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Abstract

Compositional Distributional Semantic Mod-
els (CDSMs) model the meaning of phrases
and sentences in vector space. They have
been predominantly evaluated on limited, ar-
tificial tasks such as semantic sentence simi-
larity on hand-constructed datasets. This pa-
per argues for lexical substitution as a means
to evaluate CDSMs. Lexical substitution is
a more natural task, enables us to evaluate
meaning composition at the level of individ-
ual words, and provides a common ground to
compare CDSMs with dedicated lexical substi-
tution models. We create a lexical substitution
dataset for CDSM evaluation from an English-
language corpus with manual “all-words” lexi-
cal substitution annotation. Our experiments
indicate that the Practical Lexical Function
CDSM outperforms simple component-wise
CDSMs and performs on par with the con-
text2vec lexical substitution model using the
same context.

1 Introduction

Compositional Distributional Semantics Models
(CDSMs) compute phrase meaning in semantic
space as a function of the meanings of the phrase
constituents (Baroni et al., 2014). The most basic
CDSMs represent words as vectors and compose
phrase vectors by component-wise operations of
the constituent vectors (Mitchell and Lapata, 2008).
More complex models represent predicates with
matrices and tensors (Baroni and Zamparelli, 2010;
Grefenstette, 2013; Paperno et al., 2014).

Given the large number of different CDSMs pro-
posed in the literature (Erk, 2012), meaningful eval-
uation becomes crucial. The dominant evaluation
method, adopted by the majority of CDSM studies,
is pairwise phrase similarity (Mitchell and Lap-
ata, 2008; Guevara, 2010; Grefenstette et al., 2012;
Grefenstette, 2013; Paperno et al., 2014). Only a

handful of studies pursued other evaluation tasks,
such as textual entailment (Marelli et al., 2014a,b)
or sentiment analysis (Socher et al., 2013).

Arguably, phrase similarity evaluation has three
major problems. First, the task is affected by the
general limitations of rating scales, such as incon-
sistencies in annotations, scale region bias, and
fixed granularity (Schuman and Presser, 1996).
Phrase similarity datasets used for CDSM eval-
uation demonstrate slight to fair inter-annotator
agreement, as well as overlap between groups of
items rated as low and high in similarity (Mitchell
and Lapata, 2008).

Secondly, phrase similarity is a task that is rather
difficult to put down precisely, especially for long
phrases. Generally, phrases can be (dis)similar in
any number of ways. Annotators commonly agree
that some sentence pairs are semantically highly
similar (private company files annual account and
private company registers annual account, Picker-
ing and Frisson 2001), and others are semantically
unrelated (man waves hand vs. employee leaves
company). In contrast, their assessments become
less confident for cases like delegate buys land and
agent sells property (Kartsaklis et al., 2013), where
there is a semantic relation other than synonymy.
Similarity is also arguably not a useful measure
when sentences are semantically deviant, as it is of-
ten the case in the datasets: how similar are private
company files annual account and private company
smooths annual account?

The third problem is that the most widely used
phrase similarity datasets are constructed in a bal-
anced fashion along psycholinguistic principles.
For instance, the adjective-noun-verb-adjective-
noun (“ANVAN”) dataset (Pickering and Frisson,
2001; Kartsaklis et al., 2013), from which the exam-
ples above are drawn, was constructed from a set of
particularly ambiguous verbs paired with strongly
disambiguating contexts. Such setups often do not

206



correlate well with usefulness on more natural data.
In a previous study on lexical substitution, Kremer
et al. (2014) found that the advantage of machine
learning-based models over simple baselines was
much harder to show on a real-world corpus than
on the previously used manually constructed bench-
mark dataset (McCarthy and Navigli, 2009).

In this paper, we pursue the idea that lexical sub-
stitution (McCarthy and Navigli, 2009) is a more
suitable evaluation task for CDSMs. Lexical sub-
stitution is the task of finding meaning-preserving
substitutes for a target word in context: e.g., the
word submits is a legitimate substitute for files in
private company files annual account, but not in
office clerk files old papers. Lexical substitution
provides a frame for comparing synonyms in con-
text, and disambiguating the context-appropriate
sense of polysemous words. Since this is a prob-
lem CDSMs can account for, lexical substitution
seems a suitable task for testing and comparing dif-
ferent CDSMs. Additionally, lexical substitution is
a more natural task than similarity ratings, it makes
it possible to evaluate meaning composition at the
level of individual words, and provides a common
ground to compare CDSMs with dedicated lexical
substitution models.

2 The ANVAN-LS Dataset

To perform more realistic evaluations for CDSMs,
we would like to test them on a sample of actual
human utterances rather than hand-selected exam-
ples. That being said, for the evaluation to be use-
ful, the structures on which we evaluate should
be relatively uniform and limited, at least initially
while moving from artificial to natural datasets. We
thus construct a dataset1 for English that strikes a
balance between these factors: we maintain the
adjective-noun-verb-adjective-noun (ANVAN) for-
mat, but our phrases are based on corpus sentences,
and some or all words in the ANVAN can form the
targets of lexical substitution ranking tasks.

Sampling ANVAN Queries. The starting point
of our corpus construction is the English CoInCo
corpus (Kremer et al., 2014), which consists of
roughly 2,500 sentences taken from the news and
fiction section of the MASC corpus and provides
manually annotated lexical substitutes for all con-
tent words (nouns, adjectives, verbs, and adverbs).

1The corpus is freely available at http://www.
ims.uni-stuttgart.de/forschung/ressourcen/
korpora/ANVAN-LS.html

We extracted all clauses from CoInCo that met
the following requirements: (1) the dependency
structure of the clause includes an ANVAN struc-
ture; (2) at least one constituent word of the AN-
VAN sub-clause has at least two human-provided
single-word substitutes that exceeded a minimal
frequency threshold (more than 5 occurrences in
a large corpus, cf. Section 3); (3) the POS tags
were correct. This resulted in 165 ANVAN phrases,
which contained an average of 4.4 (out of 5) tar-
get words with substitutes, for a total of 732 target
words for lexical substitution.

An issue that required additional consideration
was the adjective positions of the ANVANs. In the
CoInCo, we found a substantial number of noun-
noun compounds whose modifiers were tagged as
adjectives. Conversely, many adjective modifiers
in the corpus were substituted with nouns by hu-
man annotators. To account for this variability, we
extended the ANVAN schema conservatively by
allowing nouns to fill the A position if it was ob-
served in the large corpus robustly as a modifier
(i.e., as part of at least 100 N-N bigram types, each
of which occurred at least 300 times).

Building Lexical Substitution Tasks. For each
of the 732 target words, we constructed a lexical
substitution query by pairing the target with two
correct substitutes and two confounders (see Ta-
ble 1). Since substitutes provided by more annota-
tors in CoInCo tend to be more reliable, we picked
the two most frequently given substitutes for each
target. In the case of ties, we chose the lemma with
the highest corpus frequency.

To acquire challenging confounders, we re-
trieved the 20 most similar lemmas with the same
part of speech for each target (according to the un-
igram space; cf. Section 3) and then eliminated
all annotator-provided substitutes for this target.
From the remainder, we chose the two most closely
matched by corpus frequency to the frequencies
of the two chosen annotator-provided substitutes.
Given the relatively high number of human substi-
tutes in CoInCo, this results in highly similar, but
contextually inappropriate confounders. Finally,
the acquired confounders were manually checked
to make sure that the automatic selection process
did not yield a context-appropriate substitute or a
semantically unrelated term. In such cases, the next
best candidate (by lemma similarity and frequency)
was chosen.
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target construction arm build large airfield
substitute1 construction branch build large airfield
substitute2 construction part build large airfield
confounder1 construction back build large airfield
confounder2 construction hand build large airfield

Table 1: ANVAN-LS lexical substitution example

3 Experimental Setup

Task and Evaluation. We evaluate models on
ANVAN-LS in the form of a ranking task for each
query: models are supposed to rank the correct sub-
stitutes for each target higher than its confounders.
Our evaluation measure is the mean average preci-
sion (MAP) of all queries. In our case,

MAP =
1

N

N∑

i=1

4∑

k=1

Pli(k)∆rli(k)

where k is the rank in the 4-item list l of substi-
tution candidates, Pl(k) is the precision at cut-off
point k in list l, the ∆rl(k) is the change in recall
from items k−1 to k in l, and N is the total number
of ANVAN queries. We calculate MAP both over-
all, and by target positions in ANVAN, to obtain
more detailed insights into performance depending
on part of speech and word position.

Corpus and Semantic Space. Following Baroni
and Zamparelli (2010) and Paperno et al. (2014),
we use a concatenation of the ukWaC, BNC, and
English Wikipedia corpora (around 2.8G words).
We build a square co-occurrence matrix, using
the complete vocabulary of our ANVAN sentence
dataset, and a set of the most frequent content
words in our corpus, for a total of 30K words. In
addition, we built two co-occurrence matrices of
bigrams, composed of all predicates (adjectives and
verbs) in our vocabulary and their most frequent
noun co-occurrents, as observed in the corpus, with
a threshold of 300. The bigrams were observed in
co-occurrence with the aforementioned 30K vocab-
ulary and most frequent corpus terms, resulting in
a 650K-by-30K matrix for A-N and N-N bigrams
and a 620K-by-30K matrix for V-N bigrams.

For all three matrices, the 3-word-window co-
occurrence counts were transformed with PPMI
and reduced to 300 dimensions with SVD. All mod-
els were built with DISSECT (Dinu et al., 2013).

CDSMs. We consider two component-wise
CDSMs: the simple additive and multiplicative
models (Mitchell and Lapata, 2008), defined as

2S

catch ×−→ear+
2O

catch ×−−−→sound+
−−−→
catch

{
2S

catch ×−→ear +−−−→catch,
2O

catch}

−→
ear {−−−→catch,

2S

catch,
2O

catch}

−−−→
sound

Figure 1: Example for Practical Lexical Function
model composition for ear catch sound

p = u⊕ v, where ⊕ is either component-wise ad-
dition or multiplication. We also work with two
variants of the Practical Lexical Function model
(PLF), which are derived from the Lexical Func-
tion Model (LF, Baroni and Zamparelli (2010)),
which represents predicates (verbs and adjectives
in our case) as matrices to be multiplied with vector
representations of their nominal arguments. More
specifically, when applied to an ANVAN sentence
(such as pointed ear catch sharp sound), the PLF
model incorporates vector representations for each
of the five constituent words, along with an ad-
jective matrix for pointed and sharp, as well as
verbsubject and verbobject matrices for the verb and
its subject and object arguments. An example of
composition for a verb with its subject and object
arguments is given in Figure 1.

Formally, the standard PLF (PLFPaperno) defines
the composition for ANVAN-style sentences as:
V 2
S ·
−→
S + V 2

O ·
−→
O +

−→
V , where −→S and −→O are the

composed A-N bigrams, A2 · −→N . The required
matrices are learned with ridge regression from
unigram and bigram vectors.

Gupta et al. (2015) pointed out that the standard
PLF “overcounts” the predicate by adding it explic-
itly, and proposed a rectified variant which simply
leaves out the function word vector −→V . We also
experiment with this model, PLFGupta.

All CDSMs rank the four candidates for each
target (cf. Table 1) by comparing the vector for the
original sentence against four sentences in which
the target is replaced by the two correct and two
incorrect substitutes. We use the raw dot product
as similarity measure, following Roller and Erk
(2016), to boost frequent candidates.

Lexical Substitution Model. As competitor, we
consider a dedicated lexical substitution model,
namely context2vec (Melamud et al., 2016). Since
it has demonstrated state-of-the-art performance on
lexical substitution and word sense disambiguation
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tasks, it is a suitable competitor model for CDSMs
on a similar problem. Context2vec uses word em-
beddings to compute a set of viable substitutes
given a context, using a bidirectional LSTM recur-
rent neural network to build a sentential context
representation. We work with two instantiations:
first, using only ANVAN as context (C2VANVAN),
and second, using the full CoInCo sentence from
which the ANVAN was extracted (C2VSent). The
first model is directly comparable to the CDSMs in
that it uses the same context information, while the
second one enables us to gauge to what extent the
models can benefit from a richer context. We let
context2vec generate 1000 substitutions for each
target word. If any substitution candidates were
not included in this list, the missing items were
defined to be tied at the last position, and the AP
was defined as the MAP of all permutations of the
missing items with respect to their ranking.

Baselines. Two baselines are defined to compare
our models against. The first is the random base-
line (Random): the MAP of all possible rankings
of two relevant and two irrelevant items, equal to
0.680. The second baseline (LemmaSim) ranks the
lemma-level similarities of the target word and its
substitutes candidates without context.

4 Results

Table 2 lists the performance of our experiments
on ANVAN-LS, first evaluated for each target word
position (top rows) and then averaged across all
target positions (bottom row). The rightmost col-
umn shows the average performance of all tested
models. Even though there is some variance in
the numbers between subject-position targets and
object-position targets, we see consistent patterns
by part of speech: adjectives are easiest to sub-
stitute, followed by nouns, while verbs are sub-
stantially more difficult. The difficulty with verbs
corresponds to the findings of Medić et al. (2017)
for Croatian, who proposed a correlation between
the syntactic valence of words and their difficulty
(but see below).

The worst model by far is LemmaSim. This is
surprising, given that Kremer et al. (2014) found
lemma-level similarity to be very competitive. Fur-
ther analysis showed that its bad performance is
due to our choice of confounders as highly similar
lemmas (cf. Section 2). An example where high
similarity indicates syntagmatic rather than paradig-
matic relatedness is ohio democrat embark over-

land trip/*itinerary/*sightseeing/journey/travel,2

where the two confounders can form noun com-
pounds with the target, like sightseeing trip. The
simple Add and Mult models also perform worse
than random, in contrast to many other studies, un-
derscoring the difficulty of performing well on our
dataset. They do relatively well for adjectives, but
worse on nouns, and Add struggles with verbs.

The PLFPaperno model performs at baseline level
overall, but shows particularly clear differences
among parts of speech. It does very well for all
adjectives and nouns, but very poorly on verbs,
where it is in fact the worst model overall, both
measured absolutely, and relatively to the overall
performance of the model. An analysis showed
that this is indeed, as Gupta et al. (2015) claim,
due to the overpowering effect of the predicate
vector which is added in the final step of the com-
position and thus tends to dominate the composed
phrase. Consequently, PLFPaperno essentially falls
back to verb lemma similarity (cf. the example
russian team win/earn/*clinch/get/*succeed gold
medal).

PLFGupta performs comparable to PLFPaperno in
all positions, but demonstrates a significant im-
provement on verbs, for example russian team
win/earn/get/*clinch/*succeed gold medal. The
PLFGupta model also outperforms the baselines,
overall and for all individual positions, it emerges
as the best performing CDSM.

Finally, the two context2vec models beat the
baseline both on all positions and overall. Interest-
ingly, C2VANVAN, which uses the same information
provided to the CDSMs, performs roughly on par
with PLFGupta, the best-scoring CDSM. Evidently,
Context2Vec (as a lexical substitution model) and
PLF (as a CDSM) perform comparably – it is not
the case that one of the two model families shows a
clear advantage over the other, given the same con-
text. C2VSent, which has access to richer context,
shows another substantial improvement. An inter-
esting difference between PLF and Context2Vec is
that the lexical substitution models – which do not
take syntactic structure into account – show less
variance among positions than the PLF, which does
take syntactic structure into account.

In their analysis of CDSM performance on a
Croatian language ANVAN dataset, Medić et al.
(2017) found a superior performance of simple

2The substitute candidates are ordered by decreasing simi-
larity, and the confounders marked with asterisks.
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Baselines CDSMs Lexical substitution All

Position Random LemmaSim Add Mult PLFPaperno PLFGupta C2VANVAN C2VSent Average

ANVAN .680 .680 .716 .715 .730 .727 .694 .707 .706
ANVAN .680 .575 .652 .633 .695 .688 .708 .744 .672
ANVAN .680 .537 .618 .670 .536 .680 .697 .723 .643
ANVAN .680 .625 .668 .668 .721 .715 .690 .710 .685
ANVAN .680 .580 .633 .666 .725 .723 .723 .772 .688

Average .680 .599 .656 .669 .681 .706 .702 .731 .678

Table 2: Evaluation results on ANVAN-LS (mean average precision)

CDSMs (such as addition) for nouns while the PLF
performed better on verbs. They attributed this to
the role of valence, arguing that the functional role
of the verbs, and the disambiguation potential of its
argument positions, is better captured by the PLF.
In contrast, the variance in performance between
word positions that we find for the different models
on the ANVAN-LS dataset indicates that the dif-
ficulty of substituting verbs might not be due to
the intrinsic factor of valence, but due to remain-
ing shortcomings in all CDSM models to properly
model predicate-argument combination.

5 Conclusion

This paper presented the case for using lexical sub-
stitution as a better evaluation setup for compo-
sitional distributional semantic models (CDSMs).
We created a new corpus, ANVAN-LS, on the basis
of a corpus with manually annotated lexical substi-
tution, and evaluated a battery of models. Our eval-
uation on this corpus (1) uses a corpus-based, rather
than manually constructed, dataset, and should be
more indicative for the performance of models on
“real-world data” than previous ANVAN-based eval-
uations; (2) is challenging, with a high baseline,
which simple CDSMs like component-wise addi-
tion and multiplication were indeed not able to beat;
(3) enables a detailed evaluation at a per-position
level; (4) makes it possible, to our knowledge for
the first time, to compare CDSMs with dedicated
lexical substitution models on par, and shows that
the two model families perform comparably when
using the same context, but differ in their perfor-
mance by position.

The last result in particular opens up a new line
of research, namely an investigation of similari-
ties and differences between the two model fam-
ilies. The improvement we observe for C2VSent
over C2VANVAN in particular calls for a move from

ANVAN-style sentences to more complex and var-
ied sentence structures. It remains to be researched
how capable CDSMs are to model meaning modu-
lation that extends beyond the immediate predicate-
argument structure (Kremer et al., 2014).
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