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Abstract

Entity recognition is a widely benchmarked
task in natural language processing due to
its massive applications. The state-of-the-art
solution applies a neural architecture named
BiLSTM-CRF to model the language se-
quences. In this paper, we propose an entity
recognition system that improves this neural
architecture with two novel techniques. The
first technique is Multi-Task Data Selection,
which ensures the consistency of data distri-
bution and labeling guidelines between source
and target datasets. The other one is con-
strained decoding using knowledge base. The
decoder of the model operates at the docu-
ment level, and leverages global and external
information sources to further improve perfor-
mance. Extensive experiments have been con-
ducted to show the advantages of each tech-
nique. Our system achieves state-of-the-art re-
sults on the English entity recognition task in
KBP 2017 official evaluation, and it also yields
very strong results in other languages.

1 Introduction

Entity Recognition (ER) is a fundamental task in
Natural Language Processing (NLP). The task in-
cludes named entity recognition and nominal en-
tity recognition. ER is the building blocks for
higher level applications such as natural language
understanding, question answering, machine read-
ing comprehension, etc. They are usually treated
as sequence labeling problems. Although the
topics have been studied extensively for the past
several decades, development of neural network
and deep learning based methods in recent years
(Lample et al., 2016; Ma and Hovy, 2016; Yang
et al., 2017; Kenton Lee and Zettlemoyer, 2017;
Xinchi Chen, 2017) significantly improves the
previous state-of-the-art.

∗ Work was done while doing internship at Alibaba.

A popular neural architecture for ER is
BiLSTM-CRF (Lample et al., 2016). The archi-
tecture has been shown to achieve best perfor-
mance on many sequence labeling tasks. In ad-
dition, the architecture can be easily extended to
model different sources of training data. In real
world applications, it is important to include exter-
nal data sources for model training, because using
only domain-specific data for training is usually
not enough to achieve best performance. For ex-
ample, in the case of KBP 2016 tracks, both the
1st and the 2nd teams (ranking in the NERC evalu-
ation) use external data source (Liu et al., 2016;
Xu et al., 2017) for model training. The chal-
lenge here is to transfer knowledge from external
data source to target data source. Multi-Task (MT)
BiLSTM-CRF architecture (Yang et al., 2017) is
designed for this knowledge transfer.

In this work, we develop an ER model based
on the MT BiLSTM-CRF architecture, with ad-
ditional entity embeddings and domain adaption.
Two novel methods are proposed to further im-
prove the model performance.

Multi-Task Data Selection

To ensure homogeneity between source and target
training data, adaptive training data selection is ap-
plied to source data during multi-task learning, to
filter out instances with different distribution and
misaligned annotation guideline. Data selection
is interleaved with model training iteratively, and
this training process terminates until convergence.

Constrained Decoding using Knowledge Base

Knowledge-based constraints are enforced at de-
coding time. The goal is to capture document level
contexts given those knowledge. For example, a
phrase is likely to be an entity if it is detected in
another sentence in the same document. It also
helps detect related mentions, such as the mention
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Figure 1: Neural architectures for mention detection
and classification. a) Single-task model. b) Multi-task
model with domain adaptions.

apple is more likely to be a ORG when it occurs
in the same discussion forum with Apple Inc.

2 Related Works

There are many works in literature applying neu-
ral networks to ER problems (Lample et al., 2016;
Ma and Hovy, 2016; Yang et al., 2017; Peng and
Dredze, 2016). The baseline model of this work
is mostly closed to (Yang et al., 2017). However,
we introduce additional channel in the embedding
layer(Peng and Dredze, 2016).

The idea of multi-task data selection is derived
from topics of data selection (Moore and Lewis,
2010) and instance weighting (Jiang and Zhai,
2007) from the transfer learning community. Dif-
ferent from previous work, we propose an adaptive
selection approach interleaved with MT BiLSTM-
CRF model training. Decoding with global con-
straints has been studied in (Yarowsky, 1993; Kr-
ishnan and Manning, 2006). Here we share simi-
lar ideas with previous work, but explore the use
of external knowledge base (Radford et al., 2015)
as constraints.

3 Approach

This section describes the baseline model used for
the ER task. We first describe a slight variant
of BiLSTM-CRF and its MT version for transfer
learning. For the sake of brevity, discussions of
the basis theory of MT learning are skipped and
more details can be found in (Zhang and Yang,
2017). Then we present in details how data selec-
tion and constrained decoding are applied to fur-
ther improve the model performance.

3.1 BiLSTM-CRF

BiLSTM-CRF is a widely adopted neural archi-
tecture for sequence labeling problems including
ER. BiLSTM-CRF is a hierarchical model and the
architecture is illustrated in Figure 1(a).

The first layer of the model maps words to
their embeddings. Let x = (x1, · · · , xn) de-
note a sentence composed of n words in a se-
quence, with x′is as their word/character embed-
ding combinations. In the second layer, word em-
beddings are encoded using a bidirectional-LSTM
network, and the output is h = (h1, · · · , hn),
where ht = BiLSTM(x, t). The encodings are
further passed to a fully connection network, to
compute CRF features φ(x) = G · h, and finally
objective to optimize is the CRF likelihood defined
as the following,

p(y|x; θ) =
∏n

i=1 exp(θ · f(yi−1, yi, φ(x)))
Z

,

where y are predicted labels and Z is the nor-
malizing constant.

3.1.1 Entity Embeddings
We extend the BiLSTM-CRF model by adding en-
tity embedding channel to the embedding layer.
As a result, xi is the concatenation of word em-
bedding, character embedding and its entity em-
bedding, xi = [ωi, ci, gi]. Entity embeddings
are derived from a noisy gazetteer created using
Wikipedia articles. The gazetteer is derived from
the word-entity statistics from (Pan et al., 2017).
More specifically, each coordinate of the entity
embedding is the probability distribution of a word
occurring as the corresponding entity type.

3.1.2 Domain Adaption
To explore external datasets, we apply MT
BiLSTM-CRF with domain adaptions, as illus-
trated in Figure 1(b). The fully connection layer
are adapted to different datasets. The CRF features
are computed separately, i.e. φT (x) = GT · h,
φS(x) = GS · h for target and source dataset
respectively. The loss function p(y|x; θT ) and
p(y|x; θS) are optimized in alternating order.

3.2 Multi-task Data Selection

Multi-task training can alleviate some of the prob-
lem caused by data heterogeneity between target
and source. This section presents an adaptive data
selection algorithm during multi-task training that
further removes noisy data from source dataset.

The data selection procedure is described in de-
tails in Algorithm 1. At each iteration, data se-
lection from the source domain is interleaved with
model parameter updates. Training data is selected
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Algorithm 1 Multi-task Data Selection
Input: Target training dataset (x,y) ∈ T , source

training dataset (x′,y′) ∈ S.
Initialize: Strain ← S; X S = {x′ : (x′,y′) ∈
S}.

Repeat:
1. Train the model for one iteration, by opti-

mizing the following instance weighted object
function,

J =
∑

(x,y)∈T
p(y|x; θT )+

∑

(x′,y′)∈Strain
p(y′|x′; θS);

2. Compute consistency score for each training
example in S,

s(x) = max
i

∑

j

p(xi = j) log
p(xi = j)

q(xi = j)
,

where p(xi) ∼ softmax(φT (xi)) and
q(xi) ∼ softmax(φS(xi)));

3. Construct Ssame , Sdiff by the following,
Ssame = {x ∈ X S : s(x) < α} and
Sdiff = {x ∈ X S : s(x) > β};
Thresholds α and β are manually set that de-
termine the selection/exclusion of a data point.

4. Update source training set Strain,
Strain ← Strain ∪ Ssame \ Sdiff .
In the new training set, data with different dis-
tributions are eliminated.

Until: |Sdiff | < k
Return: the final BiLSTM-CRF model.

based on a consistency score, which measures the
similarity between target and source data distri-
bution. Specifically, the consistency score is de-
rived from the KL divergence between φT (x) and
φS(x) for every word in the sentence in the source
training data. According to step 4, data that are
not consistent with the target are eliminated from
the training dataset. The iterations terminate un-
til there is few additional data to filter out, up to a
manually-tuned threshold.

3.3 Constrained Decoding using Knowledge
Base

It has been well studied that non-local informa-
tion can be used to help improve entity recogni-
tion performance (Radford et al., 2015) (Krishnan

and Manning, 2006). Here we describe a globally
constrained decoding (Graves et al., 2012) method
used in our model. In particular, we use external
knowledge information to guide the decoding pro-
cess at the document level.

3.3.1 Knowledge Base
An external knowledge base is built from
Wikipedia articles (Radford et al., 2015) (Dalton
et al., 2014). For each Wikipedia entity, we first
extract all its aliases from the redirects, and then
build a cluster of the mentions for the this entity
which includes all its aliases. Our goal is that
given a document mentions Microsoft, the knowl-
edge base can help identify the other mentions
such as MS Corp. The knowledge base can be nat-
urally extended to include related entities (using
anchor texts), instead of only aliases of the same
entity, in the cluster; we leave this to the future
works.

Then we apply global decoding with constraint
C, such that all mentions that belong to the same
cluster should be labeled as the same entity type
within a single document,

y1:N = argmax
C

p(y1:N|x1:N; θ),

where subscripts 1 : N are indices of sentences
within the same document. We use a greedy algo-
rithm for decoding.

4 Experiments

This section presents experiments results of our
methods on the KBP 2016 and 2017 evaluation
datasets. We focus on Engilsh (ENG) and Man-
darin Chinese (CMN) ER tasks, which include
both named entity recognition (NAM) and nom-
inal entity recognition (NOM). The neural models
are implemented using Tensorflow (Abadi et al.,
2016). Dropout and gradient clipping are applied
when necessary to avoid numerical issues during
training. Performance numbers are reported using
the NERC F1 score as defined in (Ji et al., 2016).

4.1 Datasets
KBP 2015 data is used for evaluation on the 2016
evaluation dataset. Both datasets are used for
training for KBP 2017 evaluation. We also lever-
age external data sources to improve model per-
formance. Unlike (Liu et al., 2016), manual anno-
tation is not feasible to us due to budget limit, we
instead use ACE (Walker et al., 2006) and ERE
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Method NAM NOM Overall
baseline (ENG) 0.809 0.587 0.748

+ EE (ENG) 0.842 0.587 0.770
baseline (CMN) 0.822 0.305 0.727

+ EE (CMN) 0.851 0.305 0.752

Table 1: Effectiveness of additional entity embeddings
(EE) in model embedding layer.

(Song et al., 2015) entity annotations as source
datasets. It is worth noting that annotation guide-
lines are different from one dataset to another, es-
pecially for nominal entity annotations.

4.2 Baseline

The baseline is a BiLSTM-CRF model with word
and character embeddings which simply combines
source and target data as training data. GloVe vec-
tors (Pennington et al., 2014) are used as word em-
beddings. NAM and NOM models are trained sep-
arately with individually tuned parameters.

4.3 Results

First, we examine the performance impact of en-
tity embedding. As shown in Table 1, entity em-
bedding is very useful for both NAM and NOM
prediction tasks, and for both languages. It pro-
vides an overall performance improvement of 2.2
F1 points. Since the entity embeddings are de-
rived from soft gazetteer features, this experiment
confirms again the usefulness of gazetteer even in
neural network models. In theory, the entity em-
beddings should have been already captured by the
model itself; the additional predictability of the
entity embeddings actually comes from the exter-
nal dataset (Wikipedia) where the embeddings are
derived from.

Next the effectiveness of Multi-Task Data Se-
lection is evaluated. Results in Table 2 show that
both MT and MTDS can significantly improve
NOM detection over the baseline, and adaptive
data selection in MTDS further improves over the
MT model. However, there is no gain at all for
NAM detection for both languages. We manually
evaluate the source and target datasets, and find
that the annotation guideline and data distribution
of NAM data are quite the similar while there are
some significant differences for NOM data. No-
tably, many of the plural form nouns are marked
as nominal entities in the ACE dataset while in our
target KBP tasks plural nouns are not labeled as

Method NAM NOM Overall
baseline+EE (ENG) 0.842 0.587 0.770

+MT (ENG) 0.842 0.626 0.786
+MTDS (ENG) 0.842 0.634 0.788

baseline+EE (CMN) 0.851 0.305 0.752
+MT (CMN) 0.851 0.351 0.756

+MTDS (CMN) 0.851 0.364 0.758

Table 2: Effectiveness of Multi-Task Data Selection
(MTDS).

entities in general.

Table 3 presents the performance impact of
knowledge based constrained decoding. It is worth
noting that the performance gain in the Chinese
language is more limited in comparison with En-
glish. The primary reason behind this is that
the English Wikipedia site is more comprehen-
sive than its Chinese counterpart. Constrained de-
coding does not change the NOM performance
because only name mentions are included in the
knowledge base.

Method NAM NOM Overall
baseline+EE (ENG) 0.842 0.587 0.770

+CD (ENG) 0.851 0.587 0.778
baseline+EE (CMN) 0.851 0.305 0.752

+CD (CMN) 0.855 0.305 0.754

Table 3: Effectiveness of Constrained Decoding (CD)
using Knowledge Base.

Finally, we use model ensemble to further im-
prove model scores. Four models are combined
together for final evaluation. Majority vote is ap-
plied to produce final results. We presents the
evaluation results on both KBP 2016 and 2017
datasets in Table 4, and compare them with state-
of-the-art scores (Ji et al., 2016) (Ji et al., 2017).
Our system ranks 1st in the English entity recogni-
tion task in the official evaluation in 2017. We also
perform very strongly in the Chinese language as
well: the best team applies many hand-tuned rules
in the evaluation (Ji et al., 2017), while our model
is free of rules. It also can be concluded from
the table that the additional training data for KBP
2016 increases the overall model performance by
0.7 F1 points.
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Year/Language Our F1 Best F1
2016/ENG 0.804 0.772
2017/ENG

(Official evaluation)
0.811 0.811

2017/CMN 0.769 0.780

Table 4: Performance comparison between 2016 and
2017 datasets.

5 Conclusion and Future Works

This paper presents novel methods to improve
neural entity recognition tasks. Multi-task data
selection removes noise from training data, while
constrained decoding further improves the model
by exploiting global and external information
sources. Extensive experiments show the effec-
tiveness of the methods. Work needs to be done
to justify in theoretic foundation the adaptive data
selection algorithm. Furthermore, runtime and
computational complexity of the system should be
studied. We also plan to extend the knowledge
base cluster to include related entities.
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