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Abstract

Keyphrase extraction is a fundamental task
in natural language processing that facilitates
mapping of documents to a set of representa-
tive phrases. In this paper, we present an un-
supervised technique (Key2Vec) that leverages
phrase embeddings for ranking keyphrases
extracted from scientific articles. Specifi-
cally, we propose an effective way of pro-
cessing text documents for training multi-word
phrase embeddings that are used for thematic
representation of scientific articles and rank-
ing of keyphrases extracted from them using
theme-weighted PageRank. Evaluations are
performed on benchmark datasets producing
state-of-the-art results.

1 Introduction and Background

Keyphrases are single or multi-word linguistic
units that represent the salient aspects of a doc-
ument. The task of ranked keyphrase extraction
from scientific articles is of great interest to sci-
entific publishers as it helps to recommend arti-
cles to readers, highlight missing citations to au-
thors, identify potential reviewers for submissions,
and analyze research trends over time (Augenstein
et al., 2017). Due to its widespread use, keyphrase
extraction has received significant attention from
researchers (Kim et al., 2010; Augenstein et al.,
2017). However, the task is far from solved and
the performances of the present systems are worse
in comparison to many other NLP tasks (Liu et al.,
2010). Some of the major challenges are the var-
ied length of the documents to be processed, their
structural inconsistency and developing strategies
that can perform well in different domains (Hasan
and Ng, 2014).

Methods for automatic keyphrase extraction are
mainly divided into two categories: supervised
and unsupervised. Supervised methods approach
the problem as a binary classification problem

(Hasan and Ng, 2014), whereas the unsupervised
methods are mostly based on TF-IDF, cluster-
ing, and graph-based ranking (Hasan and Ng,
2010; Mihalcea and Tarau, 2004). On the pres-
ence of domain-specific data, supervised methods
have shown better performance. The unsupervised
methods have the advantage of not requiring any
training data and can produce results in any do-
main.

With recent advancements in deep learning
techniques applied to natural language processing
(NLP), the trend is to represent words as dense
real-valued vectors, popularly known as word em-
beddings. These representations of words have
been shown to equal or outperform other methods
(e.g. LSA, SVD) (Baroni et al., 2014). The em-
bedding vectors, are supposed to preserve the se-
mantic and syntactic similarities between words.
They have been shown to be useful for several
NLP tasks, like part-of-speech tagging, chunk-
ing, named entity recognition, semantic role la-
beling, syntactic parsing, and speech processing,
among others (Collobert et al., 2011). Some of the
most popular approaches for training word embed-
dings are Word2Vec (Mikolov et al., 2013), Glove
(Pennington et al., 2014) and Fasttext (Bojanowski
et al., 2016).

Title: Identification of states of complex systems with estimation of
admissible measurement errors on the basis of fuzzy information.
Abstract: The problem of identification of states of complex systems on the
basis of fuzzy values of informative attributes is considered. Some estimates
of a maximally admissible degree of measurement error are obtained that
make it possible, using the apparatus of fuzzy set theory, to correctly identify
the current state of a system.
Automatically identified keywords: complex systems, fuzzy information,
admissible measurement errors, fuzzy values, informative attributes
measurement error, maximally admissible degree, fuzzy set theory
Manually assigned keywords: complex system state identification,
admissible measurement errors, informative attributes, measurement errors
fuzzy set theory

Table 1: Keyphrases extracted by using Key2Vec from
a sample research article abstract.

Word embeddings have already shown promis-
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ing results in the process of keyphrase extraction
from scientific articles (Wang et al., 2015, 2014).
However, Wang et al. did not use domain-specific
word embeddings and had suggested that train-
ing them might lead to improvements. This mo-
tivated us to experiment with domain-specific em-
beddings on scientific articles.

In this work, we represent candidate keyphrases
extracted from a scientific article by domain-
specific phrase embeddings and rank them using
a theme-weighted PageRank algorithm (Langville
and Meyer, 2004), such that the thematic weight
of a candidate keyphrase indicate how similar
it is to the thematic representation or the main
theme of the article, which is also constructed us-
ing the same embeddings. Due to extensive use
of phrase embeddings for representing the can-
didate keyphrases and ranking them, we name
our method as Key2Vec. To our knowledge, us-
ing multi-word phrase embeddings for construct-
ing thematic representation of a given document
and to assign thematic weights to phrases have not
been used for ranked keyphrase extraction, and
this work is the first preliminary attempt to do so.
Table 1. shows ranked keyphrases extracted using
Key2Vec from a sample research abstract. Next,
we present our methodology.

2 Methodology

Our methodology primarily uses three steps: can-
didate selection, candidate scoring, and candidate
ranking, similar to other popular frameworks of
ranked keyphrase extraction (Kim et al., 2013).
All the steps depend on the choice of our text pro-
cessing steps and a phrase embedding model that
we train on a large corpus of scientific articles. We
explain them next and give a detailed description
of their implementations.

2.1 Text Processing

It has been shown (Mikolov et al., 2013), that the
presence of multi-word phrases intermixed with
unigram words increases the performance and ac-
cruacy of the embedding models trained using
techniques such as Word2Vec. However, in our
framework we take a different approach in de-
tecting meaningful and cohesive chunk of phrases
while preparing the text samples for training. In-
stead of relying on measures considering how of-
ten two or more words co-occur with each other,
we rely on already trained dependency parsing and

Figure 1: Text processing pipeline for preparing text
samples used for training word embedding models.

named entity extraction models. For this work we
use Spacy1 as our NLP toolkit along with its de-
fault models. The choice of Spacy is just for con-
venience and is not driven by any other factor. We
split a text document into sentences, tokenize a
sentence into unigram tokens, as well as identify
noun phrases and named entities from it. During
this process if a named entity is detected at a par-
ticular offset in the sentence then a noun phrase
appearing at the same offset is not considered.

We take steps in cleaning the individual sin-
gle word and multi-word tokens that we obtain.
Specifically, we filter out the following tokens.

• Noun phrases and named entities that are
fully numeric.

• Named entities that belong to the following
categories are filtered out : DATE, TIME,
PERCENT, MONEY, QUANTITY, ORDI-
NAL, CARDINAL. Refer, Spacy’s named
entity documentation2 for details of the tags.

• Standard stopwords are removed.

• Punctuations are removed except ‘-’.

We also take steps to clean leading and ending
tokens of a multi-word noun phrase and named en-
tity.

• Common adjectives and reporting verbs are
removed if they occur as the first or last token
of a noun phrase/named entity.

• Determiners are removed from the first token
of a noun phrase/named entity.

• First or last tokens of noun phrases/named
entities belonging to following parts of

1https://spacy.io
2https://spacy.io/usage/linguistic-features#section-

named-entities
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speech: INTJ Interjection, AUX Aux-
iliary, CCONJ Coordinating Conjunction,
ADP Adposition, DET Interjection, NUM
Numeral, PART Particle, PRON Pronoun,
SCONJ Subordinating Conjunction, PUNCT
Punctutation, SYM Symbol, X Other, are
removed. For a detailed reference of each
of these POS tags please refer Spacy’s doc-
umentation3.

• Starting and ending tokens of a noun
phrase/named entity is removed if they be-
long to a standard list of english stopwords
and functional words.

Apart from relying on Spacy’s parser we use
hand crafted regexes for cleaning the final list
of tokens obtained after the above data cleaning
steps.

• Get rid of leading/trailing junk characters.

• Handle dangling/backwards parentheses. We
don’t allow ’(’ or ’)’ to appear without the
other.

• Handle oddly separated hyphenated words.

• Handle oddly separated apostrophe’d words.

• Normalize whitespace.

The resultant unigram tokens and multi-word
phrases are merged in the order they appeared in
the original sentence. Figure 1, shows an example
of how the text processing pipeline works on an
example sentence for preparing the training sam-
ples that act as an input to the embedding algo-
rithm.

2.2 Training Phrase Embedding Model

The methodology to a great extent relies on the
underlying embeddings. We directly train multi-
word phrase embeddings using Fasttext4, rather
than first training embedding models for unigram
words and then combining their dense vectors to
obtain vectors for multi-word phrases. Our train-
ing vocabulary consists of both unigram as well
as multi-word phrases. We are aware of the ex-
isting procedures for training phrase embeddings
(Yin and Schütze, 2014; Yu and Dredze, 2015), but

3https://spacy.io/api/annotation#pos-tagging
4https://fasttext.cc/

Figure 2: Frequency distribution of topics in the arxiv
dataset used for training phrase embeddings.

refrain from using them in this preliminary work.
We would like to use them in the future.

The main aim of the underlying embedding
model is to capture semantic and syntactic simi-
larities between textual units comprising of both
single word and multi-word phrases. We chose
Fasttext over other embedding techniques because
it captures both the semantic and morphological
similarities5 between words. For example, if we
have breast cancer in the content of the theme of a
document then intuitively phrases like breast can-
cer, breast cancer treatment, should be assigned
higher thematic weight than prostrate cancer or
lung cancer, even though the document might
mention other forms of cancer as well. Embed-
ding techniques like Word2Vec and Glove, only
takes into account the semantic similarity between
words based on their occurrences in a similar con-
text and will not display the desired property that
we want to leverage. We would like to study the
effects of other types of embeddings in the future.

Dataset: Since this work deals with the domain
of scientific articles we train the embedding model
on a collection of more than million scientific doc-
uments. We collect 1,147,000 scientific abstracts
related to different areas (Fig 2) from arxiv.org6.
For collecting data we use the API provided by
arxiv.org that allows bulk access7 to the articles
uploaded in their portal. We also add the scien-
tific documents present in the benchmark datasets
(Sections 3), increasing the total number of docu-
ments to 1,149,244.

After processing the text of the documents as
mentioned above, we train a Fasttext-skipgram
model using negative sampling with a context win-

5https://rare-technologies.com/fasttext-and-gensim-
word-embeddings/

6http://arxiv.org
7https://arxiv.org/help/bulk data
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dow size of 5, dimension of 100 and number of
epochs set to 10. We would like to experiment fur-
ther in the future on the selection of optimal pa-
rameters for the embedding model.

Candidate Selection: This step aids in chos-
ing candidate keyphrases from the set of all
phrases that can be extracted from a document,
and is commonly used in most of the automated
ranked keyphrase extraction systems. Not all the
phrases are considered as candidates. Generally,
unwanted and noisy phrases are eliminated in this
process by using different heuristics (Section 2.1).
We split a given document into sentences and to
extract noun phrases and named entities as de-
scribed previously. As an output of this step we get
a set of unique phrases (Cdi = {c1, c2, ..., cn}di)
for a document di to be used later for scoring and
ranking in the next two steps.

Candidate Scoring: In this step we assign
a theme vector (τ̂di) to a document (di). The
theme vector can be tuned according to the type
of documents that are being processed and the
type of keyphrases that we want to get in our fi-
nal results. In this work, we extract a theme ex-
cerpt from a given document and further extract
a unique set of thematic phrases comprising of
named entities, noun phrases and unigram words
(Tdi = {t1, t2, ..., tm}di) from it. For the Inspec
dataset we use the first sentence of the document
which consists its title, and for the SemEval dataset
we use the title and the first ten sentences extracted
from the beginning of the document, as the theme
excerpts, respectively (see Section 3). The first ten
sentences of a document from the SemEval dataset
essentially captures the abstract and sometimes
first few sentences of the introduction of a scien-
tific article. We get the vector representation (t̂j)
of each thematic phrase extracted from the theme
excerpt using the phrase embedding model that we
trained and perform vector addition in order to get
the final theme vector (τ̂di =

∑m
j=1 t̂j) of the doc-

ument. The phrase embedding model is then used
to get the vector representation (ĉk; k ∈ {1...n})
for each candidate keyphrase in Cdi .

We calculate the cosine distance between the
theme vector (τ̂di) and vector for each candidate
keyphrase (ĉk) and assign a score (κ(x̂, ŷ) →
[0, 1]) to each candidate, with 1 indicating a com-
plete similarity with the theme vector and 0 in-
dicating a complete dissimilarity. To get the fi-
nal thematic weight (wdi

cj ) for each candidate w.r.t.

a given document (di), the candidate scores are
scaled again between 0 and 1 with a score of 1 as-
signed to the candidate semantically closest to the
main theme of the document and 0 to the farthest.

Candidate Ranking: In order to perform fi-
nal ranking of the candidate keyphrases we use
weighted personalized PageRank algorithm. A di-
rected graph Gdi is constructed for a given doc-
ument (di) with Cdi as the vertices and Edi as
the edges connecting two candidate keyphrases if
they co-occur within a window size of 5. The
edges are bidirectional. Weights sr(cdij , c

di
k ) are

calculated for the edges using the semantic simi-
larity between the candidate keyphrases obtained
from the phrase embedding model and their fre-
quency of co-occurrence, as used by Wang et
al. (Wang et al., 2015), and shown in equation
3. We use cosine distance ( 1

1−cosine(c
di
j ,c

di
k
)
) and

Point-wise Mutual Information (PMI(cdij , c
di
k ))

for calculating semantic(cdij , c
di
k ) (equation 1)

and cooccur(cdij , c
di
k ) (equation 2), respectively.

The main intuition behind calculating semantic re-
latedness by using a phrase embedding model is
to capture how well two phrases are related to
each other in general. Whereas, the co-occurrence
score captures the local relationship between the
phrases within the context of the given document.

semantic(cdij , cdik ) =
1

1− cosine(cdij , cdik )
(1)

cooccur(cdij , cdik ) = PMI(cdij , cdik ) (2)

sr(cdij , cdik ) = semantic(cdij , cdik )× cooccur(cdij , cdik )
(3)

Given graph G, if ε(cdij ) be the set of all edges
incident on the vertex cdij , and wdi

cj is the thematic

weight of cdij as calculated in the candidate scor-
ing step, then the final PageRank scoreR(cdij ) of a
candidate keyphrase cdij is calculated using equa-
tion 4, where d = 0.85 is the damping factor and
out(cdik ) is the out-degree of the vertex cdik .

R(cdij ) = (1− d)wdi
cj + d×

∑

c
di
k

∈ε(c
di
j

)

(
sr(cdij , cdik )∣∣out(cdik )

∣∣ )R(cdik )

(4)

Next, we evaluate the performance of Key2Vec.
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Micro
Avg.

Precision
@5

Micro
Avg.

Recall
@5

Micro
Avg.
F1
@5

Micro
Avg.

Precision
@10

Micro
Avg.

Recall
@10

Micro
Avg.
F1

@10

Micro
Avg.

Precision
@15

Micro
Avg.

Recall
@15

Micro
Avg.
F1

@15
Inspec 61.78 % 25.67 % 36.27 % 57.58 % 42.09 % 48.63 % 55.90 % 50.06 % 52.82 %

SemEval 41 % 14.37 % 21.28 % 35.29 % 24.67 % 29.04 % 34.39 % 32.48 % 33.41 %

Table 2: Performance of Key2Vec over combined controlled and uncontrolled annotated keyphrases for Inspec and
SemEval 2010 datasets.

Inspec
(Combined) Key2Vec Wang et al.,

2015
Liu et al.,

2010

SGRank
(Danesh et al.,

2015)

TopicRank
(Bougouin et al.,

2013)
Micro Avg. F1@10 48.63 % 44.7 % 45.7 % 33.95 % 27.9 %

Table 3: Comparison of Key2Vec with some state-of-the-art systems (Liu et al., 2009; Danesh et al., 2015; Bougouin
et al., 2013; Wang et al., 2015) for Avg. F1@10 on Inspec dataset.

SemEval 2010
(Combined) Key2Vec

SGRank
(Danesh et al.,

2015)

HUMB
(Lopez and Romary,

2010)

TopicRank
(Bougouin et al.,

2013)
Micro Avg. F1@10 29.04 % 26.07 % 22.50 % 12.1 %

Table 4: Comparison of Key2Vec with some state-of-the-art systems (Danesh et al., 2015; Bougouin et al., 2013;
Lopez and Romary, 2010) for Avg. F1@10 on SemEval 2010 dataset.

3 Experiments and Results

The final ranked keyphrases obtained using the
Key2Vec methodology as described in the previous
section is evaluated on the popular Inspec and Se-
mEval 2010 datasets. The Inspec dataset (Hulth,
2003) is composed of 2000 abstracts of scientific
articles divided into sets of 1000, 500, and 500,
as training, validation and test datasets respec-
tively. Each document has two lists of keyphrases
assigned by humans - controlled, which are as-
signed by the authors, and uncontrolled, which
are freely assigned by the readers. The controlled
keyphrases are mostly abstractive, whereas the un-
controlled ones are mostly extractive (Wang et al.,
2015). The Semeval 2010 dataset (Kim et al.,
2010) consists of 284 full length ACM articles di-
vided into a test set of size 100, training set of size
144 and trial set of size 40. Each article has two
sets of human assigned keyphrases: the author-
assigned and reader-assigned ones, equivalent to
the controlled and uncontrolled categories, respec-
tively of the Inspec dataset. We only use the test
datasets for our evaluations and combine the an-
notated controlled and uncontrolled keyphrases.

The ranked keyphrases are evaluated using ex-
act match evaluation metric as used in SemEval
2010 Task 5. We match the keyphrases in the an-
notated documents in the benchmark datasets with
those generated by Key2Vec, and calculate micro-
averaged precision, recall and F-score (β = 1),

respectively. In the evaluation, we check the per-
formance over the top 5, 10 and 15 candidates re-
turned by Key2Vec. The performance of Key2Vec
on the metrics is shown in Table 2. Tables 3 and 4
shows a comparison of Key2Vec with some of the
state-of-the-art systems giving best performances
on the Inspec and SemEval 2010 datasets, respec-
tively.

4 Conclusion and Future Work

In this paper, we proposed a framework for auto-
matic extraction and ranking of keyphrases from
scientific articles. We showed an efficient way of
training phrase embeddings, and showed its effec-
tiveness in constructing thematic representation of
scientific articles and assigning thematic weights
to candidate keyphrases. We also introduced
theme-weighted PageRank to rank the candidate
keyphrases. Experimental evaluations confirm
that our proposed technique of Key2Vec produces
state-of-the-art results on benchmark datasets. In
the future, we plan to use other existing proce-
dures for training phrase embeddings and study
their effects. We also plan to use Key2Vec in
other domains such as news articles and extend the
methodology for other related tasks like summa-
rization.
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