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Abstract

Automatic identification of spurious instances
(those with potentially wrong labels in
datasets) can improve the quality of exist-
ing language resources, especially when an-
notations are obtained through crowdsourc-
ing or automatically generated based on coded
rankings. In this paper, we present an ef-
fective approach inspired by queueing the-
ory and psychology of learning to automati-
cally identify spurious instances in datasets.
Our approach discriminates instances based
on their “difficulty to learn,” determined by a
downstream learner. Our method can be ap-
plied to any dataset assuming the existence
of a neural network model for the target task
of the dataset. Our best approach outper-
forms competing state-of-the-art baselines and
has a MAP of 0.85 and 0.22 in identifying
spurious instances in synthetic and carefully-
crowdsourced real-world datasets respectively.

1 Introduction

The importance of error-free language resources
cannot be overstated as errors can inversely af-
fect interpretations of the data, models developed
from the data, and decisions made based on the
data. Although the quality of language resources
can be improved through good annotation guide-
lines, test questions, etc., annotation noise still
exists (Gupta et al., 2012; Lasecki et al., 2013).
For example, Figure 1 shows sample spurious in-
stances (those with potentially wrong labels) in
CIFAR-10 (Krizhevsky, 2009) which is a bench-
mark dataset for object classification. Spurious
instances can mislead systems, and, if available
in test data, lead to unrealistic comparison among
competing systems.

Previous works either directly identify noise
in datasets (Hovy et al., 2013; Dickinson and
Meurers, 2003; Eskin, 2000; Loftsson, 2009),

(a) Truck (b) Airplane (c) Cat

Figure 1: Spurious instances in CIFAR-10. (a) not a
truck, (b) missing annotation for car as another object
category, (c) incomplete image of a cat.

or develop models that are more robust against
noise (Guan et al., 2017; Natarajan et al., 2013;
Zhu et al., 2003; Zhu and Wu, 2004). Furthermore,
recent works on adversarial perturbation have
tackled this problem (Goodfellow et al., 2015;
Feinman et al., 2017). However, most previous
approaches require either annotations generated
by each individual annotator (Guan et al., 2017),
or both task-specific and instance-type (genuine
or adversarial) labels for training (Hendrik Met-
zen et al., 2017; Zheng et al., 2016), or noise-free
data (Xiao et al., 2015). Such information is often
not available in the final release of most datasets.

Current approaches utilize prediction probabil-
ity/loss of instances to tackle the above challenges
in identifying spurious instances. This is because
prediction probability/loss of spurious instances
tend to be lower than that of genuine instances (He
and Garcia, 2009). In particular, the Bayesian
Uncertainty model (Feinman et al., 2017) defines
spurious instances as those that have greater un-
certainty (variance) in their stochastic predictions,
and the Variational Inference model (Rehbein and
Ruppenhofer, 2017; Hovy et al., 2013) expects
greater posterior entropy in predictions made for
spurious instances.

In this paper, our hypothesis is that spurious
instances are frequently found to be difficult to
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learn during training process. This difficulty in
learning stems from the intrinsic discrepancy be-
tween spurious and the cohort of genuine instances
which frequently makes a learner less confident in
predicting the wrong labels of spurious instances.
Based on this hypothesis, we present two frame-
works which are inspired by findings in queue-
ing theory and psychology, namely Leitner queue
network (Leitner, 1974) and Curriculum Learn-
ing (Bengio et al., 2009). Our frameworks can be
considered as schedulers that schedule instances to
train a downstream learner (e.g. a neural network)
with respect to “easiness”/“difficulty” of instances
- determined by the extent to which the learner can
correctly label (e.g. classify) instances during the
training process. The two frameworks, however,
differ in their views on the theory of learning as
we describe below:

Curriculum learning is inspired by the learning
principle that humans can learn more effectively
when training starts with easier concepts and
gradually proceeds with more difficult ones (Ben-
gio et al., 2009). On the other hand, Leitner system
is inspired by spaced repetition (Dempster, 1989;
Cepeda et al., 2006), the learning principle that ef-
fective and efficient learning can be achieved by
working more on difficult concepts and less on
easier ones. Both frameworks are effective, con-
ceptually simple, and easy to implement.

The contributions of this paper are as follows:
(a) we develop a cognitively-motivated and effec-
tive algorithm for identifying spurious instances in
datasets, (b) our approach can be applied to any
dataset without modification if there exists a neu-
ral network architecture for the target task of the
dataset, and (c) we release a tool that can be easily
used to generate a ranked list of spurious instances
in datasets.1 Our tool requires a dataset and its
corresponding network architecture to generate a
ranked list of spurious instances in the dataset.

Our best approach (Leitner model) has a mean
average precision (MAP) of 0.85 and 0.22 in iden-
tifying spurious instances on real-world and syn-
thetic datasets and outperforms competing state-
of-the-art baselines.

2 Method

We assume that our learner is a neural network
which trains for k iterations until convergence.
Furthermore, we assume that spurious and gen-

1https://scholar.harvard.edu/hadi/spot

Algorithm 1. Curriculum Spotter
Input: H : training data, V : validation data, k : num-
ber of iterations
Output: Ranked list of spurious instances

0 batch = H
1 S0[hj ] = 0 for hj ∈ H
2 For epoch = 1 to k:
8 model = train(batch,V)
3 loss = Loss(model,H)
4 λ = compute lambda(model, loss,H)
5 easy batch = sample easy(λ, loss,H)
6 hard batch = H− easy batch
7 batch = easy batch+ top( epoch

k
, hard batch)

9 Sepoch = update stat(Sepoch−1, hard batch,
loss)

10 End for
11 return sort(Sk,H, loss)

Figure 2: Curriculum Spotter. Loss(.) computes
loss of a network with respect to given instances,
compute lambda(.) computes the average loss
of current model for correctly classified instances,
sample easy(.) creates list of easy instances using
current loss values, top(.) returns epoch/k fraction
of easiest hard instances, update stat(.) scores in-
stances according to Eq. (1), and sort(.) ranks in-
stances based on the resulting scores S updated by
Eq. (2).

uine instances are mixed at training time and the
network is only provided with task-specific but not
genuine/spurious labels for the instances.

2.1 Curriculum Learning

Bengio et al. (2009) and Kumar et al. (2010) de-
veloped training paradigms which are inspired by
the learning principle that humans can learn more
effectively when training starts with easier con-
cepts and gradually proceeds with more difficult
ones. Since easiness of information is not read-
ily available in most datasets, previous approaches
used heuristic techniques (Spitkovsky et al., 2010;
Basu and Christensen, 2013) or optimization algo-
rithms (Jiang et al., 2015, 2014) to quantify easi-
ness for instances. These approaches consider an
instance as easy if its prediction loss is smaller
than a threshold (λ). Given a neural network as
the learner, we adopt curriculum learning to iden-
tify spurious instances as follows (see Figure 2):

At each iteration i, we divide all instances into
easy and hard batches using the iteration-specific
threshold λi and the loss values of instances at iter-
ation i, obtained from the current partially-trained
network. All instances with a loss smaller than
λi are considered as easy and the rest are consid-

2007



ered as hard. All easy instances in conjunction
with δi ∈ [0, 1] fraction of easiest hard instances
(those with smallest loss values greater than λi)
are used for training at iteration i. We set each λi
to the average2 loss of training instances that are
correctly classified by the current partially-trained
network. Furthermore, at each iteration i > 1, we
set δi = i/k where k is the total number of itera-
tions. In this way, difficult instances are gradually
introduced to the network at every new iteration.

The update stat(.) function in Figure 2
scores instances based on their frequency of oc-
currence in the hard batch. In particular, for each
instance hi:

Se(hi) = Se−1(hi)+ (1)

1hard batche(hi)×
( 1

|hard batche| + losse(hi)
)
,

where Se(hi) is the score of hi at iteration e,
1Y (x) is an indicator function which is 1 when
x ∈ Y and otherwise 0, hard batche indicates the
set of hard instances at iteration e, and losse(hi)
is the loss of the network for hi at iteration e. The
above function assigns higher scores to instances
that are frequently considered as hard instances
by the curriculum learning framework (such in-
stances are ranked higher in the final ranked list of
spurious instances). It also assigns a final score of
Sk(hi) = 0 to instances that are treated as easy in-
stances throughout the training process, i.e. those
that have a loss smaller than the iteration-specific
threshold λi at each iteration i and, therefore, are
always placed in the easy batch. To break the tie
for these instances in the final ranking, we resort
to their final loss values as follows:

Sk(hi) = lossk(hi), if Sk(hi) = 0. (2)

2.2 Leitner System

The Leitner System is inspired by the broad evi-
dence in psychology that shows human ability to
retain information improves with repeated expo-
sure and exponentially decays with delay since last
exposure (Cepeda et al., 2006). Spaced repetition
forms the building block of many educational de-
vices, such as flashcards, in which small pieces of
information are repeatedly presented to a learner
on a schedule determined by a spaced repetition

2We also considered maximum and median loss, but aver-
age loss led to greater training gain in terms of effectiveness.

Algorithm 2. Leitner Spotter
Input: H : training data, V : validation data, k : num-
ber of iterations, n : number of queues
Output: Ranked list of spurious instances

0 Q = [q0, q1, . . . , qn−1]
1 q0 = [H], qi = [] for i ∈ [1, n− 1]
2 S0[hj ] = 0 for hj ∈ H
3 For epoch = 1 to k:
4 batch = []
5 For i = 0 to n− 1:
6 If epoch%2i == 0:
7 batch = batch+ qi
8 End For
9 promos, demos, loss = train(batch,V)
10 update queue(Q, promos, demos)
11 Sepoch = update stat(Sepoch−1, Q, loss)
12 End for
13 return sort(Sk,H, loss)
q0 epochs = {1, 2, 3, 4, 5, . . . }
q1 epochs = {2, 4, 6, 8, 10, . . . }
q2 epochs = {4, 8, 12, 16, 20, . . . }
. . .

Figure 3: Leitner Spotter. The train(.) func-
tion trains the network using instances in the cur-
rent batch, update queue(.) promotes the correctly
classified instances–promos–to their next queues and
demotes the wrongly classified ones–demos–to q0,
update stat(.) scores instances according to Eq. (3),
and sort(.) ranks instances based on resulting scores
S updated by Eq. (4).

algorithm. Such algorithms show that human
learners can learn efficiently and effectively by in-
creasing intervals of time between subsequent re-
views of previously learned materials (Dempster,
1989; Novikoff et al., 2012). We adopt the Leitner
system to identify spurious instances as follows:

Suppose we have n queues {q0, q1, . . . , qn−1}.
The Leitner system initially places all instances in
the first queue, q0. As Figure 3 shows, the system
trains with instances of qi at every 2i iterations.
At each iteration, only instances in the selected
queues will be used for training the network. Dur-
ing training, if an instance from qi is correctly clas-
sified by the network, the instance will be “pro-
moted” to qi+1, otherwise it will be “demoted”
to the first queue, q0. Therefore, as the network
trains through time, higher queues will accumu-
late easier instances which the network is most ac-
curate about, while lower queues carry either hard
or potentially spurious instances. This is because
of the intrinsic discrepancy between spurious in-
stances and the cohort of genuine instances which
makes the network less confident in predicting the
wrong labels of spurious instances. Figure 3 (bot-
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tom) provides examples of queues and their corre-
sponding processing epochs.

The update stat(.) function in Figure 3
scores instances based on their occurrence in q0.
In particular, for each instance hi:

Se(hi) = Se−1(hi)+1qe0(hi)×
( 1

|qe0|
+losse(hi)

)
,

(3)
where |qe0| indicates the number of instance in q0
at iteration e. The above function assigns higher
scores to instances that frequently occur in q0. It
also assigns a final score of Sk(hi) = 0 (at the
last iteration) to instances that have never been de-
moted to q0. To break the tie for such instances,
we use their final loss value as follows:

Sk(hi) = lossk(hi), if Sk(hi) = 0. (4)

3 Experiments

3.1 Evaluation Metrics

We employ a TREC-like evaluation setting to
compare models against each other. For this, we
create a pool of K most spurious instances iden-
tified by different models. If needed, e.g. in case
of real-world datasets, we manually label all in-
stances in the pool and come to agreement about
their labels. Then, we compare the resulting labels
with the original labels in the dataset to determine
spurious/genuine instances. We compare mod-
els based on the standard TREC evaluation mea-
sures, namely mean average precision (MAP), pre-
cision after r instances are retrieved (P@r), and,
only for synthetic data, precision after all spuri-
ous instances are retrieved (Rprec). We use the
trec-eval toolkit to compute performance of
different models.3

3.2 Datasets

We develop synthetic and real-world datasets for
our experiments. Since, in contrast to real-world
datasets, (most4) synthetic datasets do not con-
tain any noisy instances, we can conduct large-
scale evaluation by injecting spurious instances
into such datasets. Table 1 shows detail informa-
tion about our datasets.

3http://trec.nist.gov/trec_eval/
4Some synthetic datasets may contain noise, see sam-

ple inconsistencies that our model identified in the bAbi
dataset (Weston et al., 2016) in Table 3.

Dataset Train/Val SpRatio Input Output
Synthetic Dataset

Addition 10K/2K α ∈ (0, 0.5] (x,y ≥ 0) x+ y

Real-world Datasets
Twitter 10K/1K 0.30 brand tweet pos/neg
Reddit 4K/400 0.23 cancer post rel/irel

Table 1: Dataset Information. “SpRatio” shows the
fraction of spurious instances in the TREC pool; size of
the pool for Addition is 10K instances with no limit on
the top K retrieved instances; the corresponding value
for Twitter and Reddit datasets are 198 and 152 posts
respectively for top K = 50.

3.2.1 Synthetic Dataset
The Addition dataset, initially developed
by Zaremba and Sutskever (2014), is a syn-
thetic dataset in which an input instance is a pair
of non-negative integers smaller than 10l and
the corresponding output is the arithmetic sum
of the input; we set l = 4 in our experiments.
Since this dataset contains only genuine instances,
we create noisy datasets by injecting α × N
spurious instances into (1 − α) × N genuine
instances, where N = 10K is the total number
of training instances and α ≤ 0.5 indicates the
noise level in the dataset. We create spurious
instances as follows: given three random numbers
xi, xj , xk ∈ [0, 10l) such that xj 6= xk, the wrong
sum (output) for the pair (xi, xj) is computed as:

max(0, xi + (−1)o × xk),

where o is a random variable that takes values
from O = {1, 2} with equal probability.

3.2.2 Real-world Datasets
We crowdsource annotations for two real-world
datasets, namely Twitter and Reddit posts (see Ta-
ble 1). For quality control, we carefully develop
annotation schemas as well as high quality test
questions (see below) to minimize the chances of
spurious labels in the resulting annotations.

The Twitter dataset contains tweets about a
telecommunication brand. Tweets contain brand
name or its products and services. Annotators
are instructed to label tweets as positive/negative
if they describe positive/negative sentiment about
the target brand. We use 500 labeled instances for
annotation quality assurance and ignore data gen-
erated by annotators who have less than 80% ac-
curacy on these instances. The resulting Fleiss’
kappa (Fleiss, 1971) is κ = 0.66 on our Twitter
dataset which indicates substantial agreement.
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The Reddit dataset includes posts about colon,
breast, or brain cancer. These posts contain
phrases like colon cancer, breast cancer, or brain
cancer. Annotators are instructed to label a post
as “relevant” if it describes a patient’s experience
(including sign and symptoms, treatments, etc.,)
with respect to the cancer. In contrast, “irrele-
vant” posts are defined as generic texts (such as
scientific papers, news, etc.,) that discuss cancer
in general without describing a real patient expe-
rience. We use 300 labeled instances for annota-
tion quality assurance and ignore annotations gen-
erated by users who have less than 80% accuracy
on these instances. The resulting Fleiss’ kappa is
κ = 0.48 for the Reddit dataset which indicates
moderate agreement.

3.3 Settings

For the synthetic Addition dataset, we set the size
of the TREC pool to K = 10, 000 (size of training
data) which indicates there is no limitation on the
number of spurious instances that a model can re-
trieve; note that we have a spurious/genuine label
for each instance in the Addition dataset and there-
fore do not need to label the resulting TREC pool
manually. Furthermore, we consider the LSTM
network developed by Sutskever et al. (2014) as
the downstream learner.5 Without noise in data,
this network obtains a high accuracy of 99.7% on
the Addition task.

For the real-world datasets, we allow each
model to submits its top 50 most spurious in-
stances to the TREC pool (we have five models in-
cluding our baselines). As mentioned before, we
manually label these instances to determine their
spurious/genuine labels. This leads to TREC pools
of size 198 and 152 posts (with 59 and 35 spuri-
ous instances) for the Twitter and Reddit datasets
respectively.

We use the MLP network fastText (Joulin
et al., 2017) as the downstream learner - for more
effective prediction, we add a Dense layer of size
512 before the last layer of fastText. This net-
work obtains accuracy of 74.6% and 70.2% on
Twitter and Reddit datasets respectively.

Finally, for the Leitner system, we experiment
with different queue lengths, n = {3, 5, 7}, and
set n = 5 in the experiments as this value leads to
slightly better performance in our experiments.

5http://github.com/fchollet/keras/
blob/master/examples/addition_rnn.py

3.4 Baselines
We consider the following baselines; each baseline
takes a dataset and a model as input and generates
a ranked list of spurious instances in the dataset:
• Prediction Probability (PP): Since predic-

tion loss of spurious instances tend to be higher
than that of genuine ones (He and Garcia, 2009;
Hendrycks and Gimpel, 2016), this baseline ranks
instances in descending order of their prediction
loss after networks are trained through standard
(rote) training.
• Variational inference (VI) (Hovy et al.,

2013; Rehbein and Ruppenhofer, 2017): This
model approximates posterior entropy from sev-
eral predictions made for each individual instance
(see below).6

• Bayesian Uncertainty (BU) (Feinman et al.,
2017): This model ranks instances with respect to
the uncertainty (variance) in their stochastic pre-
dictions.7

BU estimates an uncertainty score for each indi-
vidual instance by generating T = 50 predictions
for the instance from a distribution of network
configurations. The prediction disagreement tends
to be common among spurious instances (high un-
certainty) but rare among genuine instances (low
uncertainty). Uncertainty of instance x with pre-
dictions {y1, . . . ,yT } is computed as follows:

1

T

T∑

i=1

y>i yi −
( 1
T

T∑

i=1

yi

)>( 1
T

T∑

i=1

yi

)
.

Variational inference (VI) (Rehbein and Rup-
penhofer, 2017; Hovy et al., 2013) detects spu-
rious instances by approximating the posterior
p(y|x) with a simpler distribution q(y) (called
variational approximation to the posterior) which
models the prediction for each instance. The
model jointly optimizes the two distributions
through EM: in the E-step, q is updated to mini-
mize the divergence between the two distributions,
D(q||p); in the M-step, q is kept fixed while p is
adjusted. The two steps are repeated until conver-
gence. Instances are then ranked based on their
posterior entropies. Similar to BU, we generate
T = 50 predictions for each instance.

For both BU and VI baselines, we apply a
dropout rate of 0.5 after the first and last hidden

6http://isi.edu/publications/
licensed-sw/mace/

7http://github.com/rfeinman/
detecting-adversarial-samples
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layers of our downstream networks to generate
predictions. See (Gal and Ghahramani, 2016) for
the ability of dropout neural networks in represent-
ing model uncertainty.

3.5 Experimental Results

The overall mean average precisions (MAPs)
of different models on synthetic and real-world
datasets are reported in Table 2. For the synthetic
dataset (Addition), we report average MAP across
all noise levels, and for real-world datasets (Twit-
ter and Reddit), we report average MAP at their
corresponding noise levels obtained from corre-
sponding TREC pools. We use t-test for signifi-
cance testing and asterisk mark (*) to indicate sig-
nificant difference at ρ = 0.05 between top two
competing systems.

The results show that Leitner (Lit) and Bayesian
uncertainty (BU) models considerably outperform
prediction probability (PP) and curriculum learn-
ing (CL) on both synthetic and real-world datasets.
In case of real-world datasets, we didn’t find sig-
nificant difference between top two models per-
haps because of the small size of corresponding
TREC pools (198 Twitter posts and 152 Reddit
posts, see Table 1). Overall, BU and Lit show aver-
age MAP of 0.81, and 0.85 on the synthetic dataset
and 0.15, 0.22 on real-world datasets respectively.
The higher performance of Lit indicates that spu-
rious instances often appear in q0. The lower per-
formance of CL, however, can be attributed to
its training strategy which may label spurious in-
stances as easy instances if their loss values are
smaller than the loss threshold (section 2.1). The
large difference between the performances of Lit
and CL (two methods based on repeated scoring
across training epochs) shows that the way that
repetition is utilized by different methods largely
affects their final performance in spotting spuri-
ous instances. In addition, VI shows lower perfor-
mance than BU and Lit on synthetic data, but com-
parable performance to BU on real-world datasets.

Furthermore, the results show that the perfor-
mance of all models are considerably lower on
real-world datasets than the synthetic dataset. This
could be attributed to the more complex nature
of our real-world datasets which leads to weaker
generalizability of downstream learners on these
datasets (see next section for discussion on train-
ing performance). This can in turn inversely affect
the performance of different spotters, e.g. by en-

Synthetic Real-world
noise = [0.1, 0.5] noise = {0.28, 0.35}

PP 0.719 0.100
CL 0.718 0.067
VI 0.757 0.142
BU 0.811 0.148
Lit 0.851∗ 0.225

Table 2: Average overall MAP performance across
datasets and noise levels.

couraging most instances to be considered as hard
and thus placed in lower queues of Lit or in the
hard batch of CL, or by increasing the prediction
uncertainty and entropy in case of BU and VI re-
spectively. In addition, as we mentioned before,
we carefully setup the annotation task to minimize
the chances of spurious labels in the resulting an-
notations. Therefore, we expect a considerably
smaller fraction of spurious instances in our real-
world datasets.

Figures 4(a) and 4(d) report MAP and precision
after all spurious instances have been retrieved
(Rprec) on Addition at different noise levels re-
spectively; note that α = 0.5 means equal num-
ber of spurious and genuine instances in training
data (here, we do not report the performance of
CL due to its lower performance and for better pre-
sentation). First, the results show that Lit and BU
considerably outperform PP and VI. Furthermore,
BU shows considerably high performance at lower
noise levels, α ≤ 0.2, while Lit considerably out-
performs BU at greater noise levels, α > 0.2.
The lower performance of BU at higher noise lev-
els might be because of the poor generalizability
of LSTM in the context of greater noise which
may increase the variance in the prediction prob-
abilities of most instances (see section 3.6 for our
note on training performance). In terms of aver-
age Rprec, the overall performance of PP, CL, VI,
BU, and Lit models is 0.62, 0.57, 0.65, 0.70, and
0.74 respectively on the Addition dataset across
all noise levels (see the corresponding values for
MAP in Table 2). The lower Rprec values than
MAP indicate that some spurious instances are
ranked very low by models. These are perhaps the
most difficult spurious instances to identify.

For the real-world datasets, we only report MAP
and P@r (precision at rank r) as spurious/genuine
labels are only available for those instances that
make it to the TREC pool but not for all instances.
The results on Reddit, Figures 4(b) and 4(e) re-
spectively, show that Lit outperforms other mod-
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Figure 4: Models performance across datasets. MAP indicates mean average precision, Rprec indicates precision
after all spurious instances are retrieved, and P@r indicates precision after r instances are retrieved. In (a) and (b)
performance values are reported at different noise levels α ∈ (0, 0.5].

els, but VI and BU show comparable MAP (in
contrast to their performance on Addition). Fur-
thermore, Figure 4(e) shows that Lit generates a
more accurate ranked list of spurious instances and
consistently outperforms other models at almost
all ranks. In particular, it maintains a MAP of
around 60% at rank 20, while other models have
consistently lower MAP than 50% at all ranks.

The results on the Twitter dataset, Fig-
ures 4(c) and 4(f), show that Lit outperforms other
models. However, interestingly, PP outperforms
BU in terms of both MAP and P@r across almost
all ranks. This result could be attributed to the sub-
stantial annotation agreement on Twitter dataset
(Fleiss’ κ = 0.66 ) which could make network
predictions/loss values more representative of gold
labels. Figure 4(f) also shows that Lit is the most
precise model in identifying spurious instances.
Note that P@5 is an important metric in search
applications and as Figures 4(e) and 4(f) show, at
rank 5, Lit is 2-3 times more precise than the best-
performing baseline on our real-world datasets.

Given any dataset and its corresponding neural
network, our Leitner model simultaneously trains
the network and generates a ranked list of spuri-
ous instances in the dataset. For this purpose, the
model tracks loss values and occurrences of in-
stances in the lower Leitner queue during training.

3.6 Notes on Training Performance

Figure 5(a) shows the accuracy of the LSTM net-
work (Sutskever et al., 2014) trained with differ-
ent training regimes on the validation data of Ad-
dition with different noise levels; note that Rote
represents standard training where at each itera-
tion all instances are used to train the network. As
the results show, at lower noise levels, the training
performance (i.e. the generalizability/accuracy of
the LSTM network) is generally high and compa-
rable across different training regimes, e.g. close
to 100% at α = 0. However, Lit leads to a slightly
weaker training performance than CL and Rote as
the noise level increases. This is because Lit learns
from spurious instances more frequently than gen-
uine ones. This may decrease the training perfor-
mance of Lit, especially with greater amount of
noise in data. However, this training strategy in-
creases the spotting performance of Lit as spurious
instances seem to occur in lower queues of Leitner
more frequently, see Figure 4.

In addition, the accuracy of fastText (Joulin
et al., 2017) is reported in Figure 5(b). The re-
sults show that different training regimes lead to
comparable performance on both datasets (accu-
racy of around 75% and 70% on Twitter and Red-
dit respectively). The relatively lower training per-
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Figure 6: Behavior of prediction loss across training epochs. (a) S: spurious, G: genuine; L: low, H: high.

formance on these datasets can contribute to the
weaker performance of spotters on these datasets.

3.7 Discussion
We first report insights on why prediction loss
alone is not enough to identify spurious instances.
For this analysis, we track the loss of spurious and
genuine instances at each training iteration.8 Fig-
ure 6(a) shows the number of spurious/genuine in-
stances with low/high loss at each epoch; where,
we use the average loss of correctly classified
training instances at each epoch as a pivot value
to determine the low and high loss values for that
epoch. Initially, almost all spurious and genuine
instances have high loss values (see SH and GH
in Figure 6(a)). However, the sheer imbalance
of genuine instances relative to spurious instances
means that there will still be a relatively large
number of genuine instances with large loss - these
are simply difficult instances. Furthermore, the
number of spurious instances with lower loss val-
ues (SL) slowly increases as the network gradu-
ally learns the wrong labels of some spurious in-
stances; this, in turn, decreases the expected loss

8Here we use Addition with N = 10K training instances
and noise level of α = 0.2.

of such instances. Since PP merely ranks instances
based on loss values, the above two factors may
cause some spurious instances to be ranked lower
than genuine ones by PP; see Figure 6(b) for MAP
of PP in detecting spurious instances at every it-
eration. Using queue information from the Leit-
ner system adds information that loss alone does
not; we suspect that the learner can find principled
solutions that trade off losses between one diffi-
cult genuine instance and another (causing them
to bounce between q0 and higher queues) with-
out harming total loss, but that the more random
nature of spurious instances means that they are
consistently misclassified, staying in q0. Verifying
this hypothesis will be the subject of future work.

For our second analysis, we manually inspect
highly ranked instances in q0 of Lit. We use the
synthetic dataset bAbi (Weston et al., 2016) which
is a systematically generated QA dataset for which
the task is to generate an answer given a ques-
tion and its corresponding story. As the learner,
we use an effective LSTM network specifically
developed for this task.9 Table 3 shows sample
instances from bAbi which are highly ranked by

9https://github.com/fchollet/keras/
blob/master/examples/babi_rnn.py
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Story: Mary traveled to the garden. Daniel went to
the garden. Mary journeyed to the kitchen. Mary went
back to the hallway. Daniel traveled to the office.
Daniel moved to the garden. Sandra went back to the
kitchen. John traveled to the bathroom.
Question: Where is Mary?
Answer: hallway
Story: John went to the office. Daniel journeyed to
the office. Sandra picked up the football there. San-
dra went to the bedroom. Sandra left the football there.
Sandra went back to the kitchen. Sandra traveled to
the hallway. Sandra moved to the garden.
Question: Where is the football?
Answer: bedroom

Table 3: Sample inconsistencies in bAbi dataset.

Lit. We observe inconsistencies in the given sto-
ries. In the first case, the story contains the sen-
tence “Mary went back to the hallway,” while the
previous sentences indicate that Mary was in the
“garden/kitchen” but not “hallway” before. In the
second case, the sentence “Sandra picked up the
football there” is inconsistent with story because
the word “there” doesn’t refer to any specific loca-
tion. We conjecture that these inconsistencies can
mislead the learner or at least make the learning
task more complex. Our model can be used to ex-
plore language resources for such inconsistencies.

4 Related Work

There is broad evidence in psychology that shows
human ability to retain information improves with
repeated exposure and exponentially decays with
delay since last exposure. Ebbinghaus (1913,
2013), and recently Murre and Dros (2015), stud-
ied the hypothesis of the exponential nature of
forgetting in humans. Three major indicators
were identified that affect memory retention in hu-
mans: delay since last review of learning materi-
als and strength of human memory (Ebbinghaus,
1913; Dempster, 1989; Wixted, 1990; Cepeda
et al., 2006; Novikoff et al., 2012), and, more
recently, difficulty of learning materials (Reddy
et al., 2016).

The above findings show that human learners
can learn efficiently and effectively by increasing
intervals of time between subsequent reviews of
previously learned materials (spaced repetition).
In (Amiri et al., 2017), we built on these find-
ings to develop efficient and effective training
paradigms for neural networks. Previous research
also investigated the development of cognitively-
motivated training paradigms named curriculum
learning for artificial neural networks (Bengio

et al., 2009; Kumar et al., 2010). The difference
between the above models is in their views to
learning: curriculum learning is inspired by the
learning principle that training starts with easier
concepts and gradually proceeds with more diffi-
cult ones (Bengio et al., 2009). On the other hand,
spaced repetition models are inspired by the learn-
ing principle that effective and efficient learning
can be achieved by working more on difficult con-
cepts and less on easier ones.

In this research, we extend our spaced repeti-
tion training paradigms to simultaneously train ar-
tificial neural networks and identify training in-
stances with potentially wrong labels (spurious in-
stances) in datasets. Our work is important be-
cause spurious instances may inversely affect in-
terpretations of the data, models developed from
the data, and decisions made based on the data.
Furthermore, spurious instances lead to unrealis-
tic comparison among competing systems if they
exist in test data.

5 Conclusion and Future Work

We present a novel approach based on queueing
theory and psychology of learning to identify spu-
rious instances in datasets. Our approach can be
considered as a scheduler that iteratively trains a
downstream learner (e.g. a neural network) and
detects spurious instances with respect to their dif-
ficulty to learn during the training process. Our ap-
proach is robust and can be applied to any dataset
without modification given a neural network de-
signed for the target task of the dataset.

Our work can be extended by: (a) utilizing sev-
eral predictions for each training instance, (b) in-
vestigating the extent to which a more sophisti-
cated and effective downstream learner can affect
the performance of different spotters, (c) devel-
oping models to better distinguish hard genuine
instances from spurious ones, and (d) developing
ranking algorithms to improve the performance of
models on real-world datasets.
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