a dataset
of similar jobs that enables an offline evalua-
tion. (2) In addition, we conduct an online A/B
test and evaluate the best performing method
on our platform reaching more than 1 million
users. We achieve the best results by com-
bining job titles with full-text job descriptions.
In particular, this method builds dense docu-
ment representation using words of the titles to
weigh the importance of words of the full-text
description. In the online evaluation, this ap-
proach allows us to increase the click-through
rate on job recommendations for active users
by 8.0%.

1 Introduction

Recommender systems aim at providing recom-
mendations for services that are targeted to spe-
cific users. The majority of such systems are ap-
plied in the field of e-commerce for e.g. product
recommendations (Lu et al., 2015). In business-
oriented networking platforms, recommender sys-
tems propose job recommendations to users.

In this deployment paper, we target the develop-
ment of content-based methods for job recommen-
dations focusing on German job advertisements.
Based on our social online platform for profes-
sionals, 45% of the traffic is driven by recommen-
dation services for job postings. Thus, improving

the job recommendations is expected to result in
higher user interactions.

Our online platform’s infrastructure consists of
several recommendation stages in order to recom-
mend job postings to users. In this paper, we focus
on the so-called More-Like-This (MLT) compo-
nent that recommends job postings based on previ-
ous users interactions with other job postings. Our
current system consists of an ensemble of recom-
mendation retrieval, filtering and re-ranking stages
in order to recommend relevant job postings to
users. For this, it exploits metadata of a job post-
ing like keywords, disciplines and industries in
which the job is categorized.

There are multiple issues when using exact key-
words or category matching for ranking job post-
ings. First, the document collection, with over 1
million job postings, is fairly huge and too diverse
to fit into the small number of available categories,
e.g. 22 disciplines such as Law or Media. Sec-
ond, strict word matching leads to recall issues,
for instance, J2EE Developer will not be similar to
Software Engineer. Thus, employing a sparse vec-
tor representation is not appropriate for retrieving
similarities between job postings. In addition, due
to the cold start problem (Schein et al., 2002), us-
ing solely metadata of job postings or users is not
suitable, especially for new users, for which only
marginal or no information exists. Furthermore,
metadata can be entirely missing or incorrect (e.g.
outdated or on purpose).

Consequently, we will compute similarities be-
tween job postings based on dense vector rep-
resentations. Recent document embedding tech-
niques learn meaningful syntactic and semantic re-
lationships based on word occurrences in the text.
In this paper, we use dense vector representation of
documents to score similarities between job post-
ings based on their full-text descriptions and ti-
tles. First, we create a dataset for an offline eval-

216



uation consisting of similar job postings based on
user co-interactions. Then, we construct an evalu-
ation metric based on the classification of similar
and non-similar items. Testing multiple embed-
ding models and weighting functions, the best per-
formance is achieved when building embeddings
based on the job description with an increased
weight for words that appear in the job title. Fi-
nally, the model is used in an online A/B test to
assert its performance on live data.

2 Related Work

Recommendation systems can be divided into
three categories (Resnick and Varian, 1997):
content-based, collaborative filtering and hybrid
models. Content-based recommender systems use
items the user positively interacted with in the
past, calculate similarity scores between item pairs
and rank the new recommendations accordingly
(Lops et al., 2011). Collaborative filtering ap-
proach suggest items to a given user, that other
similar users positively interacted with (Koren and
Bell, 2015). Hybrid methods combine both tech-
niques (Burke, 2007). To avoid cold start prob-
lems, due to missing data, we focus on content-
based approach here.

Dense numeric representations are commonly
used to compute the similarity between content
of documents (Hofmann, 2000) in order to reduce
sparse count-based representations (Koren et al.,
2009), which require huge amounts of memory.
Word2Vec (Mikolov et al., 2013) has become a
standard method that builds dense vector repre-
sentations, which are the weights of a neural net-
work layer predicting neighboring words. To re-
trieve a document representation, we compute the
average of all vectors of the words in the docu-
ments. Word2Vec was also used for recommender
systems to re-rank items based on vector correla-
tions (Musto et al., 2015; Ozsoy, 2016). A modifi-
cation that allows the usage of predicting arbitrary
context in order to compute word representation
is named Word2VecF and was introduced by Levy
and Goldberg (2014). Document embedding tech-
niques like Doc2Vec (Le and Mikolov, 2014) as-
signs each document a single vector, which gets
adjusted with respect to all words in the document
and all document vectors in the dataset. In an
attempt to reduce Doc2Vec complexity and train-
ing corpus size dependencies, Doc2VecC (Chen,
2017) uses the same architecture as Word2Vec’s,

except that it samples words from the document in
each training iteration by creating a document vec-
tor out of their average. The vector is then used to
help predicting neighboring words during training.

To our best knowledge, no dataset is available
to evaluate the performance of ranking similari-
ties between jobs. Most similar is the dataset of
the RecSys 2016 task (Abel et al., 2016). How-
ever, the task of this challenge was to learn the
retrieval relevant documents based on user meta-
data and the approaches use supervised systems.
In addition, datasets for document similarity ex-
ist, but do not focus on job postings. For the task
of document similarity, the 20 Newsgroups (Lang,
1995) and TREC-AP (Lewis et al., 1996) datasets
are commonly used. Here the task is to assign doc-
uments to a predefined category. Thus, the task is
more related to document clustering than informa-
tion retrieval of similar documents. Also related
are semantic text similarity tasks, where two sen-
tences have to be scored regarding their similarity
with a score between 0 and 5 (Baudiš et al., 2016).
Paraphrasing is another aspect that is important
for document similarity. Bernhard and Gurevych
(2008) introduced a dataset for paraphrasing both
questions and answers in order to enhance the re-
sults for the information retrieval.

Related work was done by Fazel-Zarandi and
Fox (2009), who introduced a method for match-
ing jobs with job seekers. Whereas this fits to the
RecSys 2016 task, this does not cover job post-
ing retrieval of similar jobs. Furthermore, super-
vised approaches exist that predict jobs to candi-
date users e.g. Poch et al. (2014). In addition,
Kessler et al. (2008) introduced a dataset based on
French job offers and presented a system for rank-
ing relevant jobs to candidates based on a jobs-to-
candidates similarity metric.

3 Method

We hypothesize that job offers are semantically
similar if the words used in its description are se-
mantically similar. In addition, metadata of job
offers like e.g. location of employee, title or qual-
ifications are relevant for similarity computations.

3.1 Data Retrieval

Based on our job recommendation platform, we
extract user interactions (bookmarks and reply in-
tentions) from March 2014 to March 2017 as pairs
of users and jobs. First, we remove users and jobs

217



that have less than two interactions overall. Then,
users are filtered out that have a number of over-
all lifetime interactions that exceeds the 99th per-
centile of all users. We consider such users as out-
liers. As click data of users is noisier than the
bookmark data, we do not use clicks for the cre-
ation of this dataset.

Whereas our job recommendation platform fea-
tures job postings in English and German, most
users prefer German postings. This also affects
our dataset, which comprises of 91% of German
postings. While training semantic models for mul-
tiple languages is possible (e.g. Søgaard et al.,
2017), we focus on German job postings, as found
by a language detector1.

3.2 Data Preprocessing

Before training, HTML tags, URLs and e-mails
were removed using regular expressions, as early
models showed a huge bias towards HR contact
emails and job agencies that include boilerplate
URLs in the job description footers. All special
characters like non-alphabetical characters, inter-
punctuation and bullet points were removed. Ini-
tial semantic models required large vocabularies
due to writing variations of the same word. For
instance, the term Java occurs three times: Java,
java and JAVA. Hence, we lowercase job posting
texts and replace numbers with a placeholder (Ab-
delwahab and Elmaghraby, 2016). Finally, the
document is stemmed using Snowball stemmer2.

3.3 Ground Truth Construction

As manual annotation is expensive and time con-
suming – experts would have to go through N2

jobs for completeness (where N is the sample
size) – we automatically build a dataset using in-
teractions of users from our job recommendation
system. For building the dataset, we assume that
two jobs are similar, if two or more users are inter-
ested in these two jobs. This assumption follows
our intuition that users bookmark relevant jobs that
are similar. However, this source of information
can be noisy, due to random surfing, accidental
clicks or when job postings are bookmarked for a
friend and not for the profile owner. Hence, by se-
lecting only jobs where several users co-interacted
with, we can increase the probability that such jobs
are similar.

1https://pypi.python.org/pypi/
langdetect

2http://snowballstem.org/

In order to validate this assumption, a proper
representative sample should be randomly se-
lected and assessed by human experts. Since we
did not have the resources for manual judgments,
we compare the metadata from the job postings.
For example, for 616,000 pairs of similar jobs,
70.02% of them share the same discipline. The
other about 30% span across similar disciplines
like e.g. Marketing, Quality Assurance and Project
Management that have high topical overlap. How-
ever, discipline pairs exist that may not be consid-
ered as similar, like Engineering & Technical and
Management & Corporate Development. Such
“noise” in addition to slight diversity in book-
marked jobs is expected due to the automatic gen-
eration of the dataset. Nevertheless, such non-
trivial discipline combinations have very low fre-
quency. Better dataset construction approaches
could involve increasing the number of users who
co-interact with the job. Whereas this increases
confidence, it decreases the dataset size drastically
and could impose a bias for popular vs. rather
sparingly sought disciplines.

Offline Evaluation Setup
The two jobs with the titles Java Developer, Ham-
burg and Java Backend Developer, Stuttgart are
examples of two very similar job postings with
different locations. Due to the location difference
they fit to two different types of users: those who
live close to Stuttgart and those close to Hamburg.
For the creation of our dataset we consider the fol-
lowing: if there is no user co-interaction between
two jobs, they will not be considered similar in the
dataset. The same applies to similar jobs postings
with large creation time stamp differences. For
example, users that have been interested in jobs
posted in 2014, might not be interested in similar
jobs posted in 2017.

Inspired by the information retrieval-based
evaluation approach by Le and Mikolov (2014),
we created our dataset. In their approach, they
created triples (s, p, n) that consists of a para-
graph s, a similar paragraph p and a non-similar
randomly sampled paragraph n. Inspired by this
dataset, negative sampling in Word2Vec and cross
validation, we extended the approach to construct
a dataset of positive and negative samples as de-
scribed in Algorithm 1. For each job, we create 10
folds of 10 similar and 40 non-similar jobs.

This algorithm returns a list of triplets consist-
ing of the job j, a list of similar jobs Posf and a
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Algorithm 1 Building the Evaluation Dataset

1: procedure CREATE DATASET(jobs)
2: output← [ ]
3: for j in jobs do
4: for f = 1 . . . 10 do
5: Posf , Foldf ← [ ], [ ]
6: for i = 1 . . . 10 do
7: pi ← random similar job
8: Posf .append(pi)
9: Foldf .append(pi)

10: for i = 1 . . . 40 do
11: ni ← random job
12: Foldf .append(ni)

13: shuffle(Foldf )
14: output.append((j, Posf , Foldf ))

15: return output . A list of triplets

shuffled list Foldf of similar and non similar job
postings to the job j. During evaluation, every job
posting in the shuffled Foldf is compared to the
corresponding job j to compute a similarity score,
which is used to rearrange Foldf . The precision
measure is used to compare the list cutout at 10
(retrieved), and the relevant job postings in Posf .

Sampling “negative job postings” from the en-
tire dataset, we reduce the chance of fetching simi-
lar job postings that our dataset did not capture. To
reduce the chance of false negatives, we increase
the size of the dataset by randomly generating 10
lists for each job, resulting in a dataset of 112,000
distinct job postings and 12,000 shuffled lists.

In Figure 1, we show the similarity between job
titles (we translated them from German to English)
based on a Doc2VecC model (500 dim vectors, 10
window size, 15 negative sampling, 20 iterations)
using T-SNE. The job colored in black (Lean Java
Expert Munich) represents the job being evaluated,
and the gray ones represent similar (positive) job
postings sampled from our user interactions. The
remaining jobs depict non-similar (negative) jobs
sampled from the entire corpus. Based on the fig-
ure we have three observations: first, most posi-
tive jobs are closest to the queried job and focus
on the same topic, namely Java development. Sec-
ond, some of the “negative” jobs are relevant, e.g.
FrontEnd developer and Teamleader in IT Devel-
opment, and have a close distance to the queried
job. Third, we observe multiple clusters: for ex-
ample, in the upper right corner we observe a
“media management” cluster, and in the center a

“project management” cluster.

4 Offline Evaluation

In this section, we first report results that are com-
puted based on full-text job descriptions. Then,
we exploit the performance using the job titles. To
complete our experiments we show results for the
combination of job titles and job descriptions.

In our experiments, we use commonly used hy-
perparameters (Siencnik, 2015; Levy et al., 2015;
Yao et al., 2017). We tested different combinations
of window size (2, 5, 10), model choice (skip-
gram vs. continuous bag of words) and number
of dimensions (100, 250, 500) and picked the fol-
lowing hyperparameters for the rest of the exper-
iments: skip-gram model with vector size of 500,
window size of 10, 15 words for negative sam-
pling, 20 iterations and a threshold for the mini-
mum count of 5.

Due to the ranking nature of the task, we report
results based on the precision at 10 (P@10) score
considering the ten highest ranked jobs. Since we
have 10 positive similar job postings in each list,
the P@10 can be interpreted as an average per-
centage of jobs in the top 10 which are actually
similar and can have a maximum value of 100%.

Full-Text Job Description: As a baseline we
represent each job as a word vector of TF-IDF
scores based on the job description and use the co-
sine similarity for re-ranking the jobs (see Table
1). This baseline performs lowest with a P@10
score of 8.69% showing that such a sparse repre-
sentation is insufficient to identify similarities be-
tween documents.

Model Stem-
med

Doc.
Context

TF-IDF
weights P@10

TF-IDF 08.69 %
Word2Vec 54.84 %
Word2Vec * 56.22 %
Word2VecF * * 61.12 %
Word2VecF * * * 62.81 %
Doc2VecC * 62.73 %
Doc2VecC * * 64.23 %

Table 1: Precision scores of word embedding mod-
els using full-text description only.

Using Word2Vec, we achieve a score of 54.85%,
demonstrating that dense representations perform
much better on our dataset than using sparse word
representations. Stemming the documents yields
to a further improvement (+1.38) and reduces the

219



Facility Manager

Web Developer

Consultant ORACLE CRM

Corporate lawyer/Legal Counsel

Content & Social Media Manager

Content & Social Media  ManagerSales Support Manager Investment Consulting

Market Research

Category Manager REWE

Biologist − Quality Control

Head of Controlling

Investment Associate/Director

Employee in Quality Management

Personal Referent Recruiting

Distribution/Sales Assistant

JAVA SOFTWARE ENGINEER

Controller

Regional Business Development Manager

Senior Project Manager

Trainee Energy services

Head of the Personnel Department

Working student Graphic Design

Teamlead Sales Managing Consultant

Junior Java Developer

Head of Quality in testing

Java Software developer/Architekt

Stress Engineer CAE Rigidity

Senior Java Software−developer

Schaller & Partner in Mannheim

Project Manager Digital Services

Frontend Developer (HTML/CSS/Javascript)

Project leader Logistics Lean

Software Engineer JEE

Sales engineer in sealing technology

Editor/Copywriter/Content Manager

Car Salesman

Trainee Programm headquarters

Online−editor Search Engine optimization

Marketing Specialist Communication

Consultant Contract & Product management

JUNIOR SOFTWARE ENGINEER JEE

Leader Food Logistics

Team Leader in IT−development

Digital Media Manager/Online−editor

JAVA Programming/Backend

Developer XML/XSL

Java Professional Project Leader Events

Trainee − regional manager

Office Manager − Location CoordinatorLean Java Expert Munich

Figure 1: T-SNE representation of a sampled list after a model evaluation (job titles
are translated from German to English).

training time, due to the smaller vocabulary size.
Combining the stemmed representation with con-
text information – we use the document IDs and
compute the representation using Word2VecF – we
achieve improvements of +4.9 points in compari-
son to the standard Word2Vec approach. In this
setting, we predict the document ID for every word
(unlike predicting its neighbors in Word2Vec).
Such a “window” can be seen as a global context
over the entire document, which performs better
than using Word2Vec local context. By extending
this model with TF-IDF scores, the performance
is boosted by another +1.69 points to a score of
62.81%. In addition, we compute similarities with
Doc2VecC using stemmed job descriptions as doc-
uments. This method performs best among the
single tested models (62.73%), and scores highest
when combined with TF-IDF weights achieving a
score of 64.32%.

Job Title: Whereas the models mentioned
above use the job description, most users click
on jobs based on the title. Thus, we investigate
building document vectors using solely title infor-
mation using Word2Vec with stemmed words and
TF-IDF weights. This experiment should reveal
whether computational efforts can be reduced by

using less information.
As shown in Table 2, Word2Vec using title vec-

tor yields a P@10 of 58.79%. Whereas these re-
sults are lower, they are still impressive, as we only
have one “sentence” with an average of 4.8 words.
In addition, we consider job titles as documents

Model P@10
Word2Vec – 500 dim. 58.79%
Doc2Vec – 100 dim. 59.87 %
Doc2Vec – 250 dim. 60.03 %
Doc2Vec – 500 dim. 61.23 %
Doc2Vec – 500 dim. – Inferred 20.66 %

Table 2: Results using the title with various embed-
dings.

and use Doc2Vec. Given the small sentence size,
it can be trained in reasonable time. In our ex-
periments, we test this model with various dimen-
sions (100, 250, 500) and keep the other parame-
ters fixed.3 Testing the effect of Doc2Vec on titles
that have not been seen before, we achieve a low
precision of 20.66%. This was tested by dropping
the document vectors generated for our dataset af-
ter training, and using the model to infer the doc-

3We use a distributed bag of words model, window size
of 10, minimum word count of 5 and a sampling rate of 1e-5.
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ument vectors again. When predicting vectors for
unseen documents, the model infers the title vec-
tor based on its words, however, information loss
is to be expected. This implies that the model can-
not be efficiently used in an online scenario or in
a pipeline of streaming jobs since the entire model
has to be retrained on the full data to obtain a bet-
ter word coverage.

Title weighted description: Next, we com-
bine Doc2VecC word vectors of the description
weighted by the TF-IDF values with weights, in-
dicating if a word is contained in the title. For the
combination we use the following formula:

D(w1, . . . , wk) =

∑k
i=1 TF–IDF (wi) ∗ V (wi) ∗ λ(wi)∑k

i=1 TF–IDF (wi) ∗ λ(wi)

λ(wi) =

{
c, if wi ∈ title, c > 1.0

1, otherwise

with λ(wi) = c with the constant c > 1.0 if
wi is contained in the title and λ(wi) = 1.0 if the
word wi is not contained in the title.

When constructing the document vector D con-
taining k words, all word vectors V (wi) are multi-
plied by their corresponding scalar TF-IDF values
and the constant c if the word appears in the ti-
tle. Then, the vectors are summed up and divided
over the weights to calculate the weighted aver-
age. Based on findings in the previous section,
we already know that the title provides enough in-
formation to distinguish jobs. Thus, weighting ti-
tle words higher when averaging pulls the docu-
ment vector a bit closer to the title in the vector
space. Using c = 5, we achieve result with a pre-
cision score of 73.05%. It shows that by choosing
a proper weighting function, we can achieve better
results than changing the entire model. In indus-
try, often not the best performing system is used,
but the one which can also be applied efficiently
to new and unseen data. Since word vectors are
precomputed, document vectors can be computed
online in the platform pipeline, such that vectors
of new documents are available when needed by
the recommender services.

5 Online Evaluation

The existing recommender system uses Elastic-
search4 to retrieve job postings based on the user’s

4https://www.elastic.co

metadata, then exploits the user’s previous inter-
actions with job postings to rank the recommen-
dations in a doc-to-doc similarity fashion via TF-
IDF. This is used as a ranking baseline. For
our online evaluations, we use the retrieval mod-
ule from Elasticsearch, and plug our fastest and
best performing job representation (title weighted
Doc2VecC) model into a new system to re-rank the
retrieved documents.

Before we performed the online evaluation, we
analyzed whether the results with the A/B test will
differ using different semantic representation, to
prove whether the A/B test will lead to any mean-
ingful result. For this, we re-rank the same re-
trieved recommendations for 2000 users sampled
from the most active users on the platform.

As shown in Table 3, the intersected (common)
recommendations (µ) between the two systems
does not exceed 36% for allK ranks in the recom-
mendation lists, with a decreasing standard devia-
tion (σ). This reveals that the changes have huge
impact on the rankings.

Top K Intersection Avg Distance (km)
µ σ Existing New

4 30.1% 32.16% 287 179
10 35.5% 27.89% 293 188
20 35.4% 25.69% 325 195
50 34.1% 21.28% 336 192

Table 3: Pre-analysis for the A/B test. We show the
mean and standard deviation of common recom-
mendations returned by the systems on different
ranks K, and the average distance of job postings
to the user in kilometers (km).

In addition, we analyze the average distance in
kilometers (km) of the recommended job postings
to the user’s location. The new model favors to
rank jobs with closer distance at higher position:
the top 4 recommendations are 30% closer and
even 60% closer for the top 50 jobs. This is an im-
portant finding, as we hypothesize that users prefer
jobs that are closer to their location. Job locations
are usually included in the title, allowing vectors
of cities to contribute higher in the title weighted
averaging approach.

To perform the A/B test, we conduct a controlled
experiment by selecting active users (with at least
a single previous job interaction) and split them
into two groups: one group gets job posting rec-
ommendations ranked by the Elasticsearch, and
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the second group gets job posting recommenda-
tions ranked by our best system (title weighted
Doc2VecC model).

First, we apply an A/A test (Kohavi et al., 2009)
to test for any split bias: both groups get recom-
mendations from the existing system for 30 days.
Then, the A/B test is conducted over the period of
20 days. The success metric is the Click-Through-
Rate (CTR), which is the percentage of clicked
items considering all items that have been shown
to the users. Thus, the more items users interact
with, the higher the CTR and the more successful
is the algorithm.

Group 1 Group 2

A/A test 20.000% 19.986%
A/B test 20.000% 21.600%

Table 4: Results of the A/A and A/B test with
masked CTR to comply with the platform’s pol-
icy.

Table 4 shows the results for the A/A and A/B
test. To keep the true numbers proprietary to the
company, we masked the absolute CTR values
by normalizing group 1’s real CTR to 20% and
changing the clicks and group 2’s CTR accord-
ingly to preserve the ratios without showing confi-
dential numbers. The A/A test shows negligible
difference between the splits (-0.07%), showing
no bias between the two groups. The experimental
group 2 has a very noticeable relative difference
of +8.00% more clicks per received recommenda-
tions using the title weighted description model.

To exemplify the difference between both sys-
tems, we show in Table 5 the top recommenda-
tions for a postdoctoral researcher who showed in-
terest in three Deep Learning Engineer positions.
Most of the recommendations of the existing sys-
tem are software engineer associated job postings,
while the new system suggests research oriented
job postings with topics similar to the user’s pre-
vious interactions like data science.

In contrast to offline evaluations, deploying
models in productive pipelines must adhere to cer-
tain metrics, like request response time. As the
recommender ranks over 300 jobs against multi-
ple interactions per request, it shows a +9.90% in-
crease in average response time compared to the
existing indexed Elasticsearch model. While the
new system’s response time lies within our ac-

Existing System New System

1 IT project leader
Deep Learning in
Autonomous cars

2
Software Engineer

Data Scientist
(Automotive)

3
Senior Software En- PhD researcher in
gineer (smart cars) Medical Imaging

4 Senior IT Consultant
Computer Linguist/
Analytics

5
Java Software Researcher in single-
Engineer cell Bioinformatics

Table 5: Ranked output from the existing and new
system for a user with interest in machine learn-
ing.

ceptable ranges, it could be improved by reducing
the model’s vector dimensionality at the cost of its
performance.

6 Conclusion and Future Work

In this paper, we have introduced a new method
for automatically creating datasets for the offline
evaluation of job posting similarities. Using such a
silver standard dataset, we have evaluated the per-
formance of different dense vector representations
of documents in order to identify the most promis-
ing setup. Building dense representations based
on full-text job descriptions yields the best results.
However, computing representations for novel job
postings becomes computational expensive, as the
model has to be recomputed, as estimating rep-
resentations for new documents results in much
lower results. Building models from titles, the
scores only slightly decrease, however, the com-
putation of new models is much faster. In our ex-
periments, we observe the best performance with
a combined model, using the words within the title
for weighting words in the description that allows
to compute new representations in an online sce-
nario. With this model, we yield a substantial 8%
relative increase in CTR over the platform’s previ-
ous system component.

In future work, we want to extend the weight-
ing scheme by integrating ontology and keyword
information in order to improve the similarity
search.
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El-Bèze, and Juan-Manuel Torres-Moreno. 2008.
Automatic profiling system for ranking candidates
answers in human resources. In On the Move to
Meaningful Internet Systems: OTM 2008 Work-
shops, pages 625–634, Monterrey, Mexico.

Ron Kohavi, Roger Longbotham, Dan Sommerfield,
and Randal M. Henne. 2009. Controlled experi-
ments on the web: survey and practical guide. Data
Mining and Knowledge Discovery, 18(1):140–181.

Yehuda Koren and Robert Bell. 2015. Advances in col-
laborative filtering. In Recommender systems hand-
book, pages 77–118.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009.
Matrix factorization techniques for recommender
systems. Computer, 42(8):42–49.

Ken Lang. 1995. Newsweeder: Learning to filter
netnews. In Machine Learning, Proceedings of
the Twelfth International Conference on Machine
Learning, pages 331–339, Tahoe City, CA, USA.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Pro-
ceedings of the 31th International Conference on
Machine Learning, ICML, pages 1188–1196, Bei-
jing, China.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics, ACL, pages 302–308, Baltimore,
MD, USA.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

David D. Lewis, Robert E. Schapire, James P. Callan,
and Ron Papka. 1996. Training algorithms for lin-
ear text classifiers. In Proceedings of the 19th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR’96, pages 298–306, Zurich, Switzerland.

Pasquale Lops, Marco De Gemmis, and Giovanni Se-
meraro. 2011. Content-based recommender sys-
tems: State of the art and trends. In Recommender
systems handbook, pages 73–105.

Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang,
and Guangquan Zhang. 2015. Recommender sys-
tem application developments. Decision Support
Systems, 74(C):12–32.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Proceedings of Advances in Neural
Information Processing Systems, NIPS, pages 3111–
3119, Lake Tahoe, NV, USA.

Cataldo Musto, Giovanni Semeraro, Marco de Gem-
mis, and Pasquale Lops. 2015. Word embedding
techniques for content-based recommender systems:
An empirical evaluation. In Poster Proceedings of
the 9th ACM Conference on Recommender Systems,
RecSys, Vienna, Austria.

Makbule G. Ozsoy. 2016. From word embeddings to
item recommendation. CoRR, abs/1601.01356.
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